kvm_main.c 92 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include <kvm/iodev.h>
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/syscore_ops.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <linux/sort.h>
  49. #include <linux/bsearch.h>
  50. #include <asm/processor.h>
  51. #include <asm/io.h>
  52. #include <asm/ioctl.h>
  53. #include <asm/uaccess.h>
  54. #include <asm/pgtable.h>
  55. #include "coalesced_mmio.h"
  56. #include "async_pf.h"
  57. #include "vfio.h"
  58. #define CREATE_TRACE_POINTS
  59. #include <trace/events/kvm.h>
  60. /* Worst case buffer size needed for holding an integer. */
  61. #define ITOA_MAX_LEN 12
  62. MODULE_AUTHOR("Qumranet");
  63. MODULE_LICENSE("GPL");
  64. /* Architectures should define their poll value according to the halt latency */
  65. static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
  66. module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
  67. /* Default doubles per-vcpu halt_poll_ns. */
  68. static unsigned int halt_poll_ns_grow = 2;
  69. module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
  70. /* Default resets per-vcpu halt_poll_ns . */
  71. static unsigned int halt_poll_ns_shrink;
  72. module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
  73. /*
  74. * Ordering of locks:
  75. *
  76. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  77. */
  78. DEFINE_SPINLOCK(kvm_lock);
  79. static DEFINE_RAW_SPINLOCK(kvm_count_lock);
  80. LIST_HEAD(vm_list);
  81. static cpumask_var_t cpus_hardware_enabled;
  82. static int kvm_usage_count;
  83. static atomic_t hardware_enable_failed;
  84. struct kmem_cache *kvm_vcpu_cache;
  85. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  86. static __read_mostly struct preempt_ops kvm_preempt_ops;
  87. struct dentry *kvm_debugfs_dir;
  88. EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
  89. static int kvm_debugfs_num_entries;
  90. static const struct file_operations *stat_fops_per_vm[];
  91. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  92. unsigned long arg);
  93. #ifdef CONFIG_KVM_COMPAT
  94. static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
  95. unsigned long arg);
  96. #endif
  97. static int hardware_enable_all(void);
  98. static void hardware_disable_all(void);
  99. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  100. static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
  101. static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
  102. __visible bool kvm_rebooting;
  103. EXPORT_SYMBOL_GPL(kvm_rebooting);
  104. static bool largepages_enabled = true;
  105. bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
  106. {
  107. if (pfn_valid(pfn))
  108. return PageReserved(pfn_to_page(pfn));
  109. return true;
  110. }
  111. /*
  112. * Switches to specified vcpu, until a matching vcpu_put()
  113. */
  114. int vcpu_load(struct kvm_vcpu *vcpu)
  115. {
  116. int cpu;
  117. if (mutex_lock_killable(&vcpu->mutex))
  118. return -EINTR;
  119. cpu = get_cpu();
  120. preempt_notifier_register(&vcpu->preempt_notifier);
  121. kvm_arch_vcpu_load(vcpu, cpu);
  122. put_cpu();
  123. return 0;
  124. }
  125. EXPORT_SYMBOL_GPL(vcpu_load);
  126. void vcpu_put(struct kvm_vcpu *vcpu)
  127. {
  128. preempt_disable();
  129. kvm_arch_vcpu_put(vcpu);
  130. preempt_notifier_unregister(&vcpu->preempt_notifier);
  131. preempt_enable();
  132. mutex_unlock(&vcpu->mutex);
  133. }
  134. EXPORT_SYMBOL_GPL(vcpu_put);
  135. static void ack_flush(void *_completed)
  136. {
  137. }
  138. bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
  139. {
  140. int i, cpu, me;
  141. cpumask_var_t cpus;
  142. bool called = true;
  143. struct kvm_vcpu *vcpu;
  144. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  145. me = get_cpu();
  146. kvm_for_each_vcpu(i, vcpu, kvm) {
  147. kvm_make_request(req, vcpu);
  148. cpu = vcpu->cpu;
  149. /* Set ->requests bit before we read ->mode. */
  150. smp_mb__after_atomic();
  151. if (cpus != NULL && cpu != -1 && cpu != me &&
  152. kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
  153. cpumask_set_cpu(cpu, cpus);
  154. }
  155. if (unlikely(cpus == NULL))
  156. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  157. else if (!cpumask_empty(cpus))
  158. smp_call_function_many(cpus, ack_flush, NULL, 1);
  159. else
  160. called = false;
  161. put_cpu();
  162. free_cpumask_var(cpus);
  163. return called;
  164. }
  165. #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
  166. void kvm_flush_remote_tlbs(struct kvm *kvm)
  167. {
  168. /*
  169. * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
  170. * kvm_make_all_cpus_request.
  171. */
  172. long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
  173. /*
  174. * We want to publish modifications to the page tables before reading
  175. * mode. Pairs with a memory barrier in arch-specific code.
  176. * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
  177. * and smp_mb in walk_shadow_page_lockless_begin/end.
  178. * - powerpc: smp_mb in kvmppc_prepare_to_enter.
  179. *
  180. * There is already an smp_mb__after_atomic() before
  181. * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
  182. * barrier here.
  183. */
  184. if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  185. ++kvm->stat.remote_tlb_flush;
  186. cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
  187. }
  188. EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
  189. #endif
  190. void kvm_reload_remote_mmus(struct kvm *kvm)
  191. {
  192. kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  193. }
  194. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  195. {
  196. struct page *page;
  197. int r;
  198. mutex_init(&vcpu->mutex);
  199. vcpu->cpu = -1;
  200. vcpu->kvm = kvm;
  201. vcpu->vcpu_id = id;
  202. vcpu->pid = NULL;
  203. init_swait_queue_head(&vcpu->wq);
  204. kvm_async_pf_vcpu_init(vcpu);
  205. vcpu->pre_pcpu = -1;
  206. INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
  207. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  208. if (!page) {
  209. r = -ENOMEM;
  210. goto fail;
  211. }
  212. vcpu->run = page_address(page);
  213. kvm_vcpu_set_in_spin_loop(vcpu, false);
  214. kvm_vcpu_set_dy_eligible(vcpu, false);
  215. vcpu->preempted = false;
  216. r = kvm_arch_vcpu_init(vcpu);
  217. if (r < 0)
  218. goto fail_free_run;
  219. return 0;
  220. fail_free_run:
  221. free_page((unsigned long)vcpu->run);
  222. fail:
  223. return r;
  224. }
  225. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  226. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  227. {
  228. put_pid(vcpu->pid);
  229. kvm_arch_vcpu_uninit(vcpu);
  230. free_page((unsigned long)vcpu->run);
  231. }
  232. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  233. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  234. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  235. {
  236. return container_of(mn, struct kvm, mmu_notifier);
  237. }
  238. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  239. struct mm_struct *mm,
  240. unsigned long address)
  241. {
  242. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  243. int need_tlb_flush, idx;
  244. /*
  245. * When ->invalidate_page runs, the linux pte has been zapped
  246. * already but the page is still allocated until
  247. * ->invalidate_page returns. So if we increase the sequence
  248. * here the kvm page fault will notice if the spte can't be
  249. * established because the page is going to be freed. If
  250. * instead the kvm page fault establishes the spte before
  251. * ->invalidate_page runs, kvm_unmap_hva will release it
  252. * before returning.
  253. *
  254. * The sequence increase only need to be seen at spin_unlock
  255. * time, and not at spin_lock time.
  256. *
  257. * Increasing the sequence after the spin_unlock would be
  258. * unsafe because the kvm page fault could then establish the
  259. * pte after kvm_unmap_hva returned, without noticing the page
  260. * is going to be freed.
  261. */
  262. idx = srcu_read_lock(&kvm->srcu);
  263. spin_lock(&kvm->mmu_lock);
  264. kvm->mmu_notifier_seq++;
  265. need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
  266. /* we've to flush the tlb before the pages can be freed */
  267. if (need_tlb_flush)
  268. kvm_flush_remote_tlbs(kvm);
  269. spin_unlock(&kvm->mmu_lock);
  270. kvm_arch_mmu_notifier_invalidate_page(kvm, address);
  271. srcu_read_unlock(&kvm->srcu, idx);
  272. }
  273. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  274. struct mm_struct *mm,
  275. unsigned long address,
  276. pte_t pte)
  277. {
  278. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  279. int idx;
  280. idx = srcu_read_lock(&kvm->srcu);
  281. spin_lock(&kvm->mmu_lock);
  282. kvm->mmu_notifier_seq++;
  283. kvm_set_spte_hva(kvm, address, pte);
  284. spin_unlock(&kvm->mmu_lock);
  285. srcu_read_unlock(&kvm->srcu, idx);
  286. }
  287. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  288. struct mm_struct *mm,
  289. unsigned long start,
  290. unsigned long end)
  291. {
  292. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  293. int need_tlb_flush = 0, idx;
  294. idx = srcu_read_lock(&kvm->srcu);
  295. spin_lock(&kvm->mmu_lock);
  296. /*
  297. * The count increase must become visible at unlock time as no
  298. * spte can be established without taking the mmu_lock and
  299. * count is also read inside the mmu_lock critical section.
  300. */
  301. kvm->mmu_notifier_count++;
  302. need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
  303. need_tlb_flush |= kvm->tlbs_dirty;
  304. /* we've to flush the tlb before the pages can be freed */
  305. if (need_tlb_flush)
  306. kvm_flush_remote_tlbs(kvm);
  307. spin_unlock(&kvm->mmu_lock);
  308. srcu_read_unlock(&kvm->srcu, idx);
  309. }
  310. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  311. struct mm_struct *mm,
  312. unsigned long start,
  313. unsigned long end)
  314. {
  315. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  316. spin_lock(&kvm->mmu_lock);
  317. /*
  318. * This sequence increase will notify the kvm page fault that
  319. * the page that is going to be mapped in the spte could have
  320. * been freed.
  321. */
  322. kvm->mmu_notifier_seq++;
  323. smp_wmb();
  324. /*
  325. * The above sequence increase must be visible before the
  326. * below count decrease, which is ensured by the smp_wmb above
  327. * in conjunction with the smp_rmb in mmu_notifier_retry().
  328. */
  329. kvm->mmu_notifier_count--;
  330. spin_unlock(&kvm->mmu_lock);
  331. BUG_ON(kvm->mmu_notifier_count < 0);
  332. }
  333. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  334. struct mm_struct *mm,
  335. unsigned long start,
  336. unsigned long end)
  337. {
  338. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  339. int young, idx;
  340. idx = srcu_read_lock(&kvm->srcu);
  341. spin_lock(&kvm->mmu_lock);
  342. young = kvm_age_hva(kvm, start, end);
  343. if (young)
  344. kvm_flush_remote_tlbs(kvm);
  345. spin_unlock(&kvm->mmu_lock);
  346. srcu_read_unlock(&kvm->srcu, idx);
  347. return young;
  348. }
  349. static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
  350. struct mm_struct *mm,
  351. unsigned long start,
  352. unsigned long end)
  353. {
  354. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  355. int young, idx;
  356. idx = srcu_read_lock(&kvm->srcu);
  357. spin_lock(&kvm->mmu_lock);
  358. /*
  359. * Even though we do not flush TLB, this will still adversely
  360. * affect performance on pre-Haswell Intel EPT, where there is
  361. * no EPT Access Bit to clear so that we have to tear down EPT
  362. * tables instead. If we find this unacceptable, we can always
  363. * add a parameter to kvm_age_hva so that it effectively doesn't
  364. * do anything on clear_young.
  365. *
  366. * Also note that currently we never issue secondary TLB flushes
  367. * from clear_young, leaving this job up to the regular system
  368. * cadence. If we find this inaccurate, we might come up with a
  369. * more sophisticated heuristic later.
  370. */
  371. young = kvm_age_hva(kvm, start, end);
  372. spin_unlock(&kvm->mmu_lock);
  373. srcu_read_unlock(&kvm->srcu, idx);
  374. return young;
  375. }
  376. static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
  377. struct mm_struct *mm,
  378. unsigned long address)
  379. {
  380. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  381. int young, idx;
  382. idx = srcu_read_lock(&kvm->srcu);
  383. spin_lock(&kvm->mmu_lock);
  384. young = kvm_test_age_hva(kvm, address);
  385. spin_unlock(&kvm->mmu_lock);
  386. srcu_read_unlock(&kvm->srcu, idx);
  387. return young;
  388. }
  389. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  390. struct mm_struct *mm)
  391. {
  392. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  393. int idx;
  394. idx = srcu_read_lock(&kvm->srcu);
  395. kvm_arch_flush_shadow_all(kvm);
  396. srcu_read_unlock(&kvm->srcu, idx);
  397. }
  398. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  399. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  400. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  401. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  402. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  403. .clear_young = kvm_mmu_notifier_clear_young,
  404. .test_young = kvm_mmu_notifier_test_young,
  405. .change_pte = kvm_mmu_notifier_change_pte,
  406. .release = kvm_mmu_notifier_release,
  407. };
  408. static int kvm_init_mmu_notifier(struct kvm *kvm)
  409. {
  410. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  411. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  412. }
  413. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  414. static int kvm_init_mmu_notifier(struct kvm *kvm)
  415. {
  416. return 0;
  417. }
  418. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  419. static struct kvm_memslots *kvm_alloc_memslots(void)
  420. {
  421. int i;
  422. struct kvm_memslots *slots;
  423. slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
  424. if (!slots)
  425. return NULL;
  426. /*
  427. * Init kvm generation close to the maximum to easily test the
  428. * code of handling generation number wrap-around.
  429. */
  430. slots->generation = -150;
  431. for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
  432. slots->id_to_index[i] = slots->memslots[i].id = i;
  433. return slots;
  434. }
  435. static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
  436. {
  437. if (!memslot->dirty_bitmap)
  438. return;
  439. kvfree(memslot->dirty_bitmap);
  440. memslot->dirty_bitmap = NULL;
  441. }
  442. /*
  443. * Free any memory in @free but not in @dont.
  444. */
  445. static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
  446. struct kvm_memory_slot *dont)
  447. {
  448. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  449. kvm_destroy_dirty_bitmap(free);
  450. kvm_arch_free_memslot(kvm, free, dont);
  451. free->npages = 0;
  452. }
  453. static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
  454. {
  455. struct kvm_memory_slot *memslot;
  456. if (!slots)
  457. return;
  458. kvm_for_each_memslot(memslot, slots)
  459. kvm_free_memslot(kvm, memslot, NULL);
  460. kvfree(slots);
  461. }
  462. static void kvm_destroy_vm_debugfs(struct kvm *kvm)
  463. {
  464. int i;
  465. if (!kvm->debugfs_dentry)
  466. return;
  467. debugfs_remove_recursive(kvm->debugfs_dentry);
  468. if (kvm->debugfs_stat_data) {
  469. for (i = 0; i < kvm_debugfs_num_entries; i++)
  470. kfree(kvm->debugfs_stat_data[i]);
  471. kfree(kvm->debugfs_stat_data);
  472. }
  473. }
  474. static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
  475. {
  476. char dir_name[ITOA_MAX_LEN * 2];
  477. struct kvm_stat_data *stat_data;
  478. struct kvm_stats_debugfs_item *p;
  479. if (!debugfs_initialized())
  480. return 0;
  481. snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
  482. kvm->debugfs_dentry = debugfs_create_dir(dir_name,
  483. kvm_debugfs_dir);
  484. if (!kvm->debugfs_dentry)
  485. return -ENOMEM;
  486. kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
  487. sizeof(*kvm->debugfs_stat_data),
  488. GFP_KERNEL);
  489. if (!kvm->debugfs_stat_data)
  490. return -ENOMEM;
  491. for (p = debugfs_entries; p->name; p++) {
  492. stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
  493. if (!stat_data)
  494. return -ENOMEM;
  495. stat_data->kvm = kvm;
  496. stat_data->offset = p->offset;
  497. kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
  498. if (!debugfs_create_file(p->name, 0444,
  499. kvm->debugfs_dentry,
  500. stat_data,
  501. stat_fops_per_vm[p->kind]))
  502. return -ENOMEM;
  503. }
  504. return 0;
  505. }
  506. static struct kvm *kvm_create_vm(unsigned long type)
  507. {
  508. int r, i;
  509. struct kvm *kvm = kvm_arch_alloc_vm();
  510. if (!kvm)
  511. return ERR_PTR(-ENOMEM);
  512. spin_lock_init(&kvm->mmu_lock);
  513. atomic_inc(&current->mm->mm_count);
  514. kvm->mm = current->mm;
  515. kvm_eventfd_init(kvm);
  516. mutex_init(&kvm->lock);
  517. mutex_init(&kvm->irq_lock);
  518. mutex_init(&kvm->slots_lock);
  519. atomic_set(&kvm->users_count, 1);
  520. INIT_LIST_HEAD(&kvm->devices);
  521. r = kvm_arch_init_vm(kvm, type);
  522. if (r)
  523. goto out_err_no_disable;
  524. r = hardware_enable_all();
  525. if (r)
  526. goto out_err_no_disable;
  527. #ifdef CONFIG_HAVE_KVM_IRQFD
  528. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  529. #endif
  530. BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
  531. r = -ENOMEM;
  532. for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
  533. kvm->memslots[i] = kvm_alloc_memslots();
  534. if (!kvm->memslots[i])
  535. goto out_err_no_srcu;
  536. }
  537. if (init_srcu_struct(&kvm->srcu))
  538. goto out_err_no_srcu;
  539. if (init_srcu_struct(&kvm->irq_srcu))
  540. goto out_err_no_irq_srcu;
  541. for (i = 0; i < KVM_NR_BUSES; i++) {
  542. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  543. GFP_KERNEL);
  544. if (!kvm->buses[i])
  545. goto out_err;
  546. }
  547. r = kvm_init_mmu_notifier(kvm);
  548. if (r)
  549. goto out_err;
  550. spin_lock(&kvm_lock);
  551. list_add(&kvm->vm_list, &vm_list);
  552. spin_unlock(&kvm_lock);
  553. preempt_notifier_inc();
  554. return kvm;
  555. out_err:
  556. cleanup_srcu_struct(&kvm->irq_srcu);
  557. out_err_no_irq_srcu:
  558. cleanup_srcu_struct(&kvm->srcu);
  559. out_err_no_srcu:
  560. hardware_disable_all();
  561. out_err_no_disable:
  562. for (i = 0; i < KVM_NR_BUSES; i++)
  563. kfree(kvm->buses[i]);
  564. for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
  565. kvm_free_memslots(kvm, kvm->memslots[i]);
  566. kvm_arch_free_vm(kvm);
  567. mmdrop(current->mm);
  568. return ERR_PTR(r);
  569. }
  570. /*
  571. * Avoid using vmalloc for a small buffer.
  572. * Should not be used when the size is statically known.
  573. */
  574. void *kvm_kvzalloc(unsigned long size)
  575. {
  576. if (size > PAGE_SIZE)
  577. return vzalloc(size);
  578. else
  579. return kzalloc(size, GFP_KERNEL);
  580. }
  581. static void kvm_destroy_devices(struct kvm *kvm)
  582. {
  583. struct kvm_device *dev, *tmp;
  584. /*
  585. * We do not need to take the kvm->lock here, because nobody else
  586. * has a reference to the struct kvm at this point and therefore
  587. * cannot access the devices list anyhow.
  588. */
  589. list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
  590. list_del(&dev->vm_node);
  591. dev->ops->destroy(dev);
  592. }
  593. }
  594. static void kvm_destroy_vm(struct kvm *kvm)
  595. {
  596. int i;
  597. struct mm_struct *mm = kvm->mm;
  598. kvm_destroy_vm_debugfs(kvm);
  599. kvm_arch_sync_events(kvm);
  600. spin_lock(&kvm_lock);
  601. list_del(&kvm->vm_list);
  602. spin_unlock(&kvm_lock);
  603. kvm_free_irq_routing(kvm);
  604. for (i = 0; i < KVM_NR_BUSES; i++)
  605. kvm_io_bus_destroy(kvm->buses[i]);
  606. kvm_coalesced_mmio_free(kvm);
  607. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  608. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  609. #else
  610. kvm_arch_flush_shadow_all(kvm);
  611. #endif
  612. kvm_arch_destroy_vm(kvm);
  613. kvm_destroy_devices(kvm);
  614. for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
  615. kvm_free_memslots(kvm, kvm->memslots[i]);
  616. cleanup_srcu_struct(&kvm->irq_srcu);
  617. cleanup_srcu_struct(&kvm->srcu);
  618. kvm_arch_free_vm(kvm);
  619. preempt_notifier_dec();
  620. hardware_disable_all();
  621. mmdrop(mm);
  622. }
  623. void kvm_get_kvm(struct kvm *kvm)
  624. {
  625. atomic_inc(&kvm->users_count);
  626. }
  627. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  628. void kvm_put_kvm(struct kvm *kvm)
  629. {
  630. if (atomic_dec_and_test(&kvm->users_count))
  631. kvm_destroy_vm(kvm);
  632. }
  633. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  634. static int kvm_vm_release(struct inode *inode, struct file *filp)
  635. {
  636. struct kvm *kvm = filp->private_data;
  637. kvm_irqfd_release(kvm);
  638. kvm_put_kvm(kvm);
  639. return 0;
  640. }
  641. /*
  642. * Allocation size is twice as large as the actual dirty bitmap size.
  643. * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
  644. */
  645. static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
  646. {
  647. unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
  648. memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
  649. if (!memslot->dirty_bitmap)
  650. return -ENOMEM;
  651. return 0;
  652. }
  653. /*
  654. * Insert memslot and re-sort memslots based on their GFN,
  655. * so binary search could be used to lookup GFN.
  656. * Sorting algorithm takes advantage of having initially
  657. * sorted array and known changed memslot position.
  658. */
  659. static void update_memslots(struct kvm_memslots *slots,
  660. struct kvm_memory_slot *new)
  661. {
  662. int id = new->id;
  663. int i = slots->id_to_index[id];
  664. struct kvm_memory_slot *mslots = slots->memslots;
  665. WARN_ON(mslots[i].id != id);
  666. if (!new->npages) {
  667. WARN_ON(!mslots[i].npages);
  668. if (mslots[i].npages)
  669. slots->used_slots--;
  670. } else {
  671. if (!mslots[i].npages)
  672. slots->used_slots++;
  673. }
  674. while (i < KVM_MEM_SLOTS_NUM - 1 &&
  675. new->base_gfn <= mslots[i + 1].base_gfn) {
  676. if (!mslots[i + 1].npages)
  677. break;
  678. mslots[i] = mslots[i + 1];
  679. slots->id_to_index[mslots[i].id] = i;
  680. i++;
  681. }
  682. /*
  683. * The ">=" is needed when creating a slot with base_gfn == 0,
  684. * so that it moves before all those with base_gfn == npages == 0.
  685. *
  686. * On the other hand, if new->npages is zero, the above loop has
  687. * already left i pointing to the beginning of the empty part of
  688. * mslots, and the ">=" would move the hole backwards in this
  689. * case---which is wrong. So skip the loop when deleting a slot.
  690. */
  691. if (new->npages) {
  692. while (i > 0 &&
  693. new->base_gfn >= mslots[i - 1].base_gfn) {
  694. mslots[i] = mslots[i - 1];
  695. slots->id_to_index[mslots[i].id] = i;
  696. i--;
  697. }
  698. } else
  699. WARN_ON_ONCE(i != slots->used_slots);
  700. mslots[i] = *new;
  701. slots->id_to_index[mslots[i].id] = i;
  702. }
  703. static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
  704. {
  705. u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
  706. #ifdef __KVM_HAVE_READONLY_MEM
  707. valid_flags |= KVM_MEM_READONLY;
  708. #endif
  709. if (mem->flags & ~valid_flags)
  710. return -EINVAL;
  711. return 0;
  712. }
  713. static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
  714. int as_id, struct kvm_memslots *slots)
  715. {
  716. struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
  717. /*
  718. * Set the low bit in the generation, which disables SPTE caching
  719. * until the end of synchronize_srcu_expedited.
  720. */
  721. WARN_ON(old_memslots->generation & 1);
  722. slots->generation = old_memslots->generation + 1;
  723. rcu_assign_pointer(kvm->memslots[as_id], slots);
  724. synchronize_srcu_expedited(&kvm->srcu);
  725. /*
  726. * Increment the new memslot generation a second time. This prevents
  727. * vm exits that race with memslot updates from caching a memslot
  728. * generation that will (potentially) be valid forever.
  729. */
  730. slots->generation++;
  731. kvm_arch_memslots_updated(kvm, slots);
  732. return old_memslots;
  733. }
  734. /*
  735. * Allocate some memory and give it an address in the guest physical address
  736. * space.
  737. *
  738. * Discontiguous memory is allowed, mostly for framebuffers.
  739. *
  740. * Must be called holding kvm->slots_lock for write.
  741. */
  742. int __kvm_set_memory_region(struct kvm *kvm,
  743. const struct kvm_userspace_memory_region *mem)
  744. {
  745. int r;
  746. gfn_t base_gfn;
  747. unsigned long npages;
  748. struct kvm_memory_slot *slot;
  749. struct kvm_memory_slot old, new;
  750. struct kvm_memslots *slots = NULL, *old_memslots;
  751. int as_id, id;
  752. enum kvm_mr_change change;
  753. r = check_memory_region_flags(mem);
  754. if (r)
  755. goto out;
  756. r = -EINVAL;
  757. as_id = mem->slot >> 16;
  758. id = (u16)mem->slot;
  759. /* General sanity checks */
  760. if (mem->memory_size & (PAGE_SIZE - 1))
  761. goto out;
  762. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  763. goto out;
  764. /* We can read the guest memory with __xxx_user() later on. */
  765. if ((id < KVM_USER_MEM_SLOTS) &&
  766. ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
  767. !access_ok(VERIFY_WRITE,
  768. (void __user *)(unsigned long)mem->userspace_addr,
  769. mem->memory_size)))
  770. goto out;
  771. if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
  772. goto out;
  773. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  774. goto out;
  775. slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
  776. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  777. npages = mem->memory_size >> PAGE_SHIFT;
  778. if (npages > KVM_MEM_MAX_NR_PAGES)
  779. goto out;
  780. new = old = *slot;
  781. new.id = id;
  782. new.base_gfn = base_gfn;
  783. new.npages = npages;
  784. new.flags = mem->flags;
  785. if (npages) {
  786. if (!old.npages)
  787. change = KVM_MR_CREATE;
  788. else { /* Modify an existing slot. */
  789. if ((mem->userspace_addr != old.userspace_addr) ||
  790. (npages != old.npages) ||
  791. ((new.flags ^ old.flags) & KVM_MEM_READONLY))
  792. goto out;
  793. if (base_gfn != old.base_gfn)
  794. change = KVM_MR_MOVE;
  795. else if (new.flags != old.flags)
  796. change = KVM_MR_FLAGS_ONLY;
  797. else { /* Nothing to change. */
  798. r = 0;
  799. goto out;
  800. }
  801. }
  802. } else {
  803. if (!old.npages)
  804. goto out;
  805. change = KVM_MR_DELETE;
  806. new.base_gfn = 0;
  807. new.flags = 0;
  808. }
  809. if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
  810. /* Check for overlaps */
  811. r = -EEXIST;
  812. kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
  813. if ((slot->id >= KVM_USER_MEM_SLOTS) ||
  814. (slot->id == id))
  815. continue;
  816. if (!((base_gfn + npages <= slot->base_gfn) ||
  817. (base_gfn >= slot->base_gfn + slot->npages)))
  818. goto out;
  819. }
  820. }
  821. /* Free page dirty bitmap if unneeded */
  822. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  823. new.dirty_bitmap = NULL;
  824. r = -ENOMEM;
  825. if (change == KVM_MR_CREATE) {
  826. new.userspace_addr = mem->userspace_addr;
  827. if (kvm_arch_create_memslot(kvm, &new, npages))
  828. goto out_free;
  829. }
  830. /* Allocate page dirty bitmap if needed */
  831. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  832. if (kvm_create_dirty_bitmap(&new) < 0)
  833. goto out_free;
  834. }
  835. slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
  836. if (!slots)
  837. goto out_free;
  838. memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
  839. if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
  840. slot = id_to_memslot(slots, id);
  841. slot->flags |= KVM_MEMSLOT_INVALID;
  842. old_memslots = install_new_memslots(kvm, as_id, slots);
  843. /* slot was deleted or moved, clear iommu mapping */
  844. kvm_iommu_unmap_pages(kvm, &old);
  845. /* From this point no new shadow pages pointing to a deleted,
  846. * or moved, memslot will be created.
  847. *
  848. * validation of sp->gfn happens in:
  849. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  850. * - kvm_is_visible_gfn (mmu_check_roots)
  851. */
  852. kvm_arch_flush_shadow_memslot(kvm, slot);
  853. /*
  854. * We can re-use the old_memslots from above, the only difference
  855. * from the currently installed memslots is the invalid flag. This
  856. * will get overwritten by update_memslots anyway.
  857. */
  858. slots = old_memslots;
  859. }
  860. r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
  861. if (r)
  862. goto out_slots;
  863. /* actual memory is freed via old in kvm_free_memslot below */
  864. if (change == KVM_MR_DELETE) {
  865. new.dirty_bitmap = NULL;
  866. memset(&new.arch, 0, sizeof(new.arch));
  867. }
  868. update_memslots(slots, &new);
  869. old_memslots = install_new_memslots(kvm, as_id, slots);
  870. kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
  871. kvm_free_memslot(kvm, &old, &new);
  872. kvfree(old_memslots);
  873. /*
  874. * IOMMU mapping: New slots need to be mapped. Old slots need to be
  875. * un-mapped and re-mapped if their base changes. Since base change
  876. * unmapping is handled above with slot deletion, mapping alone is
  877. * needed here. Anything else the iommu might care about for existing
  878. * slots (size changes, userspace addr changes and read-only flag
  879. * changes) is disallowed above, so any other attribute changes getting
  880. * here can be skipped.
  881. */
  882. if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
  883. r = kvm_iommu_map_pages(kvm, &new);
  884. return r;
  885. }
  886. return 0;
  887. out_slots:
  888. kvfree(slots);
  889. out_free:
  890. kvm_free_memslot(kvm, &new, &old);
  891. out:
  892. return r;
  893. }
  894. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  895. int kvm_set_memory_region(struct kvm *kvm,
  896. const struct kvm_userspace_memory_region *mem)
  897. {
  898. int r;
  899. mutex_lock(&kvm->slots_lock);
  900. r = __kvm_set_memory_region(kvm, mem);
  901. mutex_unlock(&kvm->slots_lock);
  902. return r;
  903. }
  904. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  905. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  906. struct kvm_userspace_memory_region *mem)
  907. {
  908. if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
  909. return -EINVAL;
  910. return kvm_set_memory_region(kvm, mem);
  911. }
  912. int kvm_get_dirty_log(struct kvm *kvm,
  913. struct kvm_dirty_log *log, int *is_dirty)
  914. {
  915. struct kvm_memslots *slots;
  916. struct kvm_memory_slot *memslot;
  917. int r, i, as_id, id;
  918. unsigned long n;
  919. unsigned long any = 0;
  920. r = -EINVAL;
  921. as_id = log->slot >> 16;
  922. id = (u16)log->slot;
  923. if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
  924. goto out;
  925. slots = __kvm_memslots(kvm, as_id);
  926. memslot = id_to_memslot(slots, id);
  927. r = -ENOENT;
  928. if (!memslot->dirty_bitmap)
  929. goto out;
  930. n = kvm_dirty_bitmap_bytes(memslot);
  931. for (i = 0; !any && i < n/sizeof(long); ++i)
  932. any = memslot->dirty_bitmap[i];
  933. r = -EFAULT;
  934. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  935. goto out;
  936. if (any)
  937. *is_dirty = 1;
  938. r = 0;
  939. out:
  940. return r;
  941. }
  942. EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
  943. #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
  944. /**
  945. * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
  946. * are dirty write protect them for next write.
  947. * @kvm: pointer to kvm instance
  948. * @log: slot id and address to which we copy the log
  949. * @is_dirty: flag set if any page is dirty
  950. *
  951. * We need to keep it in mind that VCPU threads can write to the bitmap
  952. * concurrently. So, to avoid losing track of dirty pages we keep the
  953. * following order:
  954. *
  955. * 1. Take a snapshot of the bit and clear it if needed.
  956. * 2. Write protect the corresponding page.
  957. * 3. Copy the snapshot to the userspace.
  958. * 4. Upon return caller flushes TLB's if needed.
  959. *
  960. * Between 2 and 4, the guest may write to the page using the remaining TLB
  961. * entry. This is not a problem because the page is reported dirty using
  962. * the snapshot taken before and step 4 ensures that writes done after
  963. * exiting to userspace will be logged for the next call.
  964. *
  965. */
  966. int kvm_get_dirty_log_protect(struct kvm *kvm,
  967. struct kvm_dirty_log *log, bool *is_dirty)
  968. {
  969. struct kvm_memslots *slots;
  970. struct kvm_memory_slot *memslot;
  971. int r, i, as_id, id;
  972. unsigned long n;
  973. unsigned long *dirty_bitmap;
  974. unsigned long *dirty_bitmap_buffer;
  975. r = -EINVAL;
  976. as_id = log->slot >> 16;
  977. id = (u16)log->slot;
  978. if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
  979. goto out;
  980. slots = __kvm_memslots(kvm, as_id);
  981. memslot = id_to_memslot(slots, id);
  982. dirty_bitmap = memslot->dirty_bitmap;
  983. r = -ENOENT;
  984. if (!dirty_bitmap)
  985. goto out;
  986. n = kvm_dirty_bitmap_bytes(memslot);
  987. dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
  988. memset(dirty_bitmap_buffer, 0, n);
  989. spin_lock(&kvm->mmu_lock);
  990. *is_dirty = false;
  991. for (i = 0; i < n / sizeof(long); i++) {
  992. unsigned long mask;
  993. gfn_t offset;
  994. if (!dirty_bitmap[i])
  995. continue;
  996. *is_dirty = true;
  997. mask = xchg(&dirty_bitmap[i], 0);
  998. dirty_bitmap_buffer[i] = mask;
  999. if (mask) {
  1000. offset = i * BITS_PER_LONG;
  1001. kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
  1002. offset, mask);
  1003. }
  1004. }
  1005. spin_unlock(&kvm->mmu_lock);
  1006. r = -EFAULT;
  1007. if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
  1008. goto out;
  1009. r = 0;
  1010. out:
  1011. return r;
  1012. }
  1013. EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
  1014. #endif
  1015. bool kvm_largepages_enabled(void)
  1016. {
  1017. return largepages_enabled;
  1018. }
  1019. void kvm_disable_largepages(void)
  1020. {
  1021. largepages_enabled = false;
  1022. }
  1023. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  1024. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  1025. {
  1026. return __gfn_to_memslot(kvm_memslots(kvm), gfn);
  1027. }
  1028. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  1029. struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
  1030. {
  1031. return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
  1032. }
  1033. bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  1034. {
  1035. struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
  1036. if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
  1037. memslot->flags & KVM_MEMSLOT_INVALID)
  1038. return false;
  1039. return true;
  1040. }
  1041. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  1042. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  1043. {
  1044. struct vm_area_struct *vma;
  1045. unsigned long addr, size;
  1046. size = PAGE_SIZE;
  1047. addr = gfn_to_hva(kvm, gfn);
  1048. if (kvm_is_error_hva(addr))
  1049. return PAGE_SIZE;
  1050. down_read(&current->mm->mmap_sem);
  1051. vma = find_vma(current->mm, addr);
  1052. if (!vma)
  1053. goto out;
  1054. size = vma_kernel_pagesize(vma);
  1055. out:
  1056. up_read(&current->mm->mmap_sem);
  1057. return size;
  1058. }
  1059. static bool memslot_is_readonly(struct kvm_memory_slot *slot)
  1060. {
  1061. return slot->flags & KVM_MEM_READONLY;
  1062. }
  1063. static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  1064. gfn_t *nr_pages, bool write)
  1065. {
  1066. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  1067. return KVM_HVA_ERR_BAD;
  1068. if (memslot_is_readonly(slot) && write)
  1069. return KVM_HVA_ERR_RO_BAD;
  1070. if (nr_pages)
  1071. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  1072. return __gfn_to_hva_memslot(slot, gfn);
  1073. }
  1074. static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  1075. gfn_t *nr_pages)
  1076. {
  1077. return __gfn_to_hva_many(slot, gfn, nr_pages, true);
  1078. }
  1079. unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
  1080. gfn_t gfn)
  1081. {
  1082. return gfn_to_hva_many(slot, gfn, NULL);
  1083. }
  1084. EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
  1085. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  1086. {
  1087. return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
  1088. }
  1089. EXPORT_SYMBOL_GPL(gfn_to_hva);
  1090. unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
  1091. {
  1092. return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
  1093. }
  1094. EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
  1095. /*
  1096. * If writable is set to false, the hva returned by this function is only
  1097. * allowed to be read.
  1098. */
  1099. unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
  1100. gfn_t gfn, bool *writable)
  1101. {
  1102. unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
  1103. if (!kvm_is_error_hva(hva) && writable)
  1104. *writable = !memslot_is_readonly(slot);
  1105. return hva;
  1106. }
  1107. unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
  1108. {
  1109. struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
  1110. return gfn_to_hva_memslot_prot(slot, gfn, writable);
  1111. }
  1112. unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
  1113. {
  1114. struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  1115. return gfn_to_hva_memslot_prot(slot, gfn, writable);
  1116. }
  1117. static int get_user_page_nowait(unsigned long start, int write,
  1118. struct page **page)
  1119. {
  1120. int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
  1121. if (write)
  1122. flags |= FOLL_WRITE;
  1123. return __get_user_pages(current, current->mm, start, 1, flags, page,
  1124. NULL, NULL);
  1125. }
  1126. static inline int check_user_page_hwpoison(unsigned long addr)
  1127. {
  1128. int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
  1129. rc = __get_user_pages(current, current->mm, addr, 1,
  1130. flags, NULL, NULL, NULL);
  1131. return rc == -EHWPOISON;
  1132. }
  1133. /*
  1134. * The atomic path to get the writable pfn which will be stored in @pfn,
  1135. * true indicates success, otherwise false is returned.
  1136. */
  1137. static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
  1138. bool write_fault, bool *writable, kvm_pfn_t *pfn)
  1139. {
  1140. struct page *page[1];
  1141. int npages;
  1142. if (!(async || atomic))
  1143. return false;
  1144. /*
  1145. * Fast pin a writable pfn only if it is a write fault request
  1146. * or the caller allows to map a writable pfn for a read fault
  1147. * request.
  1148. */
  1149. if (!(write_fault || writable))
  1150. return false;
  1151. npages = __get_user_pages_fast(addr, 1, 1, page);
  1152. if (npages == 1) {
  1153. *pfn = page_to_pfn(page[0]);
  1154. if (writable)
  1155. *writable = true;
  1156. return true;
  1157. }
  1158. return false;
  1159. }
  1160. /*
  1161. * The slow path to get the pfn of the specified host virtual address,
  1162. * 1 indicates success, -errno is returned if error is detected.
  1163. */
  1164. static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
  1165. bool *writable, kvm_pfn_t *pfn)
  1166. {
  1167. struct page *page[1];
  1168. int npages = 0;
  1169. might_sleep();
  1170. if (writable)
  1171. *writable = write_fault;
  1172. if (async) {
  1173. down_read(&current->mm->mmap_sem);
  1174. npages = get_user_page_nowait(addr, write_fault, page);
  1175. up_read(&current->mm->mmap_sem);
  1176. } else
  1177. npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
  1178. write_fault, 0, page,
  1179. FOLL_TOUCH|FOLL_HWPOISON);
  1180. if (npages != 1)
  1181. return npages;
  1182. /* map read fault as writable if possible */
  1183. if (unlikely(!write_fault) && writable) {
  1184. struct page *wpage[1];
  1185. npages = __get_user_pages_fast(addr, 1, 1, wpage);
  1186. if (npages == 1) {
  1187. *writable = true;
  1188. put_page(page[0]);
  1189. page[0] = wpage[0];
  1190. }
  1191. npages = 1;
  1192. }
  1193. *pfn = page_to_pfn(page[0]);
  1194. return npages;
  1195. }
  1196. static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
  1197. {
  1198. if (unlikely(!(vma->vm_flags & VM_READ)))
  1199. return false;
  1200. if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
  1201. return false;
  1202. return true;
  1203. }
  1204. static int hva_to_pfn_remapped(struct vm_area_struct *vma,
  1205. unsigned long addr, bool *async,
  1206. bool write_fault, kvm_pfn_t *p_pfn)
  1207. {
  1208. unsigned long pfn;
  1209. int r;
  1210. r = follow_pfn(vma, addr, &pfn);
  1211. if (r) {
  1212. /*
  1213. * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
  1214. * not call the fault handler, so do it here.
  1215. */
  1216. bool unlocked = false;
  1217. r = fixup_user_fault(current, current->mm, addr,
  1218. (write_fault ? FAULT_FLAG_WRITE : 0),
  1219. &unlocked);
  1220. if (unlocked)
  1221. return -EAGAIN;
  1222. if (r)
  1223. return r;
  1224. r = follow_pfn(vma, addr, &pfn);
  1225. if (r)
  1226. return r;
  1227. }
  1228. /*
  1229. * Get a reference here because callers of *hva_to_pfn* and
  1230. * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
  1231. * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
  1232. * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
  1233. * simply do nothing for reserved pfns.
  1234. *
  1235. * Whoever called remap_pfn_range is also going to call e.g.
  1236. * unmap_mapping_range before the underlying pages are freed,
  1237. * causing a call to our MMU notifier.
  1238. */
  1239. kvm_get_pfn(pfn);
  1240. *p_pfn = pfn;
  1241. return 0;
  1242. }
  1243. /*
  1244. * Pin guest page in memory and return its pfn.
  1245. * @addr: host virtual address which maps memory to the guest
  1246. * @atomic: whether this function can sleep
  1247. * @async: whether this function need to wait IO complete if the
  1248. * host page is not in the memory
  1249. * @write_fault: whether we should get a writable host page
  1250. * @writable: whether it allows to map a writable host page for !@write_fault
  1251. *
  1252. * The function will map a writable host page for these two cases:
  1253. * 1): @write_fault = true
  1254. * 2): @write_fault = false && @writable, @writable will tell the caller
  1255. * whether the mapping is writable.
  1256. */
  1257. static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
  1258. bool write_fault, bool *writable)
  1259. {
  1260. struct vm_area_struct *vma;
  1261. kvm_pfn_t pfn = 0;
  1262. int npages, r;
  1263. /* we can do it either atomically or asynchronously, not both */
  1264. BUG_ON(atomic && async);
  1265. if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
  1266. return pfn;
  1267. if (atomic)
  1268. return KVM_PFN_ERR_FAULT;
  1269. npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
  1270. if (npages == 1)
  1271. return pfn;
  1272. down_read(&current->mm->mmap_sem);
  1273. if (npages == -EHWPOISON ||
  1274. (!async && check_user_page_hwpoison(addr))) {
  1275. pfn = KVM_PFN_ERR_HWPOISON;
  1276. goto exit;
  1277. }
  1278. retry:
  1279. vma = find_vma_intersection(current->mm, addr, addr + 1);
  1280. if (vma == NULL)
  1281. pfn = KVM_PFN_ERR_FAULT;
  1282. else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
  1283. r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
  1284. if (r == -EAGAIN)
  1285. goto retry;
  1286. if (r < 0)
  1287. pfn = KVM_PFN_ERR_FAULT;
  1288. } else {
  1289. if (async && vma_is_valid(vma, write_fault))
  1290. *async = true;
  1291. pfn = KVM_PFN_ERR_FAULT;
  1292. }
  1293. exit:
  1294. up_read(&current->mm->mmap_sem);
  1295. return pfn;
  1296. }
  1297. kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
  1298. bool atomic, bool *async, bool write_fault,
  1299. bool *writable)
  1300. {
  1301. unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
  1302. if (addr == KVM_HVA_ERR_RO_BAD) {
  1303. if (writable)
  1304. *writable = false;
  1305. return KVM_PFN_ERR_RO_FAULT;
  1306. }
  1307. if (kvm_is_error_hva(addr)) {
  1308. if (writable)
  1309. *writable = false;
  1310. return KVM_PFN_NOSLOT;
  1311. }
  1312. /* Do not map writable pfn in the readonly memslot. */
  1313. if (writable && memslot_is_readonly(slot)) {
  1314. *writable = false;
  1315. writable = NULL;
  1316. }
  1317. return hva_to_pfn(addr, atomic, async, write_fault,
  1318. writable);
  1319. }
  1320. EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
  1321. kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
  1322. bool *writable)
  1323. {
  1324. return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
  1325. write_fault, writable);
  1326. }
  1327. EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
  1328. kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
  1329. {
  1330. return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
  1331. }
  1332. EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
  1333. kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
  1334. {
  1335. return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
  1336. }
  1337. EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
  1338. kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  1339. {
  1340. return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
  1341. }
  1342. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  1343. kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
  1344. {
  1345. return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
  1346. }
  1347. EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
  1348. kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  1349. {
  1350. return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
  1351. }
  1352. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  1353. kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  1354. {
  1355. return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
  1356. }
  1357. EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
  1358. int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
  1359. struct page **pages, int nr_pages)
  1360. {
  1361. unsigned long addr;
  1362. gfn_t entry;
  1363. addr = gfn_to_hva_many(slot, gfn, &entry);
  1364. if (kvm_is_error_hva(addr))
  1365. return -1;
  1366. if (entry < nr_pages)
  1367. return 0;
  1368. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  1369. }
  1370. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  1371. static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
  1372. {
  1373. if (is_error_noslot_pfn(pfn))
  1374. return KVM_ERR_PTR_BAD_PAGE;
  1375. if (kvm_is_reserved_pfn(pfn)) {
  1376. WARN_ON(1);
  1377. return KVM_ERR_PTR_BAD_PAGE;
  1378. }
  1379. return pfn_to_page(pfn);
  1380. }
  1381. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  1382. {
  1383. kvm_pfn_t pfn;
  1384. pfn = gfn_to_pfn(kvm, gfn);
  1385. return kvm_pfn_to_page(pfn);
  1386. }
  1387. EXPORT_SYMBOL_GPL(gfn_to_page);
  1388. struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  1389. {
  1390. kvm_pfn_t pfn;
  1391. pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
  1392. return kvm_pfn_to_page(pfn);
  1393. }
  1394. EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
  1395. void kvm_release_page_clean(struct page *page)
  1396. {
  1397. WARN_ON(is_error_page(page));
  1398. kvm_release_pfn_clean(page_to_pfn(page));
  1399. }
  1400. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1401. void kvm_release_pfn_clean(kvm_pfn_t pfn)
  1402. {
  1403. if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
  1404. put_page(pfn_to_page(pfn));
  1405. }
  1406. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1407. void kvm_release_page_dirty(struct page *page)
  1408. {
  1409. WARN_ON(is_error_page(page));
  1410. kvm_release_pfn_dirty(page_to_pfn(page));
  1411. }
  1412. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1413. static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
  1414. {
  1415. kvm_set_pfn_dirty(pfn);
  1416. kvm_release_pfn_clean(pfn);
  1417. }
  1418. void kvm_set_pfn_dirty(kvm_pfn_t pfn)
  1419. {
  1420. if (!kvm_is_reserved_pfn(pfn)) {
  1421. struct page *page = pfn_to_page(pfn);
  1422. if (!PageReserved(page))
  1423. SetPageDirty(page);
  1424. }
  1425. }
  1426. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1427. void kvm_set_pfn_accessed(kvm_pfn_t pfn)
  1428. {
  1429. if (!kvm_is_reserved_pfn(pfn))
  1430. mark_page_accessed(pfn_to_page(pfn));
  1431. }
  1432. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1433. void kvm_get_pfn(kvm_pfn_t pfn)
  1434. {
  1435. if (!kvm_is_reserved_pfn(pfn))
  1436. get_page(pfn_to_page(pfn));
  1437. }
  1438. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1439. static int next_segment(unsigned long len, int offset)
  1440. {
  1441. if (len > PAGE_SIZE - offset)
  1442. return PAGE_SIZE - offset;
  1443. else
  1444. return len;
  1445. }
  1446. static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
  1447. void *data, int offset, int len)
  1448. {
  1449. int r;
  1450. unsigned long addr;
  1451. addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
  1452. if (kvm_is_error_hva(addr))
  1453. return -EFAULT;
  1454. r = __copy_from_user(data, (void __user *)addr + offset, len);
  1455. if (r)
  1456. return -EFAULT;
  1457. return 0;
  1458. }
  1459. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1460. int len)
  1461. {
  1462. struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
  1463. return __kvm_read_guest_page(slot, gfn, data, offset, len);
  1464. }
  1465. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1466. int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
  1467. int offset, int len)
  1468. {
  1469. struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  1470. return __kvm_read_guest_page(slot, gfn, data, offset, len);
  1471. }
  1472. EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
  1473. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1474. {
  1475. gfn_t gfn = gpa >> PAGE_SHIFT;
  1476. int seg;
  1477. int offset = offset_in_page(gpa);
  1478. int ret;
  1479. while ((seg = next_segment(len, offset)) != 0) {
  1480. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1481. if (ret < 0)
  1482. return ret;
  1483. offset = 0;
  1484. len -= seg;
  1485. data += seg;
  1486. ++gfn;
  1487. }
  1488. return 0;
  1489. }
  1490. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1491. int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
  1492. {
  1493. gfn_t gfn = gpa >> PAGE_SHIFT;
  1494. int seg;
  1495. int offset = offset_in_page(gpa);
  1496. int ret;
  1497. while ((seg = next_segment(len, offset)) != 0) {
  1498. ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
  1499. if (ret < 0)
  1500. return ret;
  1501. offset = 0;
  1502. len -= seg;
  1503. data += seg;
  1504. ++gfn;
  1505. }
  1506. return 0;
  1507. }
  1508. EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
  1509. static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
  1510. void *data, int offset, unsigned long len)
  1511. {
  1512. int r;
  1513. unsigned long addr;
  1514. addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
  1515. if (kvm_is_error_hva(addr))
  1516. return -EFAULT;
  1517. pagefault_disable();
  1518. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1519. pagefault_enable();
  1520. if (r)
  1521. return -EFAULT;
  1522. return 0;
  1523. }
  1524. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1525. unsigned long len)
  1526. {
  1527. gfn_t gfn = gpa >> PAGE_SHIFT;
  1528. struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
  1529. int offset = offset_in_page(gpa);
  1530. return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
  1531. }
  1532. EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
  1533. int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
  1534. void *data, unsigned long len)
  1535. {
  1536. gfn_t gfn = gpa >> PAGE_SHIFT;
  1537. struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  1538. int offset = offset_in_page(gpa);
  1539. return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
  1540. }
  1541. EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
  1542. static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
  1543. const void *data, int offset, int len)
  1544. {
  1545. int r;
  1546. unsigned long addr;
  1547. addr = gfn_to_hva_memslot(memslot, gfn);
  1548. if (kvm_is_error_hva(addr))
  1549. return -EFAULT;
  1550. r = __copy_to_user((void __user *)addr + offset, data, len);
  1551. if (r)
  1552. return -EFAULT;
  1553. mark_page_dirty_in_slot(memslot, gfn);
  1554. return 0;
  1555. }
  1556. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
  1557. const void *data, int offset, int len)
  1558. {
  1559. struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
  1560. return __kvm_write_guest_page(slot, gfn, data, offset, len);
  1561. }
  1562. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1563. int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
  1564. const void *data, int offset, int len)
  1565. {
  1566. struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  1567. return __kvm_write_guest_page(slot, gfn, data, offset, len);
  1568. }
  1569. EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
  1570. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1571. unsigned long len)
  1572. {
  1573. gfn_t gfn = gpa >> PAGE_SHIFT;
  1574. int seg;
  1575. int offset = offset_in_page(gpa);
  1576. int ret;
  1577. while ((seg = next_segment(len, offset)) != 0) {
  1578. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1579. if (ret < 0)
  1580. return ret;
  1581. offset = 0;
  1582. len -= seg;
  1583. data += seg;
  1584. ++gfn;
  1585. }
  1586. return 0;
  1587. }
  1588. EXPORT_SYMBOL_GPL(kvm_write_guest);
  1589. int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
  1590. unsigned long len)
  1591. {
  1592. gfn_t gfn = gpa >> PAGE_SHIFT;
  1593. int seg;
  1594. int offset = offset_in_page(gpa);
  1595. int ret;
  1596. while ((seg = next_segment(len, offset)) != 0) {
  1597. ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
  1598. if (ret < 0)
  1599. return ret;
  1600. offset = 0;
  1601. len -= seg;
  1602. data += seg;
  1603. ++gfn;
  1604. }
  1605. return 0;
  1606. }
  1607. EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
  1608. int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1609. gpa_t gpa, unsigned long len)
  1610. {
  1611. struct kvm_memslots *slots = kvm_memslots(kvm);
  1612. int offset = offset_in_page(gpa);
  1613. gfn_t start_gfn = gpa >> PAGE_SHIFT;
  1614. gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
  1615. gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
  1616. gfn_t nr_pages_avail;
  1617. ghc->gpa = gpa;
  1618. ghc->generation = slots->generation;
  1619. ghc->len = len;
  1620. ghc->memslot = gfn_to_memslot(kvm, start_gfn);
  1621. ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
  1622. if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
  1623. ghc->hva += offset;
  1624. } else {
  1625. /*
  1626. * If the requested region crosses two memslots, we still
  1627. * verify that the entire region is valid here.
  1628. */
  1629. while (start_gfn <= end_gfn) {
  1630. ghc->memslot = gfn_to_memslot(kvm, start_gfn);
  1631. ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
  1632. &nr_pages_avail);
  1633. if (kvm_is_error_hva(ghc->hva))
  1634. return -EFAULT;
  1635. start_gfn += nr_pages_avail;
  1636. }
  1637. /* Use the slow path for cross page reads and writes. */
  1638. ghc->memslot = NULL;
  1639. }
  1640. return 0;
  1641. }
  1642. EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
  1643. int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1644. void *data, unsigned long len)
  1645. {
  1646. struct kvm_memslots *slots = kvm_memslots(kvm);
  1647. int r;
  1648. BUG_ON(len > ghc->len);
  1649. if (slots->generation != ghc->generation)
  1650. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
  1651. if (unlikely(!ghc->memslot))
  1652. return kvm_write_guest(kvm, ghc->gpa, data, len);
  1653. if (kvm_is_error_hva(ghc->hva))
  1654. return -EFAULT;
  1655. r = __copy_to_user((void __user *)ghc->hva, data, len);
  1656. if (r)
  1657. return -EFAULT;
  1658. mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
  1659. return 0;
  1660. }
  1661. EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
  1662. int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1663. void *data, unsigned long len)
  1664. {
  1665. struct kvm_memslots *slots = kvm_memslots(kvm);
  1666. int r;
  1667. BUG_ON(len > ghc->len);
  1668. if (slots->generation != ghc->generation)
  1669. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
  1670. if (unlikely(!ghc->memslot))
  1671. return kvm_read_guest(kvm, ghc->gpa, data, len);
  1672. if (kvm_is_error_hva(ghc->hva))
  1673. return -EFAULT;
  1674. r = __copy_from_user(data, (void __user *)ghc->hva, len);
  1675. if (r)
  1676. return -EFAULT;
  1677. return 0;
  1678. }
  1679. EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
  1680. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1681. {
  1682. const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
  1683. return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
  1684. }
  1685. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1686. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1687. {
  1688. gfn_t gfn = gpa >> PAGE_SHIFT;
  1689. int seg;
  1690. int offset = offset_in_page(gpa);
  1691. int ret;
  1692. while ((seg = next_segment(len, offset)) != 0) {
  1693. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1694. if (ret < 0)
  1695. return ret;
  1696. offset = 0;
  1697. len -= seg;
  1698. ++gfn;
  1699. }
  1700. return 0;
  1701. }
  1702. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1703. static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
  1704. gfn_t gfn)
  1705. {
  1706. if (memslot && memslot->dirty_bitmap) {
  1707. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1708. set_bit_le(rel_gfn, memslot->dirty_bitmap);
  1709. }
  1710. }
  1711. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1712. {
  1713. struct kvm_memory_slot *memslot;
  1714. memslot = gfn_to_memslot(kvm, gfn);
  1715. mark_page_dirty_in_slot(memslot, gfn);
  1716. }
  1717. EXPORT_SYMBOL_GPL(mark_page_dirty);
  1718. void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
  1719. {
  1720. struct kvm_memory_slot *memslot;
  1721. memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  1722. mark_page_dirty_in_slot(memslot, gfn);
  1723. }
  1724. EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
  1725. static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
  1726. {
  1727. unsigned int old, val, grow;
  1728. old = val = vcpu->halt_poll_ns;
  1729. grow = READ_ONCE(halt_poll_ns_grow);
  1730. /* 10us base */
  1731. if (val == 0 && grow)
  1732. val = 10000;
  1733. else
  1734. val *= grow;
  1735. if (val > halt_poll_ns)
  1736. val = halt_poll_ns;
  1737. vcpu->halt_poll_ns = val;
  1738. trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
  1739. }
  1740. static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
  1741. {
  1742. unsigned int old, val, shrink;
  1743. old = val = vcpu->halt_poll_ns;
  1744. shrink = READ_ONCE(halt_poll_ns_shrink);
  1745. if (shrink == 0)
  1746. val = 0;
  1747. else
  1748. val /= shrink;
  1749. vcpu->halt_poll_ns = val;
  1750. trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
  1751. }
  1752. static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
  1753. {
  1754. if (kvm_arch_vcpu_runnable(vcpu)) {
  1755. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1756. return -EINTR;
  1757. }
  1758. if (kvm_cpu_has_pending_timer(vcpu))
  1759. return -EINTR;
  1760. if (signal_pending(current))
  1761. return -EINTR;
  1762. return 0;
  1763. }
  1764. /*
  1765. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1766. */
  1767. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1768. {
  1769. ktime_t start, cur;
  1770. DECLARE_SWAITQUEUE(wait);
  1771. bool waited = false;
  1772. u64 block_ns;
  1773. start = cur = ktime_get();
  1774. if (vcpu->halt_poll_ns) {
  1775. ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
  1776. ++vcpu->stat.halt_attempted_poll;
  1777. do {
  1778. /*
  1779. * This sets KVM_REQ_UNHALT if an interrupt
  1780. * arrives.
  1781. */
  1782. if (kvm_vcpu_check_block(vcpu) < 0) {
  1783. ++vcpu->stat.halt_successful_poll;
  1784. if (!vcpu_valid_wakeup(vcpu))
  1785. ++vcpu->stat.halt_poll_invalid;
  1786. goto out;
  1787. }
  1788. cur = ktime_get();
  1789. } while (single_task_running() && ktime_before(cur, stop));
  1790. }
  1791. kvm_arch_vcpu_blocking(vcpu);
  1792. for (;;) {
  1793. prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1794. if (kvm_vcpu_check_block(vcpu) < 0)
  1795. break;
  1796. waited = true;
  1797. schedule();
  1798. }
  1799. finish_swait(&vcpu->wq, &wait);
  1800. cur = ktime_get();
  1801. kvm_arch_vcpu_unblocking(vcpu);
  1802. out:
  1803. block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
  1804. if (!vcpu_valid_wakeup(vcpu))
  1805. shrink_halt_poll_ns(vcpu);
  1806. else if (halt_poll_ns) {
  1807. if (block_ns <= vcpu->halt_poll_ns)
  1808. ;
  1809. /* we had a long block, shrink polling */
  1810. else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
  1811. shrink_halt_poll_ns(vcpu);
  1812. /* we had a short halt and our poll time is too small */
  1813. else if (vcpu->halt_poll_ns < halt_poll_ns &&
  1814. block_ns < halt_poll_ns)
  1815. grow_halt_poll_ns(vcpu);
  1816. } else
  1817. vcpu->halt_poll_ns = 0;
  1818. trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
  1819. kvm_arch_vcpu_block_finish(vcpu);
  1820. }
  1821. EXPORT_SYMBOL_GPL(kvm_vcpu_block);
  1822. #ifndef CONFIG_S390
  1823. void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
  1824. {
  1825. struct swait_queue_head *wqp;
  1826. wqp = kvm_arch_vcpu_wq(vcpu);
  1827. if (swait_active(wqp)) {
  1828. swake_up(wqp);
  1829. ++vcpu->stat.halt_wakeup;
  1830. }
  1831. }
  1832. EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
  1833. /*
  1834. * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
  1835. */
  1836. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  1837. {
  1838. int me;
  1839. int cpu = vcpu->cpu;
  1840. kvm_vcpu_wake_up(vcpu);
  1841. me = get_cpu();
  1842. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  1843. if (kvm_arch_vcpu_should_kick(vcpu))
  1844. smp_send_reschedule(cpu);
  1845. put_cpu();
  1846. }
  1847. EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
  1848. #endif /* !CONFIG_S390 */
  1849. int kvm_vcpu_yield_to(struct kvm_vcpu *target)
  1850. {
  1851. struct pid *pid;
  1852. struct task_struct *task = NULL;
  1853. int ret = 0;
  1854. rcu_read_lock();
  1855. pid = rcu_dereference(target->pid);
  1856. if (pid)
  1857. task = get_pid_task(pid, PIDTYPE_PID);
  1858. rcu_read_unlock();
  1859. if (!task)
  1860. return ret;
  1861. ret = yield_to(task, 1);
  1862. put_task_struct(task);
  1863. return ret;
  1864. }
  1865. EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
  1866. /*
  1867. * Helper that checks whether a VCPU is eligible for directed yield.
  1868. * Most eligible candidate to yield is decided by following heuristics:
  1869. *
  1870. * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
  1871. * (preempted lock holder), indicated by @in_spin_loop.
  1872. * Set at the beiginning and cleared at the end of interception/PLE handler.
  1873. *
  1874. * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
  1875. * chance last time (mostly it has become eligible now since we have probably
  1876. * yielded to lockholder in last iteration. This is done by toggling
  1877. * @dy_eligible each time a VCPU checked for eligibility.)
  1878. *
  1879. * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
  1880. * to preempted lock-holder could result in wrong VCPU selection and CPU
  1881. * burning. Giving priority for a potential lock-holder increases lock
  1882. * progress.
  1883. *
  1884. * Since algorithm is based on heuristics, accessing another VCPU data without
  1885. * locking does not harm. It may result in trying to yield to same VCPU, fail
  1886. * and continue with next VCPU and so on.
  1887. */
  1888. static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
  1889. {
  1890. #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
  1891. bool eligible;
  1892. eligible = !vcpu->spin_loop.in_spin_loop ||
  1893. vcpu->spin_loop.dy_eligible;
  1894. if (vcpu->spin_loop.in_spin_loop)
  1895. kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
  1896. return eligible;
  1897. #else
  1898. return true;
  1899. #endif
  1900. }
  1901. void kvm_vcpu_on_spin(struct kvm_vcpu *me)
  1902. {
  1903. struct kvm *kvm = me->kvm;
  1904. struct kvm_vcpu *vcpu;
  1905. int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
  1906. int yielded = 0;
  1907. int try = 3;
  1908. int pass;
  1909. int i;
  1910. kvm_vcpu_set_in_spin_loop(me, true);
  1911. /*
  1912. * We boost the priority of a VCPU that is runnable but not
  1913. * currently running, because it got preempted by something
  1914. * else and called schedule in __vcpu_run. Hopefully that
  1915. * VCPU is holding the lock that we need and will release it.
  1916. * We approximate round-robin by starting at the last boosted VCPU.
  1917. */
  1918. for (pass = 0; pass < 2 && !yielded && try; pass++) {
  1919. kvm_for_each_vcpu(i, vcpu, kvm) {
  1920. if (!pass && i <= last_boosted_vcpu) {
  1921. i = last_boosted_vcpu;
  1922. continue;
  1923. } else if (pass && i > last_boosted_vcpu)
  1924. break;
  1925. if (!ACCESS_ONCE(vcpu->preempted))
  1926. continue;
  1927. if (vcpu == me)
  1928. continue;
  1929. if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
  1930. continue;
  1931. if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
  1932. continue;
  1933. yielded = kvm_vcpu_yield_to(vcpu);
  1934. if (yielded > 0) {
  1935. kvm->last_boosted_vcpu = i;
  1936. break;
  1937. } else if (yielded < 0) {
  1938. try--;
  1939. if (!try)
  1940. break;
  1941. }
  1942. }
  1943. }
  1944. kvm_vcpu_set_in_spin_loop(me, false);
  1945. /* Ensure vcpu is not eligible during next spinloop */
  1946. kvm_vcpu_set_dy_eligible(me, false);
  1947. }
  1948. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1949. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1950. {
  1951. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1952. struct page *page;
  1953. if (vmf->pgoff == 0)
  1954. page = virt_to_page(vcpu->run);
  1955. #ifdef CONFIG_X86
  1956. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1957. page = virt_to_page(vcpu->arch.pio_data);
  1958. #endif
  1959. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1960. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1961. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1962. #endif
  1963. else
  1964. return kvm_arch_vcpu_fault(vcpu, vmf);
  1965. get_page(page);
  1966. vmf->page = page;
  1967. return 0;
  1968. }
  1969. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1970. .fault = kvm_vcpu_fault,
  1971. };
  1972. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1973. {
  1974. vma->vm_ops = &kvm_vcpu_vm_ops;
  1975. return 0;
  1976. }
  1977. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1978. {
  1979. struct kvm_vcpu *vcpu = filp->private_data;
  1980. debugfs_remove_recursive(vcpu->debugfs_dentry);
  1981. kvm_put_kvm(vcpu->kvm);
  1982. return 0;
  1983. }
  1984. static struct file_operations kvm_vcpu_fops = {
  1985. .release = kvm_vcpu_release,
  1986. .unlocked_ioctl = kvm_vcpu_ioctl,
  1987. #ifdef CONFIG_KVM_COMPAT
  1988. .compat_ioctl = kvm_vcpu_compat_ioctl,
  1989. #endif
  1990. .mmap = kvm_vcpu_mmap,
  1991. .llseek = noop_llseek,
  1992. };
  1993. /*
  1994. * Allocates an inode for the vcpu.
  1995. */
  1996. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1997. {
  1998. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
  1999. }
  2000. static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
  2001. {
  2002. char dir_name[ITOA_MAX_LEN * 2];
  2003. int ret;
  2004. if (!kvm_arch_has_vcpu_debugfs())
  2005. return 0;
  2006. if (!debugfs_initialized())
  2007. return 0;
  2008. snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
  2009. vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
  2010. vcpu->kvm->debugfs_dentry);
  2011. if (!vcpu->debugfs_dentry)
  2012. return -ENOMEM;
  2013. ret = kvm_arch_create_vcpu_debugfs(vcpu);
  2014. if (ret < 0) {
  2015. debugfs_remove_recursive(vcpu->debugfs_dentry);
  2016. return ret;
  2017. }
  2018. return 0;
  2019. }
  2020. /*
  2021. * Creates some virtual cpus. Good luck creating more than one.
  2022. */
  2023. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  2024. {
  2025. int r;
  2026. struct kvm_vcpu *vcpu;
  2027. if (id >= KVM_MAX_VCPU_ID)
  2028. return -EINVAL;
  2029. mutex_lock(&kvm->lock);
  2030. if (kvm->created_vcpus == KVM_MAX_VCPUS) {
  2031. mutex_unlock(&kvm->lock);
  2032. return -EINVAL;
  2033. }
  2034. kvm->created_vcpus++;
  2035. mutex_unlock(&kvm->lock);
  2036. vcpu = kvm_arch_vcpu_create(kvm, id);
  2037. if (IS_ERR(vcpu)) {
  2038. r = PTR_ERR(vcpu);
  2039. goto vcpu_decrement;
  2040. }
  2041. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  2042. r = kvm_arch_vcpu_setup(vcpu);
  2043. if (r)
  2044. goto vcpu_destroy;
  2045. r = kvm_create_vcpu_debugfs(vcpu);
  2046. if (r)
  2047. goto vcpu_destroy;
  2048. mutex_lock(&kvm->lock);
  2049. if (kvm_get_vcpu_by_id(kvm, id)) {
  2050. r = -EEXIST;
  2051. goto unlock_vcpu_destroy;
  2052. }
  2053. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  2054. /* Now it's all set up, let userspace reach it */
  2055. kvm_get_kvm(kvm);
  2056. r = create_vcpu_fd(vcpu);
  2057. if (r < 0) {
  2058. kvm_put_kvm(kvm);
  2059. goto unlock_vcpu_destroy;
  2060. }
  2061. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  2062. /*
  2063. * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
  2064. * before kvm->online_vcpu's incremented value.
  2065. */
  2066. smp_wmb();
  2067. atomic_inc(&kvm->online_vcpus);
  2068. mutex_unlock(&kvm->lock);
  2069. kvm_arch_vcpu_postcreate(vcpu);
  2070. return r;
  2071. unlock_vcpu_destroy:
  2072. mutex_unlock(&kvm->lock);
  2073. debugfs_remove_recursive(vcpu->debugfs_dentry);
  2074. vcpu_destroy:
  2075. kvm_arch_vcpu_destroy(vcpu);
  2076. vcpu_decrement:
  2077. mutex_lock(&kvm->lock);
  2078. kvm->created_vcpus--;
  2079. mutex_unlock(&kvm->lock);
  2080. return r;
  2081. }
  2082. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2083. {
  2084. if (sigset) {
  2085. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2086. vcpu->sigset_active = 1;
  2087. vcpu->sigset = *sigset;
  2088. } else
  2089. vcpu->sigset_active = 0;
  2090. return 0;
  2091. }
  2092. static long kvm_vcpu_ioctl(struct file *filp,
  2093. unsigned int ioctl, unsigned long arg)
  2094. {
  2095. struct kvm_vcpu *vcpu = filp->private_data;
  2096. void __user *argp = (void __user *)arg;
  2097. int r;
  2098. struct kvm_fpu *fpu = NULL;
  2099. struct kvm_sregs *kvm_sregs = NULL;
  2100. if (vcpu->kvm->mm != current->mm)
  2101. return -EIO;
  2102. if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
  2103. return -EINVAL;
  2104. #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
  2105. /*
  2106. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  2107. * so vcpu_load() would break it.
  2108. */
  2109. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
  2110. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  2111. #endif
  2112. r = vcpu_load(vcpu);
  2113. if (r)
  2114. return r;
  2115. switch (ioctl) {
  2116. case KVM_RUN:
  2117. r = -EINVAL;
  2118. if (arg)
  2119. goto out;
  2120. if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
  2121. /* The thread running this VCPU changed. */
  2122. struct pid *oldpid = vcpu->pid;
  2123. struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
  2124. rcu_assign_pointer(vcpu->pid, newpid);
  2125. if (oldpid)
  2126. synchronize_rcu();
  2127. put_pid(oldpid);
  2128. }
  2129. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  2130. trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
  2131. break;
  2132. case KVM_GET_REGS: {
  2133. struct kvm_regs *kvm_regs;
  2134. r = -ENOMEM;
  2135. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  2136. if (!kvm_regs)
  2137. goto out;
  2138. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  2139. if (r)
  2140. goto out_free1;
  2141. r = -EFAULT;
  2142. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  2143. goto out_free1;
  2144. r = 0;
  2145. out_free1:
  2146. kfree(kvm_regs);
  2147. break;
  2148. }
  2149. case KVM_SET_REGS: {
  2150. struct kvm_regs *kvm_regs;
  2151. r = -ENOMEM;
  2152. kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
  2153. if (IS_ERR(kvm_regs)) {
  2154. r = PTR_ERR(kvm_regs);
  2155. goto out;
  2156. }
  2157. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  2158. kfree(kvm_regs);
  2159. break;
  2160. }
  2161. case KVM_GET_SREGS: {
  2162. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  2163. r = -ENOMEM;
  2164. if (!kvm_sregs)
  2165. goto out;
  2166. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  2167. if (r)
  2168. goto out;
  2169. r = -EFAULT;
  2170. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  2171. goto out;
  2172. r = 0;
  2173. break;
  2174. }
  2175. case KVM_SET_SREGS: {
  2176. kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
  2177. if (IS_ERR(kvm_sregs)) {
  2178. r = PTR_ERR(kvm_sregs);
  2179. kvm_sregs = NULL;
  2180. goto out;
  2181. }
  2182. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  2183. break;
  2184. }
  2185. case KVM_GET_MP_STATE: {
  2186. struct kvm_mp_state mp_state;
  2187. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  2188. if (r)
  2189. goto out;
  2190. r = -EFAULT;
  2191. if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
  2192. goto out;
  2193. r = 0;
  2194. break;
  2195. }
  2196. case KVM_SET_MP_STATE: {
  2197. struct kvm_mp_state mp_state;
  2198. r = -EFAULT;
  2199. if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
  2200. goto out;
  2201. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  2202. break;
  2203. }
  2204. case KVM_TRANSLATE: {
  2205. struct kvm_translation tr;
  2206. r = -EFAULT;
  2207. if (copy_from_user(&tr, argp, sizeof(tr)))
  2208. goto out;
  2209. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  2210. if (r)
  2211. goto out;
  2212. r = -EFAULT;
  2213. if (copy_to_user(argp, &tr, sizeof(tr)))
  2214. goto out;
  2215. r = 0;
  2216. break;
  2217. }
  2218. case KVM_SET_GUEST_DEBUG: {
  2219. struct kvm_guest_debug dbg;
  2220. r = -EFAULT;
  2221. if (copy_from_user(&dbg, argp, sizeof(dbg)))
  2222. goto out;
  2223. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  2224. break;
  2225. }
  2226. case KVM_SET_SIGNAL_MASK: {
  2227. struct kvm_signal_mask __user *sigmask_arg = argp;
  2228. struct kvm_signal_mask kvm_sigmask;
  2229. sigset_t sigset, *p;
  2230. p = NULL;
  2231. if (argp) {
  2232. r = -EFAULT;
  2233. if (copy_from_user(&kvm_sigmask, argp,
  2234. sizeof(kvm_sigmask)))
  2235. goto out;
  2236. r = -EINVAL;
  2237. if (kvm_sigmask.len != sizeof(sigset))
  2238. goto out;
  2239. r = -EFAULT;
  2240. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2241. sizeof(sigset)))
  2242. goto out;
  2243. p = &sigset;
  2244. }
  2245. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  2246. break;
  2247. }
  2248. case KVM_GET_FPU: {
  2249. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  2250. r = -ENOMEM;
  2251. if (!fpu)
  2252. goto out;
  2253. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  2254. if (r)
  2255. goto out;
  2256. r = -EFAULT;
  2257. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  2258. goto out;
  2259. r = 0;
  2260. break;
  2261. }
  2262. case KVM_SET_FPU: {
  2263. fpu = memdup_user(argp, sizeof(*fpu));
  2264. if (IS_ERR(fpu)) {
  2265. r = PTR_ERR(fpu);
  2266. fpu = NULL;
  2267. goto out;
  2268. }
  2269. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  2270. break;
  2271. }
  2272. default:
  2273. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  2274. }
  2275. out:
  2276. vcpu_put(vcpu);
  2277. kfree(fpu);
  2278. kfree(kvm_sregs);
  2279. return r;
  2280. }
  2281. #ifdef CONFIG_KVM_COMPAT
  2282. static long kvm_vcpu_compat_ioctl(struct file *filp,
  2283. unsigned int ioctl, unsigned long arg)
  2284. {
  2285. struct kvm_vcpu *vcpu = filp->private_data;
  2286. void __user *argp = compat_ptr(arg);
  2287. int r;
  2288. if (vcpu->kvm->mm != current->mm)
  2289. return -EIO;
  2290. switch (ioctl) {
  2291. case KVM_SET_SIGNAL_MASK: {
  2292. struct kvm_signal_mask __user *sigmask_arg = argp;
  2293. struct kvm_signal_mask kvm_sigmask;
  2294. compat_sigset_t csigset;
  2295. sigset_t sigset;
  2296. if (argp) {
  2297. r = -EFAULT;
  2298. if (copy_from_user(&kvm_sigmask, argp,
  2299. sizeof(kvm_sigmask)))
  2300. goto out;
  2301. r = -EINVAL;
  2302. if (kvm_sigmask.len != sizeof(csigset))
  2303. goto out;
  2304. r = -EFAULT;
  2305. if (copy_from_user(&csigset, sigmask_arg->sigset,
  2306. sizeof(csigset)))
  2307. goto out;
  2308. sigset_from_compat(&sigset, &csigset);
  2309. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2310. } else
  2311. r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
  2312. break;
  2313. }
  2314. default:
  2315. r = kvm_vcpu_ioctl(filp, ioctl, arg);
  2316. }
  2317. out:
  2318. return r;
  2319. }
  2320. #endif
  2321. static int kvm_device_ioctl_attr(struct kvm_device *dev,
  2322. int (*accessor)(struct kvm_device *dev,
  2323. struct kvm_device_attr *attr),
  2324. unsigned long arg)
  2325. {
  2326. struct kvm_device_attr attr;
  2327. if (!accessor)
  2328. return -EPERM;
  2329. if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
  2330. return -EFAULT;
  2331. return accessor(dev, &attr);
  2332. }
  2333. static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
  2334. unsigned long arg)
  2335. {
  2336. struct kvm_device *dev = filp->private_data;
  2337. switch (ioctl) {
  2338. case KVM_SET_DEVICE_ATTR:
  2339. return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
  2340. case KVM_GET_DEVICE_ATTR:
  2341. return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
  2342. case KVM_HAS_DEVICE_ATTR:
  2343. return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
  2344. default:
  2345. if (dev->ops->ioctl)
  2346. return dev->ops->ioctl(dev, ioctl, arg);
  2347. return -ENOTTY;
  2348. }
  2349. }
  2350. static int kvm_device_release(struct inode *inode, struct file *filp)
  2351. {
  2352. struct kvm_device *dev = filp->private_data;
  2353. struct kvm *kvm = dev->kvm;
  2354. kvm_put_kvm(kvm);
  2355. return 0;
  2356. }
  2357. static const struct file_operations kvm_device_fops = {
  2358. .unlocked_ioctl = kvm_device_ioctl,
  2359. #ifdef CONFIG_KVM_COMPAT
  2360. .compat_ioctl = kvm_device_ioctl,
  2361. #endif
  2362. .release = kvm_device_release,
  2363. };
  2364. struct kvm_device *kvm_device_from_filp(struct file *filp)
  2365. {
  2366. if (filp->f_op != &kvm_device_fops)
  2367. return NULL;
  2368. return filp->private_data;
  2369. }
  2370. static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
  2371. #ifdef CONFIG_KVM_MPIC
  2372. [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
  2373. [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
  2374. #endif
  2375. #ifdef CONFIG_KVM_XICS
  2376. [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
  2377. #endif
  2378. };
  2379. int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
  2380. {
  2381. if (type >= ARRAY_SIZE(kvm_device_ops_table))
  2382. return -ENOSPC;
  2383. if (kvm_device_ops_table[type] != NULL)
  2384. return -EEXIST;
  2385. kvm_device_ops_table[type] = ops;
  2386. return 0;
  2387. }
  2388. void kvm_unregister_device_ops(u32 type)
  2389. {
  2390. if (kvm_device_ops_table[type] != NULL)
  2391. kvm_device_ops_table[type] = NULL;
  2392. }
  2393. static int kvm_ioctl_create_device(struct kvm *kvm,
  2394. struct kvm_create_device *cd)
  2395. {
  2396. struct kvm_device_ops *ops = NULL;
  2397. struct kvm_device *dev;
  2398. bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
  2399. int ret;
  2400. if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
  2401. return -ENODEV;
  2402. ops = kvm_device_ops_table[cd->type];
  2403. if (ops == NULL)
  2404. return -ENODEV;
  2405. if (test)
  2406. return 0;
  2407. dev = kzalloc(sizeof(*dev), GFP_KERNEL);
  2408. if (!dev)
  2409. return -ENOMEM;
  2410. dev->ops = ops;
  2411. dev->kvm = kvm;
  2412. mutex_lock(&kvm->lock);
  2413. ret = ops->create(dev, cd->type);
  2414. if (ret < 0) {
  2415. mutex_unlock(&kvm->lock);
  2416. kfree(dev);
  2417. return ret;
  2418. }
  2419. list_add(&dev->vm_node, &kvm->devices);
  2420. mutex_unlock(&kvm->lock);
  2421. if (ops->init)
  2422. ops->init(dev);
  2423. ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
  2424. if (ret < 0) {
  2425. ops->destroy(dev);
  2426. mutex_lock(&kvm->lock);
  2427. list_del(&dev->vm_node);
  2428. mutex_unlock(&kvm->lock);
  2429. return ret;
  2430. }
  2431. kvm_get_kvm(kvm);
  2432. cd->fd = ret;
  2433. return 0;
  2434. }
  2435. static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
  2436. {
  2437. switch (arg) {
  2438. case KVM_CAP_USER_MEMORY:
  2439. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  2440. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  2441. case KVM_CAP_INTERNAL_ERROR_DATA:
  2442. #ifdef CONFIG_HAVE_KVM_MSI
  2443. case KVM_CAP_SIGNAL_MSI:
  2444. #endif
  2445. #ifdef CONFIG_HAVE_KVM_IRQFD
  2446. case KVM_CAP_IRQFD:
  2447. case KVM_CAP_IRQFD_RESAMPLE:
  2448. #endif
  2449. case KVM_CAP_IOEVENTFD_ANY_LENGTH:
  2450. case KVM_CAP_CHECK_EXTENSION_VM:
  2451. return 1;
  2452. #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
  2453. case KVM_CAP_IRQ_ROUTING:
  2454. return KVM_MAX_IRQ_ROUTES;
  2455. #endif
  2456. #if KVM_ADDRESS_SPACE_NUM > 1
  2457. case KVM_CAP_MULTI_ADDRESS_SPACE:
  2458. return KVM_ADDRESS_SPACE_NUM;
  2459. #endif
  2460. case KVM_CAP_MAX_VCPU_ID:
  2461. return KVM_MAX_VCPU_ID;
  2462. default:
  2463. break;
  2464. }
  2465. return kvm_vm_ioctl_check_extension(kvm, arg);
  2466. }
  2467. static long kvm_vm_ioctl(struct file *filp,
  2468. unsigned int ioctl, unsigned long arg)
  2469. {
  2470. struct kvm *kvm = filp->private_data;
  2471. void __user *argp = (void __user *)arg;
  2472. int r;
  2473. if (kvm->mm != current->mm)
  2474. return -EIO;
  2475. switch (ioctl) {
  2476. case KVM_CREATE_VCPU:
  2477. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2478. break;
  2479. case KVM_SET_USER_MEMORY_REGION: {
  2480. struct kvm_userspace_memory_region kvm_userspace_mem;
  2481. r = -EFAULT;
  2482. if (copy_from_user(&kvm_userspace_mem, argp,
  2483. sizeof(kvm_userspace_mem)))
  2484. goto out;
  2485. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
  2486. break;
  2487. }
  2488. case KVM_GET_DIRTY_LOG: {
  2489. struct kvm_dirty_log log;
  2490. r = -EFAULT;
  2491. if (copy_from_user(&log, argp, sizeof(log)))
  2492. goto out;
  2493. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2494. break;
  2495. }
  2496. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  2497. case KVM_REGISTER_COALESCED_MMIO: {
  2498. struct kvm_coalesced_mmio_zone zone;
  2499. r = -EFAULT;
  2500. if (copy_from_user(&zone, argp, sizeof(zone)))
  2501. goto out;
  2502. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  2503. break;
  2504. }
  2505. case KVM_UNREGISTER_COALESCED_MMIO: {
  2506. struct kvm_coalesced_mmio_zone zone;
  2507. r = -EFAULT;
  2508. if (copy_from_user(&zone, argp, sizeof(zone)))
  2509. goto out;
  2510. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  2511. break;
  2512. }
  2513. #endif
  2514. case KVM_IRQFD: {
  2515. struct kvm_irqfd data;
  2516. r = -EFAULT;
  2517. if (copy_from_user(&data, argp, sizeof(data)))
  2518. goto out;
  2519. r = kvm_irqfd(kvm, &data);
  2520. break;
  2521. }
  2522. case KVM_IOEVENTFD: {
  2523. struct kvm_ioeventfd data;
  2524. r = -EFAULT;
  2525. if (copy_from_user(&data, argp, sizeof(data)))
  2526. goto out;
  2527. r = kvm_ioeventfd(kvm, &data);
  2528. break;
  2529. }
  2530. #ifdef CONFIG_HAVE_KVM_MSI
  2531. case KVM_SIGNAL_MSI: {
  2532. struct kvm_msi msi;
  2533. r = -EFAULT;
  2534. if (copy_from_user(&msi, argp, sizeof(msi)))
  2535. goto out;
  2536. r = kvm_send_userspace_msi(kvm, &msi);
  2537. break;
  2538. }
  2539. #endif
  2540. #ifdef __KVM_HAVE_IRQ_LINE
  2541. case KVM_IRQ_LINE_STATUS:
  2542. case KVM_IRQ_LINE: {
  2543. struct kvm_irq_level irq_event;
  2544. r = -EFAULT;
  2545. if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
  2546. goto out;
  2547. r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
  2548. ioctl == KVM_IRQ_LINE_STATUS);
  2549. if (r)
  2550. goto out;
  2551. r = -EFAULT;
  2552. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2553. if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
  2554. goto out;
  2555. }
  2556. r = 0;
  2557. break;
  2558. }
  2559. #endif
  2560. #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
  2561. case KVM_SET_GSI_ROUTING: {
  2562. struct kvm_irq_routing routing;
  2563. struct kvm_irq_routing __user *urouting;
  2564. struct kvm_irq_routing_entry *entries = NULL;
  2565. r = -EFAULT;
  2566. if (copy_from_user(&routing, argp, sizeof(routing)))
  2567. goto out;
  2568. r = -EINVAL;
  2569. if (routing.nr > KVM_MAX_IRQ_ROUTES)
  2570. goto out;
  2571. if (routing.flags)
  2572. goto out;
  2573. if (routing.nr) {
  2574. r = -ENOMEM;
  2575. entries = vmalloc(routing.nr * sizeof(*entries));
  2576. if (!entries)
  2577. goto out;
  2578. r = -EFAULT;
  2579. urouting = argp;
  2580. if (copy_from_user(entries, urouting->entries,
  2581. routing.nr * sizeof(*entries)))
  2582. goto out_free_irq_routing;
  2583. }
  2584. r = kvm_set_irq_routing(kvm, entries, routing.nr,
  2585. routing.flags);
  2586. out_free_irq_routing:
  2587. vfree(entries);
  2588. break;
  2589. }
  2590. #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
  2591. case KVM_CREATE_DEVICE: {
  2592. struct kvm_create_device cd;
  2593. r = -EFAULT;
  2594. if (copy_from_user(&cd, argp, sizeof(cd)))
  2595. goto out;
  2596. r = kvm_ioctl_create_device(kvm, &cd);
  2597. if (r)
  2598. goto out;
  2599. r = -EFAULT;
  2600. if (copy_to_user(argp, &cd, sizeof(cd)))
  2601. goto out;
  2602. r = 0;
  2603. break;
  2604. }
  2605. case KVM_CHECK_EXTENSION:
  2606. r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
  2607. break;
  2608. default:
  2609. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  2610. }
  2611. out:
  2612. return r;
  2613. }
  2614. #ifdef CONFIG_KVM_COMPAT
  2615. struct compat_kvm_dirty_log {
  2616. __u32 slot;
  2617. __u32 padding1;
  2618. union {
  2619. compat_uptr_t dirty_bitmap; /* one bit per page */
  2620. __u64 padding2;
  2621. };
  2622. };
  2623. static long kvm_vm_compat_ioctl(struct file *filp,
  2624. unsigned int ioctl, unsigned long arg)
  2625. {
  2626. struct kvm *kvm = filp->private_data;
  2627. int r;
  2628. if (kvm->mm != current->mm)
  2629. return -EIO;
  2630. switch (ioctl) {
  2631. case KVM_GET_DIRTY_LOG: {
  2632. struct compat_kvm_dirty_log compat_log;
  2633. struct kvm_dirty_log log;
  2634. r = -EFAULT;
  2635. if (copy_from_user(&compat_log, (void __user *)arg,
  2636. sizeof(compat_log)))
  2637. goto out;
  2638. log.slot = compat_log.slot;
  2639. log.padding1 = compat_log.padding1;
  2640. log.padding2 = compat_log.padding2;
  2641. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  2642. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2643. break;
  2644. }
  2645. default:
  2646. r = kvm_vm_ioctl(filp, ioctl, arg);
  2647. }
  2648. out:
  2649. return r;
  2650. }
  2651. #endif
  2652. static struct file_operations kvm_vm_fops = {
  2653. .release = kvm_vm_release,
  2654. .unlocked_ioctl = kvm_vm_ioctl,
  2655. #ifdef CONFIG_KVM_COMPAT
  2656. .compat_ioctl = kvm_vm_compat_ioctl,
  2657. #endif
  2658. .llseek = noop_llseek,
  2659. };
  2660. static int kvm_dev_ioctl_create_vm(unsigned long type)
  2661. {
  2662. int r;
  2663. struct kvm *kvm;
  2664. struct file *file;
  2665. kvm = kvm_create_vm(type);
  2666. if (IS_ERR(kvm))
  2667. return PTR_ERR(kvm);
  2668. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  2669. r = kvm_coalesced_mmio_init(kvm);
  2670. if (r < 0) {
  2671. kvm_put_kvm(kvm);
  2672. return r;
  2673. }
  2674. #endif
  2675. r = get_unused_fd_flags(O_CLOEXEC);
  2676. if (r < 0) {
  2677. kvm_put_kvm(kvm);
  2678. return r;
  2679. }
  2680. file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  2681. if (IS_ERR(file)) {
  2682. put_unused_fd(r);
  2683. kvm_put_kvm(kvm);
  2684. return PTR_ERR(file);
  2685. }
  2686. if (kvm_create_vm_debugfs(kvm, r) < 0) {
  2687. put_unused_fd(r);
  2688. fput(file);
  2689. return -ENOMEM;
  2690. }
  2691. fd_install(r, file);
  2692. return r;
  2693. }
  2694. static long kvm_dev_ioctl(struct file *filp,
  2695. unsigned int ioctl, unsigned long arg)
  2696. {
  2697. long r = -EINVAL;
  2698. switch (ioctl) {
  2699. case KVM_GET_API_VERSION:
  2700. if (arg)
  2701. goto out;
  2702. r = KVM_API_VERSION;
  2703. break;
  2704. case KVM_CREATE_VM:
  2705. r = kvm_dev_ioctl_create_vm(arg);
  2706. break;
  2707. case KVM_CHECK_EXTENSION:
  2708. r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
  2709. break;
  2710. case KVM_GET_VCPU_MMAP_SIZE:
  2711. if (arg)
  2712. goto out;
  2713. r = PAGE_SIZE; /* struct kvm_run */
  2714. #ifdef CONFIG_X86
  2715. r += PAGE_SIZE; /* pio data page */
  2716. #endif
  2717. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  2718. r += PAGE_SIZE; /* coalesced mmio ring page */
  2719. #endif
  2720. break;
  2721. case KVM_TRACE_ENABLE:
  2722. case KVM_TRACE_PAUSE:
  2723. case KVM_TRACE_DISABLE:
  2724. r = -EOPNOTSUPP;
  2725. break;
  2726. default:
  2727. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  2728. }
  2729. out:
  2730. return r;
  2731. }
  2732. static struct file_operations kvm_chardev_ops = {
  2733. .unlocked_ioctl = kvm_dev_ioctl,
  2734. .compat_ioctl = kvm_dev_ioctl,
  2735. .llseek = noop_llseek,
  2736. };
  2737. static struct miscdevice kvm_dev = {
  2738. KVM_MINOR,
  2739. "kvm",
  2740. &kvm_chardev_ops,
  2741. };
  2742. static void hardware_enable_nolock(void *junk)
  2743. {
  2744. int cpu = raw_smp_processor_id();
  2745. int r;
  2746. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2747. return;
  2748. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  2749. r = kvm_arch_hardware_enable();
  2750. if (r) {
  2751. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  2752. atomic_inc(&hardware_enable_failed);
  2753. pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
  2754. }
  2755. }
  2756. static int kvm_starting_cpu(unsigned int cpu)
  2757. {
  2758. raw_spin_lock(&kvm_count_lock);
  2759. if (kvm_usage_count)
  2760. hardware_enable_nolock(NULL);
  2761. raw_spin_unlock(&kvm_count_lock);
  2762. return 0;
  2763. }
  2764. static void hardware_disable_nolock(void *junk)
  2765. {
  2766. int cpu = raw_smp_processor_id();
  2767. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2768. return;
  2769. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  2770. kvm_arch_hardware_disable();
  2771. }
  2772. static int kvm_dying_cpu(unsigned int cpu)
  2773. {
  2774. raw_spin_lock(&kvm_count_lock);
  2775. if (kvm_usage_count)
  2776. hardware_disable_nolock(NULL);
  2777. raw_spin_unlock(&kvm_count_lock);
  2778. return 0;
  2779. }
  2780. static void hardware_disable_all_nolock(void)
  2781. {
  2782. BUG_ON(!kvm_usage_count);
  2783. kvm_usage_count--;
  2784. if (!kvm_usage_count)
  2785. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2786. }
  2787. static void hardware_disable_all(void)
  2788. {
  2789. raw_spin_lock(&kvm_count_lock);
  2790. hardware_disable_all_nolock();
  2791. raw_spin_unlock(&kvm_count_lock);
  2792. }
  2793. static int hardware_enable_all(void)
  2794. {
  2795. int r = 0;
  2796. raw_spin_lock(&kvm_count_lock);
  2797. kvm_usage_count++;
  2798. if (kvm_usage_count == 1) {
  2799. atomic_set(&hardware_enable_failed, 0);
  2800. on_each_cpu(hardware_enable_nolock, NULL, 1);
  2801. if (atomic_read(&hardware_enable_failed)) {
  2802. hardware_disable_all_nolock();
  2803. r = -EBUSY;
  2804. }
  2805. }
  2806. raw_spin_unlock(&kvm_count_lock);
  2807. return r;
  2808. }
  2809. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2810. void *v)
  2811. {
  2812. /*
  2813. * Some (well, at least mine) BIOSes hang on reboot if
  2814. * in vmx root mode.
  2815. *
  2816. * And Intel TXT required VMX off for all cpu when system shutdown.
  2817. */
  2818. pr_info("kvm: exiting hardware virtualization\n");
  2819. kvm_rebooting = true;
  2820. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2821. return NOTIFY_OK;
  2822. }
  2823. static struct notifier_block kvm_reboot_notifier = {
  2824. .notifier_call = kvm_reboot,
  2825. .priority = 0,
  2826. };
  2827. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2828. {
  2829. int i;
  2830. for (i = 0; i < bus->dev_count; i++) {
  2831. struct kvm_io_device *pos = bus->range[i].dev;
  2832. kvm_iodevice_destructor(pos);
  2833. }
  2834. kfree(bus);
  2835. }
  2836. static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
  2837. const struct kvm_io_range *r2)
  2838. {
  2839. gpa_t addr1 = r1->addr;
  2840. gpa_t addr2 = r2->addr;
  2841. if (addr1 < addr2)
  2842. return -1;
  2843. /* If r2->len == 0, match the exact address. If r2->len != 0,
  2844. * accept any overlapping write. Any order is acceptable for
  2845. * overlapping ranges, because kvm_io_bus_get_first_dev ensures
  2846. * we process all of them.
  2847. */
  2848. if (r2->len) {
  2849. addr1 += r1->len;
  2850. addr2 += r2->len;
  2851. }
  2852. if (addr1 > addr2)
  2853. return 1;
  2854. return 0;
  2855. }
  2856. static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
  2857. {
  2858. return kvm_io_bus_cmp(p1, p2);
  2859. }
  2860. static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
  2861. gpa_t addr, int len)
  2862. {
  2863. bus->range[bus->dev_count++] = (struct kvm_io_range) {
  2864. .addr = addr,
  2865. .len = len,
  2866. .dev = dev,
  2867. };
  2868. sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
  2869. kvm_io_bus_sort_cmp, NULL);
  2870. return 0;
  2871. }
  2872. static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
  2873. gpa_t addr, int len)
  2874. {
  2875. struct kvm_io_range *range, key;
  2876. int off;
  2877. key = (struct kvm_io_range) {
  2878. .addr = addr,
  2879. .len = len,
  2880. };
  2881. range = bsearch(&key, bus->range, bus->dev_count,
  2882. sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
  2883. if (range == NULL)
  2884. return -ENOENT;
  2885. off = range - bus->range;
  2886. while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
  2887. off--;
  2888. return off;
  2889. }
  2890. static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
  2891. struct kvm_io_range *range, const void *val)
  2892. {
  2893. int idx;
  2894. idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
  2895. if (idx < 0)
  2896. return -EOPNOTSUPP;
  2897. while (idx < bus->dev_count &&
  2898. kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
  2899. if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
  2900. range->len, val))
  2901. return idx;
  2902. idx++;
  2903. }
  2904. return -EOPNOTSUPP;
  2905. }
  2906. /* kvm_io_bus_write - called under kvm->slots_lock */
  2907. int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
  2908. int len, const void *val)
  2909. {
  2910. struct kvm_io_bus *bus;
  2911. struct kvm_io_range range;
  2912. int r;
  2913. range = (struct kvm_io_range) {
  2914. .addr = addr,
  2915. .len = len,
  2916. };
  2917. bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
  2918. r = __kvm_io_bus_write(vcpu, bus, &range, val);
  2919. return r < 0 ? r : 0;
  2920. }
  2921. /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
  2922. int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
  2923. gpa_t addr, int len, const void *val, long cookie)
  2924. {
  2925. struct kvm_io_bus *bus;
  2926. struct kvm_io_range range;
  2927. range = (struct kvm_io_range) {
  2928. .addr = addr,
  2929. .len = len,
  2930. };
  2931. bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
  2932. /* First try the device referenced by cookie. */
  2933. if ((cookie >= 0) && (cookie < bus->dev_count) &&
  2934. (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
  2935. if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
  2936. val))
  2937. return cookie;
  2938. /*
  2939. * cookie contained garbage; fall back to search and return the
  2940. * correct cookie value.
  2941. */
  2942. return __kvm_io_bus_write(vcpu, bus, &range, val);
  2943. }
  2944. static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
  2945. struct kvm_io_range *range, void *val)
  2946. {
  2947. int idx;
  2948. idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
  2949. if (idx < 0)
  2950. return -EOPNOTSUPP;
  2951. while (idx < bus->dev_count &&
  2952. kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
  2953. if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
  2954. range->len, val))
  2955. return idx;
  2956. idx++;
  2957. }
  2958. return -EOPNOTSUPP;
  2959. }
  2960. EXPORT_SYMBOL_GPL(kvm_io_bus_write);
  2961. /* kvm_io_bus_read - called under kvm->slots_lock */
  2962. int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
  2963. int len, void *val)
  2964. {
  2965. struct kvm_io_bus *bus;
  2966. struct kvm_io_range range;
  2967. int r;
  2968. range = (struct kvm_io_range) {
  2969. .addr = addr,
  2970. .len = len,
  2971. };
  2972. bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
  2973. r = __kvm_io_bus_read(vcpu, bus, &range, val);
  2974. return r < 0 ? r : 0;
  2975. }
  2976. /* Caller must hold slots_lock. */
  2977. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2978. int len, struct kvm_io_device *dev)
  2979. {
  2980. struct kvm_io_bus *new_bus, *bus;
  2981. bus = kvm->buses[bus_idx];
  2982. /* exclude ioeventfd which is limited by maximum fd */
  2983. if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
  2984. return -ENOSPC;
  2985. new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
  2986. sizeof(struct kvm_io_range)), GFP_KERNEL);
  2987. if (!new_bus)
  2988. return -ENOMEM;
  2989. memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
  2990. sizeof(struct kvm_io_range)));
  2991. kvm_io_bus_insert_dev(new_bus, dev, addr, len);
  2992. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2993. synchronize_srcu_expedited(&kvm->srcu);
  2994. kfree(bus);
  2995. return 0;
  2996. }
  2997. /* Caller must hold slots_lock. */
  2998. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  2999. struct kvm_io_device *dev)
  3000. {
  3001. int i, r;
  3002. struct kvm_io_bus *new_bus, *bus;
  3003. bus = kvm->buses[bus_idx];
  3004. r = -ENOENT;
  3005. for (i = 0; i < bus->dev_count; i++)
  3006. if (bus->range[i].dev == dev) {
  3007. r = 0;
  3008. break;
  3009. }
  3010. if (r)
  3011. return r;
  3012. new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
  3013. sizeof(struct kvm_io_range)), GFP_KERNEL);
  3014. if (!new_bus)
  3015. return -ENOMEM;
  3016. memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
  3017. new_bus->dev_count--;
  3018. memcpy(new_bus->range + i, bus->range + i + 1,
  3019. (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
  3020. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  3021. synchronize_srcu_expedited(&kvm->srcu);
  3022. kfree(bus);
  3023. return r;
  3024. }
  3025. struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  3026. gpa_t addr)
  3027. {
  3028. struct kvm_io_bus *bus;
  3029. int dev_idx, srcu_idx;
  3030. struct kvm_io_device *iodev = NULL;
  3031. srcu_idx = srcu_read_lock(&kvm->srcu);
  3032. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  3033. dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
  3034. if (dev_idx < 0)
  3035. goto out_unlock;
  3036. iodev = bus->range[dev_idx].dev;
  3037. out_unlock:
  3038. srcu_read_unlock(&kvm->srcu, srcu_idx);
  3039. return iodev;
  3040. }
  3041. EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
  3042. static int kvm_debugfs_open(struct inode *inode, struct file *file,
  3043. int (*get)(void *, u64 *), int (*set)(void *, u64),
  3044. const char *fmt)
  3045. {
  3046. struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
  3047. inode->i_private;
  3048. /* The debugfs files are a reference to the kvm struct which
  3049. * is still valid when kvm_destroy_vm is called.
  3050. * To avoid the race between open and the removal of the debugfs
  3051. * directory we test against the users count.
  3052. */
  3053. if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
  3054. return -ENOENT;
  3055. if (simple_attr_open(inode, file, get, set, fmt)) {
  3056. kvm_put_kvm(stat_data->kvm);
  3057. return -ENOMEM;
  3058. }
  3059. return 0;
  3060. }
  3061. static int kvm_debugfs_release(struct inode *inode, struct file *file)
  3062. {
  3063. struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
  3064. inode->i_private;
  3065. simple_attr_release(inode, file);
  3066. kvm_put_kvm(stat_data->kvm);
  3067. return 0;
  3068. }
  3069. static int vm_stat_get_per_vm(void *data, u64 *val)
  3070. {
  3071. struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
  3072. *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
  3073. return 0;
  3074. }
  3075. static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
  3076. {
  3077. __simple_attr_check_format("%llu\n", 0ull);
  3078. return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
  3079. NULL, "%llu\n");
  3080. }
  3081. static const struct file_operations vm_stat_get_per_vm_fops = {
  3082. .owner = THIS_MODULE,
  3083. .open = vm_stat_get_per_vm_open,
  3084. .release = kvm_debugfs_release,
  3085. .read = simple_attr_read,
  3086. .write = simple_attr_write,
  3087. .llseek = generic_file_llseek,
  3088. };
  3089. static int vcpu_stat_get_per_vm(void *data, u64 *val)
  3090. {
  3091. int i;
  3092. struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
  3093. struct kvm_vcpu *vcpu;
  3094. *val = 0;
  3095. kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
  3096. *val += *(u64 *)((void *)vcpu + stat_data->offset);
  3097. return 0;
  3098. }
  3099. static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
  3100. {
  3101. __simple_attr_check_format("%llu\n", 0ull);
  3102. return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
  3103. NULL, "%llu\n");
  3104. }
  3105. static const struct file_operations vcpu_stat_get_per_vm_fops = {
  3106. .owner = THIS_MODULE,
  3107. .open = vcpu_stat_get_per_vm_open,
  3108. .release = kvm_debugfs_release,
  3109. .read = simple_attr_read,
  3110. .write = simple_attr_write,
  3111. .llseek = generic_file_llseek,
  3112. };
  3113. static const struct file_operations *stat_fops_per_vm[] = {
  3114. [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
  3115. [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
  3116. };
  3117. static int vm_stat_get(void *_offset, u64 *val)
  3118. {
  3119. unsigned offset = (long)_offset;
  3120. struct kvm *kvm;
  3121. struct kvm_stat_data stat_tmp = {.offset = offset};
  3122. u64 tmp_val;
  3123. *val = 0;
  3124. spin_lock(&kvm_lock);
  3125. list_for_each_entry(kvm, &vm_list, vm_list) {
  3126. stat_tmp.kvm = kvm;
  3127. vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
  3128. *val += tmp_val;
  3129. }
  3130. spin_unlock(&kvm_lock);
  3131. return 0;
  3132. }
  3133. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  3134. static int vcpu_stat_get(void *_offset, u64 *val)
  3135. {
  3136. unsigned offset = (long)_offset;
  3137. struct kvm *kvm;
  3138. struct kvm_stat_data stat_tmp = {.offset = offset};
  3139. u64 tmp_val;
  3140. *val = 0;
  3141. spin_lock(&kvm_lock);
  3142. list_for_each_entry(kvm, &vm_list, vm_list) {
  3143. stat_tmp.kvm = kvm;
  3144. vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
  3145. *val += tmp_val;
  3146. }
  3147. spin_unlock(&kvm_lock);
  3148. return 0;
  3149. }
  3150. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  3151. static const struct file_operations *stat_fops[] = {
  3152. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  3153. [KVM_STAT_VM] = &vm_stat_fops,
  3154. };
  3155. static int kvm_init_debug(void)
  3156. {
  3157. int r = -EEXIST;
  3158. struct kvm_stats_debugfs_item *p;
  3159. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  3160. if (kvm_debugfs_dir == NULL)
  3161. goto out;
  3162. kvm_debugfs_num_entries = 0;
  3163. for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
  3164. if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  3165. (void *)(long)p->offset,
  3166. stat_fops[p->kind]))
  3167. goto out_dir;
  3168. }
  3169. return 0;
  3170. out_dir:
  3171. debugfs_remove_recursive(kvm_debugfs_dir);
  3172. out:
  3173. return r;
  3174. }
  3175. static int kvm_suspend(void)
  3176. {
  3177. if (kvm_usage_count)
  3178. hardware_disable_nolock(NULL);
  3179. return 0;
  3180. }
  3181. static void kvm_resume(void)
  3182. {
  3183. if (kvm_usage_count) {
  3184. WARN_ON(raw_spin_is_locked(&kvm_count_lock));
  3185. hardware_enable_nolock(NULL);
  3186. }
  3187. }
  3188. static struct syscore_ops kvm_syscore_ops = {
  3189. .suspend = kvm_suspend,
  3190. .resume = kvm_resume,
  3191. };
  3192. static inline
  3193. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  3194. {
  3195. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  3196. }
  3197. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  3198. {
  3199. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  3200. if (vcpu->preempted)
  3201. vcpu->preempted = false;
  3202. kvm_arch_sched_in(vcpu, cpu);
  3203. kvm_arch_vcpu_load(vcpu, cpu);
  3204. }
  3205. static void kvm_sched_out(struct preempt_notifier *pn,
  3206. struct task_struct *next)
  3207. {
  3208. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  3209. if (current->state == TASK_RUNNING)
  3210. vcpu->preempted = true;
  3211. kvm_arch_vcpu_put(vcpu);
  3212. }
  3213. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  3214. struct module *module)
  3215. {
  3216. int r;
  3217. int cpu;
  3218. r = kvm_arch_init(opaque);
  3219. if (r)
  3220. goto out_fail;
  3221. /*
  3222. * kvm_arch_init makes sure there's at most one caller
  3223. * for architectures that support multiple implementations,
  3224. * like intel and amd on x86.
  3225. */
  3226. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  3227. r = -ENOMEM;
  3228. goto out_free_0;
  3229. }
  3230. r = kvm_arch_hardware_setup();
  3231. if (r < 0)
  3232. goto out_free_0a;
  3233. for_each_online_cpu(cpu) {
  3234. smp_call_function_single(cpu,
  3235. kvm_arch_check_processor_compat,
  3236. &r, 1);
  3237. if (r < 0)
  3238. goto out_free_1;
  3239. }
  3240. r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING",
  3241. kvm_starting_cpu, kvm_dying_cpu);
  3242. if (r)
  3243. goto out_free_2;
  3244. register_reboot_notifier(&kvm_reboot_notifier);
  3245. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  3246. if (!vcpu_align)
  3247. vcpu_align = __alignof__(struct kvm_vcpu);
  3248. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  3249. 0, NULL);
  3250. if (!kvm_vcpu_cache) {
  3251. r = -ENOMEM;
  3252. goto out_free_3;
  3253. }
  3254. r = kvm_async_pf_init();
  3255. if (r)
  3256. goto out_free;
  3257. kvm_chardev_ops.owner = module;
  3258. kvm_vm_fops.owner = module;
  3259. kvm_vcpu_fops.owner = module;
  3260. r = misc_register(&kvm_dev);
  3261. if (r) {
  3262. pr_err("kvm: misc device register failed\n");
  3263. goto out_unreg;
  3264. }
  3265. register_syscore_ops(&kvm_syscore_ops);
  3266. kvm_preempt_ops.sched_in = kvm_sched_in;
  3267. kvm_preempt_ops.sched_out = kvm_sched_out;
  3268. r = kvm_init_debug();
  3269. if (r) {
  3270. pr_err("kvm: create debugfs files failed\n");
  3271. goto out_undebugfs;
  3272. }
  3273. r = kvm_vfio_ops_init();
  3274. WARN_ON(r);
  3275. return 0;
  3276. out_undebugfs:
  3277. unregister_syscore_ops(&kvm_syscore_ops);
  3278. misc_deregister(&kvm_dev);
  3279. out_unreg:
  3280. kvm_async_pf_deinit();
  3281. out_free:
  3282. kmem_cache_destroy(kvm_vcpu_cache);
  3283. out_free_3:
  3284. unregister_reboot_notifier(&kvm_reboot_notifier);
  3285. cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
  3286. out_free_2:
  3287. out_free_1:
  3288. kvm_arch_hardware_unsetup();
  3289. out_free_0a:
  3290. free_cpumask_var(cpus_hardware_enabled);
  3291. out_free_0:
  3292. kvm_irqfd_exit();
  3293. kvm_arch_exit();
  3294. out_fail:
  3295. return r;
  3296. }
  3297. EXPORT_SYMBOL_GPL(kvm_init);
  3298. void kvm_exit(void)
  3299. {
  3300. debugfs_remove_recursive(kvm_debugfs_dir);
  3301. misc_deregister(&kvm_dev);
  3302. kmem_cache_destroy(kvm_vcpu_cache);
  3303. kvm_async_pf_deinit();
  3304. unregister_syscore_ops(&kvm_syscore_ops);
  3305. unregister_reboot_notifier(&kvm_reboot_notifier);
  3306. cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
  3307. on_each_cpu(hardware_disable_nolock, NULL, 1);
  3308. kvm_arch_hardware_unsetup();
  3309. kvm_arch_exit();
  3310. kvm_irqfd_exit();
  3311. free_cpumask_var(cpus_hardware_enabled);
  3312. kvm_vfio_ops_exit();
  3313. }
  3314. EXPORT_SYMBOL_GPL(kvm_exit);