page_alloc.c 207 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/kasan.h>
  28. #include <linux/module.h>
  29. #include <linux/suspend.h>
  30. #include <linux/pagevec.h>
  31. #include <linux/blkdev.h>
  32. #include <linux/slab.h>
  33. #include <linux/ratelimit.h>
  34. #include <linux/oom.h>
  35. #include <linux/notifier.h>
  36. #include <linux/topology.h>
  37. #include <linux/sysctl.h>
  38. #include <linux/cpu.h>
  39. #include <linux/cpuset.h>
  40. #include <linux/memory_hotplug.h>
  41. #include <linux/nodemask.h>
  42. #include <linux/vmalloc.h>
  43. #include <linux/vmstat.h>
  44. #include <linux/mempolicy.h>
  45. #include <linux/memremap.h>
  46. #include <linux/stop_machine.h>
  47. #include <linux/sort.h>
  48. #include <linux/pfn.h>
  49. #include <linux/backing-dev.h>
  50. #include <linux/fault-inject.h>
  51. #include <linux/page-isolation.h>
  52. #include <linux/page_ext.h>
  53. #include <linux/debugobjects.h>
  54. #include <linux/kmemleak.h>
  55. #include <linux/compaction.h>
  56. #include <trace/events/kmem.h>
  57. #include <linux/prefetch.h>
  58. #include <linux/mm_inline.h>
  59. #include <linux/migrate.h>
  60. #include <linux/page_ext.h>
  61. #include <linux/hugetlb.h>
  62. #include <linux/sched/rt.h>
  63. #include <linux/page_owner.h>
  64. #include <linux/kthread.h>
  65. #include <asm/sections.h>
  66. #include <asm/tlbflush.h>
  67. #include <asm/div64.h>
  68. #include "internal.h"
  69. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  70. static DEFINE_MUTEX(pcp_batch_high_lock);
  71. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  72. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  73. DEFINE_PER_CPU(int, numa_node);
  74. EXPORT_PER_CPU_SYMBOL(numa_node);
  75. #endif
  76. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  77. /*
  78. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  79. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  80. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  81. * defined in <linux/topology.h>.
  82. */
  83. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  84. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  85. int _node_numa_mem_[MAX_NUMNODES];
  86. #endif
  87. /*
  88. * Array of node states.
  89. */
  90. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  91. [N_POSSIBLE] = NODE_MASK_ALL,
  92. [N_ONLINE] = { { [0] = 1UL } },
  93. #ifndef CONFIG_NUMA
  94. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  95. #ifdef CONFIG_HIGHMEM
  96. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  97. #endif
  98. #ifdef CONFIG_MOVABLE_NODE
  99. [N_MEMORY] = { { [0] = 1UL } },
  100. #endif
  101. [N_CPU] = { { [0] = 1UL } },
  102. #endif /* NUMA */
  103. };
  104. EXPORT_SYMBOL(node_states);
  105. /* Protect totalram_pages and zone->managed_pages */
  106. static DEFINE_SPINLOCK(managed_page_count_lock);
  107. unsigned long totalram_pages __read_mostly;
  108. unsigned long totalreserve_pages __read_mostly;
  109. unsigned long totalcma_pages __read_mostly;
  110. int percpu_pagelist_fraction;
  111. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  112. /*
  113. * A cached value of the page's pageblock's migratetype, used when the page is
  114. * put on a pcplist. Used to avoid the pageblock migratetype lookup when
  115. * freeing from pcplists in most cases, at the cost of possibly becoming stale.
  116. * Also the migratetype set in the page does not necessarily match the pcplist
  117. * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
  118. * other index - this ensures that it will be put on the correct CMA freelist.
  119. */
  120. static inline int get_pcppage_migratetype(struct page *page)
  121. {
  122. return page->index;
  123. }
  124. static inline void set_pcppage_migratetype(struct page *page, int migratetype)
  125. {
  126. page->index = migratetype;
  127. }
  128. #ifdef CONFIG_PM_SLEEP
  129. /*
  130. * The following functions are used by the suspend/hibernate code to temporarily
  131. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  132. * while devices are suspended. To avoid races with the suspend/hibernate code,
  133. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  134. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  135. * guaranteed not to run in parallel with that modification).
  136. */
  137. static gfp_t saved_gfp_mask;
  138. void pm_restore_gfp_mask(void)
  139. {
  140. WARN_ON(!mutex_is_locked(&pm_mutex));
  141. if (saved_gfp_mask) {
  142. gfp_allowed_mask = saved_gfp_mask;
  143. saved_gfp_mask = 0;
  144. }
  145. }
  146. void pm_restrict_gfp_mask(void)
  147. {
  148. WARN_ON(!mutex_is_locked(&pm_mutex));
  149. WARN_ON(saved_gfp_mask);
  150. saved_gfp_mask = gfp_allowed_mask;
  151. gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
  152. }
  153. bool pm_suspended_storage(void)
  154. {
  155. if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
  156. return false;
  157. return true;
  158. }
  159. #endif /* CONFIG_PM_SLEEP */
  160. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  161. unsigned int pageblock_order __read_mostly;
  162. #endif
  163. static void __free_pages_ok(struct page *page, unsigned int order);
  164. /*
  165. * results with 256, 32 in the lowmem_reserve sysctl:
  166. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  167. * 1G machine -> (16M dma, 784M normal, 224M high)
  168. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  169. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  170. * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
  171. *
  172. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  173. * don't need any ZONE_NORMAL reservation
  174. */
  175. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  176. #ifdef CONFIG_ZONE_DMA
  177. 256,
  178. #endif
  179. #ifdef CONFIG_ZONE_DMA32
  180. 256,
  181. #endif
  182. #ifdef CONFIG_HIGHMEM
  183. 32,
  184. #endif
  185. 32,
  186. };
  187. EXPORT_SYMBOL(totalram_pages);
  188. static char * const zone_names[MAX_NR_ZONES] = {
  189. #ifdef CONFIG_ZONE_DMA
  190. "DMA",
  191. #endif
  192. #ifdef CONFIG_ZONE_DMA32
  193. "DMA32",
  194. #endif
  195. "Normal",
  196. #ifdef CONFIG_HIGHMEM
  197. "HighMem",
  198. #endif
  199. "Movable",
  200. #ifdef CONFIG_ZONE_DEVICE
  201. "Device",
  202. #endif
  203. };
  204. char * const migratetype_names[MIGRATE_TYPES] = {
  205. "Unmovable",
  206. "Movable",
  207. "Reclaimable",
  208. "HighAtomic",
  209. #ifdef CONFIG_CMA
  210. "CMA",
  211. #endif
  212. #ifdef CONFIG_MEMORY_ISOLATION
  213. "Isolate",
  214. #endif
  215. };
  216. compound_page_dtor * const compound_page_dtors[] = {
  217. NULL,
  218. free_compound_page,
  219. #ifdef CONFIG_HUGETLB_PAGE
  220. free_huge_page,
  221. #endif
  222. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  223. free_transhuge_page,
  224. #endif
  225. };
  226. int min_free_kbytes = 1024;
  227. int user_min_free_kbytes = -1;
  228. int watermark_scale_factor = 10;
  229. static unsigned long __meminitdata nr_kernel_pages;
  230. static unsigned long __meminitdata nr_all_pages;
  231. static unsigned long __meminitdata dma_reserve;
  232. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  233. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  234. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  235. static unsigned long __initdata required_kernelcore;
  236. static unsigned long __initdata required_movablecore;
  237. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  238. static bool mirrored_kernelcore;
  239. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  240. int movable_zone;
  241. EXPORT_SYMBOL(movable_zone);
  242. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  243. #if MAX_NUMNODES > 1
  244. int nr_node_ids __read_mostly = MAX_NUMNODES;
  245. int nr_online_nodes __read_mostly = 1;
  246. EXPORT_SYMBOL(nr_node_ids);
  247. EXPORT_SYMBOL(nr_online_nodes);
  248. #endif
  249. int page_group_by_mobility_disabled __read_mostly;
  250. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  251. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  252. {
  253. pgdat->first_deferred_pfn = ULONG_MAX;
  254. }
  255. /* Returns true if the struct page for the pfn is uninitialised */
  256. static inline bool __meminit early_page_uninitialised(unsigned long pfn)
  257. {
  258. int nid = early_pfn_to_nid(pfn);
  259. if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
  260. return true;
  261. return false;
  262. }
  263. static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
  264. {
  265. if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
  266. return true;
  267. return false;
  268. }
  269. /*
  270. * Returns false when the remaining initialisation should be deferred until
  271. * later in the boot cycle when it can be parallelised.
  272. */
  273. static inline bool update_defer_init(pg_data_t *pgdat,
  274. unsigned long pfn, unsigned long zone_end,
  275. unsigned long *nr_initialised)
  276. {
  277. unsigned long max_initialise;
  278. /* Always populate low zones for address-contrained allocations */
  279. if (zone_end < pgdat_end_pfn(pgdat))
  280. return true;
  281. /*
  282. * Initialise at least 2G of a node but also take into account that
  283. * two large system hashes that can take up 1GB for 0.25TB/node.
  284. */
  285. max_initialise = max(2UL << (30 - PAGE_SHIFT),
  286. (pgdat->node_spanned_pages >> 8));
  287. (*nr_initialised)++;
  288. if ((*nr_initialised > max_initialise) &&
  289. (pfn & (PAGES_PER_SECTION - 1)) == 0) {
  290. pgdat->first_deferred_pfn = pfn;
  291. return false;
  292. }
  293. return true;
  294. }
  295. #else
  296. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  297. {
  298. }
  299. static inline bool early_page_uninitialised(unsigned long pfn)
  300. {
  301. return false;
  302. }
  303. static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
  304. {
  305. return false;
  306. }
  307. static inline bool update_defer_init(pg_data_t *pgdat,
  308. unsigned long pfn, unsigned long zone_end,
  309. unsigned long *nr_initialised)
  310. {
  311. return true;
  312. }
  313. #endif
  314. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  315. static inline unsigned long *get_pageblock_bitmap(struct page *page,
  316. unsigned long pfn)
  317. {
  318. #ifdef CONFIG_SPARSEMEM
  319. return __pfn_to_section(pfn)->pageblock_flags;
  320. #else
  321. return page_zone(page)->pageblock_flags;
  322. #endif /* CONFIG_SPARSEMEM */
  323. }
  324. static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
  325. {
  326. #ifdef CONFIG_SPARSEMEM
  327. pfn &= (PAGES_PER_SECTION-1);
  328. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  329. #else
  330. pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
  331. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  332. #endif /* CONFIG_SPARSEMEM */
  333. }
  334. /**
  335. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  336. * @page: The page within the block of interest
  337. * @pfn: The target page frame number
  338. * @end_bitidx: The last bit of interest to retrieve
  339. * @mask: mask of bits that the caller is interested in
  340. *
  341. * Return: pageblock_bits flags
  342. */
  343. static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
  344. unsigned long pfn,
  345. unsigned long end_bitidx,
  346. unsigned long mask)
  347. {
  348. unsigned long *bitmap;
  349. unsigned long bitidx, word_bitidx;
  350. unsigned long word;
  351. bitmap = get_pageblock_bitmap(page, pfn);
  352. bitidx = pfn_to_bitidx(page, pfn);
  353. word_bitidx = bitidx / BITS_PER_LONG;
  354. bitidx &= (BITS_PER_LONG-1);
  355. word = bitmap[word_bitidx];
  356. bitidx += end_bitidx;
  357. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  358. }
  359. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  360. unsigned long end_bitidx,
  361. unsigned long mask)
  362. {
  363. return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
  364. }
  365. static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
  366. {
  367. return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
  368. }
  369. /**
  370. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  371. * @page: The page within the block of interest
  372. * @flags: The flags to set
  373. * @pfn: The target page frame number
  374. * @end_bitidx: The last bit of interest
  375. * @mask: mask of bits that the caller is interested in
  376. */
  377. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  378. unsigned long pfn,
  379. unsigned long end_bitidx,
  380. unsigned long mask)
  381. {
  382. unsigned long *bitmap;
  383. unsigned long bitidx, word_bitidx;
  384. unsigned long old_word, word;
  385. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  386. bitmap = get_pageblock_bitmap(page, pfn);
  387. bitidx = pfn_to_bitidx(page, pfn);
  388. word_bitidx = bitidx / BITS_PER_LONG;
  389. bitidx &= (BITS_PER_LONG-1);
  390. VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
  391. bitidx += end_bitidx;
  392. mask <<= (BITS_PER_LONG - bitidx - 1);
  393. flags <<= (BITS_PER_LONG - bitidx - 1);
  394. word = READ_ONCE(bitmap[word_bitidx]);
  395. for (;;) {
  396. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  397. if (word == old_word)
  398. break;
  399. word = old_word;
  400. }
  401. }
  402. void set_pageblock_migratetype(struct page *page, int migratetype)
  403. {
  404. if (unlikely(page_group_by_mobility_disabled &&
  405. migratetype < MIGRATE_PCPTYPES))
  406. migratetype = MIGRATE_UNMOVABLE;
  407. set_pageblock_flags_group(page, (unsigned long)migratetype,
  408. PB_migrate, PB_migrate_end);
  409. }
  410. #ifdef CONFIG_DEBUG_VM
  411. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  412. {
  413. int ret = 0;
  414. unsigned seq;
  415. unsigned long pfn = page_to_pfn(page);
  416. unsigned long sp, start_pfn;
  417. do {
  418. seq = zone_span_seqbegin(zone);
  419. start_pfn = zone->zone_start_pfn;
  420. sp = zone->spanned_pages;
  421. if (!zone_spans_pfn(zone, pfn))
  422. ret = 1;
  423. } while (zone_span_seqretry(zone, seq));
  424. if (ret)
  425. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  426. pfn, zone_to_nid(zone), zone->name,
  427. start_pfn, start_pfn + sp);
  428. return ret;
  429. }
  430. static int page_is_consistent(struct zone *zone, struct page *page)
  431. {
  432. if (!pfn_valid_within(page_to_pfn(page)))
  433. return 0;
  434. if (zone != page_zone(page))
  435. return 0;
  436. return 1;
  437. }
  438. /*
  439. * Temporary debugging check for pages not lying within a given zone.
  440. */
  441. static int bad_range(struct zone *zone, struct page *page)
  442. {
  443. if (page_outside_zone_boundaries(zone, page))
  444. return 1;
  445. if (!page_is_consistent(zone, page))
  446. return 1;
  447. return 0;
  448. }
  449. #else
  450. static inline int bad_range(struct zone *zone, struct page *page)
  451. {
  452. return 0;
  453. }
  454. #endif
  455. static void bad_page(struct page *page, const char *reason,
  456. unsigned long bad_flags)
  457. {
  458. static unsigned long resume;
  459. static unsigned long nr_shown;
  460. static unsigned long nr_unshown;
  461. /*
  462. * Allow a burst of 60 reports, then keep quiet for that minute;
  463. * or allow a steady drip of one report per second.
  464. */
  465. if (nr_shown == 60) {
  466. if (time_before(jiffies, resume)) {
  467. nr_unshown++;
  468. goto out;
  469. }
  470. if (nr_unshown) {
  471. pr_alert(
  472. "BUG: Bad page state: %lu messages suppressed\n",
  473. nr_unshown);
  474. nr_unshown = 0;
  475. }
  476. nr_shown = 0;
  477. }
  478. if (nr_shown++ == 0)
  479. resume = jiffies + 60 * HZ;
  480. pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
  481. current->comm, page_to_pfn(page));
  482. __dump_page(page, reason);
  483. bad_flags &= page->flags;
  484. if (bad_flags)
  485. pr_alert("bad because of flags: %#lx(%pGp)\n",
  486. bad_flags, &bad_flags);
  487. dump_page_owner(page);
  488. print_modules();
  489. dump_stack();
  490. out:
  491. /* Leave bad fields for debug, except PageBuddy could make trouble */
  492. page_mapcount_reset(page); /* remove PageBuddy */
  493. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  494. }
  495. /*
  496. * Higher-order pages are called "compound pages". They are structured thusly:
  497. *
  498. * The first PAGE_SIZE page is called the "head page" and have PG_head set.
  499. *
  500. * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
  501. * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
  502. *
  503. * The first tail page's ->compound_dtor holds the offset in array of compound
  504. * page destructors. See compound_page_dtors.
  505. *
  506. * The first tail page's ->compound_order holds the order of allocation.
  507. * This usage means that zero-order pages may not be compound.
  508. */
  509. void free_compound_page(struct page *page)
  510. {
  511. __free_pages_ok(page, compound_order(page));
  512. }
  513. void prep_compound_page(struct page *page, unsigned int order)
  514. {
  515. int i;
  516. int nr_pages = 1 << order;
  517. set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
  518. set_compound_order(page, order);
  519. __SetPageHead(page);
  520. for (i = 1; i < nr_pages; i++) {
  521. struct page *p = page + i;
  522. set_page_count(p, 0);
  523. p->mapping = TAIL_MAPPING;
  524. set_compound_head(p, page);
  525. }
  526. atomic_set(compound_mapcount_ptr(page), -1);
  527. }
  528. #ifdef CONFIG_DEBUG_PAGEALLOC
  529. unsigned int _debug_guardpage_minorder;
  530. bool _debug_pagealloc_enabled __read_mostly
  531. = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
  532. EXPORT_SYMBOL(_debug_pagealloc_enabled);
  533. bool _debug_guardpage_enabled __read_mostly;
  534. static int __init early_debug_pagealloc(char *buf)
  535. {
  536. if (!buf)
  537. return -EINVAL;
  538. return kstrtobool(buf, &_debug_pagealloc_enabled);
  539. }
  540. early_param("debug_pagealloc", early_debug_pagealloc);
  541. static bool need_debug_guardpage(void)
  542. {
  543. /* If we don't use debug_pagealloc, we don't need guard page */
  544. if (!debug_pagealloc_enabled())
  545. return false;
  546. return true;
  547. }
  548. static void init_debug_guardpage(void)
  549. {
  550. if (!debug_pagealloc_enabled())
  551. return;
  552. _debug_guardpage_enabled = true;
  553. }
  554. struct page_ext_operations debug_guardpage_ops = {
  555. .need = need_debug_guardpage,
  556. .init = init_debug_guardpage,
  557. };
  558. static int __init debug_guardpage_minorder_setup(char *buf)
  559. {
  560. unsigned long res;
  561. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  562. pr_err("Bad debug_guardpage_minorder value\n");
  563. return 0;
  564. }
  565. _debug_guardpage_minorder = res;
  566. pr_info("Setting debug_guardpage_minorder to %lu\n", res);
  567. return 0;
  568. }
  569. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  570. static inline void set_page_guard(struct zone *zone, struct page *page,
  571. unsigned int order, int migratetype)
  572. {
  573. struct page_ext *page_ext;
  574. if (!debug_guardpage_enabled())
  575. return;
  576. page_ext = lookup_page_ext(page);
  577. if (unlikely(!page_ext))
  578. return;
  579. __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  580. INIT_LIST_HEAD(&page->lru);
  581. set_page_private(page, order);
  582. /* Guard pages are not available for any usage */
  583. __mod_zone_freepage_state(zone, -(1 << order), migratetype);
  584. }
  585. static inline void clear_page_guard(struct zone *zone, struct page *page,
  586. unsigned int order, int migratetype)
  587. {
  588. struct page_ext *page_ext;
  589. if (!debug_guardpage_enabled())
  590. return;
  591. page_ext = lookup_page_ext(page);
  592. if (unlikely(!page_ext))
  593. return;
  594. __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  595. set_page_private(page, 0);
  596. if (!is_migrate_isolate(migratetype))
  597. __mod_zone_freepage_state(zone, (1 << order), migratetype);
  598. }
  599. #else
  600. struct page_ext_operations debug_guardpage_ops = { NULL, };
  601. static inline void set_page_guard(struct zone *zone, struct page *page,
  602. unsigned int order, int migratetype) {}
  603. static inline void clear_page_guard(struct zone *zone, struct page *page,
  604. unsigned int order, int migratetype) {}
  605. #endif
  606. static inline void set_page_order(struct page *page, unsigned int order)
  607. {
  608. set_page_private(page, order);
  609. __SetPageBuddy(page);
  610. }
  611. static inline void rmv_page_order(struct page *page)
  612. {
  613. __ClearPageBuddy(page);
  614. set_page_private(page, 0);
  615. }
  616. /*
  617. * This function checks whether a page is free && is the buddy
  618. * we can do coalesce a page and its buddy if
  619. * (a) the buddy is not in a hole &&
  620. * (b) the buddy is in the buddy system &&
  621. * (c) a page and its buddy have the same order &&
  622. * (d) a page and its buddy are in the same zone.
  623. *
  624. * For recording whether a page is in the buddy system, we set ->_mapcount
  625. * PAGE_BUDDY_MAPCOUNT_VALUE.
  626. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  627. * serialized by zone->lock.
  628. *
  629. * For recording page's order, we use page_private(page).
  630. */
  631. static inline int page_is_buddy(struct page *page, struct page *buddy,
  632. unsigned int order)
  633. {
  634. if (!pfn_valid_within(page_to_pfn(buddy)))
  635. return 0;
  636. if (page_is_guard(buddy) && page_order(buddy) == order) {
  637. if (page_zone_id(page) != page_zone_id(buddy))
  638. return 0;
  639. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  640. return 1;
  641. }
  642. if (PageBuddy(buddy) && page_order(buddy) == order) {
  643. /*
  644. * zone check is done late to avoid uselessly
  645. * calculating zone/node ids for pages that could
  646. * never merge.
  647. */
  648. if (page_zone_id(page) != page_zone_id(buddy))
  649. return 0;
  650. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  651. return 1;
  652. }
  653. return 0;
  654. }
  655. /*
  656. * Freeing function for a buddy system allocator.
  657. *
  658. * The concept of a buddy system is to maintain direct-mapped table
  659. * (containing bit values) for memory blocks of various "orders".
  660. * The bottom level table contains the map for the smallest allocatable
  661. * units of memory (here, pages), and each level above it describes
  662. * pairs of units from the levels below, hence, "buddies".
  663. * At a high level, all that happens here is marking the table entry
  664. * at the bottom level available, and propagating the changes upward
  665. * as necessary, plus some accounting needed to play nicely with other
  666. * parts of the VM system.
  667. * At each level, we keep a list of pages, which are heads of continuous
  668. * free pages of length of (1 << order) and marked with _mapcount
  669. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  670. * field.
  671. * So when we are allocating or freeing one, we can derive the state of the
  672. * other. That is, if we allocate a small block, and both were
  673. * free, the remainder of the region must be split into blocks.
  674. * If a block is freed, and its buddy is also free, then this
  675. * triggers coalescing into a block of larger size.
  676. *
  677. * -- nyc
  678. */
  679. static inline void __free_one_page(struct page *page,
  680. unsigned long pfn,
  681. struct zone *zone, unsigned int order,
  682. int migratetype)
  683. {
  684. unsigned long page_idx;
  685. unsigned long combined_idx;
  686. unsigned long uninitialized_var(buddy_idx);
  687. struct page *buddy;
  688. unsigned int max_order;
  689. max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
  690. VM_BUG_ON(!zone_is_initialized(zone));
  691. VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
  692. VM_BUG_ON(migratetype == -1);
  693. if (likely(!is_migrate_isolate(migratetype)))
  694. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  695. page_idx = pfn & ((1 << MAX_ORDER) - 1);
  696. VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
  697. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  698. continue_merging:
  699. while (order < max_order - 1) {
  700. buddy_idx = __find_buddy_index(page_idx, order);
  701. buddy = page + (buddy_idx - page_idx);
  702. if (!page_is_buddy(page, buddy, order))
  703. goto done_merging;
  704. /*
  705. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  706. * merge with it and move up one order.
  707. */
  708. if (page_is_guard(buddy)) {
  709. clear_page_guard(zone, buddy, order, migratetype);
  710. } else {
  711. list_del(&buddy->lru);
  712. zone->free_area[order].nr_free--;
  713. rmv_page_order(buddy);
  714. }
  715. combined_idx = buddy_idx & page_idx;
  716. page = page + (combined_idx - page_idx);
  717. page_idx = combined_idx;
  718. order++;
  719. }
  720. if (max_order < MAX_ORDER) {
  721. /* If we are here, it means order is >= pageblock_order.
  722. * We want to prevent merge between freepages on isolate
  723. * pageblock and normal pageblock. Without this, pageblock
  724. * isolation could cause incorrect freepage or CMA accounting.
  725. *
  726. * We don't want to hit this code for the more frequent
  727. * low-order merging.
  728. */
  729. if (unlikely(has_isolate_pageblock(zone))) {
  730. int buddy_mt;
  731. buddy_idx = __find_buddy_index(page_idx, order);
  732. buddy = page + (buddy_idx - page_idx);
  733. buddy_mt = get_pageblock_migratetype(buddy);
  734. if (migratetype != buddy_mt
  735. && (is_migrate_isolate(migratetype) ||
  736. is_migrate_isolate(buddy_mt)))
  737. goto done_merging;
  738. }
  739. max_order++;
  740. goto continue_merging;
  741. }
  742. done_merging:
  743. set_page_order(page, order);
  744. /*
  745. * If this is not the largest possible page, check if the buddy
  746. * of the next-highest order is free. If it is, it's possible
  747. * that pages are being freed that will coalesce soon. In case,
  748. * that is happening, add the free page to the tail of the list
  749. * so it's less likely to be used soon and more likely to be merged
  750. * as a higher order page
  751. */
  752. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  753. struct page *higher_page, *higher_buddy;
  754. combined_idx = buddy_idx & page_idx;
  755. higher_page = page + (combined_idx - page_idx);
  756. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  757. higher_buddy = higher_page + (buddy_idx - combined_idx);
  758. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  759. list_add_tail(&page->lru,
  760. &zone->free_area[order].free_list[migratetype]);
  761. goto out;
  762. }
  763. }
  764. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  765. out:
  766. zone->free_area[order].nr_free++;
  767. }
  768. /*
  769. * A bad page could be due to a number of fields. Instead of multiple branches,
  770. * try and check multiple fields with one check. The caller must do a detailed
  771. * check if necessary.
  772. */
  773. static inline bool page_expected_state(struct page *page,
  774. unsigned long check_flags)
  775. {
  776. if (unlikely(atomic_read(&page->_mapcount) != -1))
  777. return false;
  778. if (unlikely((unsigned long)page->mapping |
  779. page_ref_count(page) |
  780. #ifdef CONFIG_MEMCG
  781. (unsigned long)page->mem_cgroup |
  782. #endif
  783. (page->flags & check_flags)))
  784. return false;
  785. return true;
  786. }
  787. static void free_pages_check_bad(struct page *page)
  788. {
  789. const char *bad_reason;
  790. unsigned long bad_flags;
  791. bad_reason = NULL;
  792. bad_flags = 0;
  793. if (unlikely(atomic_read(&page->_mapcount) != -1))
  794. bad_reason = "nonzero mapcount";
  795. if (unlikely(page->mapping != NULL))
  796. bad_reason = "non-NULL mapping";
  797. if (unlikely(page_ref_count(page) != 0))
  798. bad_reason = "nonzero _refcount";
  799. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  800. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  801. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  802. }
  803. #ifdef CONFIG_MEMCG
  804. if (unlikely(page->mem_cgroup))
  805. bad_reason = "page still charged to cgroup";
  806. #endif
  807. bad_page(page, bad_reason, bad_flags);
  808. }
  809. static inline int free_pages_check(struct page *page)
  810. {
  811. if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
  812. return 0;
  813. /* Something has gone sideways, find it */
  814. free_pages_check_bad(page);
  815. return 1;
  816. }
  817. static int free_tail_pages_check(struct page *head_page, struct page *page)
  818. {
  819. int ret = 1;
  820. /*
  821. * We rely page->lru.next never has bit 0 set, unless the page
  822. * is PageTail(). Let's make sure that's true even for poisoned ->lru.
  823. */
  824. BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
  825. if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
  826. ret = 0;
  827. goto out;
  828. }
  829. switch (page - head_page) {
  830. case 1:
  831. /* the first tail page: ->mapping is compound_mapcount() */
  832. if (unlikely(compound_mapcount(page))) {
  833. bad_page(page, "nonzero compound_mapcount", 0);
  834. goto out;
  835. }
  836. break;
  837. case 2:
  838. /*
  839. * the second tail page: ->mapping is
  840. * page_deferred_list().next -- ignore value.
  841. */
  842. break;
  843. default:
  844. if (page->mapping != TAIL_MAPPING) {
  845. bad_page(page, "corrupted mapping in tail page", 0);
  846. goto out;
  847. }
  848. break;
  849. }
  850. if (unlikely(!PageTail(page))) {
  851. bad_page(page, "PageTail not set", 0);
  852. goto out;
  853. }
  854. if (unlikely(compound_head(page) != head_page)) {
  855. bad_page(page, "compound_head not consistent", 0);
  856. goto out;
  857. }
  858. ret = 0;
  859. out:
  860. page->mapping = NULL;
  861. clear_compound_head(page);
  862. return ret;
  863. }
  864. static __always_inline bool free_pages_prepare(struct page *page,
  865. unsigned int order, bool check_free)
  866. {
  867. int bad = 0;
  868. VM_BUG_ON_PAGE(PageTail(page), page);
  869. trace_mm_page_free(page, order);
  870. kmemcheck_free_shadow(page, order);
  871. /*
  872. * Check tail pages before head page information is cleared to
  873. * avoid checking PageCompound for order-0 pages.
  874. */
  875. if (unlikely(order)) {
  876. bool compound = PageCompound(page);
  877. int i;
  878. VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
  879. for (i = 1; i < (1 << order); i++) {
  880. if (compound)
  881. bad += free_tail_pages_check(page, page + i);
  882. if (unlikely(free_pages_check(page + i))) {
  883. bad++;
  884. continue;
  885. }
  886. (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  887. }
  888. }
  889. if (PageMappingFlags(page))
  890. page->mapping = NULL;
  891. if (check_free)
  892. bad += free_pages_check(page);
  893. if (bad)
  894. return false;
  895. page_cpupid_reset_last(page);
  896. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  897. reset_page_owner(page, order);
  898. if (!PageHighMem(page)) {
  899. debug_check_no_locks_freed(page_address(page),
  900. PAGE_SIZE << order);
  901. debug_check_no_obj_freed(page_address(page),
  902. PAGE_SIZE << order);
  903. }
  904. arch_free_page(page, order);
  905. kernel_poison_pages(page, 1 << order, 0);
  906. kernel_map_pages(page, 1 << order, 0);
  907. kasan_free_pages(page, order);
  908. return true;
  909. }
  910. #ifdef CONFIG_DEBUG_VM
  911. static inline bool free_pcp_prepare(struct page *page)
  912. {
  913. return free_pages_prepare(page, 0, true);
  914. }
  915. static inline bool bulkfree_pcp_prepare(struct page *page)
  916. {
  917. return false;
  918. }
  919. #else
  920. static bool free_pcp_prepare(struct page *page)
  921. {
  922. return free_pages_prepare(page, 0, false);
  923. }
  924. static bool bulkfree_pcp_prepare(struct page *page)
  925. {
  926. return free_pages_check(page);
  927. }
  928. #endif /* CONFIG_DEBUG_VM */
  929. /*
  930. * Frees a number of pages from the PCP lists
  931. * Assumes all pages on list are in same zone, and of same order.
  932. * count is the number of pages to free.
  933. *
  934. * If the zone was previously in an "all pages pinned" state then look to
  935. * see if this freeing clears that state.
  936. *
  937. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  938. * pinned" detection logic.
  939. */
  940. static void free_pcppages_bulk(struct zone *zone, int count,
  941. struct per_cpu_pages *pcp)
  942. {
  943. int migratetype = 0;
  944. int batch_free = 0;
  945. unsigned long nr_scanned;
  946. bool isolated_pageblocks;
  947. spin_lock(&zone->lock);
  948. isolated_pageblocks = has_isolate_pageblock(zone);
  949. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  950. if (nr_scanned)
  951. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  952. while (count) {
  953. struct page *page;
  954. struct list_head *list;
  955. /*
  956. * Remove pages from lists in a round-robin fashion. A
  957. * batch_free count is maintained that is incremented when an
  958. * empty list is encountered. This is so more pages are freed
  959. * off fuller lists instead of spinning excessively around empty
  960. * lists
  961. */
  962. do {
  963. batch_free++;
  964. if (++migratetype == MIGRATE_PCPTYPES)
  965. migratetype = 0;
  966. list = &pcp->lists[migratetype];
  967. } while (list_empty(list));
  968. /* This is the only non-empty list. Free them all. */
  969. if (batch_free == MIGRATE_PCPTYPES)
  970. batch_free = count;
  971. do {
  972. int mt; /* migratetype of the to-be-freed page */
  973. page = list_last_entry(list, struct page, lru);
  974. /* must delete as __free_one_page list manipulates */
  975. list_del(&page->lru);
  976. mt = get_pcppage_migratetype(page);
  977. /* MIGRATE_ISOLATE page should not go to pcplists */
  978. VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
  979. /* Pageblock could have been isolated meanwhile */
  980. if (unlikely(isolated_pageblocks))
  981. mt = get_pageblock_migratetype(page);
  982. if (bulkfree_pcp_prepare(page))
  983. continue;
  984. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  985. trace_mm_page_pcpu_drain(page, 0, mt);
  986. } while (--count && --batch_free && !list_empty(list));
  987. }
  988. spin_unlock(&zone->lock);
  989. }
  990. static void free_one_page(struct zone *zone,
  991. struct page *page, unsigned long pfn,
  992. unsigned int order,
  993. int migratetype)
  994. {
  995. unsigned long nr_scanned;
  996. spin_lock(&zone->lock);
  997. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  998. if (nr_scanned)
  999. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  1000. if (unlikely(has_isolate_pageblock(zone) ||
  1001. is_migrate_isolate(migratetype))) {
  1002. migratetype = get_pfnblock_migratetype(page, pfn);
  1003. }
  1004. __free_one_page(page, pfn, zone, order, migratetype);
  1005. spin_unlock(&zone->lock);
  1006. }
  1007. static void __meminit __init_single_page(struct page *page, unsigned long pfn,
  1008. unsigned long zone, int nid)
  1009. {
  1010. set_page_links(page, zone, nid, pfn);
  1011. init_page_count(page);
  1012. page_mapcount_reset(page);
  1013. page_cpupid_reset_last(page);
  1014. INIT_LIST_HEAD(&page->lru);
  1015. #ifdef WANT_PAGE_VIRTUAL
  1016. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1017. if (!is_highmem_idx(zone))
  1018. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1019. #endif
  1020. }
  1021. static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
  1022. int nid)
  1023. {
  1024. return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
  1025. }
  1026. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1027. static void init_reserved_page(unsigned long pfn)
  1028. {
  1029. pg_data_t *pgdat;
  1030. int nid, zid;
  1031. if (!early_page_uninitialised(pfn))
  1032. return;
  1033. nid = early_pfn_to_nid(pfn);
  1034. pgdat = NODE_DATA(nid);
  1035. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1036. struct zone *zone = &pgdat->node_zones[zid];
  1037. if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
  1038. break;
  1039. }
  1040. __init_single_pfn(pfn, zid, nid);
  1041. }
  1042. #else
  1043. static inline void init_reserved_page(unsigned long pfn)
  1044. {
  1045. }
  1046. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1047. /*
  1048. * Initialised pages do not have PageReserved set. This function is
  1049. * called for each range allocated by the bootmem allocator and
  1050. * marks the pages PageReserved. The remaining valid pages are later
  1051. * sent to the buddy page allocator.
  1052. */
  1053. void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
  1054. {
  1055. unsigned long start_pfn = PFN_DOWN(start);
  1056. unsigned long end_pfn = PFN_UP(end);
  1057. for (; start_pfn < end_pfn; start_pfn++) {
  1058. if (pfn_valid(start_pfn)) {
  1059. struct page *page = pfn_to_page(start_pfn);
  1060. init_reserved_page(start_pfn);
  1061. /* Avoid false-positive PageTail() */
  1062. INIT_LIST_HEAD(&page->lru);
  1063. SetPageReserved(page);
  1064. }
  1065. }
  1066. }
  1067. static void __free_pages_ok(struct page *page, unsigned int order)
  1068. {
  1069. unsigned long flags;
  1070. int migratetype;
  1071. unsigned long pfn = page_to_pfn(page);
  1072. if (!free_pages_prepare(page, order, true))
  1073. return;
  1074. migratetype = get_pfnblock_migratetype(page, pfn);
  1075. local_irq_save(flags);
  1076. __count_vm_events(PGFREE, 1 << order);
  1077. free_one_page(page_zone(page), page, pfn, order, migratetype);
  1078. local_irq_restore(flags);
  1079. }
  1080. static void __init __free_pages_boot_core(struct page *page, unsigned int order)
  1081. {
  1082. unsigned int nr_pages = 1 << order;
  1083. struct page *p = page;
  1084. unsigned int loop;
  1085. prefetchw(p);
  1086. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  1087. prefetchw(p + 1);
  1088. __ClearPageReserved(p);
  1089. set_page_count(p, 0);
  1090. }
  1091. __ClearPageReserved(p);
  1092. set_page_count(p, 0);
  1093. page_zone(page)->managed_pages += nr_pages;
  1094. set_page_refcounted(page);
  1095. __free_pages(page, order);
  1096. }
  1097. #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
  1098. defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  1099. static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
  1100. int __meminit early_pfn_to_nid(unsigned long pfn)
  1101. {
  1102. static DEFINE_SPINLOCK(early_pfn_lock);
  1103. int nid;
  1104. spin_lock(&early_pfn_lock);
  1105. nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
  1106. if (nid < 0)
  1107. nid = first_online_node;
  1108. spin_unlock(&early_pfn_lock);
  1109. return nid;
  1110. }
  1111. #endif
  1112. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  1113. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  1114. struct mminit_pfnnid_cache *state)
  1115. {
  1116. int nid;
  1117. nid = __early_pfn_to_nid(pfn, state);
  1118. if (nid >= 0 && nid != node)
  1119. return false;
  1120. return true;
  1121. }
  1122. /* Only safe to use early in boot when initialisation is single-threaded */
  1123. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1124. {
  1125. return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
  1126. }
  1127. #else
  1128. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1129. {
  1130. return true;
  1131. }
  1132. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  1133. struct mminit_pfnnid_cache *state)
  1134. {
  1135. return true;
  1136. }
  1137. #endif
  1138. void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
  1139. unsigned int order)
  1140. {
  1141. if (early_page_uninitialised(pfn))
  1142. return;
  1143. return __free_pages_boot_core(page, order);
  1144. }
  1145. /*
  1146. * Check that the whole (or subset of) a pageblock given by the interval of
  1147. * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
  1148. * with the migration of free compaction scanner. The scanners then need to
  1149. * use only pfn_valid_within() check for arches that allow holes within
  1150. * pageblocks.
  1151. *
  1152. * Return struct page pointer of start_pfn, or NULL if checks were not passed.
  1153. *
  1154. * It's possible on some configurations to have a setup like node0 node1 node0
  1155. * i.e. it's possible that all pages within a zones range of pages do not
  1156. * belong to a single zone. We assume that a border between node0 and node1
  1157. * can occur within a single pageblock, but not a node0 node1 node0
  1158. * interleaving within a single pageblock. It is therefore sufficient to check
  1159. * the first and last page of a pageblock and avoid checking each individual
  1160. * page in a pageblock.
  1161. */
  1162. struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
  1163. unsigned long end_pfn, struct zone *zone)
  1164. {
  1165. struct page *start_page;
  1166. struct page *end_page;
  1167. /* end_pfn is one past the range we are checking */
  1168. end_pfn--;
  1169. if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
  1170. return NULL;
  1171. start_page = pfn_to_page(start_pfn);
  1172. if (page_zone(start_page) != zone)
  1173. return NULL;
  1174. end_page = pfn_to_page(end_pfn);
  1175. /* This gives a shorter code than deriving page_zone(end_page) */
  1176. if (page_zone_id(start_page) != page_zone_id(end_page))
  1177. return NULL;
  1178. return start_page;
  1179. }
  1180. void set_zone_contiguous(struct zone *zone)
  1181. {
  1182. unsigned long block_start_pfn = zone->zone_start_pfn;
  1183. unsigned long block_end_pfn;
  1184. block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
  1185. for (; block_start_pfn < zone_end_pfn(zone);
  1186. block_start_pfn = block_end_pfn,
  1187. block_end_pfn += pageblock_nr_pages) {
  1188. block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
  1189. if (!__pageblock_pfn_to_page(block_start_pfn,
  1190. block_end_pfn, zone))
  1191. return;
  1192. }
  1193. /* We confirm that there is no hole */
  1194. zone->contiguous = true;
  1195. }
  1196. void clear_zone_contiguous(struct zone *zone)
  1197. {
  1198. zone->contiguous = false;
  1199. }
  1200. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1201. static void __init deferred_free_range(struct page *page,
  1202. unsigned long pfn, int nr_pages)
  1203. {
  1204. int i;
  1205. if (!page)
  1206. return;
  1207. /* Free a large naturally-aligned chunk if possible */
  1208. if (nr_pages == MAX_ORDER_NR_PAGES &&
  1209. (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
  1210. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1211. __free_pages_boot_core(page, MAX_ORDER-1);
  1212. return;
  1213. }
  1214. for (i = 0; i < nr_pages; i++, page++)
  1215. __free_pages_boot_core(page, 0);
  1216. }
  1217. /* Completion tracking for deferred_init_memmap() threads */
  1218. static atomic_t pgdat_init_n_undone __initdata;
  1219. static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
  1220. static inline void __init pgdat_init_report_one_done(void)
  1221. {
  1222. if (atomic_dec_and_test(&pgdat_init_n_undone))
  1223. complete(&pgdat_init_all_done_comp);
  1224. }
  1225. /* Initialise remaining memory on a node */
  1226. static int __init deferred_init_memmap(void *data)
  1227. {
  1228. pg_data_t *pgdat = data;
  1229. int nid = pgdat->node_id;
  1230. struct mminit_pfnnid_cache nid_init_state = { };
  1231. unsigned long start = jiffies;
  1232. unsigned long nr_pages = 0;
  1233. unsigned long walk_start, walk_end;
  1234. int i, zid;
  1235. struct zone *zone;
  1236. unsigned long first_init_pfn = pgdat->first_deferred_pfn;
  1237. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  1238. if (first_init_pfn == ULONG_MAX) {
  1239. pgdat_init_report_one_done();
  1240. return 0;
  1241. }
  1242. /* Bind memory initialisation thread to a local node if possible */
  1243. if (!cpumask_empty(cpumask))
  1244. set_cpus_allowed_ptr(current, cpumask);
  1245. /* Sanity check boundaries */
  1246. BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
  1247. BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
  1248. pgdat->first_deferred_pfn = ULONG_MAX;
  1249. /* Only the highest zone is deferred so find it */
  1250. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1251. zone = pgdat->node_zones + zid;
  1252. if (first_init_pfn < zone_end_pfn(zone))
  1253. break;
  1254. }
  1255. for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
  1256. unsigned long pfn, end_pfn;
  1257. struct page *page = NULL;
  1258. struct page *free_base_page = NULL;
  1259. unsigned long free_base_pfn = 0;
  1260. int nr_to_free = 0;
  1261. end_pfn = min(walk_end, zone_end_pfn(zone));
  1262. pfn = first_init_pfn;
  1263. if (pfn < walk_start)
  1264. pfn = walk_start;
  1265. if (pfn < zone->zone_start_pfn)
  1266. pfn = zone->zone_start_pfn;
  1267. for (; pfn < end_pfn; pfn++) {
  1268. if (!pfn_valid_within(pfn))
  1269. goto free_range;
  1270. /*
  1271. * Ensure pfn_valid is checked every
  1272. * MAX_ORDER_NR_PAGES for memory holes
  1273. */
  1274. if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
  1275. if (!pfn_valid(pfn)) {
  1276. page = NULL;
  1277. goto free_range;
  1278. }
  1279. }
  1280. if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
  1281. page = NULL;
  1282. goto free_range;
  1283. }
  1284. /* Minimise pfn page lookups and scheduler checks */
  1285. if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
  1286. page++;
  1287. } else {
  1288. nr_pages += nr_to_free;
  1289. deferred_free_range(free_base_page,
  1290. free_base_pfn, nr_to_free);
  1291. free_base_page = NULL;
  1292. free_base_pfn = nr_to_free = 0;
  1293. page = pfn_to_page(pfn);
  1294. cond_resched();
  1295. }
  1296. if (page->flags) {
  1297. VM_BUG_ON(page_zone(page) != zone);
  1298. goto free_range;
  1299. }
  1300. __init_single_page(page, pfn, zid, nid);
  1301. if (!free_base_page) {
  1302. free_base_page = page;
  1303. free_base_pfn = pfn;
  1304. nr_to_free = 0;
  1305. }
  1306. nr_to_free++;
  1307. /* Where possible, batch up pages for a single free */
  1308. continue;
  1309. free_range:
  1310. /* Free the current block of pages to allocator */
  1311. nr_pages += nr_to_free;
  1312. deferred_free_range(free_base_page, free_base_pfn,
  1313. nr_to_free);
  1314. free_base_page = NULL;
  1315. free_base_pfn = nr_to_free = 0;
  1316. }
  1317. first_init_pfn = max(end_pfn, first_init_pfn);
  1318. }
  1319. /* Sanity check that the next zone really is unpopulated */
  1320. WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
  1321. pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
  1322. jiffies_to_msecs(jiffies - start));
  1323. pgdat_init_report_one_done();
  1324. return 0;
  1325. }
  1326. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1327. void __init page_alloc_init_late(void)
  1328. {
  1329. struct zone *zone;
  1330. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1331. int nid;
  1332. /* There will be num_node_state(N_MEMORY) threads */
  1333. atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
  1334. for_each_node_state(nid, N_MEMORY) {
  1335. kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
  1336. }
  1337. /* Block until all are initialised */
  1338. wait_for_completion(&pgdat_init_all_done_comp);
  1339. /* Reinit limits that are based on free pages after the kernel is up */
  1340. files_maxfiles_init();
  1341. #endif
  1342. for_each_populated_zone(zone)
  1343. set_zone_contiguous(zone);
  1344. }
  1345. #ifdef CONFIG_CMA
  1346. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  1347. void __init init_cma_reserved_pageblock(struct page *page)
  1348. {
  1349. unsigned i = pageblock_nr_pages;
  1350. struct page *p = page;
  1351. do {
  1352. __ClearPageReserved(p);
  1353. set_page_count(p, 0);
  1354. } while (++p, --i);
  1355. set_pageblock_migratetype(page, MIGRATE_CMA);
  1356. if (pageblock_order >= MAX_ORDER) {
  1357. i = pageblock_nr_pages;
  1358. p = page;
  1359. do {
  1360. set_page_refcounted(p);
  1361. __free_pages(p, MAX_ORDER - 1);
  1362. p += MAX_ORDER_NR_PAGES;
  1363. } while (i -= MAX_ORDER_NR_PAGES);
  1364. } else {
  1365. set_page_refcounted(page);
  1366. __free_pages(page, pageblock_order);
  1367. }
  1368. adjust_managed_page_count(page, pageblock_nr_pages);
  1369. }
  1370. #endif
  1371. /*
  1372. * The order of subdivision here is critical for the IO subsystem.
  1373. * Please do not alter this order without good reasons and regression
  1374. * testing. Specifically, as large blocks of memory are subdivided,
  1375. * the order in which smaller blocks are delivered depends on the order
  1376. * they're subdivided in this function. This is the primary factor
  1377. * influencing the order in which pages are delivered to the IO
  1378. * subsystem according to empirical testing, and this is also justified
  1379. * by considering the behavior of a buddy system containing a single
  1380. * large block of memory acted on by a series of small allocations.
  1381. * This behavior is a critical factor in sglist merging's success.
  1382. *
  1383. * -- nyc
  1384. */
  1385. static inline void expand(struct zone *zone, struct page *page,
  1386. int low, int high, struct free_area *area,
  1387. int migratetype)
  1388. {
  1389. unsigned long size = 1 << high;
  1390. while (high > low) {
  1391. area--;
  1392. high--;
  1393. size >>= 1;
  1394. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  1395. if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
  1396. debug_guardpage_enabled() &&
  1397. high < debug_guardpage_minorder()) {
  1398. /*
  1399. * Mark as guard pages (or page), that will allow to
  1400. * merge back to allocator when buddy will be freed.
  1401. * Corresponding page table entries will not be touched,
  1402. * pages will stay not present in virtual address space
  1403. */
  1404. set_page_guard(zone, &page[size], high, migratetype);
  1405. continue;
  1406. }
  1407. list_add(&page[size].lru, &area->free_list[migratetype]);
  1408. area->nr_free++;
  1409. set_page_order(&page[size], high);
  1410. }
  1411. }
  1412. static void check_new_page_bad(struct page *page)
  1413. {
  1414. const char *bad_reason = NULL;
  1415. unsigned long bad_flags = 0;
  1416. if (unlikely(atomic_read(&page->_mapcount) != -1))
  1417. bad_reason = "nonzero mapcount";
  1418. if (unlikely(page->mapping != NULL))
  1419. bad_reason = "non-NULL mapping";
  1420. if (unlikely(page_ref_count(page) != 0))
  1421. bad_reason = "nonzero _count";
  1422. if (unlikely(page->flags & __PG_HWPOISON)) {
  1423. bad_reason = "HWPoisoned (hardware-corrupted)";
  1424. bad_flags = __PG_HWPOISON;
  1425. /* Don't complain about hwpoisoned pages */
  1426. page_mapcount_reset(page); /* remove PageBuddy */
  1427. return;
  1428. }
  1429. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  1430. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  1431. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  1432. }
  1433. #ifdef CONFIG_MEMCG
  1434. if (unlikely(page->mem_cgroup))
  1435. bad_reason = "page still charged to cgroup";
  1436. #endif
  1437. bad_page(page, bad_reason, bad_flags);
  1438. }
  1439. /*
  1440. * This page is about to be returned from the page allocator
  1441. */
  1442. static inline int check_new_page(struct page *page)
  1443. {
  1444. if (likely(page_expected_state(page,
  1445. PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
  1446. return 0;
  1447. check_new_page_bad(page);
  1448. return 1;
  1449. }
  1450. static inline bool free_pages_prezeroed(bool poisoned)
  1451. {
  1452. return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
  1453. page_poisoning_enabled() && poisoned;
  1454. }
  1455. #ifdef CONFIG_DEBUG_VM
  1456. static bool check_pcp_refill(struct page *page)
  1457. {
  1458. return false;
  1459. }
  1460. static bool check_new_pcp(struct page *page)
  1461. {
  1462. return check_new_page(page);
  1463. }
  1464. #else
  1465. static bool check_pcp_refill(struct page *page)
  1466. {
  1467. return check_new_page(page);
  1468. }
  1469. static bool check_new_pcp(struct page *page)
  1470. {
  1471. return false;
  1472. }
  1473. #endif /* CONFIG_DEBUG_VM */
  1474. static bool check_new_pages(struct page *page, unsigned int order)
  1475. {
  1476. int i;
  1477. for (i = 0; i < (1 << order); i++) {
  1478. struct page *p = page + i;
  1479. if (unlikely(check_new_page(p)))
  1480. return true;
  1481. }
  1482. return false;
  1483. }
  1484. inline void post_alloc_hook(struct page *page, unsigned int order,
  1485. gfp_t gfp_flags)
  1486. {
  1487. set_page_private(page, 0);
  1488. set_page_refcounted(page);
  1489. arch_alloc_page(page, order);
  1490. kernel_map_pages(page, 1 << order, 1);
  1491. kernel_poison_pages(page, 1 << order, 1);
  1492. kasan_alloc_pages(page, order);
  1493. set_page_owner(page, order, gfp_flags);
  1494. }
  1495. static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
  1496. unsigned int alloc_flags)
  1497. {
  1498. int i;
  1499. bool poisoned = true;
  1500. for (i = 0; i < (1 << order); i++) {
  1501. struct page *p = page + i;
  1502. if (poisoned)
  1503. poisoned &= page_is_poisoned(p);
  1504. }
  1505. post_alloc_hook(page, order, gfp_flags);
  1506. if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
  1507. for (i = 0; i < (1 << order); i++)
  1508. clear_highpage(page + i);
  1509. if (order && (gfp_flags & __GFP_COMP))
  1510. prep_compound_page(page, order);
  1511. /*
  1512. * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
  1513. * allocate the page. The expectation is that the caller is taking
  1514. * steps that will free more memory. The caller should avoid the page
  1515. * being used for !PFMEMALLOC purposes.
  1516. */
  1517. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1518. set_page_pfmemalloc(page);
  1519. else
  1520. clear_page_pfmemalloc(page);
  1521. }
  1522. /*
  1523. * Go through the free lists for the given migratetype and remove
  1524. * the smallest available page from the freelists
  1525. */
  1526. static inline
  1527. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  1528. int migratetype)
  1529. {
  1530. unsigned int current_order;
  1531. struct free_area *area;
  1532. struct page *page;
  1533. /* Find a page of the appropriate size in the preferred list */
  1534. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  1535. area = &(zone->free_area[current_order]);
  1536. page = list_first_entry_or_null(&area->free_list[migratetype],
  1537. struct page, lru);
  1538. if (!page)
  1539. continue;
  1540. list_del(&page->lru);
  1541. rmv_page_order(page);
  1542. area->nr_free--;
  1543. expand(zone, page, order, current_order, area, migratetype);
  1544. set_pcppage_migratetype(page, migratetype);
  1545. return page;
  1546. }
  1547. return NULL;
  1548. }
  1549. /*
  1550. * This array describes the order lists are fallen back to when
  1551. * the free lists for the desirable migrate type are depleted
  1552. */
  1553. static int fallbacks[MIGRATE_TYPES][4] = {
  1554. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1555. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1556. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
  1557. #ifdef CONFIG_CMA
  1558. [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
  1559. #endif
  1560. #ifdef CONFIG_MEMORY_ISOLATION
  1561. [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
  1562. #endif
  1563. };
  1564. #ifdef CONFIG_CMA
  1565. static struct page *__rmqueue_cma_fallback(struct zone *zone,
  1566. unsigned int order)
  1567. {
  1568. return __rmqueue_smallest(zone, order, MIGRATE_CMA);
  1569. }
  1570. #else
  1571. static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
  1572. unsigned int order) { return NULL; }
  1573. #endif
  1574. /*
  1575. * Move the free pages in a range to the free lists of the requested type.
  1576. * Note that start_page and end_pages are not aligned on a pageblock
  1577. * boundary. If alignment is required, use move_freepages_block()
  1578. */
  1579. int move_freepages(struct zone *zone,
  1580. struct page *start_page, struct page *end_page,
  1581. int migratetype)
  1582. {
  1583. struct page *page;
  1584. unsigned int order;
  1585. int pages_moved = 0;
  1586. #ifndef CONFIG_HOLES_IN_ZONE
  1587. /*
  1588. * page_zone is not safe to call in this context when
  1589. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  1590. * anyway as we check zone boundaries in move_freepages_block().
  1591. * Remove at a later date when no bug reports exist related to
  1592. * grouping pages by mobility
  1593. */
  1594. VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
  1595. #endif
  1596. for (page = start_page; page <= end_page;) {
  1597. /* Make sure we are not inadvertently changing nodes */
  1598. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  1599. if (!pfn_valid_within(page_to_pfn(page))) {
  1600. page++;
  1601. continue;
  1602. }
  1603. if (!PageBuddy(page)) {
  1604. page++;
  1605. continue;
  1606. }
  1607. order = page_order(page);
  1608. list_move(&page->lru,
  1609. &zone->free_area[order].free_list[migratetype]);
  1610. page += 1 << order;
  1611. pages_moved += 1 << order;
  1612. }
  1613. return pages_moved;
  1614. }
  1615. int move_freepages_block(struct zone *zone, struct page *page,
  1616. int migratetype)
  1617. {
  1618. unsigned long start_pfn, end_pfn;
  1619. struct page *start_page, *end_page;
  1620. start_pfn = page_to_pfn(page);
  1621. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  1622. start_page = pfn_to_page(start_pfn);
  1623. end_page = start_page + pageblock_nr_pages - 1;
  1624. end_pfn = start_pfn + pageblock_nr_pages - 1;
  1625. /* Do not cross zone boundaries */
  1626. if (!zone_spans_pfn(zone, start_pfn))
  1627. start_page = page;
  1628. if (!zone_spans_pfn(zone, end_pfn))
  1629. return 0;
  1630. return move_freepages(zone, start_page, end_page, migratetype);
  1631. }
  1632. static void change_pageblock_range(struct page *pageblock_page,
  1633. int start_order, int migratetype)
  1634. {
  1635. int nr_pageblocks = 1 << (start_order - pageblock_order);
  1636. while (nr_pageblocks--) {
  1637. set_pageblock_migratetype(pageblock_page, migratetype);
  1638. pageblock_page += pageblock_nr_pages;
  1639. }
  1640. }
  1641. /*
  1642. * When we are falling back to another migratetype during allocation, try to
  1643. * steal extra free pages from the same pageblocks to satisfy further
  1644. * allocations, instead of polluting multiple pageblocks.
  1645. *
  1646. * If we are stealing a relatively large buddy page, it is likely there will
  1647. * be more free pages in the pageblock, so try to steal them all. For
  1648. * reclaimable and unmovable allocations, we steal regardless of page size,
  1649. * as fragmentation caused by those allocations polluting movable pageblocks
  1650. * is worse than movable allocations stealing from unmovable and reclaimable
  1651. * pageblocks.
  1652. */
  1653. static bool can_steal_fallback(unsigned int order, int start_mt)
  1654. {
  1655. /*
  1656. * Leaving this order check is intended, although there is
  1657. * relaxed order check in next check. The reason is that
  1658. * we can actually steal whole pageblock if this condition met,
  1659. * but, below check doesn't guarantee it and that is just heuristic
  1660. * so could be changed anytime.
  1661. */
  1662. if (order >= pageblock_order)
  1663. return true;
  1664. if (order >= pageblock_order / 2 ||
  1665. start_mt == MIGRATE_RECLAIMABLE ||
  1666. start_mt == MIGRATE_UNMOVABLE ||
  1667. page_group_by_mobility_disabled)
  1668. return true;
  1669. return false;
  1670. }
  1671. /*
  1672. * This function implements actual steal behaviour. If order is large enough,
  1673. * we can steal whole pageblock. If not, we first move freepages in this
  1674. * pageblock and check whether half of pages are moved or not. If half of
  1675. * pages are moved, we can change migratetype of pageblock and permanently
  1676. * use it's pages as requested migratetype in the future.
  1677. */
  1678. static void steal_suitable_fallback(struct zone *zone, struct page *page,
  1679. int start_type)
  1680. {
  1681. unsigned int current_order = page_order(page);
  1682. int pages;
  1683. /* Take ownership for orders >= pageblock_order */
  1684. if (current_order >= pageblock_order) {
  1685. change_pageblock_range(page, current_order, start_type);
  1686. return;
  1687. }
  1688. pages = move_freepages_block(zone, page, start_type);
  1689. /* Claim the whole block if over half of it is free */
  1690. if (pages >= (1 << (pageblock_order-1)) ||
  1691. page_group_by_mobility_disabled)
  1692. set_pageblock_migratetype(page, start_type);
  1693. }
  1694. /*
  1695. * Check whether there is a suitable fallback freepage with requested order.
  1696. * If only_stealable is true, this function returns fallback_mt only if
  1697. * we can steal other freepages all together. This would help to reduce
  1698. * fragmentation due to mixed migratetype pages in one pageblock.
  1699. */
  1700. int find_suitable_fallback(struct free_area *area, unsigned int order,
  1701. int migratetype, bool only_stealable, bool *can_steal)
  1702. {
  1703. int i;
  1704. int fallback_mt;
  1705. if (area->nr_free == 0)
  1706. return -1;
  1707. *can_steal = false;
  1708. for (i = 0;; i++) {
  1709. fallback_mt = fallbacks[migratetype][i];
  1710. if (fallback_mt == MIGRATE_TYPES)
  1711. break;
  1712. if (list_empty(&area->free_list[fallback_mt]))
  1713. continue;
  1714. if (can_steal_fallback(order, migratetype))
  1715. *can_steal = true;
  1716. if (!only_stealable)
  1717. return fallback_mt;
  1718. if (*can_steal)
  1719. return fallback_mt;
  1720. }
  1721. return -1;
  1722. }
  1723. /*
  1724. * Reserve a pageblock for exclusive use of high-order atomic allocations if
  1725. * there are no empty page blocks that contain a page with a suitable order
  1726. */
  1727. static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
  1728. unsigned int alloc_order)
  1729. {
  1730. int mt;
  1731. unsigned long max_managed, flags;
  1732. /*
  1733. * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
  1734. * Check is race-prone but harmless.
  1735. */
  1736. max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
  1737. if (zone->nr_reserved_highatomic >= max_managed)
  1738. return;
  1739. spin_lock_irqsave(&zone->lock, flags);
  1740. /* Recheck the nr_reserved_highatomic limit under the lock */
  1741. if (zone->nr_reserved_highatomic >= max_managed)
  1742. goto out_unlock;
  1743. /* Yoink! */
  1744. mt = get_pageblock_migratetype(page);
  1745. if (mt != MIGRATE_HIGHATOMIC &&
  1746. !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
  1747. zone->nr_reserved_highatomic += pageblock_nr_pages;
  1748. set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
  1749. move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
  1750. }
  1751. out_unlock:
  1752. spin_unlock_irqrestore(&zone->lock, flags);
  1753. }
  1754. /*
  1755. * Used when an allocation is about to fail under memory pressure. This
  1756. * potentially hurts the reliability of high-order allocations when under
  1757. * intense memory pressure but failed atomic allocations should be easier
  1758. * to recover from than an OOM.
  1759. */
  1760. static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
  1761. {
  1762. struct zonelist *zonelist = ac->zonelist;
  1763. unsigned long flags;
  1764. struct zoneref *z;
  1765. struct zone *zone;
  1766. struct page *page;
  1767. int order;
  1768. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  1769. ac->nodemask) {
  1770. /* Preserve at least one pageblock */
  1771. if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
  1772. continue;
  1773. spin_lock_irqsave(&zone->lock, flags);
  1774. for (order = 0; order < MAX_ORDER; order++) {
  1775. struct free_area *area = &(zone->free_area[order]);
  1776. page = list_first_entry_or_null(
  1777. &area->free_list[MIGRATE_HIGHATOMIC],
  1778. struct page, lru);
  1779. if (!page)
  1780. continue;
  1781. /*
  1782. * It should never happen but changes to locking could
  1783. * inadvertently allow a per-cpu drain to add pages
  1784. * to MIGRATE_HIGHATOMIC while unreserving so be safe
  1785. * and watch for underflows.
  1786. */
  1787. zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
  1788. zone->nr_reserved_highatomic);
  1789. /*
  1790. * Convert to ac->migratetype and avoid the normal
  1791. * pageblock stealing heuristics. Minimally, the caller
  1792. * is doing the work and needs the pages. More
  1793. * importantly, if the block was always converted to
  1794. * MIGRATE_UNMOVABLE or another type then the number
  1795. * of pageblocks that cannot be completely freed
  1796. * may increase.
  1797. */
  1798. set_pageblock_migratetype(page, ac->migratetype);
  1799. move_freepages_block(zone, page, ac->migratetype);
  1800. spin_unlock_irqrestore(&zone->lock, flags);
  1801. return;
  1802. }
  1803. spin_unlock_irqrestore(&zone->lock, flags);
  1804. }
  1805. }
  1806. /* Remove an element from the buddy allocator from the fallback list */
  1807. static inline struct page *
  1808. __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
  1809. {
  1810. struct free_area *area;
  1811. unsigned int current_order;
  1812. struct page *page;
  1813. int fallback_mt;
  1814. bool can_steal;
  1815. /* Find the largest possible block of pages in the other list */
  1816. for (current_order = MAX_ORDER-1;
  1817. current_order >= order && current_order <= MAX_ORDER-1;
  1818. --current_order) {
  1819. area = &(zone->free_area[current_order]);
  1820. fallback_mt = find_suitable_fallback(area, current_order,
  1821. start_migratetype, false, &can_steal);
  1822. if (fallback_mt == -1)
  1823. continue;
  1824. page = list_first_entry(&area->free_list[fallback_mt],
  1825. struct page, lru);
  1826. if (can_steal)
  1827. steal_suitable_fallback(zone, page, start_migratetype);
  1828. /* Remove the page from the freelists */
  1829. area->nr_free--;
  1830. list_del(&page->lru);
  1831. rmv_page_order(page);
  1832. expand(zone, page, order, current_order, area,
  1833. start_migratetype);
  1834. /*
  1835. * The pcppage_migratetype may differ from pageblock's
  1836. * migratetype depending on the decisions in
  1837. * find_suitable_fallback(). This is OK as long as it does not
  1838. * differ for MIGRATE_CMA pageblocks. Those can be used as
  1839. * fallback only via special __rmqueue_cma_fallback() function
  1840. */
  1841. set_pcppage_migratetype(page, start_migratetype);
  1842. trace_mm_page_alloc_extfrag(page, order, current_order,
  1843. start_migratetype, fallback_mt);
  1844. return page;
  1845. }
  1846. return NULL;
  1847. }
  1848. /*
  1849. * Do the hard work of removing an element from the buddy allocator.
  1850. * Call me with the zone->lock already held.
  1851. */
  1852. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  1853. int migratetype)
  1854. {
  1855. struct page *page;
  1856. page = __rmqueue_smallest(zone, order, migratetype);
  1857. if (unlikely(!page)) {
  1858. if (migratetype == MIGRATE_MOVABLE)
  1859. page = __rmqueue_cma_fallback(zone, order);
  1860. if (!page)
  1861. page = __rmqueue_fallback(zone, order, migratetype);
  1862. }
  1863. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1864. return page;
  1865. }
  1866. /*
  1867. * Obtain a specified number of elements from the buddy allocator, all under
  1868. * a single hold of the lock, for efficiency. Add them to the supplied list.
  1869. * Returns the number of new pages which were placed at *list.
  1870. */
  1871. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  1872. unsigned long count, struct list_head *list,
  1873. int migratetype, bool cold)
  1874. {
  1875. int i;
  1876. spin_lock(&zone->lock);
  1877. for (i = 0; i < count; ++i) {
  1878. struct page *page = __rmqueue(zone, order, migratetype);
  1879. if (unlikely(page == NULL))
  1880. break;
  1881. if (unlikely(check_pcp_refill(page)))
  1882. continue;
  1883. /*
  1884. * Split buddy pages returned by expand() are received here
  1885. * in physical page order. The page is added to the callers and
  1886. * list and the list head then moves forward. From the callers
  1887. * perspective, the linked list is ordered by page number in
  1888. * some conditions. This is useful for IO devices that can
  1889. * merge IO requests if the physical pages are ordered
  1890. * properly.
  1891. */
  1892. if (likely(!cold))
  1893. list_add(&page->lru, list);
  1894. else
  1895. list_add_tail(&page->lru, list);
  1896. list = &page->lru;
  1897. if (is_migrate_cma(get_pcppage_migratetype(page)))
  1898. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1899. -(1 << order));
  1900. }
  1901. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1902. spin_unlock(&zone->lock);
  1903. return i;
  1904. }
  1905. #ifdef CONFIG_NUMA
  1906. /*
  1907. * Called from the vmstat counter updater to drain pagesets of this
  1908. * currently executing processor on remote nodes after they have
  1909. * expired.
  1910. *
  1911. * Note that this function must be called with the thread pinned to
  1912. * a single processor.
  1913. */
  1914. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1915. {
  1916. unsigned long flags;
  1917. int to_drain, batch;
  1918. local_irq_save(flags);
  1919. batch = READ_ONCE(pcp->batch);
  1920. to_drain = min(pcp->count, batch);
  1921. if (to_drain > 0) {
  1922. free_pcppages_bulk(zone, to_drain, pcp);
  1923. pcp->count -= to_drain;
  1924. }
  1925. local_irq_restore(flags);
  1926. }
  1927. #endif
  1928. /*
  1929. * Drain pcplists of the indicated processor and zone.
  1930. *
  1931. * The processor must either be the current processor and the
  1932. * thread pinned to the current processor or a processor that
  1933. * is not online.
  1934. */
  1935. static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  1936. {
  1937. unsigned long flags;
  1938. struct per_cpu_pageset *pset;
  1939. struct per_cpu_pages *pcp;
  1940. local_irq_save(flags);
  1941. pset = per_cpu_ptr(zone->pageset, cpu);
  1942. pcp = &pset->pcp;
  1943. if (pcp->count) {
  1944. free_pcppages_bulk(zone, pcp->count, pcp);
  1945. pcp->count = 0;
  1946. }
  1947. local_irq_restore(flags);
  1948. }
  1949. /*
  1950. * Drain pcplists of all zones on the indicated processor.
  1951. *
  1952. * The processor must either be the current processor and the
  1953. * thread pinned to the current processor or a processor that
  1954. * is not online.
  1955. */
  1956. static void drain_pages(unsigned int cpu)
  1957. {
  1958. struct zone *zone;
  1959. for_each_populated_zone(zone) {
  1960. drain_pages_zone(cpu, zone);
  1961. }
  1962. }
  1963. /*
  1964. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1965. *
  1966. * The CPU has to be pinned. When zone parameter is non-NULL, spill just
  1967. * the single zone's pages.
  1968. */
  1969. void drain_local_pages(struct zone *zone)
  1970. {
  1971. int cpu = smp_processor_id();
  1972. if (zone)
  1973. drain_pages_zone(cpu, zone);
  1974. else
  1975. drain_pages(cpu);
  1976. }
  1977. /*
  1978. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1979. *
  1980. * When zone parameter is non-NULL, spill just the single zone's pages.
  1981. *
  1982. * Note that this code is protected against sending an IPI to an offline
  1983. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1984. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1985. * nothing keeps CPUs from showing up after we populated the cpumask and
  1986. * before the call to on_each_cpu_mask().
  1987. */
  1988. void drain_all_pages(struct zone *zone)
  1989. {
  1990. int cpu;
  1991. /*
  1992. * Allocate in the BSS so we wont require allocation in
  1993. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1994. */
  1995. static cpumask_t cpus_with_pcps;
  1996. /*
  1997. * We don't care about racing with CPU hotplug event
  1998. * as offline notification will cause the notified
  1999. * cpu to drain that CPU pcps and on_each_cpu_mask
  2000. * disables preemption as part of its processing
  2001. */
  2002. for_each_online_cpu(cpu) {
  2003. struct per_cpu_pageset *pcp;
  2004. struct zone *z;
  2005. bool has_pcps = false;
  2006. if (zone) {
  2007. pcp = per_cpu_ptr(zone->pageset, cpu);
  2008. if (pcp->pcp.count)
  2009. has_pcps = true;
  2010. } else {
  2011. for_each_populated_zone(z) {
  2012. pcp = per_cpu_ptr(z->pageset, cpu);
  2013. if (pcp->pcp.count) {
  2014. has_pcps = true;
  2015. break;
  2016. }
  2017. }
  2018. }
  2019. if (has_pcps)
  2020. cpumask_set_cpu(cpu, &cpus_with_pcps);
  2021. else
  2022. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  2023. }
  2024. on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
  2025. zone, 1);
  2026. }
  2027. #ifdef CONFIG_HIBERNATION
  2028. void mark_free_pages(struct zone *zone)
  2029. {
  2030. unsigned long pfn, max_zone_pfn;
  2031. unsigned long flags;
  2032. unsigned int order, t;
  2033. struct page *page;
  2034. if (zone_is_empty(zone))
  2035. return;
  2036. spin_lock_irqsave(&zone->lock, flags);
  2037. max_zone_pfn = zone_end_pfn(zone);
  2038. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  2039. if (pfn_valid(pfn)) {
  2040. page = pfn_to_page(pfn);
  2041. if (page_zone(page) != zone)
  2042. continue;
  2043. if (!swsusp_page_is_forbidden(page))
  2044. swsusp_unset_page_free(page);
  2045. }
  2046. for_each_migratetype_order(order, t) {
  2047. list_for_each_entry(page,
  2048. &zone->free_area[order].free_list[t], lru) {
  2049. unsigned long i;
  2050. pfn = page_to_pfn(page);
  2051. for (i = 0; i < (1UL << order); i++)
  2052. swsusp_set_page_free(pfn_to_page(pfn + i));
  2053. }
  2054. }
  2055. spin_unlock_irqrestore(&zone->lock, flags);
  2056. }
  2057. #endif /* CONFIG_PM */
  2058. /*
  2059. * Free a 0-order page
  2060. * cold == true ? free a cold page : free a hot page
  2061. */
  2062. void free_hot_cold_page(struct page *page, bool cold)
  2063. {
  2064. struct zone *zone = page_zone(page);
  2065. struct per_cpu_pages *pcp;
  2066. unsigned long flags;
  2067. unsigned long pfn = page_to_pfn(page);
  2068. int migratetype;
  2069. if (!free_pcp_prepare(page))
  2070. return;
  2071. migratetype = get_pfnblock_migratetype(page, pfn);
  2072. set_pcppage_migratetype(page, migratetype);
  2073. local_irq_save(flags);
  2074. __count_vm_event(PGFREE);
  2075. /*
  2076. * We only track unmovable, reclaimable and movable on pcp lists.
  2077. * Free ISOLATE pages back to the allocator because they are being
  2078. * offlined but treat RESERVE as movable pages so we can get those
  2079. * areas back if necessary. Otherwise, we may have to free
  2080. * excessively into the page allocator
  2081. */
  2082. if (migratetype >= MIGRATE_PCPTYPES) {
  2083. if (unlikely(is_migrate_isolate(migratetype))) {
  2084. free_one_page(zone, page, pfn, 0, migratetype);
  2085. goto out;
  2086. }
  2087. migratetype = MIGRATE_MOVABLE;
  2088. }
  2089. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2090. if (!cold)
  2091. list_add(&page->lru, &pcp->lists[migratetype]);
  2092. else
  2093. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  2094. pcp->count++;
  2095. if (pcp->count >= pcp->high) {
  2096. unsigned long batch = READ_ONCE(pcp->batch);
  2097. free_pcppages_bulk(zone, batch, pcp);
  2098. pcp->count -= batch;
  2099. }
  2100. out:
  2101. local_irq_restore(flags);
  2102. }
  2103. /*
  2104. * Free a list of 0-order pages
  2105. */
  2106. void free_hot_cold_page_list(struct list_head *list, bool cold)
  2107. {
  2108. struct page *page, *next;
  2109. list_for_each_entry_safe(page, next, list, lru) {
  2110. trace_mm_page_free_batched(page, cold);
  2111. free_hot_cold_page(page, cold);
  2112. }
  2113. }
  2114. /*
  2115. * split_page takes a non-compound higher-order page, and splits it into
  2116. * n (1<<order) sub-pages: page[0..n]
  2117. * Each sub-page must be freed individually.
  2118. *
  2119. * Note: this is probably too low level an operation for use in drivers.
  2120. * Please consult with lkml before using this in your driver.
  2121. */
  2122. void split_page(struct page *page, unsigned int order)
  2123. {
  2124. int i;
  2125. VM_BUG_ON_PAGE(PageCompound(page), page);
  2126. VM_BUG_ON_PAGE(!page_count(page), page);
  2127. #ifdef CONFIG_KMEMCHECK
  2128. /*
  2129. * Split shadow pages too, because free(page[0]) would
  2130. * otherwise free the whole shadow.
  2131. */
  2132. if (kmemcheck_page_is_tracked(page))
  2133. split_page(virt_to_page(page[0].shadow), order);
  2134. #endif
  2135. for (i = 1; i < (1 << order); i++)
  2136. set_page_refcounted(page + i);
  2137. split_page_owner(page, order);
  2138. }
  2139. EXPORT_SYMBOL_GPL(split_page);
  2140. int __isolate_free_page(struct page *page, unsigned int order)
  2141. {
  2142. unsigned long watermark;
  2143. struct zone *zone;
  2144. int mt;
  2145. BUG_ON(!PageBuddy(page));
  2146. zone = page_zone(page);
  2147. mt = get_pageblock_migratetype(page);
  2148. if (!is_migrate_isolate(mt)) {
  2149. /* Obey watermarks as if the page was being allocated */
  2150. watermark = low_wmark_pages(zone) + (1 << order);
  2151. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  2152. return 0;
  2153. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  2154. }
  2155. /* Remove page from free list */
  2156. list_del(&page->lru);
  2157. zone->free_area[order].nr_free--;
  2158. rmv_page_order(page);
  2159. /* Set the pageblock if the isolated page is at least a pageblock */
  2160. if (order >= pageblock_order - 1) {
  2161. struct page *endpage = page + (1 << order) - 1;
  2162. for (; page < endpage; page += pageblock_nr_pages) {
  2163. int mt = get_pageblock_migratetype(page);
  2164. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
  2165. set_pageblock_migratetype(page,
  2166. MIGRATE_MOVABLE);
  2167. }
  2168. }
  2169. return 1UL << order;
  2170. }
  2171. /*
  2172. * Update NUMA hit/miss statistics
  2173. *
  2174. * Must be called with interrupts disabled.
  2175. *
  2176. * When __GFP_OTHER_NODE is set assume the node of the preferred
  2177. * zone is the local node. This is useful for daemons who allocate
  2178. * memory on behalf of other processes.
  2179. */
  2180. static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
  2181. gfp_t flags)
  2182. {
  2183. #ifdef CONFIG_NUMA
  2184. int local_nid = numa_node_id();
  2185. enum zone_stat_item local_stat = NUMA_LOCAL;
  2186. if (unlikely(flags & __GFP_OTHER_NODE)) {
  2187. local_stat = NUMA_OTHER;
  2188. local_nid = preferred_zone->node;
  2189. }
  2190. if (z->node == local_nid) {
  2191. __inc_zone_state(z, NUMA_HIT);
  2192. __inc_zone_state(z, local_stat);
  2193. } else {
  2194. __inc_zone_state(z, NUMA_MISS);
  2195. __inc_zone_state(preferred_zone, NUMA_FOREIGN);
  2196. }
  2197. #endif
  2198. }
  2199. /*
  2200. * Allocate a page from the given zone. Use pcplists for order-0 allocations.
  2201. */
  2202. static inline
  2203. struct page *buffered_rmqueue(struct zone *preferred_zone,
  2204. struct zone *zone, unsigned int order,
  2205. gfp_t gfp_flags, unsigned int alloc_flags,
  2206. int migratetype)
  2207. {
  2208. unsigned long flags;
  2209. struct page *page;
  2210. bool cold = ((gfp_flags & __GFP_COLD) != 0);
  2211. if (likely(order == 0)) {
  2212. struct per_cpu_pages *pcp;
  2213. struct list_head *list;
  2214. local_irq_save(flags);
  2215. do {
  2216. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2217. list = &pcp->lists[migratetype];
  2218. if (list_empty(list)) {
  2219. pcp->count += rmqueue_bulk(zone, 0,
  2220. pcp->batch, list,
  2221. migratetype, cold);
  2222. if (unlikely(list_empty(list)))
  2223. goto failed;
  2224. }
  2225. if (cold)
  2226. page = list_last_entry(list, struct page, lru);
  2227. else
  2228. page = list_first_entry(list, struct page, lru);
  2229. __dec_zone_state(zone, NR_ALLOC_BATCH);
  2230. list_del(&page->lru);
  2231. pcp->count--;
  2232. } while (check_new_pcp(page));
  2233. } else {
  2234. /*
  2235. * We most definitely don't want callers attempting to
  2236. * allocate greater than order-1 page units with __GFP_NOFAIL.
  2237. */
  2238. WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
  2239. spin_lock_irqsave(&zone->lock, flags);
  2240. do {
  2241. page = NULL;
  2242. if (alloc_flags & ALLOC_HARDER) {
  2243. page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
  2244. if (page)
  2245. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  2246. }
  2247. if (!page)
  2248. page = __rmqueue(zone, order, migratetype);
  2249. } while (page && check_new_pages(page, order));
  2250. spin_unlock(&zone->lock);
  2251. if (!page)
  2252. goto failed;
  2253. __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
  2254. __mod_zone_freepage_state(zone, -(1 << order),
  2255. get_pcppage_migratetype(page));
  2256. }
  2257. if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
  2258. !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
  2259. set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  2260. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  2261. zone_statistics(preferred_zone, zone, gfp_flags);
  2262. local_irq_restore(flags);
  2263. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  2264. return page;
  2265. failed:
  2266. local_irq_restore(flags);
  2267. return NULL;
  2268. }
  2269. #ifdef CONFIG_FAIL_PAGE_ALLOC
  2270. static struct {
  2271. struct fault_attr attr;
  2272. bool ignore_gfp_highmem;
  2273. bool ignore_gfp_reclaim;
  2274. u32 min_order;
  2275. } fail_page_alloc = {
  2276. .attr = FAULT_ATTR_INITIALIZER,
  2277. .ignore_gfp_reclaim = true,
  2278. .ignore_gfp_highmem = true,
  2279. .min_order = 1,
  2280. };
  2281. static int __init setup_fail_page_alloc(char *str)
  2282. {
  2283. return setup_fault_attr(&fail_page_alloc.attr, str);
  2284. }
  2285. __setup("fail_page_alloc=", setup_fail_page_alloc);
  2286. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2287. {
  2288. if (order < fail_page_alloc.min_order)
  2289. return false;
  2290. if (gfp_mask & __GFP_NOFAIL)
  2291. return false;
  2292. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  2293. return false;
  2294. if (fail_page_alloc.ignore_gfp_reclaim &&
  2295. (gfp_mask & __GFP_DIRECT_RECLAIM))
  2296. return false;
  2297. return should_fail(&fail_page_alloc.attr, 1 << order);
  2298. }
  2299. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2300. static int __init fail_page_alloc_debugfs(void)
  2301. {
  2302. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  2303. struct dentry *dir;
  2304. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  2305. &fail_page_alloc.attr);
  2306. if (IS_ERR(dir))
  2307. return PTR_ERR(dir);
  2308. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2309. &fail_page_alloc.ignore_gfp_reclaim))
  2310. goto fail;
  2311. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  2312. &fail_page_alloc.ignore_gfp_highmem))
  2313. goto fail;
  2314. if (!debugfs_create_u32("min-order", mode, dir,
  2315. &fail_page_alloc.min_order))
  2316. goto fail;
  2317. return 0;
  2318. fail:
  2319. debugfs_remove_recursive(dir);
  2320. return -ENOMEM;
  2321. }
  2322. late_initcall(fail_page_alloc_debugfs);
  2323. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2324. #else /* CONFIG_FAIL_PAGE_ALLOC */
  2325. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2326. {
  2327. return false;
  2328. }
  2329. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  2330. /*
  2331. * Return true if free base pages are above 'mark'. For high-order checks it
  2332. * will return true of the order-0 watermark is reached and there is at least
  2333. * one free page of a suitable size. Checking now avoids taking the zone lock
  2334. * to check in the allocation paths if no pages are free.
  2335. */
  2336. bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2337. int classzone_idx, unsigned int alloc_flags,
  2338. long free_pages)
  2339. {
  2340. long min = mark;
  2341. int o;
  2342. const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
  2343. /* free_pages may go negative - that's OK */
  2344. free_pages -= (1 << order) - 1;
  2345. if (alloc_flags & ALLOC_HIGH)
  2346. min -= min / 2;
  2347. /*
  2348. * If the caller does not have rights to ALLOC_HARDER then subtract
  2349. * the high-atomic reserves. This will over-estimate the size of the
  2350. * atomic reserve but it avoids a search.
  2351. */
  2352. if (likely(!alloc_harder))
  2353. free_pages -= z->nr_reserved_highatomic;
  2354. else
  2355. min -= min / 4;
  2356. #ifdef CONFIG_CMA
  2357. /* If allocation can't use CMA areas don't use free CMA pages */
  2358. if (!(alloc_flags & ALLOC_CMA))
  2359. free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
  2360. #endif
  2361. /*
  2362. * Check watermarks for an order-0 allocation request. If these
  2363. * are not met, then a high-order request also cannot go ahead
  2364. * even if a suitable page happened to be free.
  2365. */
  2366. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  2367. return false;
  2368. /* If this is an order-0 request then the watermark is fine */
  2369. if (!order)
  2370. return true;
  2371. /* For a high-order request, check at least one suitable page is free */
  2372. for (o = order; o < MAX_ORDER; o++) {
  2373. struct free_area *area = &z->free_area[o];
  2374. int mt;
  2375. if (!area->nr_free)
  2376. continue;
  2377. if (alloc_harder)
  2378. return true;
  2379. for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
  2380. if (!list_empty(&area->free_list[mt]))
  2381. return true;
  2382. }
  2383. #ifdef CONFIG_CMA
  2384. if ((alloc_flags & ALLOC_CMA) &&
  2385. !list_empty(&area->free_list[MIGRATE_CMA])) {
  2386. return true;
  2387. }
  2388. #endif
  2389. }
  2390. return false;
  2391. }
  2392. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2393. int classzone_idx, unsigned int alloc_flags)
  2394. {
  2395. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2396. zone_page_state(z, NR_FREE_PAGES));
  2397. }
  2398. static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
  2399. unsigned long mark, int classzone_idx, unsigned int alloc_flags)
  2400. {
  2401. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2402. long cma_pages = 0;
  2403. #ifdef CONFIG_CMA
  2404. /* If allocation can't use CMA areas don't use free CMA pages */
  2405. if (!(alloc_flags & ALLOC_CMA))
  2406. cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
  2407. #endif
  2408. /*
  2409. * Fast check for order-0 only. If this fails then the reserves
  2410. * need to be calculated. There is a corner case where the check
  2411. * passes but only the high-order atomic reserve are free. If
  2412. * the caller is !atomic then it'll uselessly search the free
  2413. * list. That corner case is then slower but it is harmless.
  2414. */
  2415. if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
  2416. return true;
  2417. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2418. free_pages);
  2419. }
  2420. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  2421. unsigned long mark, int classzone_idx)
  2422. {
  2423. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2424. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  2425. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  2426. return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
  2427. free_pages);
  2428. }
  2429. #ifdef CONFIG_NUMA
  2430. static bool zone_local(struct zone *local_zone, struct zone *zone)
  2431. {
  2432. return local_zone->node == zone->node;
  2433. }
  2434. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2435. {
  2436. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
  2437. RECLAIM_DISTANCE;
  2438. }
  2439. #else /* CONFIG_NUMA */
  2440. static bool zone_local(struct zone *local_zone, struct zone *zone)
  2441. {
  2442. return true;
  2443. }
  2444. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2445. {
  2446. return true;
  2447. }
  2448. #endif /* CONFIG_NUMA */
  2449. static void reset_alloc_batches(struct zone *preferred_zone)
  2450. {
  2451. struct zone *zone = preferred_zone->zone_pgdat->node_zones;
  2452. do {
  2453. mod_zone_page_state(zone, NR_ALLOC_BATCH,
  2454. high_wmark_pages(zone) - low_wmark_pages(zone) -
  2455. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  2456. clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  2457. } while (zone++ != preferred_zone);
  2458. }
  2459. /*
  2460. * get_page_from_freelist goes through the zonelist trying to allocate
  2461. * a page.
  2462. */
  2463. static struct page *
  2464. get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
  2465. const struct alloc_context *ac)
  2466. {
  2467. struct zoneref *z = ac->preferred_zoneref;
  2468. struct zone *zone;
  2469. bool fair_skipped = false;
  2470. bool apply_fair = (alloc_flags & ALLOC_FAIR);
  2471. zonelist_scan:
  2472. /*
  2473. * Scan zonelist, looking for a zone with enough free.
  2474. * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
  2475. */
  2476. for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2477. ac->nodemask) {
  2478. struct page *page;
  2479. unsigned long mark;
  2480. if (cpusets_enabled() &&
  2481. (alloc_flags & ALLOC_CPUSET) &&
  2482. !__cpuset_zone_allowed(zone, gfp_mask))
  2483. continue;
  2484. /*
  2485. * Distribute pages in proportion to the individual
  2486. * zone size to ensure fair page aging. The zone a
  2487. * page was allocated in should have no effect on the
  2488. * time the page has in memory before being reclaimed.
  2489. */
  2490. if (apply_fair) {
  2491. if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
  2492. fair_skipped = true;
  2493. continue;
  2494. }
  2495. if (!zone_local(ac->preferred_zoneref->zone, zone)) {
  2496. if (fair_skipped)
  2497. goto reset_fair;
  2498. apply_fair = false;
  2499. }
  2500. }
  2501. /*
  2502. * When allocating a page cache page for writing, we
  2503. * want to get it from a zone that is within its dirty
  2504. * limit, such that no single zone holds more than its
  2505. * proportional share of globally allowed dirty pages.
  2506. * The dirty limits take into account the zone's
  2507. * lowmem reserves and high watermark so that kswapd
  2508. * should be able to balance it without having to
  2509. * write pages from its LRU list.
  2510. *
  2511. * This may look like it could increase pressure on
  2512. * lower zones by failing allocations in higher zones
  2513. * before they are full. But the pages that do spill
  2514. * over are limited as the lower zones are protected
  2515. * by this very same mechanism. It should not become
  2516. * a practical burden to them.
  2517. *
  2518. * XXX: For now, allow allocations to potentially
  2519. * exceed the per-zone dirty limit in the slowpath
  2520. * (spread_dirty_pages unset) before going into reclaim,
  2521. * which is important when on a NUMA setup the allowed
  2522. * zones are together not big enough to reach the
  2523. * global limit. The proper fix for these situations
  2524. * will require awareness of zones in the
  2525. * dirty-throttling and the flusher threads.
  2526. */
  2527. if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
  2528. continue;
  2529. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  2530. if (!zone_watermark_fast(zone, order, mark,
  2531. ac_classzone_idx(ac), alloc_flags)) {
  2532. int ret;
  2533. /* Checked here to keep the fast path fast */
  2534. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  2535. if (alloc_flags & ALLOC_NO_WATERMARKS)
  2536. goto try_this_zone;
  2537. if (zone_reclaim_mode == 0 ||
  2538. !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
  2539. continue;
  2540. ret = zone_reclaim(zone, gfp_mask, order);
  2541. switch (ret) {
  2542. case ZONE_RECLAIM_NOSCAN:
  2543. /* did not scan */
  2544. continue;
  2545. case ZONE_RECLAIM_FULL:
  2546. /* scanned but unreclaimable */
  2547. continue;
  2548. default:
  2549. /* did we reclaim enough */
  2550. if (zone_watermark_ok(zone, order, mark,
  2551. ac_classzone_idx(ac), alloc_flags))
  2552. goto try_this_zone;
  2553. continue;
  2554. }
  2555. }
  2556. try_this_zone:
  2557. page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
  2558. gfp_mask, alloc_flags, ac->migratetype);
  2559. if (page) {
  2560. prep_new_page(page, order, gfp_mask, alloc_flags);
  2561. /*
  2562. * If this is a high-order atomic allocation then check
  2563. * if the pageblock should be reserved for the future
  2564. */
  2565. if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
  2566. reserve_highatomic_pageblock(page, zone, order);
  2567. return page;
  2568. }
  2569. }
  2570. /*
  2571. * The first pass makes sure allocations are spread fairly within the
  2572. * local node. However, the local node might have free pages left
  2573. * after the fairness batches are exhausted, and remote zones haven't
  2574. * even been considered yet. Try once more without fairness, and
  2575. * include remote zones now, before entering the slowpath and waking
  2576. * kswapd: prefer spilling to a remote zone over swapping locally.
  2577. */
  2578. if (fair_skipped) {
  2579. reset_fair:
  2580. apply_fair = false;
  2581. fair_skipped = false;
  2582. reset_alloc_batches(ac->preferred_zoneref->zone);
  2583. z = ac->preferred_zoneref;
  2584. goto zonelist_scan;
  2585. }
  2586. return NULL;
  2587. }
  2588. /*
  2589. * Large machines with many possible nodes should not always dump per-node
  2590. * meminfo in irq context.
  2591. */
  2592. static inline bool should_suppress_show_mem(void)
  2593. {
  2594. bool ret = false;
  2595. #if NODES_SHIFT > 8
  2596. ret = in_interrupt();
  2597. #endif
  2598. return ret;
  2599. }
  2600. static DEFINE_RATELIMIT_STATE(nopage_rs,
  2601. DEFAULT_RATELIMIT_INTERVAL,
  2602. DEFAULT_RATELIMIT_BURST);
  2603. void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
  2604. {
  2605. unsigned int filter = SHOW_MEM_FILTER_NODES;
  2606. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  2607. debug_guardpage_minorder() > 0)
  2608. return;
  2609. /*
  2610. * This documents exceptions given to allocations in certain
  2611. * contexts that are allowed to allocate outside current's set
  2612. * of allowed nodes.
  2613. */
  2614. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2615. if (test_thread_flag(TIF_MEMDIE) ||
  2616. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  2617. filter &= ~SHOW_MEM_FILTER_NODES;
  2618. if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
  2619. filter &= ~SHOW_MEM_FILTER_NODES;
  2620. if (fmt) {
  2621. struct va_format vaf;
  2622. va_list args;
  2623. va_start(args, fmt);
  2624. vaf.fmt = fmt;
  2625. vaf.va = &args;
  2626. pr_warn("%pV", &vaf);
  2627. va_end(args);
  2628. }
  2629. pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
  2630. current->comm, order, gfp_mask, &gfp_mask);
  2631. dump_stack();
  2632. if (!should_suppress_show_mem())
  2633. show_mem(filter);
  2634. }
  2635. static inline struct page *
  2636. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  2637. const struct alloc_context *ac, unsigned long *did_some_progress)
  2638. {
  2639. struct oom_control oc = {
  2640. .zonelist = ac->zonelist,
  2641. .nodemask = ac->nodemask,
  2642. .memcg = NULL,
  2643. .gfp_mask = gfp_mask,
  2644. .order = order,
  2645. };
  2646. struct page *page;
  2647. *did_some_progress = 0;
  2648. /*
  2649. * Acquire the oom lock. If that fails, somebody else is
  2650. * making progress for us.
  2651. */
  2652. if (!mutex_trylock(&oom_lock)) {
  2653. *did_some_progress = 1;
  2654. schedule_timeout_uninterruptible(1);
  2655. return NULL;
  2656. }
  2657. /*
  2658. * Go through the zonelist yet one more time, keep very high watermark
  2659. * here, this is only to catch a parallel oom killing, we must fail if
  2660. * we're still under heavy pressure.
  2661. */
  2662. page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
  2663. ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
  2664. if (page)
  2665. goto out;
  2666. if (!(gfp_mask & __GFP_NOFAIL)) {
  2667. /* Coredumps can quickly deplete all memory reserves */
  2668. if (current->flags & PF_DUMPCORE)
  2669. goto out;
  2670. /* The OOM killer will not help higher order allocs */
  2671. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2672. goto out;
  2673. /* The OOM killer does not needlessly kill tasks for lowmem */
  2674. if (ac->high_zoneidx < ZONE_NORMAL)
  2675. goto out;
  2676. if (pm_suspended_storage())
  2677. goto out;
  2678. /*
  2679. * XXX: GFP_NOFS allocations should rather fail than rely on
  2680. * other request to make a forward progress.
  2681. * We are in an unfortunate situation where out_of_memory cannot
  2682. * do much for this context but let's try it to at least get
  2683. * access to memory reserved if the current task is killed (see
  2684. * out_of_memory). Once filesystems are ready to handle allocation
  2685. * failures more gracefully we should just bail out here.
  2686. */
  2687. /* The OOM killer may not free memory on a specific node */
  2688. if (gfp_mask & __GFP_THISNODE)
  2689. goto out;
  2690. }
  2691. /* Exhausted what can be done so it's blamo time */
  2692. if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  2693. *did_some_progress = 1;
  2694. if (gfp_mask & __GFP_NOFAIL) {
  2695. page = get_page_from_freelist(gfp_mask, order,
  2696. ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
  2697. /*
  2698. * fallback to ignore cpuset restriction if our nodes
  2699. * are depleted
  2700. */
  2701. if (!page)
  2702. page = get_page_from_freelist(gfp_mask, order,
  2703. ALLOC_NO_WATERMARKS, ac);
  2704. }
  2705. }
  2706. out:
  2707. mutex_unlock(&oom_lock);
  2708. return page;
  2709. }
  2710. /*
  2711. * Maximum number of compaction retries wit a progress before OOM
  2712. * killer is consider as the only way to move forward.
  2713. */
  2714. #define MAX_COMPACT_RETRIES 16
  2715. #ifdef CONFIG_COMPACTION
  2716. /* Try memory compaction for high-order allocations before reclaim */
  2717. static struct page *
  2718. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2719. unsigned int alloc_flags, const struct alloc_context *ac,
  2720. enum migrate_mode mode, enum compact_result *compact_result)
  2721. {
  2722. struct page *page;
  2723. int contended_compaction;
  2724. if (!order)
  2725. return NULL;
  2726. current->flags |= PF_MEMALLOC;
  2727. *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
  2728. mode, &contended_compaction);
  2729. current->flags &= ~PF_MEMALLOC;
  2730. if (*compact_result <= COMPACT_INACTIVE)
  2731. return NULL;
  2732. /*
  2733. * At least in one zone compaction wasn't deferred or skipped, so let's
  2734. * count a compaction stall
  2735. */
  2736. count_vm_event(COMPACTSTALL);
  2737. page = get_page_from_freelist(gfp_mask, order,
  2738. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2739. if (page) {
  2740. struct zone *zone = page_zone(page);
  2741. zone->compact_blockskip_flush = false;
  2742. compaction_defer_reset(zone, order, true);
  2743. count_vm_event(COMPACTSUCCESS);
  2744. return page;
  2745. }
  2746. /*
  2747. * It's bad if compaction run occurs and fails. The most likely reason
  2748. * is that pages exist, but not enough to satisfy watermarks.
  2749. */
  2750. count_vm_event(COMPACTFAIL);
  2751. /*
  2752. * In all zones where compaction was attempted (and not
  2753. * deferred or skipped), lock contention has been detected.
  2754. * For THP allocation we do not want to disrupt the others
  2755. * so we fallback to base pages instead.
  2756. */
  2757. if (contended_compaction == COMPACT_CONTENDED_LOCK)
  2758. *compact_result = COMPACT_CONTENDED;
  2759. /*
  2760. * If compaction was aborted due to need_resched(), we do not
  2761. * want to further increase allocation latency, unless it is
  2762. * khugepaged trying to collapse.
  2763. */
  2764. if (contended_compaction == COMPACT_CONTENDED_SCHED
  2765. && !(current->flags & PF_KTHREAD))
  2766. *compact_result = COMPACT_CONTENDED;
  2767. cond_resched();
  2768. return NULL;
  2769. }
  2770. static inline bool
  2771. should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
  2772. enum compact_result compact_result, enum migrate_mode *migrate_mode,
  2773. int compaction_retries)
  2774. {
  2775. int max_retries = MAX_COMPACT_RETRIES;
  2776. if (!order)
  2777. return false;
  2778. /*
  2779. * compaction considers all the zone as desperately out of memory
  2780. * so it doesn't really make much sense to retry except when the
  2781. * failure could be caused by weak migration mode.
  2782. */
  2783. if (compaction_failed(compact_result)) {
  2784. if (*migrate_mode == MIGRATE_ASYNC) {
  2785. *migrate_mode = MIGRATE_SYNC_LIGHT;
  2786. return true;
  2787. }
  2788. return false;
  2789. }
  2790. /*
  2791. * make sure the compaction wasn't deferred or didn't bail out early
  2792. * due to locks contention before we declare that we should give up.
  2793. * But do not retry if the given zonelist is not suitable for
  2794. * compaction.
  2795. */
  2796. if (compaction_withdrawn(compact_result))
  2797. return compaction_zonelist_suitable(ac, order, alloc_flags);
  2798. /*
  2799. * !costly requests are much more important than __GFP_REPEAT
  2800. * costly ones because they are de facto nofail and invoke OOM
  2801. * killer to move on while costly can fail and users are ready
  2802. * to cope with that. 1/4 retries is rather arbitrary but we
  2803. * would need much more detailed feedback from compaction to
  2804. * make a better decision.
  2805. */
  2806. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2807. max_retries /= 4;
  2808. if (compaction_retries <= max_retries)
  2809. return true;
  2810. return false;
  2811. }
  2812. #else
  2813. static inline struct page *
  2814. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2815. unsigned int alloc_flags, const struct alloc_context *ac,
  2816. enum migrate_mode mode, enum compact_result *compact_result)
  2817. {
  2818. *compact_result = COMPACT_SKIPPED;
  2819. return NULL;
  2820. }
  2821. static inline bool
  2822. should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
  2823. enum compact_result compact_result,
  2824. enum migrate_mode *migrate_mode,
  2825. int compaction_retries)
  2826. {
  2827. struct zone *zone;
  2828. struct zoneref *z;
  2829. if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
  2830. return false;
  2831. /*
  2832. * There are setups with compaction disabled which would prefer to loop
  2833. * inside the allocator rather than hit the oom killer prematurely.
  2834. * Let's give them a good hope and keep retrying while the order-0
  2835. * watermarks are OK.
  2836. */
  2837. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2838. ac->nodemask) {
  2839. if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
  2840. ac_classzone_idx(ac), alloc_flags))
  2841. return true;
  2842. }
  2843. return false;
  2844. }
  2845. #endif /* CONFIG_COMPACTION */
  2846. /* Perform direct synchronous page reclaim */
  2847. static int
  2848. __perform_reclaim(gfp_t gfp_mask, unsigned int order,
  2849. const struct alloc_context *ac)
  2850. {
  2851. struct reclaim_state reclaim_state;
  2852. int progress;
  2853. cond_resched();
  2854. /* We now go into synchronous reclaim */
  2855. cpuset_memory_pressure_bump();
  2856. current->flags |= PF_MEMALLOC;
  2857. lockdep_set_current_reclaim_state(gfp_mask);
  2858. reclaim_state.reclaimed_slab = 0;
  2859. current->reclaim_state = &reclaim_state;
  2860. progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
  2861. ac->nodemask);
  2862. current->reclaim_state = NULL;
  2863. lockdep_clear_current_reclaim_state();
  2864. current->flags &= ~PF_MEMALLOC;
  2865. cond_resched();
  2866. return progress;
  2867. }
  2868. /* The really slow allocator path where we enter direct reclaim */
  2869. static inline struct page *
  2870. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2871. unsigned int alloc_flags, const struct alloc_context *ac,
  2872. unsigned long *did_some_progress)
  2873. {
  2874. struct page *page = NULL;
  2875. bool drained = false;
  2876. *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
  2877. if (unlikely(!(*did_some_progress)))
  2878. return NULL;
  2879. retry:
  2880. page = get_page_from_freelist(gfp_mask, order,
  2881. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2882. /*
  2883. * If an allocation failed after direct reclaim, it could be because
  2884. * pages are pinned on the per-cpu lists or in high alloc reserves.
  2885. * Shrink them them and try again
  2886. */
  2887. if (!page && !drained) {
  2888. unreserve_highatomic_pageblock(ac);
  2889. drain_all_pages(NULL);
  2890. drained = true;
  2891. goto retry;
  2892. }
  2893. return page;
  2894. }
  2895. static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
  2896. {
  2897. struct zoneref *z;
  2898. struct zone *zone;
  2899. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
  2900. ac->high_zoneidx, ac->nodemask)
  2901. wakeup_kswapd(zone, order, ac_classzone_idx(ac));
  2902. }
  2903. static inline unsigned int
  2904. gfp_to_alloc_flags(gfp_t gfp_mask)
  2905. {
  2906. unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2907. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2908. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2909. /*
  2910. * The caller may dip into page reserves a bit more if the caller
  2911. * cannot run direct reclaim, or if the caller has realtime scheduling
  2912. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2913. * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
  2914. */
  2915. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2916. if (gfp_mask & __GFP_ATOMIC) {
  2917. /*
  2918. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  2919. * if it can't schedule.
  2920. */
  2921. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2922. alloc_flags |= ALLOC_HARDER;
  2923. /*
  2924. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  2925. * comment for __cpuset_node_allowed().
  2926. */
  2927. alloc_flags &= ~ALLOC_CPUSET;
  2928. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2929. alloc_flags |= ALLOC_HARDER;
  2930. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2931. if (gfp_mask & __GFP_MEMALLOC)
  2932. alloc_flags |= ALLOC_NO_WATERMARKS;
  2933. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2934. alloc_flags |= ALLOC_NO_WATERMARKS;
  2935. else if (!in_interrupt() &&
  2936. ((current->flags & PF_MEMALLOC) ||
  2937. unlikely(test_thread_flag(TIF_MEMDIE))))
  2938. alloc_flags |= ALLOC_NO_WATERMARKS;
  2939. }
  2940. #ifdef CONFIG_CMA
  2941. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2942. alloc_flags |= ALLOC_CMA;
  2943. #endif
  2944. return alloc_flags;
  2945. }
  2946. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2947. {
  2948. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2949. }
  2950. static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
  2951. {
  2952. return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
  2953. }
  2954. /*
  2955. * Maximum number of reclaim retries without any progress before OOM killer
  2956. * is consider as the only way to move forward.
  2957. */
  2958. #define MAX_RECLAIM_RETRIES 16
  2959. /*
  2960. * Checks whether it makes sense to retry the reclaim to make a forward progress
  2961. * for the given allocation request.
  2962. * The reclaim feedback represented by did_some_progress (any progress during
  2963. * the last reclaim round) and no_progress_loops (number of reclaim rounds without
  2964. * any progress in a row) is considered as well as the reclaimable pages on the
  2965. * applicable zone list (with a backoff mechanism which is a function of
  2966. * no_progress_loops).
  2967. *
  2968. * Returns true if a retry is viable or false to enter the oom path.
  2969. */
  2970. static inline bool
  2971. should_reclaim_retry(gfp_t gfp_mask, unsigned order,
  2972. struct alloc_context *ac, int alloc_flags,
  2973. bool did_some_progress, int no_progress_loops)
  2974. {
  2975. struct zone *zone;
  2976. struct zoneref *z;
  2977. /*
  2978. * Make sure we converge to OOM if we cannot make any progress
  2979. * several times in the row.
  2980. */
  2981. if (no_progress_loops > MAX_RECLAIM_RETRIES)
  2982. return false;
  2983. /*
  2984. * Keep reclaiming pages while there is a chance this will lead somewhere.
  2985. * If none of the target zones can satisfy our allocation request even
  2986. * if all reclaimable pages are considered then we are screwed and have
  2987. * to go OOM.
  2988. */
  2989. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2990. ac->nodemask) {
  2991. unsigned long available;
  2992. unsigned long reclaimable;
  2993. available = reclaimable = zone_reclaimable_pages(zone);
  2994. available -= DIV_ROUND_UP(no_progress_loops * available,
  2995. MAX_RECLAIM_RETRIES);
  2996. available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
  2997. /*
  2998. * Would the allocation succeed if we reclaimed the whole
  2999. * available?
  3000. */
  3001. if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
  3002. ac_classzone_idx(ac), alloc_flags, available)) {
  3003. /*
  3004. * If we didn't make any progress and have a lot of
  3005. * dirty + writeback pages then we should wait for
  3006. * an IO to complete to slow down the reclaim and
  3007. * prevent from pre mature OOM
  3008. */
  3009. if (!did_some_progress) {
  3010. unsigned long writeback;
  3011. unsigned long dirty;
  3012. writeback = zone_page_state_snapshot(zone,
  3013. NR_WRITEBACK);
  3014. dirty = zone_page_state_snapshot(zone, NR_FILE_DIRTY);
  3015. if (2*(writeback + dirty) > reclaimable) {
  3016. congestion_wait(BLK_RW_ASYNC, HZ/10);
  3017. return true;
  3018. }
  3019. }
  3020. /*
  3021. * Memory allocation/reclaim might be called from a WQ
  3022. * context and the current implementation of the WQ
  3023. * concurrency control doesn't recognize that
  3024. * a particular WQ is congested if the worker thread is
  3025. * looping without ever sleeping. Therefore we have to
  3026. * do a short sleep here rather than calling
  3027. * cond_resched().
  3028. */
  3029. if (current->flags & PF_WQ_WORKER)
  3030. schedule_timeout_uninterruptible(1);
  3031. else
  3032. cond_resched();
  3033. return true;
  3034. }
  3035. }
  3036. return false;
  3037. }
  3038. static inline struct page *
  3039. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  3040. struct alloc_context *ac)
  3041. {
  3042. bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
  3043. struct page *page = NULL;
  3044. unsigned int alloc_flags;
  3045. unsigned long did_some_progress;
  3046. enum migrate_mode migration_mode = MIGRATE_ASYNC;
  3047. enum compact_result compact_result;
  3048. int compaction_retries = 0;
  3049. int no_progress_loops = 0;
  3050. /*
  3051. * In the slowpath, we sanity check order to avoid ever trying to
  3052. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  3053. * be using allocators in order of preference for an area that is
  3054. * too large.
  3055. */
  3056. if (order >= MAX_ORDER) {
  3057. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  3058. return NULL;
  3059. }
  3060. /*
  3061. * We also sanity check to catch abuse of atomic reserves being used by
  3062. * callers that are not in atomic context.
  3063. */
  3064. if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
  3065. (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
  3066. gfp_mask &= ~__GFP_ATOMIC;
  3067. retry:
  3068. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  3069. wake_all_kswapds(order, ac);
  3070. /*
  3071. * OK, we're below the kswapd watermark and have kicked background
  3072. * reclaim. Now things get more complex, so set up alloc_flags according
  3073. * to how we want to proceed.
  3074. */
  3075. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  3076. /*
  3077. * Reset the zonelist iterators if memory policies can be ignored.
  3078. * These allocations are high priority and system rather than user
  3079. * orientated.
  3080. */
  3081. if ((alloc_flags & ALLOC_NO_WATERMARKS) || !(alloc_flags & ALLOC_CPUSET)) {
  3082. ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
  3083. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3084. ac->high_zoneidx, ac->nodemask);
  3085. }
  3086. /* This is the last chance, in general, before the goto nopage. */
  3087. page = get_page_from_freelist(gfp_mask, order,
  3088. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  3089. if (page)
  3090. goto got_pg;
  3091. /* Allocate without watermarks if the context allows */
  3092. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  3093. page = get_page_from_freelist(gfp_mask, order,
  3094. ALLOC_NO_WATERMARKS, ac);
  3095. if (page)
  3096. goto got_pg;
  3097. }
  3098. /* Caller is not willing to reclaim, we can't balance anything */
  3099. if (!can_direct_reclaim) {
  3100. /*
  3101. * All existing users of the __GFP_NOFAIL are blockable, so warn
  3102. * of any new users that actually allow this type of allocation
  3103. * to fail.
  3104. */
  3105. WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
  3106. goto nopage;
  3107. }
  3108. /* Avoid recursion of direct reclaim */
  3109. if (current->flags & PF_MEMALLOC) {
  3110. /*
  3111. * __GFP_NOFAIL request from this context is rather bizarre
  3112. * because we cannot reclaim anything and only can loop waiting
  3113. * for somebody to do a work for us.
  3114. */
  3115. if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  3116. cond_resched();
  3117. goto retry;
  3118. }
  3119. goto nopage;
  3120. }
  3121. /* Avoid allocations with no watermarks from looping endlessly */
  3122. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  3123. goto nopage;
  3124. /*
  3125. * Try direct compaction. The first pass is asynchronous. Subsequent
  3126. * attempts after direct reclaim are synchronous
  3127. */
  3128. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
  3129. migration_mode,
  3130. &compact_result);
  3131. if (page)
  3132. goto got_pg;
  3133. /* Checks for THP-specific high-order allocations */
  3134. if (is_thp_gfp_mask(gfp_mask)) {
  3135. /*
  3136. * If compaction is deferred for high-order allocations, it is
  3137. * because sync compaction recently failed. If this is the case
  3138. * and the caller requested a THP allocation, we do not want
  3139. * to heavily disrupt the system, so we fail the allocation
  3140. * instead of entering direct reclaim.
  3141. */
  3142. if (compact_result == COMPACT_DEFERRED)
  3143. goto nopage;
  3144. /*
  3145. * Compaction is contended so rather back off than cause
  3146. * excessive stalls.
  3147. */
  3148. if(compact_result == COMPACT_CONTENDED)
  3149. goto nopage;
  3150. }
  3151. if (order && compaction_made_progress(compact_result))
  3152. compaction_retries++;
  3153. /* Try direct reclaim and then allocating */
  3154. page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
  3155. &did_some_progress);
  3156. if (page)
  3157. goto got_pg;
  3158. /* Do not loop if specifically requested */
  3159. if (gfp_mask & __GFP_NORETRY)
  3160. goto noretry;
  3161. /*
  3162. * Do not retry costly high order allocations unless they are
  3163. * __GFP_REPEAT
  3164. */
  3165. if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
  3166. goto noretry;
  3167. /*
  3168. * Costly allocations might have made a progress but this doesn't mean
  3169. * their order will become available due to high fragmentation so
  3170. * always increment the no progress counter for them
  3171. */
  3172. if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
  3173. no_progress_loops = 0;
  3174. else
  3175. no_progress_loops++;
  3176. if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
  3177. did_some_progress > 0, no_progress_loops))
  3178. goto retry;
  3179. /*
  3180. * It doesn't make any sense to retry for the compaction if the order-0
  3181. * reclaim is not able to make any progress because the current
  3182. * implementation of the compaction depends on the sufficient amount
  3183. * of free memory (see __compaction_suitable)
  3184. */
  3185. if (did_some_progress > 0 &&
  3186. should_compact_retry(ac, order, alloc_flags,
  3187. compact_result, &migration_mode,
  3188. compaction_retries))
  3189. goto retry;
  3190. /* Reclaim has failed us, start killing things */
  3191. page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
  3192. if (page)
  3193. goto got_pg;
  3194. /* Retry as long as the OOM killer is making progress */
  3195. if (did_some_progress) {
  3196. no_progress_loops = 0;
  3197. goto retry;
  3198. }
  3199. noretry:
  3200. /*
  3201. * High-order allocations do not necessarily loop after direct reclaim
  3202. * and reclaim/compaction depends on compaction being called after
  3203. * reclaim so call directly if necessary.
  3204. * It can become very expensive to allocate transparent hugepages at
  3205. * fault, so use asynchronous memory compaction for THP unless it is
  3206. * khugepaged trying to collapse. All other requests should tolerate
  3207. * at least light sync migration.
  3208. */
  3209. if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
  3210. migration_mode = MIGRATE_ASYNC;
  3211. else
  3212. migration_mode = MIGRATE_SYNC_LIGHT;
  3213. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
  3214. ac, migration_mode,
  3215. &compact_result);
  3216. if (page)
  3217. goto got_pg;
  3218. nopage:
  3219. warn_alloc_failed(gfp_mask, order, NULL);
  3220. got_pg:
  3221. return page;
  3222. }
  3223. /*
  3224. * This is the 'heart' of the zoned buddy allocator.
  3225. */
  3226. struct page *
  3227. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  3228. struct zonelist *zonelist, nodemask_t *nodemask)
  3229. {
  3230. struct page *page;
  3231. unsigned int cpuset_mems_cookie;
  3232. unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
  3233. gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
  3234. struct alloc_context ac = {
  3235. .high_zoneidx = gfp_zone(gfp_mask),
  3236. .zonelist = zonelist,
  3237. .nodemask = nodemask,
  3238. .migratetype = gfpflags_to_migratetype(gfp_mask),
  3239. };
  3240. if (cpusets_enabled()) {
  3241. alloc_mask |= __GFP_HARDWALL;
  3242. alloc_flags |= ALLOC_CPUSET;
  3243. if (!ac.nodemask)
  3244. ac.nodemask = &cpuset_current_mems_allowed;
  3245. }
  3246. gfp_mask &= gfp_allowed_mask;
  3247. lockdep_trace_alloc(gfp_mask);
  3248. might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
  3249. if (should_fail_alloc_page(gfp_mask, order))
  3250. return NULL;
  3251. /*
  3252. * Check the zones suitable for the gfp_mask contain at least one
  3253. * valid zone. It's possible to have an empty zonelist as a result
  3254. * of __GFP_THISNODE and a memoryless node
  3255. */
  3256. if (unlikely(!zonelist->_zonerefs->zone))
  3257. return NULL;
  3258. if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
  3259. alloc_flags |= ALLOC_CMA;
  3260. retry_cpuset:
  3261. cpuset_mems_cookie = read_mems_allowed_begin();
  3262. /* Dirty zone balancing only done in the fast path */
  3263. ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
  3264. /*
  3265. * The preferred zone is used for statistics but crucially it is
  3266. * also used as the starting point for the zonelist iterator. It
  3267. * may get reset for allocations that ignore memory policies.
  3268. */
  3269. ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
  3270. ac.high_zoneidx, ac.nodemask);
  3271. if (!ac.preferred_zoneref) {
  3272. page = NULL;
  3273. goto no_zone;
  3274. }
  3275. /* First allocation attempt */
  3276. page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
  3277. if (likely(page))
  3278. goto out;
  3279. /*
  3280. * Runtime PM, block IO and its error handling path can deadlock
  3281. * because I/O on the device might not complete.
  3282. */
  3283. alloc_mask = memalloc_noio_flags(gfp_mask);
  3284. ac.spread_dirty_pages = false;
  3285. /*
  3286. * Restore the original nodemask if it was potentially replaced with
  3287. * &cpuset_current_mems_allowed to optimize the fast-path attempt.
  3288. */
  3289. if (cpusets_enabled())
  3290. ac.nodemask = nodemask;
  3291. page = __alloc_pages_slowpath(alloc_mask, order, &ac);
  3292. no_zone:
  3293. /*
  3294. * When updating a task's mems_allowed, it is possible to race with
  3295. * parallel threads in such a way that an allocation can fail while
  3296. * the mask is being updated. If a page allocation is about to fail,
  3297. * check if the cpuset changed during allocation and if so, retry.
  3298. */
  3299. if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
  3300. alloc_mask = gfp_mask;
  3301. goto retry_cpuset;
  3302. }
  3303. out:
  3304. if (kmemcheck_enabled && page)
  3305. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  3306. trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
  3307. return page;
  3308. }
  3309. EXPORT_SYMBOL(__alloc_pages_nodemask);
  3310. /*
  3311. * Common helper functions.
  3312. */
  3313. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  3314. {
  3315. struct page *page;
  3316. /*
  3317. * __get_free_pages() returns a 32-bit address, which cannot represent
  3318. * a highmem page
  3319. */
  3320. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  3321. page = alloc_pages(gfp_mask, order);
  3322. if (!page)
  3323. return 0;
  3324. return (unsigned long) page_address(page);
  3325. }
  3326. EXPORT_SYMBOL(__get_free_pages);
  3327. unsigned long get_zeroed_page(gfp_t gfp_mask)
  3328. {
  3329. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  3330. }
  3331. EXPORT_SYMBOL(get_zeroed_page);
  3332. void __free_pages(struct page *page, unsigned int order)
  3333. {
  3334. if (put_page_testzero(page)) {
  3335. if (order == 0)
  3336. free_hot_cold_page(page, false);
  3337. else
  3338. __free_pages_ok(page, order);
  3339. }
  3340. }
  3341. EXPORT_SYMBOL(__free_pages);
  3342. void free_pages(unsigned long addr, unsigned int order)
  3343. {
  3344. if (addr != 0) {
  3345. VM_BUG_ON(!virt_addr_valid((void *)addr));
  3346. __free_pages(virt_to_page((void *)addr), order);
  3347. }
  3348. }
  3349. EXPORT_SYMBOL(free_pages);
  3350. /*
  3351. * Page Fragment:
  3352. * An arbitrary-length arbitrary-offset area of memory which resides
  3353. * within a 0 or higher order page. Multiple fragments within that page
  3354. * are individually refcounted, in the page's reference counter.
  3355. *
  3356. * The page_frag functions below provide a simple allocation framework for
  3357. * page fragments. This is used by the network stack and network device
  3358. * drivers to provide a backing region of memory for use as either an
  3359. * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
  3360. */
  3361. static struct page *__page_frag_refill(struct page_frag_cache *nc,
  3362. gfp_t gfp_mask)
  3363. {
  3364. struct page *page = NULL;
  3365. gfp_t gfp = gfp_mask;
  3366. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3367. gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
  3368. __GFP_NOMEMALLOC;
  3369. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
  3370. PAGE_FRAG_CACHE_MAX_ORDER);
  3371. nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
  3372. #endif
  3373. if (unlikely(!page))
  3374. page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
  3375. nc->va = page ? page_address(page) : NULL;
  3376. return page;
  3377. }
  3378. void *__alloc_page_frag(struct page_frag_cache *nc,
  3379. unsigned int fragsz, gfp_t gfp_mask)
  3380. {
  3381. unsigned int size = PAGE_SIZE;
  3382. struct page *page;
  3383. int offset;
  3384. if (unlikely(!nc->va)) {
  3385. refill:
  3386. page = __page_frag_refill(nc, gfp_mask);
  3387. if (!page)
  3388. return NULL;
  3389. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3390. /* if size can vary use size else just use PAGE_SIZE */
  3391. size = nc->size;
  3392. #endif
  3393. /* Even if we own the page, we do not use atomic_set().
  3394. * This would break get_page_unless_zero() users.
  3395. */
  3396. page_ref_add(page, size - 1);
  3397. /* reset page count bias and offset to start of new frag */
  3398. nc->pfmemalloc = page_is_pfmemalloc(page);
  3399. nc->pagecnt_bias = size;
  3400. nc->offset = size;
  3401. }
  3402. offset = nc->offset - fragsz;
  3403. if (unlikely(offset < 0)) {
  3404. page = virt_to_page(nc->va);
  3405. if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
  3406. goto refill;
  3407. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3408. /* if size can vary use size else just use PAGE_SIZE */
  3409. size = nc->size;
  3410. #endif
  3411. /* OK, page count is 0, we can safely set it */
  3412. set_page_count(page, size);
  3413. /* reset page count bias and offset to start of new frag */
  3414. nc->pagecnt_bias = size;
  3415. offset = size - fragsz;
  3416. }
  3417. nc->pagecnt_bias--;
  3418. nc->offset = offset;
  3419. return nc->va + offset;
  3420. }
  3421. EXPORT_SYMBOL(__alloc_page_frag);
  3422. /*
  3423. * Frees a page fragment allocated out of either a compound or order 0 page.
  3424. */
  3425. void __free_page_frag(void *addr)
  3426. {
  3427. struct page *page = virt_to_head_page(addr);
  3428. if (unlikely(put_page_testzero(page)))
  3429. __free_pages_ok(page, compound_order(page));
  3430. }
  3431. EXPORT_SYMBOL(__free_page_frag);
  3432. /*
  3433. * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
  3434. * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
  3435. * equivalent to alloc_pages.
  3436. *
  3437. * It should be used when the caller would like to use kmalloc, but since the
  3438. * allocation is large, it has to fall back to the page allocator.
  3439. */
  3440. struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
  3441. {
  3442. struct page *page;
  3443. page = alloc_pages(gfp_mask, order);
  3444. if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) &&
  3445. page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
  3446. __free_pages(page, order);
  3447. page = NULL;
  3448. }
  3449. return page;
  3450. }
  3451. struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
  3452. {
  3453. struct page *page;
  3454. page = alloc_pages_node(nid, gfp_mask, order);
  3455. if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) &&
  3456. page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
  3457. __free_pages(page, order);
  3458. page = NULL;
  3459. }
  3460. return page;
  3461. }
  3462. /*
  3463. * __free_kmem_pages and free_kmem_pages will free pages allocated with
  3464. * alloc_kmem_pages.
  3465. */
  3466. void __free_kmem_pages(struct page *page, unsigned int order)
  3467. {
  3468. if (memcg_kmem_enabled())
  3469. memcg_kmem_uncharge(page, order);
  3470. __free_pages(page, order);
  3471. }
  3472. void free_kmem_pages(unsigned long addr, unsigned int order)
  3473. {
  3474. if (addr != 0) {
  3475. VM_BUG_ON(!virt_addr_valid((void *)addr));
  3476. __free_kmem_pages(virt_to_page((void *)addr), order);
  3477. }
  3478. }
  3479. static void *make_alloc_exact(unsigned long addr, unsigned int order,
  3480. size_t size)
  3481. {
  3482. if (addr) {
  3483. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  3484. unsigned long used = addr + PAGE_ALIGN(size);
  3485. split_page(virt_to_page((void *)addr), order);
  3486. while (used < alloc_end) {
  3487. free_page(used);
  3488. used += PAGE_SIZE;
  3489. }
  3490. }
  3491. return (void *)addr;
  3492. }
  3493. /**
  3494. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  3495. * @size: the number of bytes to allocate
  3496. * @gfp_mask: GFP flags for the allocation
  3497. *
  3498. * This function is similar to alloc_pages(), except that it allocates the
  3499. * minimum number of pages to satisfy the request. alloc_pages() can only
  3500. * allocate memory in power-of-two pages.
  3501. *
  3502. * This function is also limited by MAX_ORDER.
  3503. *
  3504. * Memory allocated by this function must be released by free_pages_exact().
  3505. */
  3506. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  3507. {
  3508. unsigned int order = get_order(size);
  3509. unsigned long addr;
  3510. addr = __get_free_pages(gfp_mask, order);
  3511. return make_alloc_exact(addr, order, size);
  3512. }
  3513. EXPORT_SYMBOL(alloc_pages_exact);
  3514. /**
  3515. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  3516. * pages on a node.
  3517. * @nid: the preferred node ID where memory should be allocated
  3518. * @size: the number of bytes to allocate
  3519. * @gfp_mask: GFP flags for the allocation
  3520. *
  3521. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  3522. * back.
  3523. */
  3524. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  3525. {
  3526. unsigned int order = get_order(size);
  3527. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  3528. if (!p)
  3529. return NULL;
  3530. return make_alloc_exact((unsigned long)page_address(p), order, size);
  3531. }
  3532. /**
  3533. * free_pages_exact - release memory allocated via alloc_pages_exact()
  3534. * @virt: the value returned by alloc_pages_exact.
  3535. * @size: size of allocation, same value as passed to alloc_pages_exact().
  3536. *
  3537. * Release the memory allocated by a previous call to alloc_pages_exact.
  3538. */
  3539. void free_pages_exact(void *virt, size_t size)
  3540. {
  3541. unsigned long addr = (unsigned long)virt;
  3542. unsigned long end = addr + PAGE_ALIGN(size);
  3543. while (addr < end) {
  3544. free_page(addr);
  3545. addr += PAGE_SIZE;
  3546. }
  3547. }
  3548. EXPORT_SYMBOL(free_pages_exact);
  3549. /**
  3550. * nr_free_zone_pages - count number of pages beyond high watermark
  3551. * @offset: The zone index of the highest zone
  3552. *
  3553. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  3554. * high watermark within all zones at or below a given zone index. For each
  3555. * zone, the number of pages is calculated as:
  3556. * managed_pages - high_pages
  3557. */
  3558. static unsigned long nr_free_zone_pages(int offset)
  3559. {
  3560. struct zoneref *z;
  3561. struct zone *zone;
  3562. /* Just pick one node, since fallback list is circular */
  3563. unsigned long sum = 0;
  3564. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  3565. for_each_zone_zonelist(zone, z, zonelist, offset) {
  3566. unsigned long size = zone->managed_pages;
  3567. unsigned long high = high_wmark_pages(zone);
  3568. if (size > high)
  3569. sum += size - high;
  3570. }
  3571. return sum;
  3572. }
  3573. /**
  3574. * nr_free_buffer_pages - count number of pages beyond high watermark
  3575. *
  3576. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  3577. * watermark within ZONE_DMA and ZONE_NORMAL.
  3578. */
  3579. unsigned long nr_free_buffer_pages(void)
  3580. {
  3581. return nr_free_zone_pages(gfp_zone(GFP_USER));
  3582. }
  3583. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  3584. /**
  3585. * nr_free_pagecache_pages - count number of pages beyond high watermark
  3586. *
  3587. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  3588. * high watermark within all zones.
  3589. */
  3590. unsigned long nr_free_pagecache_pages(void)
  3591. {
  3592. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  3593. }
  3594. static inline void show_node(struct zone *zone)
  3595. {
  3596. if (IS_ENABLED(CONFIG_NUMA))
  3597. printk("Node %d ", zone_to_nid(zone));
  3598. }
  3599. long si_mem_available(void)
  3600. {
  3601. long available;
  3602. unsigned long pagecache;
  3603. unsigned long wmark_low = 0;
  3604. unsigned long pages[NR_LRU_LISTS];
  3605. struct zone *zone;
  3606. int lru;
  3607. for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
  3608. pages[lru] = global_page_state(NR_LRU_BASE + lru);
  3609. for_each_zone(zone)
  3610. wmark_low += zone->watermark[WMARK_LOW];
  3611. /*
  3612. * Estimate the amount of memory available for userspace allocations,
  3613. * without causing swapping.
  3614. */
  3615. available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
  3616. /*
  3617. * Not all the page cache can be freed, otherwise the system will
  3618. * start swapping. Assume at least half of the page cache, or the
  3619. * low watermark worth of cache, needs to stay.
  3620. */
  3621. pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
  3622. pagecache -= min(pagecache / 2, wmark_low);
  3623. available += pagecache;
  3624. /*
  3625. * Part of the reclaimable slab consists of items that are in use,
  3626. * and cannot be freed. Cap this estimate at the low watermark.
  3627. */
  3628. available += global_page_state(NR_SLAB_RECLAIMABLE) -
  3629. min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
  3630. if (available < 0)
  3631. available = 0;
  3632. return available;
  3633. }
  3634. EXPORT_SYMBOL_GPL(si_mem_available);
  3635. void si_meminfo(struct sysinfo *val)
  3636. {
  3637. val->totalram = totalram_pages;
  3638. val->sharedram = global_page_state(NR_SHMEM);
  3639. val->freeram = global_page_state(NR_FREE_PAGES);
  3640. val->bufferram = nr_blockdev_pages();
  3641. val->totalhigh = totalhigh_pages;
  3642. val->freehigh = nr_free_highpages();
  3643. val->mem_unit = PAGE_SIZE;
  3644. }
  3645. EXPORT_SYMBOL(si_meminfo);
  3646. #ifdef CONFIG_NUMA
  3647. void si_meminfo_node(struct sysinfo *val, int nid)
  3648. {
  3649. int zone_type; /* needs to be signed */
  3650. unsigned long managed_pages = 0;
  3651. unsigned long managed_highpages = 0;
  3652. unsigned long free_highpages = 0;
  3653. pg_data_t *pgdat = NODE_DATA(nid);
  3654. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  3655. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  3656. val->totalram = managed_pages;
  3657. val->sharedram = node_page_state(nid, NR_SHMEM);
  3658. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  3659. #ifdef CONFIG_HIGHMEM
  3660. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  3661. struct zone *zone = &pgdat->node_zones[zone_type];
  3662. if (is_highmem(zone)) {
  3663. managed_highpages += zone->managed_pages;
  3664. free_highpages += zone_page_state(zone, NR_FREE_PAGES);
  3665. }
  3666. }
  3667. val->totalhigh = managed_highpages;
  3668. val->freehigh = free_highpages;
  3669. #else
  3670. val->totalhigh = managed_highpages;
  3671. val->freehigh = free_highpages;
  3672. #endif
  3673. val->mem_unit = PAGE_SIZE;
  3674. }
  3675. #endif
  3676. /*
  3677. * Determine whether the node should be displayed or not, depending on whether
  3678. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  3679. */
  3680. bool skip_free_areas_node(unsigned int flags, int nid)
  3681. {
  3682. bool ret = false;
  3683. unsigned int cpuset_mems_cookie;
  3684. if (!(flags & SHOW_MEM_FILTER_NODES))
  3685. goto out;
  3686. do {
  3687. cpuset_mems_cookie = read_mems_allowed_begin();
  3688. ret = !node_isset(nid, cpuset_current_mems_allowed);
  3689. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  3690. out:
  3691. return ret;
  3692. }
  3693. #define K(x) ((x) << (PAGE_SHIFT-10))
  3694. static void show_migration_types(unsigned char type)
  3695. {
  3696. static const char types[MIGRATE_TYPES] = {
  3697. [MIGRATE_UNMOVABLE] = 'U',
  3698. [MIGRATE_MOVABLE] = 'M',
  3699. [MIGRATE_RECLAIMABLE] = 'E',
  3700. [MIGRATE_HIGHATOMIC] = 'H',
  3701. #ifdef CONFIG_CMA
  3702. [MIGRATE_CMA] = 'C',
  3703. #endif
  3704. #ifdef CONFIG_MEMORY_ISOLATION
  3705. [MIGRATE_ISOLATE] = 'I',
  3706. #endif
  3707. };
  3708. char tmp[MIGRATE_TYPES + 1];
  3709. char *p = tmp;
  3710. int i;
  3711. for (i = 0; i < MIGRATE_TYPES; i++) {
  3712. if (type & (1 << i))
  3713. *p++ = types[i];
  3714. }
  3715. *p = '\0';
  3716. printk("(%s) ", tmp);
  3717. }
  3718. /*
  3719. * Show free area list (used inside shift_scroll-lock stuff)
  3720. * We also calculate the percentage fragmentation. We do this by counting the
  3721. * memory on each free list with the exception of the first item on the list.
  3722. *
  3723. * Bits in @filter:
  3724. * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
  3725. * cpuset.
  3726. */
  3727. void show_free_areas(unsigned int filter)
  3728. {
  3729. unsigned long free_pcp = 0;
  3730. int cpu;
  3731. struct zone *zone;
  3732. for_each_populated_zone(zone) {
  3733. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3734. continue;
  3735. for_each_online_cpu(cpu)
  3736. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3737. }
  3738. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  3739. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  3740. " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  3741. " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  3742. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  3743. " free:%lu free_pcp:%lu free_cma:%lu\n",
  3744. global_page_state(NR_ACTIVE_ANON),
  3745. global_page_state(NR_INACTIVE_ANON),
  3746. global_page_state(NR_ISOLATED_ANON),
  3747. global_page_state(NR_ACTIVE_FILE),
  3748. global_page_state(NR_INACTIVE_FILE),
  3749. global_page_state(NR_ISOLATED_FILE),
  3750. global_page_state(NR_UNEVICTABLE),
  3751. global_page_state(NR_FILE_DIRTY),
  3752. global_page_state(NR_WRITEBACK),
  3753. global_page_state(NR_UNSTABLE_NFS),
  3754. global_page_state(NR_SLAB_RECLAIMABLE),
  3755. global_page_state(NR_SLAB_UNRECLAIMABLE),
  3756. global_page_state(NR_FILE_MAPPED),
  3757. global_page_state(NR_SHMEM),
  3758. global_page_state(NR_PAGETABLE),
  3759. global_page_state(NR_BOUNCE),
  3760. global_page_state(NR_FREE_PAGES),
  3761. free_pcp,
  3762. global_page_state(NR_FREE_CMA_PAGES));
  3763. for_each_populated_zone(zone) {
  3764. int i;
  3765. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3766. continue;
  3767. free_pcp = 0;
  3768. for_each_online_cpu(cpu)
  3769. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3770. show_node(zone);
  3771. printk("%s"
  3772. " free:%lukB"
  3773. " min:%lukB"
  3774. " low:%lukB"
  3775. " high:%lukB"
  3776. " active_anon:%lukB"
  3777. " inactive_anon:%lukB"
  3778. " active_file:%lukB"
  3779. " inactive_file:%lukB"
  3780. " unevictable:%lukB"
  3781. " isolated(anon):%lukB"
  3782. " isolated(file):%lukB"
  3783. " present:%lukB"
  3784. " managed:%lukB"
  3785. " mlocked:%lukB"
  3786. " dirty:%lukB"
  3787. " writeback:%lukB"
  3788. " mapped:%lukB"
  3789. " shmem:%lukB"
  3790. " slab_reclaimable:%lukB"
  3791. " slab_unreclaimable:%lukB"
  3792. " kernel_stack:%lukB"
  3793. " pagetables:%lukB"
  3794. " unstable:%lukB"
  3795. " bounce:%lukB"
  3796. " free_pcp:%lukB"
  3797. " local_pcp:%ukB"
  3798. " free_cma:%lukB"
  3799. " writeback_tmp:%lukB"
  3800. " pages_scanned:%lu"
  3801. " all_unreclaimable? %s"
  3802. "\n",
  3803. zone->name,
  3804. K(zone_page_state(zone, NR_FREE_PAGES)),
  3805. K(min_wmark_pages(zone)),
  3806. K(low_wmark_pages(zone)),
  3807. K(high_wmark_pages(zone)),
  3808. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  3809. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  3810. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  3811. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  3812. K(zone_page_state(zone, NR_UNEVICTABLE)),
  3813. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  3814. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  3815. K(zone->present_pages),
  3816. K(zone->managed_pages),
  3817. K(zone_page_state(zone, NR_MLOCK)),
  3818. K(zone_page_state(zone, NR_FILE_DIRTY)),
  3819. K(zone_page_state(zone, NR_WRITEBACK)),
  3820. K(zone_page_state(zone, NR_FILE_MAPPED)),
  3821. K(zone_page_state(zone, NR_SHMEM)),
  3822. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  3823. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  3824. zone_page_state(zone, NR_KERNEL_STACK) *
  3825. THREAD_SIZE / 1024,
  3826. K(zone_page_state(zone, NR_PAGETABLE)),
  3827. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  3828. K(zone_page_state(zone, NR_BOUNCE)),
  3829. K(free_pcp),
  3830. K(this_cpu_read(zone->pageset->pcp.count)),
  3831. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  3832. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  3833. K(zone_page_state(zone, NR_PAGES_SCANNED)),
  3834. (!zone_reclaimable(zone) ? "yes" : "no")
  3835. );
  3836. printk("lowmem_reserve[]:");
  3837. for (i = 0; i < MAX_NR_ZONES; i++)
  3838. printk(" %ld", zone->lowmem_reserve[i]);
  3839. printk("\n");
  3840. }
  3841. for_each_populated_zone(zone) {
  3842. unsigned int order;
  3843. unsigned long nr[MAX_ORDER], flags, total = 0;
  3844. unsigned char types[MAX_ORDER];
  3845. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3846. continue;
  3847. show_node(zone);
  3848. printk("%s: ", zone->name);
  3849. spin_lock_irqsave(&zone->lock, flags);
  3850. for (order = 0; order < MAX_ORDER; order++) {
  3851. struct free_area *area = &zone->free_area[order];
  3852. int type;
  3853. nr[order] = area->nr_free;
  3854. total += nr[order] << order;
  3855. types[order] = 0;
  3856. for (type = 0; type < MIGRATE_TYPES; type++) {
  3857. if (!list_empty(&area->free_list[type]))
  3858. types[order] |= 1 << type;
  3859. }
  3860. }
  3861. spin_unlock_irqrestore(&zone->lock, flags);
  3862. for (order = 0; order < MAX_ORDER; order++) {
  3863. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  3864. if (nr[order])
  3865. show_migration_types(types[order]);
  3866. }
  3867. printk("= %lukB\n", K(total));
  3868. }
  3869. hugetlb_show_meminfo();
  3870. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  3871. show_swap_cache_info();
  3872. }
  3873. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  3874. {
  3875. zoneref->zone = zone;
  3876. zoneref->zone_idx = zone_idx(zone);
  3877. }
  3878. /*
  3879. * Builds allocation fallback zone lists.
  3880. *
  3881. * Add all populated zones of a node to the zonelist.
  3882. */
  3883. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  3884. int nr_zones)
  3885. {
  3886. struct zone *zone;
  3887. enum zone_type zone_type = MAX_NR_ZONES;
  3888. do {
  3889. zone_type--;
  3890. zone = pgdat->node_zones + zone_type;
  3891. if (populated_zone(zone)) {
  3892. zoneref_set_zone(zone,
  3893. &zonelist->_zonerefs[nr_zones++]);
  3894. check_highest_zone(zone_type);
  3895. }
  3896. } while (zone_type);
  3897. return nr_zones;
  3898. }
  3899. /*
  3900. * zonelist_order:
  3901. * 0 = automatic detection of better ordering.
  3902. * 1 = order by ([node] distance, -zonetype)
  3903. * 2 = order by (-zonetype, [node] distance)
  3904. *
  3905. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  3906. * the same zonelist. So only NUMA can configure this param.
  3907. */
  3908. #define ZONELIST_ORDER_DEFAULT 0
  3909. #define ZONELIST_ORDER_NODE 1
  3910. #define ZONELIST_ORDER_ZONE 2
  3911. /* zonelist order in the kernel.
  3912. * set_zonelist_order() will set this to NODE or ZONE.
  3913. */
  3914. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3915. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  3916. #ifdef CONFIG_NUMA
  3917. /* The value user specified ....changed by config */
  3918. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3919. /* string for sysctl */
  3920. #define NUMA_ZONELIST_ORDER_LEN 16
  3921. char numa_zonelist_order[16] = "default";
  3922. /*
  3923. * interface for configure zonelist ordering.
  3924. * command line option "numa_zonelist_order"
  3925. * = "[dD]efault - default, automatic configuration.
  3926. * = "[nN]ode - order by node locality, then by zone within node
  3927. * = "[zZ]one - order by zone, then by locality within zone
  3928. */
  3929. static int __parse_numa_zonelist_order(char *s)
  3930. {
  3931. if (*s == 'd' || *s == 'D') {
  3932. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3933. } else if (*s == 'n' || *s == 'N') {
  3934. user_zonelist_order = ZONELIST_ORDER_NODE;
  3935. } else if (*s == 'z' || *s == 'Z') {
  3936. user_zonelist_order = ZONELIST_ORDER_ZONE;
  3937. } else {
  3938. pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
  3939. return -EINVAL;
  3940. }
  3941. return 0;
  3942. }
  3943. static __init int setup_numa_zonelist_order(char *s)
  3944. {
  3945. int ret;
  3946. if (!s)
  3947. return 0;
  3948. ret = __parse_numa_zonelist_order(s);
  3949. if (ret == 0)
  3950. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  3951. return ret;
  3952. }
  3953. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  3954. /*
  3955. * sysctl handler for numa_zonelist_order
  3956. */
  3957. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  3958. void __user *buffer, size_t *length,
  3959. loff_t *ppos)
  3960. {
  3961. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  3962. int ret;
  3963. static DEFINE_MUTEX(zl_order_mutex);
  3964. mutex_lock(&zl_order_mutex);
  3965. if (write) {
  3966. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  3967. ret = -EINVAL;
  3968. goto out;
  3969. }
  3970. strcpy(saved_string, (char *)table->data);
  3971. }
  3972. ret = proc_dostring(table, write, buffer, length, ppos);
  3973. if (ret)
  3974. goto out;
  3975. if (write) {
  3976. int oldval = user_zonelist_order;
  3977. ret = __parse_numa_zonelist_order((char *)table->data);
  3978. if (ret) {
  3979. /*
  3980. * bogus value. restore saved string
  3981. */
  3982. strncpy((char *)table->data, saved_string,
  3983. NUMA_ZONELIST_ORDER_LEN);
  3984. user_zonelist_order = oldval;
  3985. } else if (oldval != user_zonelist_order) {
  3986. mutex_lock(&zonelists_mutex);
  3987. build_all_zonelists(NULL, NULL);
  3988. mutex_unlock(&zonelists_mutex);
  3989. }
  3990. }
  3991. out:
  3992. mutex_unlock(&zl_order_mutex);
  3993. return ret;
  3994. }
  3995. #define MAX_NODE_LOAD (nr_online_nodes)
  3996. static int node_load[MAX_NUMNODES];
  3997. /**
  3998. * find_next_best_node - find the next node that should appear in a given node's fallback list
  3999. * @node: node whose fallback list we're appending
  4000. * @used_node_mask: nodemask_t of already used nodes
  4001. *
  4002. * We use a number of factors to determine which is the next node that should
  4003. * appear on a given node's fallback list. The node should not have appeared
  4004. * already in @node's fallback list, and it should be the next closest node
  4005. * according to the distance array (which contains arbitrary distance values
  4006. * from each node to each node in the system), and should also prefer nodes
  4007. * with no CPUs, since presumably they'll have very little allocation pressure
  4008. * on them otherwise.
  4009. * It returns -1 if no node is found.
  4010. */
  4011. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  4012. {
  4013. int n, val;
  4014. int min_val = INT_MAX;
  4015. int best_node = NUMA_NO_NODE;
  4016. const struct cpumask *tmp = cpumask_of_node(0);
  4017. /* Use the local node if we haven't already */
  4018. if (!node_isset(node, *used_node_mask)) {
  4019. node_set(node, *used_node_mask);
  4020. return node;
  4021. }
  4022. for_each_node_state(n, N_MEMORY) {
  4023. /* Don't want a node to appear more than once */
  4024. if (node_isset(n, *used_node_mask))
  4025. continue;
  4026. /* Use the distance array to find the distance */
  4027. val = node_distance(node, n);
  4028. /* Penalize nodes under us ("prefer the next node") */
  4029. val += (n < node);
  4030. /* Give preference to headless and unused nodes */
  4031. tmp = cpumask_of_node(n);
  4032. if (!cpumask_empty(tmp))
  4033. val += PENALTY_FOR_NODE_WITH_CPUS;
  4034. /* Slight preference for less loaded node */
  4035. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  4036. val += node_load[n];
  4037. if (val < min_val) {
  4038. min_val = val;
  4039. best_node = n;
  4040. }
  4041. }
  4042. if (best_node >= 0)
  4043. node_set(best_node, *used_node_mask);
  4044. return best_node;
  4045. }
  4046. /*
  4047. * Build zonelists ordered by node and zones within node.
  4048. * This results in maximum locality--normal zone overflows into local
  4049. * DMA zone, if any--but risks exhausting DMA zone.
  4050. */
  4051. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  4052. {
  4053. int j;
  4054. struct zonelist *zonelist;
  4055. zonelist = &pgdat->node_zonelists[0];
  4056. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  4057. ;
  4058. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4059. zonelist->_zonerefs[j].zone = NULL;
  4060. zonelist->_zonerefs[j].zone_idx = 0;
  4061. }
  4062. /*
  4063. * Build gfp_thisnode zonelists
  4064. */
  4065. static void build_thisnode_zonelists(pg_data_t *pgdat)
  4066. {
  4067. int j;
  4068. struct zonelist *zonelist;
  4069. zonelist = &pgdat->node_zonelists[1];
  4070. j = build_zonelists_node(pgdat, zonelist, 0);
  4071. zonelist->_zonerefs[j].zone = NULL;
  4072. zonelist->_zonerefs[j].zone_idx = 0;
  4073. }
  4074. /*
  4075. * Build zonelists ordered by zone and nodes within zones.
  4076. * This results in conserving DMA zone[s] until all Normal memory is
  4077. * exhausted, but results in overflowing to remote node while memory
  4078. * may still exist in local DMA zone.
  4079. */
  4080. static int node_order[MAX_NUMNODES];
  4081. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  4082. {
  4083. int pos, j, node;
  4084. int zone_type; /* needs to be signed */
  4085. struct zone *z;
  4086. struct zonelist *zonelist;
  4087. zonelist = &pgdat->node_zonelists[0];
  4088. pos = 0;
  4089. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  4090. for (j = 0; j < nr_nodes; j++) {
  4091. node = node_order[j];
  4092. z = &NODE_DATA(node)->node_zones[zone_type];
  4093. if (populated_zone(z)) {
  4094. zoneref_set_zone(z,
  4095. &zonelist->_zonerefs[pos++]);
  4096. check_highest_zone(zone_type);
  4097. }
  4098. }
  4099. }
  4100. zonelist->_zonerefs[pos].zone = NULL;
  4101. zonelist->_zonerefs[pos].zone_idx = 0;
  4102. }
  4103. #if defined(CONFIG_64BIT)
  4104. /*
  4105. * Devices that require DMA32/DMA are relatively rare and do not justify a
  4106. * penalty to every machine in case the specialised case applies. Default
  4107. * to Node-ordering on 64-bit NUMA machines
  4108. */
  4109. static int default_zonelist_order(void)
  4110. {
  4111. return ZONELIST_ORDER_NODE;
  4112. }
  4113. #else
  4114. /*
  4115. * On 32-bit, the Normal zone needs to be preserved for allocations accessible
  4116. * by the kernel. If processes running on node 0 deplete the low memory zone
  4117. * then reclaim will occur more frequency increasing stalls and potentially
  4118. * be easier to OOM if a large percentage of the zone is under writeback or
  4119. * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
  4120. * Hence, default to zone ordering on 32-bit.
  4121. */
  4122. static int default_zonelist_order(void)
  4123. {
  4124. return ZONELIST_ORDER_ZONE;
  4125. }
  4126. #endif /* CONFIG_64BIT */
  4127. static void set_zonelist_order(void)
  4128. {
  4129. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  4130. current_zonelist_order = default_zonelist_order();
  4131. else
  4132. current_zonelist_order = user_zonelist_order;
  4133. }
  4134. static void build_zonelists(pg_data_t *pgdat)
  4135. {
  4136. int i, node, load;
  4137. nodemask_t used_mask;
  4138. int local_node, prev_node;
  4139. struct zonelist *zonelist;
  4140. unsigned int order = current_zonelist_order;
  4141. /* initialize zonelists */
  4142. for (i = 0; i < MAX_ZONELISTS; i++) {
  4143. zonelist = pgdat->node_zonelists + i;
  4144. zonelist->_zonerefs[0].zone = NULL;
  4145. zonelist->_zonerefs[0].zone_idx = 0;
  4146. }
  4147. /* NUMA-aware ordering of nodes */
  4148. local_node = pgdat->node_id;
  4149. load = nr_online_nodes;
  4150. prev_node = local_node;
  4151. nodes_clear(used_mask);
  4152. memset(node_order, 0, sizeof(node_order));
  4153. i = 0;
  4154. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  4155. /*
  4156. * We don't want to pressure a particular node.
  4157. * So adding penalty to the first node in same
  4158. * distance group to make it round-robin.
  4159. */
  4160. if (node_distance(local_node, node) !=
  4161. node_distance(local_node, prev_node))
  4162. node_load[node] = load;
  4163. prev_node = node;
  4164. load--;
  4165. if (order == ZONELIST_ORDER_NODE)
  4166. build_zonelists_in_node_order(pgdat, node);
  4167. else
  4168. node_order[i++] = node; /* remember order */
  4169. }
  4170. if (order == ZONELIST_ORDER_ZONE) {
  4171. /* calculate node order -- i.e., DMA last! */
  4172. build_zonelists_in_zone_order(pgdat, i);
  4173. }
  4174. build_thisnode_zonelists(pgdat);
  4175. }
  4176. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4177. /*
  4178. * Return node id of node used for "local" allocations.
  4179. * I.e., first node id of first zone in arg node's generic zonelist.
  4180. * Used for initializing percpu 'numa_mem', which is used primarily
  4181. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  4182. */
  4183. int local_memory_node(int node)
  4184. {
  4185. struct zoneref *z;
  4186. z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  4187. gfp_zone(GFP_KERNEL),
  4188. NULL);
  4189. return z->zone->node;
  4190. }
  4191. #endif
  4192. #else /* CONFIG_NUMA */
  4193. static void set_zonelist_order(void)
  4194. {
  4195. current_zonelist_order = ZONELIST_ORDER_ZONE;
  4196. }
  4197. static void build_zonelists(pg_data_t *pgdat)
  4198. {
  4199. int node, local_node;
  4200. enum zone_type j;
  4201. struct zonelist *zonelist;
  4202. local_node = pgdat->node_id;
  4203. zonelist = &pgdat->node_zonelists[0];
  4204. j = build_zonelists_node(pgdat, zonelist, 0);
  4205. /*
  4206. * Now we build the zonelist so that it contains the zones
  4207. * of all the other nodes.
  4208. * We don't want to pressure a particular node, so when
  4209. * building the zones for node N, we make sure that the
  4210. * zones coming right after the local ones are those from
  4211. * node N+1 (modulo N)
  4212. */
  4213. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  4214. if (!node_online(node))
  4215. continue;
  4216. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4217. }
  4218. for (node = 0; node < local_node; node++) {
  4219. if (!node_online(node))
  4220. continue;
  4221. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4222. }
  4223. zonelist->_zonerefs[j].zone = NULL;
  4224. zonelist->_zonerefs[j].zone_idx = 0;
  4225. }
  4226. #endif /* CONFIG_NUMA */
  4227. /*
  4228. * Boot pageset table. One per cpu which is going to be used for all
  4229. * zones and all nodes. The parameters will be set in such a way
  4230. * that an item put on a list will immediately be handed over to
  4231. * the buddy list. This is safe since pageset manipulation is done
  4232. * with interrupts disabled.
  4233. *
  4234. * The boot_pagesets must be kept even after bootup is complete for
  4235. * unused processors and/or zones. They do play a role for bootstrapping
  4236. * hotplugged processors.
  4237. *
  4238. * zoneinfo_show() and maybe other functions do
  4239. * not check if the processor is online before following the pageset pointer.
  4240. * Other parts of the kernel may not check if the zone is available.
  4241. */
  4242. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  4243. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  4244. static void setup_zone_pageset(struct zone *zone);
  4245. /*
  4246. * Global mutex to protect against size modification of zonelists
  4247. * as well as to serialize pageset setup for the new populated zone.
  4248. */
  4249. DEFINE_MUTEX(zonelists_mutex);
  4250. /* return values int ....just for stop_machine() */
  4251. static int __build_all_zonelists(void *data)
  4252. {
  4253. int nid;
  4254. int cpu;
  4255. pg_data_t *self = data;
  4256. #ifdef CONFIG_NUMA
  4257. memset(node_load, 0, sizeof(node_load));
  4258. #endif
  4259. if (self && !node_online(self->node_id)) {
  4260. build_zonelists(self);
  4261. }
  4262. for_each_online_node(nid) {
  4263. pg_data_t *pgdat = NODE_DATA(nid);
  4264. build_zonelists(pgdat);
  4265. }
  4266. /*
  4267. * Initialize the boot_pagesets that are going to be used
  4268. * for bootstrapping processors. The real pagesets for
  4269. * each zone will be allocated later when the per cpu
  4270. * allocator is available.
  4271. *
  4272. * boot_pagesets are used also for bootstrapping offline
  4273. * cpus if the system is already booted because the pagesets
  4274. * are needed to initialize allocators on a specific cpu too.
  4275. * F.e. the percpu allocator needs the page allocator which
  4276. * needs the percpu allocator in order to allocate its pagesets
  4277. * (a chicken-egg dilemma).
  4278. */
  4279. for_each_possible_cpu(cpu) {
  4280. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  4281. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4282. /*
  4283. * We now know the "local memory node" for each node--
  4284. * i.e., the node of the first zone in the generic zonelist.
  4285. * Set up numa_mem percpu variable for on-line cpus. During
  4286. * boot, only the boot cpu should be on-line; we'll init the
  4287. * secondary cpus' numa_mem as they come on-line. During
  4288. * node/memory hotplug, we'll fixup all on-line cpus.
  4289. */
  4290. if (cpu_online(cpu))
  4291. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  4292. #endif
  4293. }
  4294. return 0;
  4295. }
  4296. static noinline void __init
  4297. build_all_zonelists_init(void)
  4298. {
  4299. __build_all_zonelists(NULL);
  4300. mminit_verify_zonelist();
  4301. cpuset_init_current_mems_allowed();
  4302. }
  4303. /*
  4304. * Called with zonelists_mutex held always
  4305. * unless system_state == SYSTEM_BOOTING.
  4306. *
  4307. * __ref due to (1) call of __meminit annotated setup_zone_pageset
  4308. * [we're only called with non-NULL zone through __meminit paths] and
  4309. * (2) call of __init annotated helper build_all_zonelists_init
  4310. * [protected by SYSTEM_BOOTING].
  4311. */
  4312. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  4313. {
  4314. set_zonelist_order();
  4315. if (system_state == SYSTEM_BOOTING) {
  4316. build_all_zonelists_init();
  4317. } else {
  4318. #ifdef CONFIG_MEMORY_HOTPLUG
  4319. if (zone)
  4320. setup_zone_pageset(zone);
  4321. #endif
  4322. /* we have to stop all cpus to guarantee there is no user
  4323. of zonelist */
  4324. stop_machine(__build_all_zonelists, pgdat, NULL);
  4325. /* cpuset refresh routine should be here */
  4326. }
  4327. vm_total_pages = nr_free_pagecache_pages();
  4328. /*
  4329. * Disable grouping by mobility if the number of pages in the
  4330. * system is too low to allow the mechanism to work. It would be
  4331. * more accurate, but expensive to check per-zone. This check is
  4332. * made on memory-hotadd so a system can start with mobility
  4333. * disabled and enable it later
  4334. */
  4335. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  4336. page_group_by_mobility_disabled = 1;
  4337. else
  4338. page_group_by_mobility_disabled = 0;
  4339. pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
  4340. nr_online_nodes,
  4341. zonelist_order_name[current_zonelist_order],
  4342. page_group_by_mobility_disabled ? "off" : "on",
  4343. vm_total_pages);
  4344. #ifdef CONFIG_NUMA
  4345. pr_info("Policy zone: %s\n", zone_names[policy_zone]);
  4346. #endif
  4347. }
  4348. /*
  4349. * Helper functions to size the waitqueue hash table.
  4350. * Essentially these want to choose hash table sizes sufficiently
  4351. * large so that collisions trying to wait on pages are rare.
  4352. * But in fact, the number of active page waitqueues on typical
  4353. * systems is ridiculously low, less than 200. So this is even
  4354. * conservative, even though it seems large.
  4355. *
  4356. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  4357. * waitqueues, i.e. the size of the waitq table given the number of pages.
  4358. */
  4359. #define PAGES_PER_WAITQUEUE 256
  4360. #ifndef CONFIG_MEMORY_HOTPLUG
  4361. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  4362. {
  4363. unsigned long size = 1;
  4364. pages /= PAGES_PER_WAITQUEUE;
  4365. while (size < pages)
  4366. size <<= 1;
  4367. /*
  4368. * Once we have dozens or even hundreds of threads sleeping
  4369. * on IO we've got bigger problems than wait queue collision.
  4370. * Limit the size of the wait table to a reasonable size.
  4371. */
  4372. size = min(size, 4096UL);
  4373. return max(size, 4UL);
  4374. }
  4375. #else
  4376. /*
  4377. * A zone's size might be changed by hot-add, so it is not possible to determine
  4378. * a suitable size for its wait_table. So we use the maximum size now.
  4379. *
  4380. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  4381. *
  4382. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  4383. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  4384. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  4385. *
  4386. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  4387. * or more by the traditional way. (See above). It equals:
  4388. *
  4389. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  4390. * ia64(16K page size) : = ( 8G + 4M)byte.
  4391. * powerpc (64K page size) : = (32G +16M)byte.
  4392. */
  4393. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  4394. {
  4395. return 4096UL;
  4396. }
  4397. #endif
  4398. /*
  4399. * This is an integer logarithm so that shifts can be used later
  4400. * to extract the more random high bits from the multiplicative
  4401. * hash function before the remainder is taken.
  4402. */
  4403. static inline unsigned long wait_table_bits(unsigned long size)
  4404. {
  4405. return ffz(~size);
  4406. }
  4407. /*
  4408. * Initially all pages are reserved - free ones are freed
  4409. * up by free_all_bootmem() once the early boot process is
  4410. * done. Non-atomic initialization, single-pass.
  4411. */
  4412. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  4413. unsigned long start_pfn, enum memmap_context context)
  4414. {
  4415. struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
  4416. unsigned long end_pfn = start_pfn + size;
  4417. pg_data_t *pgdat = NODE_DATA(nid);
  4418. unsigned long pfn;
  4419. unsigned long nr_initialised = 0;
  4420. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4421. struct memblock_region *r = NULL, *tmp;
  4422. #endif
  4423. if (highest_memmap_pfn < end_pfn - 1)
  4424. highest_memmap_pfn = end_pfn - 1;
  4425. /*
  4426. * Honor reservation requested by the driver for this ZONE_DEVICE
  4427. * memory
  4428. */
  4429. if (altmap && start_pfn == altmap->base_pfn)
  4430. start_pfn += altmap->reserve;
  4431. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  4432. /*
  4433. * There can be holes in boot-time mem_map[]s handed to this
  4434. * function. They do not exist on hotplugged memory.
  4435. */
  4436. if (context != MEMMAP_EARLY)
  4437. goto not_early;
  4438. if (!early_pfn_valid(pfn))
  4439. continue;
  4440. if (!early_pfn_in_nid(pfn, nid))
  4441. continue;
  4442. if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
  4443. break;
  4444. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4445. /*
  4446. * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
  4447. * from zone_movable_pfn[nid] to end of each node should be
  4448. * ZONE_MOVABLE not ZONE_NORMAL. skip it.
  4449. */
  4450. if (!mirrored_kernelcore && zone_movable_pfn[nid])
  4451. if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
  4452. continue;
  4453. /*
  4454. * Check given memblock attribute by firmware which can affect
  4455. * kernel memory layout. If zone==ZONE_MOVABLE but memory is
  4456. * mirrored, it's an overlapped memmap init. skip it.
  4457. */
  4458. if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
  4459. if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
  4460. for_each_memblock(memory, tmp)
  4461. if (pfn < memblock_region_memory_end_pfn(tmp))
  4462. break;
  4463. r = tmp;
  4464. }
  4465. if (pfn >= memblock_region_memory_base_pfn(r) &&
  4466. memblock_is_mirror(r)) {
  4467. /* already initialized as NORMAL */
  4468. pfn = memblock_region_memory_end_pfn(r);
  4469. continue;
  4470. }
  4471. }
  4472. #endif
  4473. not_early:
  4474. /*
  4475. * Mark the block movable so that blocks are reserved for
  4476. * movable at startup. This will force kernel allocations
  4477. * to reserve their blocks rather than leaking throughout
  4478. * the address space during boot when many long-lived
  4479. * kernel allocations are made.
  4480. *
  4481. * bitmap is created for zone's valid pfn range. but memmap
  4482. * can be created for invalid pages (for alignment)
  4483. * check here not to call set_pageblock_migratetype() against
  4484. * pfn out of zone.
  4485. */
  4486. if (!(pfn & (pageblock_nr_pages - 1))) {
  4487. struct page *page = pfn_to_page(pfn);
  4488. __init_single_page(page, pfn, zone, nid);
  4489. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4490. } else {
  4491. __init_single_pfn(pfn, zone, nid);
  4492. }
  4493. }
  4494. }
  4495. static void __meminit zone_init_free_lists(struct zone *zone)
  4496. {
  4497. unsigned int order, t;
  4498. for_each_migratetype_order(order, t) {
  4499. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  4500. zone->free_area[order].nr_free = 0;
  4501. }
  4502. }
  4503. #ifndef __HAVE_ARCH_MEMMAP_INIT
  4504. #define memmap_init(size, nid, zone, start_pfn) \
  4505. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  4506. #endif
  4507. static int zone_batchsize(struct zone *zone)
  4508. {
  4509. #ifdef CONFIG_MMU
  4510. int batch;
  4511. /*
  4512. * The per-cpu-pages pools are set to around 1000th of the
  4513. * size of the zone. But no more than 1/2 of a meg.
  4514. *
  4515. * OK, so we don't know how big the cache is. So guess.
  4516. */
  4517. batch = zone->managed_pages / 1024;
  4518. if (batch * PAGE_SIZE > 512 * 1024)
  4519. batch = (512 * 1024) / PAGE_SIZE;
  4520. batch /= 4; /* We effectively *= 4 below */
  4521. if (batch < 1)
  4522. batch = 1;
  4523. /*
  4524. * Clamp the batch to a 2^n - 1 value. Having a power
  4525. * of 2 value was found to be more likely to have
  4526. * suboptimal cache aliasing properties in some cases.
  4527. *
  4528. * For example if 2 tasks are alternately allocating
  4529. * batches of pages, one task can end up with a lot
  4530. * of pages of one half of the possible page colors
  4531. * and the other with pages of the other colors.
  4532. */
  4533. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  4534. return batch;
  4535. #else
  4536. /* The deferral and batching of frees should be suppressed under NOMMU
  4537. * conditions.
  4538. *
  4539. * The problem is that NOMMU needs to be able to allocate large chunks
  4540. * of contiguous memory as there's no hardware page translation to
  4541. * assemble apparent contiguous memory from discontiguous pages.
  4542. *
  4543. * Queueing large contiguous runs of pages for batching, however,
  4544. * causes the pages to actually be freed in smaller chunks. As there
  4545. * can be a significant delay between the individual batches being
  4546. * recycled, this leads to the once large chunks of space being
  4547. * fragmented and becoming unavailable for high-order allocations.
  4548. */
  4549. return 0;
  4550. #endif
  4551. }
  4552. /*
  4553. * pcp->high and pcp->batch values are related and dependent on one another:
  4554. * ->batch must never be higher then ->high.
  4555. * The following function updates them in a safe manner without read side
  4556. * locking.
  4557. *
  4558. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  4559. * those fields changing asynchronously (acording the the above rule).
  4560. *
  4561. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  4562. * outside of boot time (or some other assurance that no concurrent updaters
  4563. * exist).
  4564. */
  4565. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  4566. unsigned long batch)
  4567. {
  4568. /* start with a fail safe value for batch */
  4569. pcp->batch = 1;
  4570. smp_wmb();
  4571. /* Update high, then batch, in order */
  4572. pcp->high = high;
  4573. smp_wmb();
  4574. pcp->batch = batch;
  4575. }
  4576. /* a companion to pageset_set_high() */
  4577. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  4578. {
  4579. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  4580. }
  4581. static void pageset_init(struct per_cpu_pageset *p)
  4582. {
  4583. struct per_cpu_pages *pcp;
  4584. int migratetype;
  4585. memset(p, 0, sizeof(*p));
  4586. pcp = &p->pcp;
  4587. pcp->count = 0;
  4588. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  4589. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  4590. }
  4591. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  4592. {
  4593. pageset_init(p);
  4594. pageset_set_batch(p, batch);
  4595. }
  4596. /*
  4597. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  4598. * to the value high for the pageset p.
  4599. */
  4600. static void pageset_set_high(struct per_cpu_pageset *p,
  4601. unsigned long high)
  4602. {
  4603. unsigned long batch = max(1UL, high / 4);
  4604. if ((high / 4) > (PAGE_SHIFT * 8))
  4605. batch = PAGE_SHIFT * 8;
  4606. pageset_update(&p->pcp, high, batch);
  4607. }
  4608. static void pageset_set_high_and_batch(struct zone *zone,
  4609. struct per_cpu_pageset *pcp)
  4610. {
  4611. if (percpu_pagelist_fraction)
  4612. pageset_set_high(pcp,
  4613. (zone->managed_pages /
  4614. percpu_pagelist_fraction));
  4615. else
  4616. pageset_set_batch(pcp, zone_batchsize(zone));
  4617. }
  4618. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  4619. {
  4620. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  4621. pageset_init(pcp);
  4622. pageset_set_high_and_batch(zone, pcp);
  4623. }
  4624. static void __meminit setup_zone_pageset(struct zone *zone)
  4625. {
  4626. int cpu;
  4627. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  4628. for_each_possible_cpu(cpu)
  4629. zone_pageset_init(zone, cpu);
  4630. }
  4631. /*
  4632. * Allocate per cpu pagesets and initialize them.
  4633. * Before this call only boot pagesets were available.
  4634. */
  4635. void __init setup_per_cpu_pageset(void)
  4636. {
  4637. struct zone *zone;
  4638. for_each_populated_zone(zone)
  4639. setup_zone_pageset(zone);
  4640. }
  4641. static noinline __init_refok
  4642. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  4643. {
  4644. int i;
  4645. size_t alloc_size;
  4646. /*
  4647. * The per-page waitqueue mechanism uses hashed waitqueues
  4648. * per zone.
  4649. */
  4650. zone->wait_table_hash_nr_entries =
  4651. wait_table_hash_nr_entries(zone_size_pages);
  4652. zone->wait_table_bits =
  4653. wait_table_bits(zone->wait_table_hash_nr_entries);
  4654. alloc_size = zone->wait_table_hash_nr_entries
  4655. * sizeof(wait_queue_head_t);
  4656. if (!slab_is_available()) {
  4657. zone->wait_table = (wait_queue_head_t *)
  4658. memblock_virt_alloc_node_nopanic(
  4659. alloc_size, zone->zone_pgdat->node_id);
  4660. } else {
  4661. /*
  4662. * This case means that a zone whose size was 0 gets new memory
  4663. * via memory hot-add.
  4664. * But it may be the case that a new node was hot-added. In
  4665. * this case vmalloc() will not be able to use this new node's
  4666. * memory - this wait_table must be initialized to use this new
  4667. * node itself as well.
  4668. * To use this new node's memory, further consideration will be
  4669. * necessary.
  4670. */
  4671. zone->wait_table = vmalloc(alloc_size);
  4672. }
  4673. if (!zone->wait_table)
  4674. return -ENOMEM;
  4675. for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  4676. init_waitqueue_head(zone->wait_table + i);
  4677. return 0;
  4678. }
  4679. static __meminit void zone_pcp_init(struct zone *zone)
  4680. {
  4681. /*
  4682. * per cpu subsystem is not up at this point. The following code
  4683. * relies on the ability of the linker to provide the
  4684. * offset of a (static) per cpu variable into the per cpu area.
  4685. */
  4686. zone->pageset = &boot_pageset;
  4687. if (populated_zone(zone))
  4688. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  4689. zone->name, zone->present_pages,
  4690. zone_batchsize(zone));
  4691. }
  4692. int __meminit init_currently_empty_zone(struct zone *zone,
  4693. unsigned long zone_start_pfn,
  4694. unsigned long size)
  4695. {
  4696. struct pglist_data *pgdat = zone->zone_pgdat;
  4697. int ret;
  4698. ret = zone_wait_table_init(zone, size);
  4699. if (ret)
  4700. return ret;
  4701. pgdat->nr_zones = zone_idx(zone) + 1;
  4702. zone->zone_start_pfn = zone_start_pfn;
  4703. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  4704. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  4705. pgdat->node_id,
  4706. (unsigned long)zone_idx(zone),
  4707. zone_start_pfn, (zone_start_pfn + size));
  4708. zone_init_free_lists(zone);
  4709. return 0;
  4710. }
  4711. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4712. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  4713. /*
  4714. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  4715. */
  4716. int __meminit __early_pfn_to_nid(unsigned long pfn,
  4717. struct mminit_pfnnid_cache *state)
  4718. {
  4719. unsigned long start_pfn, end_pfn;
  4720. int nid;
  4721. if (state->last_start <= pfn && pfn < state->last_end)
  4722. return state->last_nid;
  4723. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  4724. if (nid != -1) {
  4725. state->last_start = start_pfn;
  4726. state->last_end = end_pfn;
  4727. state->last_nid = nid;
  4728. }
  4729. return nid;
  4730. }
  4731. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  4732. /**
  4733. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  4734. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  4735. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  4736. *
  4737. * If an architecture guarantees that all ranges registered contain no holes
  4738. * and may be freed, this this function may be used instead of calling
  4739. * memblock_free_early_nid() manually.
  4740. */
  4741. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  4742. {
  4743. unsigned long start_pfn, end_pfn;
  4744. int i, this_nid;
  4745. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  4746. start_pfn = min(start_pfn, max_low_pfn);
  4747. end_pfn = min(end_pfn, max_low_pfn);
  4748. if (start_pfn < end_pfn)
  4749. memblock_free_early_nid(PFN_PHYS(start_pfn),
  4750. (end_pfn - start_pfn) << PAGE_SHIFT,
  4751. this_nid);
  4752. }
  4753. }
  4754. /**
  4755. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  4756. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  4757. *
  4758. * If an architecture guarantees that all ranges registered contain no holes and may
  4759. * be freed, this function may be used instead of calling memory_present() manually.
  4760. */
  4761. void __init sparse_memory_present_with_active_regions(int nid)
  4762. {
  4763. unsigned long start_pfn, end_pfn;
  4764. int i, this_nid;
  4765. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  4766. memory_present(this_nid, start_pfn, end_pfn);
  4767. }
  4768. /**
  4769. * get_pfn_range_for_nid - Return the start and end page frames for a node
  4770. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  4771. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  4772. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  4773. *
  4774. * It returns the start and end page frame of a node based on information
  4775. * provided by memblock_set_node(). If called for a node
  4776. * with no available memory, a warning is printed and the start and end
  4777. * PFNs will be 0.
  4778. */
  4779. void __meminit get_pfn_range_for_nid(unsigned int nid,
  4780. unsigned long *start_pfn, unsigned long *end_pfn)
  4781. {
  4782. unsigned long this_start_pfn, this_end_pfn;
  4783. int i;
  4784. *start_pfn = -1UL;
  4785. *end_pfn = 0;
  4786. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  4787. *start_pfn = min(*start_pfn, this_start_pfn);
  4788. *end_pfn = max(*end_pfn, this_end_pfn);
  4789. }
  4790. if (*start_pfn == -1UL)
  4791. *start_pfn = 0;
  4792. }
  4793. /*
  4794. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  4795. * assumption is made that zones within a node are ordered in monotonic
  4796. * increasing memory addresses so that the "highest" populated zone is used
  4797. */
  4798. static void __init find_usable_zone_for_movable(void)
  4799. {
  4800. int zone_index;
  4801. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  4802. if (zone_index == ZONE_MOVABLE)
  4803. continue;
  4804. if (arch_zone_highest_possible_pfn[zone_index] >
  4805. arch_zone_lowest_possible_pfn[zone_index])
  4806. break;
  4807. }
  4808. VM_BUG_ON(zone_index == -1);
  4809. movable_zone = zone_index;
  4810. }
  4811. /*
  4812. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  4813. * because it is sized independent of architecture. Unlike the other zones,
  4814. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  4815. * in each node depending on the size of each node and how evenly kernelcore
  4816. * is distributed. This helper function adjusts the zone ranges
  4817. * provided by the architecture for a given node by using the end of the
  4818. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  4819. * zones within a node are in order of monotonic increases memory addresses
  4820. */
  4821. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  4822. unsigned long zone_type,
  4823. unsigned long node_start_pfn,
  4824. unsigned long node_end_pfn,
  4825. unsigned long *zone_start_pfn,
  4826. unsigned long *zone_end_pfn)
  4827. {
  4828. /* Only adjust if ZONE_MOVABLE is on this node */
  4829. if (zone_movable_pfn[nid]) {
  4830. /* Size ZONE_MOVABLE */
  4831. if (zone_type == ZONE_MOVABLE) {
  4832. *zone_start_pfn = zone_movable_pfn[nid];
  4833. *zone_end_pfn = min(node_end_pfn,
  4834. arch_zone_highest_possible_pfn[movable_zone]);
  4835. /* Check if this whole range is within ZONE_MOVABLE */
  4836. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  4837. *zone_start_pfn = *zone_end_pfn;
  4838. }
  4839. }
  4840. /*
  4841. * Return the number of pages a zone spans in a node, including holes
  4842. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  4843. */
  4844. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4845. unsigned long zone_type,
  4846. unsigned long node_start_pfn,
  4847. unsigned long node_end_pfn,
  4848. unsigned long *zone_start_pfn,
  4849. unsigned long *zone_end_pfn,
  4850. unsigned long *ignored)
  4851. {
  4852. /* When hotadd a new node from cpu_up(), the node should be empty */
  4853. if (!node_start_pfn && !node_end_pfn)
  4854. return 0;
  4855. /* Get the start and end of the zone */
  4856. *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  4857. *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  4858. adjust_zone_range_for_zone_movable(nid, zone_type,
  4859. node_start_pfn, node_end_pfn,
  4860. zone_start_pfn, zone_end_pfn);
  4861. /* Check that this node has pages within the zone's required range */
  4862. if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
  4863. return 0;
  4864. /* Move the zone boundaries inside the node if necessary */
  4865. *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
  4866. *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
  4867. /* Return the spanned pages */
  4868. return *zone_end_pfn - *zone_start_pfn;
  4869. }
  4870. /*
  4871. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  4872. * then all holes in the requested range will be accounted for.
  4873. */
  4874. unsigned long __meminit __absent_pages_in_range(int nid,
  4875. unsigned long range_start_pfn,
  4876. unsigned long range_end_pfn)
  4877. {
  4878. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  4879. unsigned long start_pfn, end_pfn;
  4880. int i;
  4881. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4882. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  4883. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  4884. nr_absent -= end_pfn - start_pfn;
  4885. }
  4886. return nr_absent;
  4887. }
  4888. /**
  4889. * absent_pages_in_range - Return number of page frames in holes within a range
  4890. * @start_pfn: The start PFN to start searching for holes
  4891. * @end_pfn: The end PFN to stop searching for holes
  4892. *
  4893. * It returns the number of pages frames in memory holes within a range.
  4894. */
  4895. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  4896. unsigned long end_pfn)
  4897. {
  4898. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  4899. }
  4900. /* Return the number of page frames in holes in a zone on a node */
  4901. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  4902. unsigned long zone_type,
  4903. unsigned long node_start_pfn,
  4904. unsigned long node_end_pfn,
  4905. unsigned long *ignored)
  4906. {
  4907. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  4908. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  4909. unsigned long zone_start_pfn, zone_end_pfn;
  4910. unsigned long nr_absent;
  4911. /* When hotadd a new node from cpu_up(), the node should be empty */
  4912. if (!node_start_pfn && !node_end_pfn)
  4913. return 0;
  4914. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  4915. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  4916. adjust_zone_range_for_zone_movable(nid, zone_type,
  4917. node_start_pfn, node_end_pfn,
  4918. &zone_start_pfn, &zone_end_pfn);
  4919. nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  4920. /*
  4921. * ZONE_MOVABLE handling.
  4922. * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
  4923. * and vice versa.
  4924. */
  4925. if (zone_movable_pfn[nid]) {
  4926. if (mirrored_kernelcore) {
  4927. unsigned long start_pfn, end_pfn;
  4928. struct memblock_region *r;
  4929. for_each_memblock(memory, r) {
  4930. start_pfn = clamp(memblock_region_memory_base_pfn(r),
  4931. zone_start_pfn, zone_end_pfn);
  4932. end_pfn = clamp(memblock_region_memory_end_pfn(r),
  4933. zone_start_pfn, zone_end_pfn);
  4934. if (zone_type == ZONE_MOVABLE &&
  4935. memblock_is_mirror(r))
  4936. nr_absent += end_pfn - start_pfn;
  4937. if (zone_type == ZONE_NORMAL &&
  4938. !memblock_is_mirror(r))
  4939. nr_absent += end_pfn - start_pfn;
  4940. }
  4941. } else {
  4942. if (zone_type == ZONE_NORMAL)
  4943. nr_absent += node_end_pfn - zone_movable_pfn[nid];
  4944. }
  4945. }
  4946. return nr_absent;
  4947. }
  4948. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4949. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4950. unsigned long zone_type,
  4951. unsigned long node_start_pfn,
  4952. unsigned long node_end_pfn,
  4953. unsigned long *zone_start_pfn,
  4954. unsigned long *zone_end_pfn,
  4955. unsigned long *zones_size)
  4956. {
  4957. unsigned int zone;
  4958. *zone_start_pfn = node_start_pfn;
  4959. for (zone = 0; zone < zone_type; zone++)
  4960. *zone_start_pfn += zones_size[zone];
  4961. *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
  4962. return zones_size[zone_type];
  4963. }
  4964. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  4965. unsigned long zone_type,
  4966. unsigned long node_start_pfn,
  4967. unsigned long node_end_pfn,
  4968. unsigned long *zholes_size)
  4969. {
  4970. if (!zholes_size)
  4971. return 0;
  4972. return zholes_size[zone_type];
  4973. }
  4974. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4975. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  4976. unsigned long node_start_pfn,
  4977. unsigned long node_end_pfn,
  4978. unsigned long *zones_size,
  4979. unsigned long *zholes_size)
  4980. {
  4981. unsigned long realtotalpages = 0, totalpages = 0;
  4982. enum zone_type i;
  4983. for (i = 0; i < MAX_NR_ZONES; i++) {
  4984. struct zone *zone = pgdat->node_zones + i;
  4985. unsigned long zone_start_pfn, zone_end_pfn;
  4986. unsigned long size, real_size;
  4987. size = zone_spanned_pages_in_node(pgdat->node_id, i,
  4988. node_start_pfn,
  4989. node_end_pfn,
  4990. &zone_start_pfn,
  4991. &zone_end_pfn,
  4992. zones_size);
  4993. real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
  4994. node_start_pfn, node_end_pfn,
  4995. zholes_size);
  4996. if (size)
  4997. zone->zone_start_pfn = zone_start_pfn;
  4998. else
  4999. zone->zone_start_pfn = 0;
  5000. zone->spanned_pages = size;
  5001. zone->present_pages = real_size;
  5002. totalpages += size;
  5003. realtotalpages += real_size;
  5004. }
  5005. pgdat->node_spanned_pages = totalpages;
  5006. pgdat->node_present_pages = realtotalpages;
  5007. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  5008. realtotalpages);
  5009. }
  5010. #ifndef CONFIG_SPARSEMEM
  5011. /*
  5012. * Calculate the size of the zone->blockflags rounded to an unsigned long
  5013. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  5014. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  5015. * round what is now in bits to nearest long in bits, then return it in
  5016. * bytes.
  5017. */
  5018. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  5019. {
  5020. unsigned long usemapsize;
  5021. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  5022. usemapsize = roundup(zonesize, pageblock_nr_pages);
  5023. usemapsize = usemapsize >> pageblock_order;
  5024. usemapsize *= NR_PAGEBLOCK_BITS;
  5025. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  5026. return usemapsize / 8;
  5027. }
  5028. static void __init setup_usemap(struct pglist_data *pgdat,
  5029. struct zone *zone,
  5030. unsigned long zone_start_pfn,
  5031. unsigned long zonesize)
  5032. {
  5033. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  5034. zone->pageblock_flags = NULL;
  5035. if (usemapsize)
  5036. zone->pageblock_flags =
  5037. memblock_virt_alloc_node_nopanic(usemapsize,
  5038. pgdat->node_id);
  5039. }
  5040. #else
  5041. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  5042. unsigned long zone_start_pfn, unsigned long zonesize) {}
  5043. #endif /* CONFIG_SPARSEMEM */
  5044. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  5045. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  5046. void __paginginit set_pageblock_order(void)
  5047. {
  5048. unsigned int order;
  5049. /* Check that pageblock_nr_pages has not already been setup */
  5050. if (pageblock_order)
  5051. return;
  5052. if (HPAGE_SHIFT > PAGE_SHIFT)
  5053. order = HUGETLB_PAGE_ORDER;
  5054. else
  5055. order = MAX_ORDER - 1;
  5056. /*
  5057. * Assume the largest contiguous order of interest is a huge page.
  5058. * This value may be variable depending on boot parameters on IA64 and
  5059. * powerpc.
  5060. */
  5061. pageblock_order = order;
  5062. }
  5063. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  5064. /*
  5065. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  5066. * is unused as pageblock_order is set at compile-time. See
  5067. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  5068. * the kernel config
  5069. */
  5070. void __paginginit set_pageblock_order(void)
  5071. {
  5072. }
  5073. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  5074. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  5075. unsigned long present_pages)
  5076. {
  5077. unsigned long pages = spanned_pages;
  5078. /*
  5079. * Provide a more accurate estimation if there are holes within
  5080. * the zone and SPARSEMEM is in use. If there are holes within the
  5081. * zone, each populated memory region may cost us one or two extra
  5082. * memmap pages due to alignment because memmap pages for each
  5083. * populated regions may not naturally algined on page boundary.
  5084. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  5085. */
  5086. if (spanned_pages > present_pages + (present_pages >> 4) &&
  5087. IS_ENABLED(CONFIG_SPARSEMEM))
  5088. pages = present_pages;
  5089. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  5090. }
  5091. /*
  5092. * Set up the zone data structures:
  5093. * - mark all pages reserved
  5094. * - mark all memory queues empty
  5095. * - clear the memory bitmaps
  5096. *
  5097. * NOTE: pgdat should get zeroed by caller.
  5098. */
  5099. static void __paginginit free_area_init_core(struct pglist_data *pgdat)
  5100. {
  5101. enum zone_type j;
  5102. int nid = pgdat->node_id;
  5103. int ret;
  5104. pgdat_resize_init(pgdat);
  5105. #ifdef CONFIG_NUMA_BALANCING
  5106. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  5107. pgdat->numabalancing_migrate_nr_pages = 0;
  5108. pgdat->numabalancing_migrate_next_window = jiffies;
  5109. #endif
  5110. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5111. spin_lock_init(&pgdat->split_queue_lock);
  5112. INIT_LIST_HEAD(&pgdat->split_queue);
  5113. pgdat->split_queue_len = 0;
  5114. #endif
  5115. init_waitqueue_head(&pgdat->kswapd_wait);
  5116. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  5117. #ifdef CONFIG_COMPACTION
  5118. init_waitqueue_head(&pgdat->kcompactd_wait);
  5119. #endif
  5120. pgdat_page_ext_init(pgdat);
  5121. for (j = 0; j < MAX_NR_ZONES; j++) {
  5122. struct zone *zone = pgdat->node_zones + j;
  5123. unsigned long size, realsize, freesize, memmap_pages;
  5124. unsigned long zone_start_pfn = zone->zone_start_pfn;
  5125. size = zone->spanned_pages;
  5126. realsize = freesize = zone->present_pages;
  5127. /*
  5128. * Adjust freesize so that it accounts for how much memory
  5129. * is used by this zone for memmap. This affects the watermark
  5130. * and per-cpu initialisations
  5131. */
  5132. memmap_pages = calc_memmap_size(size, realsize);
  5133. if (!is_highmem_idx(j)) {
  5134. if (freesize >= memmap_pages) {
  5135. freesize -= memmap_pages;
  5136. if (memmap_pages)
  5137. printk(KERN_DEBUG
  5138. " %s zone: %lu pages used for memmap\n",
  5139. zone_names[j], memmap_pages);
  5140. } else
  5141. pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
  5142. zone_names[j], memmap_pages, freesize);
  5143. }
  5144. /* Account for reserved pages */
  5145. if (j == 0 && freesize > dma_reserve) {
  5146. freesize -= dma_reserve;
  5147. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  5148. zone_names[0], dma_reserve);
  5149. }
  5150. if (!is_highmem_idx(j))
  5151. nr_kernel_pages += freesize;
  5152. /* Charge for highmem memmap if there are enough kernel pages */
  5153. else if (nr_kernel_pages > memmap_pages * 2)
  5154. nr_kernel_pages -= memmap_pages;
  5155. nr_all_pages += freesize;
  5156. /*
  5157. * Set an approximate value for lowmem here, it will be adjusted
  5158. * when the bootmem allocator frees pages into the buddy system.
  5159. * And all highmem pages will be managed by the buddy system.
  5160. */
  5161. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  5162. #ifdef CONFIG_NUMA
  5163. zone->node = nid;
  5164. zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
  5165. / 100;
  5166. zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
  5167. #endif
  5168. zone->name = zone_names[j];
  5169. spin_lock_init(&zone->lock);
  5170. spin_lock_init(&zone->lru_lock);
  5171. zone_seqlock_init(zone);
  5172. zone->zone_pgdat = pgdat;
  5173. zone_pcp_init(zone);
  5174. /* For bootup, initialized properly in watermark setup */
  5175. mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
  5176. lruvec_init(&zone->lruvec);
  5177. if (!size)
  5178. continue;
  5179. set_pageblock_order();
  5180. setup_usemap(pgdat, zone, zone_start_pfn, size);
  5181. ret = init_currently_empty_zone(zone, zone_start_pfn, size);
  5182. BUG_ON(ret);
  5183. memmap_init(size, nid, j, zone_start_pfn);
  5184. }
  5185. }
  5186. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  5187. {
  5188. unsigned long __maybe_unused start = 0;
  5189. unsigned long __maybe_unused offset = 0;
  5190. /* Skip empty nodes */
  5191. if (!pgdat->node_spanned_pages)
  5192. return;
  5193. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5194. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  5195. offset = pgdat->node_start_pfn - start;
  5196. /* ia64 gets its own node_mem_map, before this, without bootmem */
  5197. if (!pgdat->node_mem_map) {
  5198. unsigned long size, end;
  5199. struct page *map;
  5200. /*
  5201. * The zone's endpoints aren't required to be MAX_ORDER
  5202. * aligned but the node_mem_map endpoints must be in order
  5203. * for the buddy allocator to function correctly.
  5204. */
  5205. end = pgdat_end_pfn(pgdat);
  5206. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  5207. size = (end - start) * sizeof(struct page);
  5208. map = alloc_remap(pgdat->node_id, size);
  5209. if (!map)
  5210. map = memblock_virt_alloc_node_nopanic(size,
  5211. pgdat->node_id);
  5212. pgdat->node_mem_map = map + offset;
  5213. }
  5214. #ifndef CONFIG_NEED_MULTIPLE_NODES
  5215. /*
  5216. * With no DISCONTIG, the global mem_map is just set as node 0's
  5217. */
  5218. if (pgdat == NODE_DATA(0)) {
  5219. mem_map = NODE_DATA(0)->node_mem_map;
  5220. #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
  5221. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  5222. mem_map -= offset;
  5223. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5224. }
  5225. #endif
  5226. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  5227. }
  5228. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  5229. unsigned long node_start_pfn, unsigned long *zholes_size)
  5230. {
  5231. pg_data_t *pgdat = NODE_DATA(nid);
  5232. unsigned long start_pfn = 0;
  5233. unsigned long end_pfn = 0;
  5234. /* pg_data_t should be reset to zero when it's allocated */
  5235. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  5236. reset_deferred_meminit(pgdat);
  5237. pgdat->node_id = nid;
  5238. pgdat->node_start_pfn = node_start_pfn;
  5239. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5240. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  5241. pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
  5242. (u64)start_pfn << PAGE_SHIFT,
  5243. end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
  5244. #else
  5245. start_pfn = node_start_pfn;
  5246. #endif
  5247. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  5248. zones_size, zholes_size);
  5249. alloc_node_mem_map(pgdat);
  5250. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5251. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  5252. nid, (unsigned long)pgdat,
  5253. (unsigned long)pgdat->node_mem_map);
  5254. #endif
  5255. free_area_init_core(pgdat);
  5256. }
  5257. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5258. #if MAX_NUMNODES > 1
  5259. /*
  5260. * Figure out the number of possible node ids.
  5261. */
  5262. void __init setup_nr_node_ids(void)
  5263. {
  5264. unsigned int highest;
  5265. highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
  5266. nr_node_ids = highest + 1;
  5267. }
  5268. #endif
  5269. /**
  5270. * node_map_pfn_alignment - determine the maximum internode alignment
  5271. *
  5272. * This function should be called after node map is populated and sorted.
  5273. * It calculates the maximum power of two alignment which can distinguish
  5274. * all the nodes.
  5275. *
  5276. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  5277. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  5278. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  5279. * shifted, 1GiB is enough and this function will indicate so.
  5280. *
  5281. * This is used to test whether pfn -> nid mapping of the chosen memory
  5282. * model has fine enough granularity to avoid incorrect mapping for the
  5283. * populated node map.
  5284. *
  5285. * Returns the determined alignment in pfn's. 0 if there is no alignment
  5286. * requirement (single node).
  5287. */
  5288. unsigned long __init node_map_pfn_alignment(void)
  5289. {
  5290. unsigned long accl_mask = 0, last_end = 0;
  5291. unsigned long start, end, mask;
  5292. int last_nid = -1;
  5293. int i, nid;
  5294. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  5295. if (!start || last_nid < 0 || last_nid == nid) {
  5296. last_nid = nid;
  5297. last_end = end;
  5298. continue;
  5299. }
  5300. /*
  5301. * Start with a mask granular enough to pin-point to the
  5302. * start pfn and tick off bits one-by-one until it becomes
  5303. * too coarse to separate the current node from the last.
  5304. */
  5305. mask = ~((1 << __ffs(start)) - 1);
  5306. while (mask && last_end <= (start & (mask << 1)))
  5307. mask <<= 1;
  5308. /* accumulate all internode masks */
  5309. accl_mask |= mask;
  5310. }
  5311. /* convert mask to number of pages */
  5312. return ~accl_mask + 1;
  5313. }
  5314. /* Find the lowest pfn for a node */
  5315. static unsigned long __init find_min_pfn_for_node(int nid)
  5316. {
  5317. unsigned long min_pfn = ULONG_MAX;
  5318. unsigned long start_pfn;
  5319. int i;
  5320. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  5321. min_pfn = min(min_pfn, start_pfn);
  5322. if (min_pfn == ULONG_MAX) {
  5323. pr_warn("Could not find start_pfn for node %d\n", nid);
  5324. return 0;
  5325. }
  5326. return min_pfn;
  5327. }
  5328. /**
  5329. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  5330. *
  5331. * It returns the minimum PFN based on information provided via
  5332. * memblock_set_node().
  5333. */
  5334. unsigned long __init find_min_pfn_with_active_regions(void)
  5335. {
  5336. return find_min_pfn_for_node(MAX_NUMNODES);
  5337. }
  5338. /*
  5339. * early_calculate_totalpages()
  5340. * Sum pages in active regions for movable zone.
  5341. * Populate N_MEMORY for calculating usable_nodes.
  5342. */
  5343. static unsigned long __init early_calculate_totalpages(void)
  5344. {
  5345. unsigned long totalpages = 0;
  5346. unsigned long start_pfn, end_pfn;
  5347. int i, nid;
  5348. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  5349. unsigned long pages = end_pfn - start_pfn;
  5350. totalpages += pages;
  5351. if (pages)
  5352. node_set_state(nid, N_MEMORY);
  5353. }
  5354. return totalpages;
  5355. }
  5356. /*
  5357. * Find the PFN the Movable zone begins in each node. Kernel memory
  5358. * is spread evenly between nodes as long as the nodes have enough
  5359. * memory. When they don't, some nodes will have more kernelcore than
  5360. * others
  5361. */
  5362. static void __init find_zone_movable_pfns_for_nodes(void)
  5363. {
  5364. int i, nid;
  5365. unsigned long usable_startpfn;
  5366. unsigned long kernelcore_node, kernelcore_remaining;
  5367. /* save the state before borrow the nodemask */
  5368. nodemask_t saved_node_state = node_states[N_MEMORY];
  5369. unsigned long totalpages = early_calculate_totalpages();
  5370. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  5371. struct memblock_region *r;
  5372. /* Need to find movable_zone earlier when movable_node is specified. */
  5373. find_usable_zone_for_movable();
  5374. /*
  5375. * If movable_node is specified, ignore kernelcore and movablecore
  5376. * options.
  5377. */
  5378. if (movable_node_is_enabled()) {
  5379. for_each_memblock(memory, r) {
  5380. if (!memblock_is_hotpluggable(r))
  5381. continue;
  5382. nid = r->nid;
  5383. usable_startpfn = PFN_DOWN(r->base);
  5384. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5385. min(usable_startpfn, zone_movable_pfn[nid]) :
  5386. usable_startpfn;
  5387. }
  5388. goto out2;
  5389. }
  5390. /*
  5391. * If kernelcore=mirror is specified, ignore movablecore option
  5392. */
  5393. if (mirrored_kernelcore) {
  5394. bool mem_below_4gb_not_mirrored = false;
  5395. for_each_memblock(memory, r) {
  5396. if (memblock_is_mirror(r))
  5397. continue;
  5398. nid = r->nid;
  5399. usable_startpfn = memblock_region_memory_base_pfn(r);
  5400. if (usable_startpfn < 0x100000) {
  5401. mem_below_4gb_not_mirrored = true;
  5402. continue;
  5403. }
  5404. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5405. min(usable_startpfn, zone_movable_pfn[nid]) :
  5406. usable_startpfn;
  5407. }
  5408. if (mem_below_4gb_not_mirrored)
  5409. pr_warn("This configuration results in unmirrored kernel memory.");
  5410. goto out2;
  5411. }
  5412. /*
  5413. * If movablecore=nn[KMG] was specified, calculate what size of
  5414. * kernelcore that corresponds so that memory usable for
  5415. * any allocation type is evenly spread. If both kernelcore
  5416. * and movablecore are specified, then the value of kernelcore
  5417. * will be used for required_kernelcore if it's greater than
  5418. * what movablecore would have allowed.
  5419. */
  5420. if (required_movablecore) {
  5421. unsigned long corepages;
  5422. /*
  5423. * Round-up so that ZONE_MOVABLE is at least as large as what
  5424. * was requested by the user
  5425. */
  5426. required_movablecore =
  5427. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  5428. required_movablecore = min(totalpages, required_movablecore);
  5429. corepages = totalpages - required_movablecore;
  5430. required_kernelcore = max(required_kernelcore, corepages);
  5431. }
  5432. /*
  5433. * If kernelcore was not specified or kernelcore size is larger
  5434. * than totalpages, there is no ZONE_MOVABLE.
  5435. */
  5436. if (!required_kernelcore || required_kernelcore >= totalpages)
  5437. goto out;
  5438. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  5439. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  5440. restart:
  5441. /* Spread kernelcore memory as evenly as possible throughout nodes */
  5442. kernelcore_node = required_kernelcore / usable_nodes;
  5443. for_each_node_state(nid, N_MEMORY) {
  5444. unsigned long start_pfn, end_pfn;
  5445. /*
  5446. * Recalculate kernelcore_node if the division per node
  5447. * now exceeds what is necessary to satisfy the requested
  5448. * amount of memory for the kernel
  5449. */
  5450. if (required_kernelcore < kernelcore_node)
  5451. kernelcore_node = required_kernelcore / usable_nodes;
  5452. /*
  5453. * As the map is walked, we track how much memory is usable
  5454. * by the kernel using kernelcore_remaining. When it is
  5455. * 0, the rest of the node is usable by ZONE_MOVABLE
  5456. */
  5457. kernelcore_remaining = kernelcore_node;
  5458. /* Go through each range of PFNs within this node */
  5459. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  5460. unsigned long size_pages;
  5461. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  5462. if (start_pfn >= end_pfn)
  5463. continue;
  5464. /* Account for what is only usable for kernelcore */
  5465. if (start_pfn < usable_startpfn) {
  5466. unsigned long kernel_pages;
  5467. kernel_pages = min(end_pfn, usable_startpfn)
  5468. - start_pfn;
  5469. kernelcore_remaining -= min(kernel_pages,
  5470. kernelcore_remaining);
  5471. required_kernelcore -= min(kernel_pages,
  5472. required_kernelcore);
  5473. /* Continue if range is now fully accounted */
  5474. if (end_pfn <= usable_startpfn) {
  5475. /*
  5476. * Push zone_movable_pfn to the end so
  5477. * that if we have to rebalance
  5478. * kernelcore across nodes, we will
  5479. * not double account here
  5480. */
  5481. zone_movable_pfn[nid] = end_pfn;
  5482. continue;
  5483. }
  5484. start_pfn = usable_startpfn;
  5485. }
  5486. /*
  5487. * The usable PFN range for ZONE_MOVABLE is from
  5488. * start_pfn->end_pfn. Calculate size_pages as the
  5489. * number of pages used as kernelcore
  5490. */
  5491. size_pages = end_pfn - start_pfn;
  5492. if (size_pages > kernelcore_remaining)
  5493. size_pages = kernelcore_remaining;
  5494. zone_movable_pfn[nid] = start_pfn + size_pages;
  5495. /*
  5496. * Some kernelcore has been met, update counts and
  5497. * break if the kernelcore for this node has been
  5498. * satisfied
  5499. */
  5500. required_kernelcore -= min(required_kernelcore,
  5501. size_pages);
  5502. kernelcore_remaining -= size_pages;
  5503. if (!kernelcore_remaining)
  5504. break;
  5505. }
  5506. }
  5507. /*
  5508. * If there is still required_kernelcore, we do another pass with one
  5509. * less node in the count. This will push zone_movable_pfn[nid] further
  5510. * along on the nodes that still have memory until kernelcore is
  5511. * satisfied
  5512. */
  5513. usable_nodes--;
  5514. if (usable_nodes && required_kernelcore > usable_nodes)
  5515. goto restart;
  5516. out2:
  5517. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  5518. for (nid = 0; nid < MAX_NUMNODES; nid++)
  5519. zone_movable_pfn[nid] =
  5520. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  5521. out:
  5522. /* restore the node_state */
  5523. node_states[N_MEMORY] = saved_node_state;
  5524. }
  5525. /* Any regular or high memory on that node ? */
  5526. static void check_for_memory(pg_data_t *pgdat, int nid)
  5527. {
  5528. enum zone_type zone_type;
  5529. if (N_MEMORY == N_NORMAL_MEMORY)
  5530. return;
  5531. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  5532. struct zone *zone = &pgdat->node_zones[zone_type];
  5533. if (populated_zone(zone)) {
  5534. node_set_state(nid, N_HIGH_MEMORY);
  5535. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  5536. zone_type <= ZONE_NORMAL)
  5537. node_set_state(nid, N_NORMAL_MEMORY);
  5538. break;
  5539. }
  5540. }
  5541. }
  5542. /**
  5543. * free_area_init_nodes - Initialise all pg_data_t and zone data
  5544. * @max_zone_pfn: an array of max PFNs for each zone
  5545. *
  5546. * This will call free_area_init_node() for each active node in the system.
  5547. * Using the page ranges provided by memblock_set_node(), the size of each
  5548. * zone in each node and their holes is calculated. If the maximum PFN
  5549. * between two adjacent zones match, it is assumed that the zone is empty.
  5550. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  5551. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  5552. * starts where the previous one ended. For example, ZONE_DMA32 starts
  5553. * at arch_max_dma_pfn.
  5554. */
  5555. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  5556. {
  5557. unsigned long start_pfn, end_pfn;
  5558. int i, nid;
  5559. /* Record where the zone boundaries are */
  5560. memset(arch_zone_lowest_possible_pfn, 0,
  5561. sizeof(arch_zone_lowest_possible_pfn));
  5562. memset(arch_zone_highest_possible_pfn, 0,
  5563. sizeof(arch_zone_highest_possible_pfn));
  5564. start_pfn = find_min_pfn_with_active_regions();
  5565. for (i = 0; i < MAX_NR_ZONES; i++) {
  5566. if (i == ZONE_MOVABLE)
  5567. continue;
  5568. end_pfn = max(max_zone_pfn[i], start_pfn);
  5569. arch_zone_lowest_possible_pfn[i] = start_pfn;
  5570. arch_zone_highest_possible_pfn[i] = end_pfn;
  5571. start_pfn = end_pfn;
  5572. }
  5573. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  5574. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  5575. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  5576. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  5577. find_zone_movable_pfns_for_nodes();
  5578. /* Print out the zone ranges */
  5579. pr_info("Zone ranges:\n");
  5580. for (i = 0; i < MAX_NR_ZONES; i++) {
  5581. if (i == ZONE_MOVABLE)
  5582. continue;
  5583. pr_info(" %-8s ", zone_names[i]);
  5584. if (arch_zone_lowest_possible_pfn[i] ==
  5585. arch_zone_highest_possible_pfn[i])
  5586. pr_cont("empty\n");
  5587. else
  5588. pr_cont("[mem %#018Lx-%#018Lx]\n",
  5589. (u64)arch_zone_lowest_possible_pfn[i]
  5590. << PAGE_SHIFT,
  5591. ((u64)arch_zone_highest_possible_pfn[i]
  5592. << PAGE_SHIFT) - 1);
  5593. }
  5594. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  5595. pr_info("Movable zone start for each node\n");
  5596. for (i = 0; i < MAX_NUMNODES; i++) {
  5597. if (zone_movable_pfn[i])
  5598. pr_info(" Node %d: %#018Lx\n", i,
  5599. (u64)zone_movable_pfn[i] << PAGE_SHIFT);
  5600. }
  5601. /* Print out the early node map */
  5602. pr_info("Early memory node ranges\n");
  5603. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  5604. pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
  5605. (u64)start_pfn << PAGE_SHIFT,
  5606. ((u64)end_pfn << PAGE_SHIFT) - 1);
  5607. /* Initialise every node */
  5608. mminit_verify_pageflags_layout();
  5609. setup_nr_node_ids();
  5610. for_each_online_node(nid) {
  5611. pg_data_t *pgdat = NODE_DATA(nid);
  5612. free_area_init_node(nid, NULL,
  5613. find_min_pfn_for_node(nid), NULL);
  5614. /* Any memory on that node */
  5615. if (pgdat->node_present_pages)
  5616. node_set_state(nid, N_MEMORY);
  5617. check_for_memory(pgdat, nid);
  5618. }
  5619. }
  5620. static int __init cmdline_parse_core(char *p, unsigned long *core)
  5621. {
  5622. unsigned long long coremem;
  5623. if (!p)
  5624. return -EINVAL;
  5625. coremem = memparse(p, &p);
  5626. *core = coremem >> PAGE_SHIFT;
  5627. /* Paranoid check that UL is enough for the coremem value */
  5628. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  5629. return 0;
  5630. }
  5631. /*
  5632. * kernelcore=size sets the amount of memory for use for allocations that
  5633. * cannot be reclaimed or migrated.
  5634. */
  5635. static int __init cmdline_parse_kernelcore(char *p)
  5636. {
  5637. /* parse kernelcore=mirror */
  5638. if (parse_option_str(p, "mirror")) {
  5639. mirrored_kernelcore = true;
  5640. return 0;
  5641. }
  5642. return cmdline_parse_core(p, &required_kernelcore);
  5643. }
  5644. /*
  5645. * movablecore=size sets the amount of memory for use for allocations that
  5646. * can be reclaimed or migrated.
  5647. */
  5648. static int __init cmdline_parse_movablecore(char *p)
  5649. {
  5650. return cmdline_parse_core(p, &required_movablecore);
  5651. }
  5652. early_param("kernelcore", cmdline_parse_kernelcore);
  5653. early_param("movablecore", cmdline_parse_movablecore);
  5654. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5655. void adjust_managed_page_count(struct page *page, long count)
  5656. {
  5657. spin_lock(&managed_page_count_lock);
  5658. page_zone(page)->managed_pages += count;
  5659. totalram_pages += count;
  5660. #ifdef CONFIG_HIGHMEM
  5661. if (PageHighMem(page))
  5662. totalhigh_pages += count;
  5663. #endif
  5664. spin_unlock(&managed_page_count_lock);
  5665. }
  5666. EXPORT_SYMBOL(adjust_managed_page_count);
  5667. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  5668. {
  5669. void *pos;
  5670. unsigned long pages = 0;
  5671. start = (void *)PAGE_ALIGN((unsigned long)start);
  5672. end = (void *)((unsigned long)end & PAGE_MASK);
  5673. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  5674. if ((unsigned int)poison <= 0xFF)
  5675. memset(pos, poison, PAGE_SIZE);
  5676. free_reserved_page(virt_to_page(pos));
  5677. }
  5678. if (pages && s)
  5679. pr_info("Freeing %s memory: %ldK (%p - %p)\n",
  5680. s, pages << (PAGE_SHIFT - 10), start, end);
  5681. return pages;
  5682. }
  5683. EXPORT_SYMBOL(free_reserved_area);
  5684. #ifdef CONFIG_HIGHMEM
  5685. void free_highmem_page(struct page *page)
  5686. {
  5687. __free_reserved_page(page);
  5688. totalram_pages++;
  5689. page_zone(page)->managed_pages++;
  5690. totalhigh_pages++;
  5691. }
  5692. #endif
  5693. void __init mem_init_print_info(const char *str)
  5694. {
  5695. unsigned long physpages, codesize, datasize, rosize, bss_size;
  5696. unsigned long init_code_size, init_data_size;
  5697. physpages = get_num_physpages();
  5698. codesize = _etext - _stext;
  5699. datasize = _edata - _sdata;
  5700. rosize = __end_rodata - __start_rodata;
  5701. bss_size = __bss_stop - __bss_start;
  5702. init_data_size = __init_end - __init_begin;
  5703. init_code_size = _einittext - _sinittext;
  5704. /*
  5705. * Detect special cases and adjust section sizes accordingly:
  5706. * 1) .init.* may be embedded into .data sections
  5707. * 2) .init.text.* may be out of [__init_begin, __init_end],
  5708. * please refer to arch/tile/kernel/vmlinux.lds.S.
  5709. * 3) .rodata.* may be embedded into .text or .data sections.
  5710. */
  5711. #define adj_init_size(start, end, size, pos, adj) \
  5712. do { \
  5713. if (start <= pos && pos < end && size > adj) \
  5714. size -= adj; \
  5715. } while (0)
  5716. adj_init_size(__init_begin, __init_end, init_data_size,
  5717. _sinittext, init_code_size);
  5718. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  5719. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  5720. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  5721. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  5722. #undef adj_init_size
  5723. pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
  5724. #ifdef CONFIG_HIGHMEM
  5725. ", %luK highmem"
  5726. #endif
  5727. "%s%s)\n",
  5728. nr_free_pages() << (PAGE_SHIFT - 10),
  5729. physpages << (PAGE_SHIFT - 10),
  5730. codesize >> 10, datasize >> 10, rosize >> 10,
  5731. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  5732. (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
  5733. totalcma_pages << (PAGE_SHIFT - 10),
  5734. #ifdef CONFIG_HIGHMEM
  5735. totalhigh_pages << (PAGE_SHIFT - 10),
  5736. #endif
  5737. str ? ", " : "", str ? str : "");
  5738. }
  5739. /**
  5740. * set_dma_reserve - set the specified number of pages reserved in the first zone
  5741. * @new_dma_reserve: The number of pages to mark reserved
  5742. *
  5743. * The per-cpu batchsize and zone watermarks are determined by managed_pages.
  5744. * In the DMA zone, a significant percentage may be consumed by kernel image
  5745. * and other unfreeable allocations which can skew the watermarks badly. This
  5746. * function may optionally be used to account for unfreeable pages in the
  5747. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  5748. * smaller per-cpu batchsize.
  5749. */
  5750. void __init set_dma_reserve(unsigned long new_dma_reserve)
  5751. {
  5752. dma_reserve = new_dma_reserve;
  5753. }
  5754. void __init free_area_init(unsigned long *zones_size)
  5755. {
  5756. free_area_init_node(0, zones_size,
  5757. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  5758. }
  5759. static int page_alloc_cpu_notify(struct notifier_block *self,
  5760. unsigned long action, void *hcpu)
  5761. {
  5762. int cpu = (unsigned long)hcpu;
  5763. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  5764. lru_add_drain_cpu(cpu);
  5765. drain_pages(cpu);
  5766. /*
  5767. * Spill the event counters of the dead processor
  5768. * into the current processors event counters.
  5769. * This artificially elevates the count of the current
  5770. * processor.
  5771. */
  5772. vm_events_fold_cpu(cpu);
  5773. /*
  5774. * Zero the differential counters of the dead processor
  5775. * so that the vm statistics are consistent.
  5776. *
  5777. * This is only okay since the processor is dead and cannot
  5778. * race with what we are doing.
  5779. */
  5780. cpu_vm_stats_fold(cpu);
  5781. }
  5782. return NOTIFY_OK;
  5783. }
  5784. void __init page_alloc_init(void)
  5785. {
  5786. hotcpu_notifier(page_alloc_cpu_notify, 0);
  5787. }
  5788. /*
  5789. * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
  5790. * or min_free_kbytes changes.
  5791. */
  5792. static void calculate_totalreserve_pages(void)
  5793. {
  5794. struct pglist_data *pgdat;
  5795. unsigned long reserve_pages = 0;
  5796. enum zone_type i, j;
  5797. for_each_online_pgdat(pgdat) {
  5798. for (i = 0; i < MAX_NR_ZONES; i++) {
  5799. struct zone *zone = pgdat->node_zones + i;
  5800. long max = 0;
  5801. /* Find valid and maximum lowmem_reserve in the zone */
  5802. for (j = i; j < MAX_NR_ZONES; j++) {
  5803. if (zone->lowmem_reserve[j] > max)
  5804. max = zone->lowmem_reserve[j];
  5805. }
  5806. /* we treat the high watermark as reserved pages. */
  5807. max += high_wmark_pages(zone);
  5808. if (max > zone->managed_pages)
  5809. max = zone->managed_pages;
  5810. zone->totalreserve_pages = max;
  5811. reserve_pages += max;
  5812. }
  5813. }
  5814. totalreserve_pages = reserve_pages;
  5815. }
  5816. /*
  5817. * setup_per_zone_lowmem_reserve - called whenever
  5818. * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
  5819. * has a correct pages reserved value, so an adequate number of
  5820. * pages are left in the zone after a successful __alloc_pages().
  5821. */
  5822. static void setup_per_zone_lowmem_reserve(void)
  5823. {
  5824. struct pglist_data *pgdat;
  5825. enum zone_type j, idx;
  5826. for_each_online_pgdat(pgdat) {
  5827. for (j = 0; j < MAX_NR_ZONES; j++) {
  5828. struct zone *zone = pgdat->node_zones + j;
  5829. unsigned long managed_pages = zone->managed_pages;
  5830. zone->lowmem_reserve[j] = 0;
  5831. idx = j;
  5832. while (idx) {
  5833. struct zone *lower_zone;
  5834. idx--;
  5835. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  5836. sysctl_lowmem_reserve_ratio[idx] = 1;
  5837. lower_zone = pgdat->node_zones + idx;
  5838. lower_zone->lowmem_reserve[j] = managed_pages /
  5839. sysctl_lowmem_reserve_ratio[idx];
  5840. managed_pages += lower_zone->managed_pages;
  5841. }
  5842. }
  5843. }
  5844. /* update totalreserve_pages */
  5845. calculate_totalreserve_pages();
  5846. }
  5847. static void __setup_per_zone_wmarks(void)
  5848. {
  5849. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  5850. unsigned long lowmem_pages = 0;
  5851. struct zone *zone;
  5852. unsigned long flags;
  5853. /* Calculate total number of !ZONE_HIGHMEM pages */
  5854. for_each_zone(zone) {
  5855. if (!is_highmem(zone))
  5856. lowmem_pages += zone->managed_pages;
  5857. }
  5858. for_each_zone(zone) {
  5859. u64 tmp;
  5860. spin_lock_irqsave(&zone->lock, flags);
  5861. tmp = (u64)pages_min * zone->managed_pages;
  5862. do_div(tmp, lowmem_pages);
  5863. if (is_highmem(zone)) {
  5864. /*
  5865. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  5866. * need highmem pages, so cap pages_min to a small
  5867. * value here.
  5868. *
  5869. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  5870. * deltas control asynch page reclaim, and so should
  5871. * not be capped for highmem.
  5872. */
  5873. unsigned long min_pages;
  5874. min_pages = zone->managed_pages / 1024;
  5875. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  5876. zone->watermark[WMARK_MIN] = min_pages;
  5877. } else {
  5878. /*
  5879. * If it's a lowmem zone, reserve a number of pages
  5880. * proportionate to the zone's size.
  5881. */
  5882. zone->watermark[WMARK_MIN] = tmp;
  5883. }
  5884. /*
  5885. * Set the kswapd watermarks distance according to the
  5886. * scale factor in proportion to available memory, but
  5887. * ensure a minimum size on small systems.
  5888. */
  5889. tmp = max_t(u64, tmp >> 2,
  5890. mult_frac(zone->managed_pages,
  5891. watermark_scale_factor, 10000));
  5892. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
  5893. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
  5894. __mod_zone_page_state(zone, NR_ALLOC_BATCH,
  5895. high_wmark_pages(zone) - low_wmark_pages(zone) -
  5896. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  5897. spin_unlock_irqrestore(&zone->lock, flags);
  5898. }
  5899. /* update totalreserve_pages */
  5900. calculate_totalreserve_pages();
  5901. }
  5902. /**
  5903. * setup_per_zone_wmarks - called when min_free_kbytes changes
  5904. * or when memory is hot-{added|removed}
  5905. *
  5906. * Ensures that the watermark[min,low,high] values for each zone are set
  5907. * correctly with respect to min_free_kbytes.
  5908. */
  5909. void setup_per_zone_wmarks(void)
  5910. {
  5911. mutex_lock(&zonelists_mutex);
  5912. __setup_per_zone_wmarks();
  5913. mutex_unlock(&zonelists_mutex);
  5914. }
  5915. /*
  5916. * Initialise min_free_kbytes.
  5917. *
  5918. * For small machines we want it small (128k min). For large machines
  5919. * we want it large (64MB max). But it is not linear, because network
  5920. * bandwidth does not increase linearly with machine size. We use
  5921. *
  5922. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  5923. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  5924. *
  5925. * which yields
  5926. *
  5927. * 16MB: 512k
  5928. * 32MB: 724k
  5929. * 64MB: 1024k
  5930. * 128MB: 1448k
  5931. * 256MB: 2048k
  5932. * 512MB: 2896k
  5933. * 1024MB: 4096k
  5934. * 2048MB: 5792k
  5935. * 4096MB: 8192k
  5936. * 8192MB: 11584k
  5937. * 16384MB: 16384k
  5938. */
  5939. int __meminit init_per_zone_wmark_min(void)
  5940. {
  5941. unsigned long lowmem_kbytes;
  5942. int new_min_free_kbytes;
  5943. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  5944. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  5945. if (new_min_free_kbytes > user_min_free_kbytes) {
  5946. min_free_kbytes = new_min_free_kbytes;
  5947. if (min_free_kbytes < 128)
  5948. min_free_kbytes = 128;
  5949. if (min_free_kbytes > 65536)
  5950. min_free_kbytes = 65536;
  5951. } else {
  5952. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  5953. new_min_free_kbytes, user_min_free_kbytes);
  5954. }
  5955. setup_per_zone_wmarks();
  5956. refresh_zone_stat_thresholds();
  5957. setup_per_zone_lowmem_reserve();
  5958. return 0;
  5959. }
  5960. core_initcall(init_per_zone_wmark_min)
  5961. /*
  5962. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  5963. * that we can call two helper functions whenever min_free_kbytes
  5964. * changes.
  5965. */
  5966. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  5967. void __user *buffer, size_t *length, loff_t *ppos)
  5968. {
  5969. int rc;
  5970. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5971. if (rc)
  5972. return rc;
  5973. if (write) {
  5974. user_min_free_kbytes = min_free_kbytes;
  5975. setup_per_zone_wmarks();
  5976. }
  5977. return 0;
  5978. }
  5979. int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
  5980. void __user *buffer, size_t *length, loff_t *ppos)
  5981. {
  5982. int rc;
  5983. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5984. if (rc)
  5985. return rc;
  5986. if (write)
  5987. setup_per_zone_wmarks();
  5988. return 0;
  5989. }
  5990. #ifdef CONFIG_NUMA
  5991. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  5992. void __user *buffer, size_t *length, loff_t *ppos)
  5993. {
  5994. struct zone *zone;
  5995. int rc;
  5996. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5997. if (rc)
  5998. return rc;
  5999. for_each_zone(zone)
  6000. zone->min_unmapped_pages = (zone->managed_pages *
  6001. sysctl_min_unmapped_ratio) / 100;
  6002. return 0;
  6003. }
  6004. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  6005. void __user *buffer, size_t *length, loff_t *ppos)
  6006. {
  6007. struct zone *zone;
  6008. int rc;
  6009. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6010. if (rc)
  6011. return rc;
  6012. for_each_zone(zone)
  6013. zone->min_slab_pages = (zone->managed_pages *
  6014. sysctl_min_slab_ratio) / 100;
  6015. return 0;
  6016. }
  6017. #endif
  6018. /*
  6019. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  6020. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  6021. * whenever sysctl_lowmem_reserve_ratio changes.
  6022. *
  6023. * The reserve ratio obviously has absolutely no relation with the
  6024. * minimum watermarks. The lowmem reserve ratio can only make sense
  6025. * if in function of the boot time zone sizes.
  6026. */
  6027. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  6028. void __user *buffer, size_t *length, loff_t *ppos)
  6029. {
  6030. proc_dointvec_minmax(table, write, buffer, length, ppos);
  6031. setup_per_zone_lowmem_reserve();
  6032. return 0;
  6033. }
  6034. /*
  6035. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  6036. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  6037. * pagelist can have before it gets flushed back to buddy allocator.
  6038. */
  6039. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  6040. void __user *buffer, size_t *length, loff_t *ppos)
  6041. {
  6042. struct zone *zone;
  6043. int old_percpu_pagelist_fraction;
  6044. int ret;
  6045. mutex_lock(&pcp_batch_high_lock);
  6046. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  6047. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6048. if (!write || ret < 0)
  6049. goto out;
  6050. /* Sanity checking to avoid pcp imbalance */
  6051. if (percpu_pagelist_fraction &&
  6052. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  6053. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  6054. ret = -EINVAL;
  6055. goto out;
  6056. }
  6057. /* No change? */
  6058. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  6059. goto out;
  6060. for_each_populated_zone(zone) {
  6061. unsigned int cpu;
  6062. for_each_possible_cpu(cpu)
  6063. pageset_set_high_and_batch(zone,
  6064. per_cpu_ptr(zone->pageset, cpu));
  6065. }
  6066. out:
  6067. mutex_unlock(&pcp_batch_high_lock);
  6068. return ret;
  6069. }
  6070. #ifdef CONFIG_NUMA
  6071. int hashdist = HASHDIST_DEFAULT;
  6072. static int __init set_hashdist(char *str)
  6073. {
  6074. if (!str)
  6075. return 0;
  6076. hashdist = simple_strtoul(str, &str, 0);
  6077. return 1;
  6078. }
  6079. __setup("hashdist=", set_hashdist);
  6080. #endif
  6081. /*
  6082. * allocate a large system hash table from bootmem
  6083. * - it is assumed that the hash table must contain an exact power-of-2
  6084. * quantity of entries
  6085. * - limit is the number of hash buckets, not the total allocation size
  6086. */
  6087. void *__init alloc_large_system_hash(const char *tablename,
  6088. unsigned long bucketsize,
  6089. unsigned long numentries,
  6090. int scale,
  6091. int flags,
  6092. unsigned int *_hash_shift,
  6093. unsigned int *_hash_mask,
  6094. unsigned long low_limit,
  6095. unsigned long high_limit)
  6096. {
  6097. unsigned long long max = high_limit;
  6098. unsigned long log2qty, size;
  6099. void *table = NULL;
  6100. /* allow the kernel cmdline to have a say */
  6101. if (!numentries) {
  6102. /* round applicable memory size up to nearest megabyte */
  6103. numentries = nr_kernel_pages;
  6104. /* It isn't necessary when PAGE_SIZE >= 1MB */
  6105. if (PAGE_SHIFT < 20)
  6106. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  6107. /* limit to 1 bucket per 2^scale bytes of low memory */
  6108. if (scale > PAGE_SHIFT)
  6109. numentries >>= (scale - PAGE_SHIFT);
  6110. else
  6111. numentries <<= (PAGE_SHIFT - scale);
  6112. /* Make sure we've got at least a 0-order allocation.. */
  6113. if (unlikely(flags & HASH_SMALL)) {
  6114. /* Makes no sense without HASH_EARLY */
  6115. WARN_ON(!(flags & HASH_EARLY));
  6116. if (!(numentries >> *_hash_shift)) {
  6117. numentries = 1UL << *_hash_shift;
  6118. BUG_ON(!numentries);
  6119. }
  6120. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  6121. numentries = PAGE_SIZE / bucketsize;
  6122. }
  6123. numentries = roundup_pow_of_two(numentries);
  6124. /* limit allocation size to 1/16 total memory by default */
  6125. if (max == 0) {
  6126. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  6127. do_div(max, bucketsize);
  6128. }
  6129. max = min(max, 0x80000000ULL);
  6130. if (numentries < low_limit)
  6131. numentries = low_limit;
  6132. if (numentries > max)
  6133. numentries = max;
  6134. log2qty = ilog2(numentries);
  6135. do {
  6136. size = bucketsize << log2qty;
  6137. if (flags & HASH_EARLY)
  6138. table = memblock_virt_alloc_nopanic(size, 0);
  6139. else if (hashdist)
  6140. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  6141. else {
  6142. /*
  6143. * If bucketsize is not a power-of-two, we may free
  6144. * some pages at the end of hash table which
  6145. * alloc_pages_exact() automatically does
  6146. */
  6147. if (get_order(size) < MAX_ORDER) {
  6148. table = alloc_pages_exact(size, GFP_ATOMIC);
  6149. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  6150. }
  6151. }
  6152. } while (!table && size > PAGE_SIZE && --log2qty);
  6153. if (!table)
  6154. panic("Failed to allocate %s hash table\n", tablename);
  6155. pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
  6156. tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
  6157. if (_hash_shift)
  6158. *_hash_shift = log2qty;
  6159. if (_hash_mask)
  6160. *_hash_mask = (1 << log2qty) - 1;
  6161. return table;
  6162. }
  6163. /*
  6164. * This function checks whether pageblock includes unmovable pages or not.
  6165. * If @count is not zero, it is okay to include less @count unmovable pages
  6166. *
  6167. * PageLRU check without isolation or lru_lock could race so that
  6168. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  6169. * expect this function should be exact.
  6170. */
  6171. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  6172. bool skip_hwpoisoned_pages)
  6173. {
  6174. unsigned long pfn, iter, found;
  6175. int mt;
  6176. /*
  6177. * For avoiding noise data, lru_add_drain_all() should be called
  6178. * If ZONE_MOVABLE, the zone never contains unmovable pages
  6179. */
  6180. if (zone_idx(zone) == ZONE_MOVABLE)
  6181. return false;
  6182. mt = get_pageblock_migratetype(page);
  6183. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  6184. return false;
  6185. pfn = page_to_pfn(page);
  6186. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  6187. unsigned long check = pfn + iter;
  6188. if (!pfn_valid_within(check))
  6189. continue;
  6190. page = pfn_to_page(check);
  6191. /*
  6192. * Hugepages are not in LRU lists, but they're movable.
  6193. * We need not scan over tail pages bacause we don't
  6194. * handle each tail page individually in migration.
  6195. */
  6196. if (PageHuge(page)) {
  6197. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  6198. continue;
  6199. }
  6200. /*
  6201. * We can't use page_count without pin a page
  6202. * because another CPU can free compound page.
  6203. * This check already skips compound tails of THP
  6204. * because their page->_refcount is zero at all time.
  6205. */
  6206. if (!page_ref_count(page)) {
  6207. if (PageBuddy(page))
  6208. iter += (1 << page_order(page)) - 1;
  6209. continue;
  6210. }
  6211. /*
  6212. * The HWPoisoned page may be not in buddy system, and
  6213. * page_count() is not 0.
  6214. */
  6215. if (skip_hwpoisoned_pages && PageHWPoison(page))
  6216. continue;
  6217. if (!PageLRU(page))
  6218. found++;
  6219. /*
  6220. * If there are RECLAIMABLE pages, we need to check
  6221. * it. But now, memory offline itself doesn't call
  6222. * shrink_node_slabs() and it still to be fixed.
  6223. */
  6224. /*
  6225. * If the page is not RAM, page_count()should be 0.
  6226. * we don't need more check. This is an _used_ not-movable page.
  6227. *
  6228. * The problematic thing here is PG_reserved pages. PG_reserved
  6229. * is set to both of a memory hole page and a _used_ kernel
  6230. * page at boot.
  6231. */
  6232. if (found > count)
  6233. return true;
  6234. }
  6235. return false;
  6236. }
  6237. bool is_pageblock_removable_nolock(struct page *page)
  6238. {
  6239. struct zone *zone;
  6240. unsigned long pfn;
  6241. /*
  6242. * We have to be careful here because we are iterating over memory
  6243. * sections which are not zone aware so we might end up outside of
  6244. * the zone but still within the section.
  6245. * We have to take care about the node as well. If the node is offline
  6246. * its NODE_DATA will be NULL - see page_zone.
  6247. */
  6248. if (!node_online(page_to_nid(page)))
  6249. return false;
  6250. zone = page_zone(page);
  6251. pfn = page_to_pfn(page);
  6252. if (!zone_spans_pfn(zone, pfn))
  6253. return false;
  6254. return !has_unmovable_pages(zone, page, 0, true);
  6255. }
  6256. #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
  6257. static unsigned long pfn_max_align_down(unsigned long pfn)
  6258. {
  6259. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6260. pageblock_nr_pages) - 1);
  6261. }
  6262. static unsigned long pfn_max_align_up(unsigned long pfn)
  6263. {
  6264. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6265. pageblock_nr_pages));
  6266. }
  6267. /* [start, end) must belong to a single zone. */
  6268. static int __alloc_contig_migrate_range(struct compact_control *cc,
  6269. unsigned long start, unsigned long end)
  6270. {
  6271. /* This function is based on compact_zone() from compaction.c. */
  6272. unsigned long nr_reclaimed;
  6273. unsigned long pfn = start;
  6274. unsigned int tries = 0;
  6275. int ret = 0;
  6276. migrate_prep();
  6277. while (pfn < end || !list_empty(&cc->migratepages)) {
  6278. if (fatal_signal_pending(current)) {
  6279. ret = -EINTR;
  6280. break;
  6281. }
  6282. if (list_empty(&cc->migratepages)) {
  6283. cc->nr_migratepages = 0;
  6284. pfn = isolate_migratepages_range(cc, pfn, end);
  6285. if (!pfn) {
  6286. ret = -EINTR;
  6287. break;
  6288. }
  6289. tries = 0;
  6290. } else if (++tries == 5) {
  6291. ret = ret < 0 ? ret : -EBUSY;
  6292. break;
  6293. }
  6294. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  6295. &cc->migratepages);
  6296. cc->nr_migratepages -= nr_reclaimed;
  6297. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  6298. NULL, 0, cc->mode, MR_CMA);
  6299. }
  6300. if (ret < 0) {
  6301. putback_movable_pages(&cc->migratepages);
  6302. return ret;
  6303. }
  6304. return 0;
  6305. }
  6306. /**
  6307. * alloc_contig_range() -- tries to allocate given range of pages
  6308. * @start: start PFN to allocate
  6309. * @end: one-past-the-last PFN to allocate
  6310. * @migratetype: migratetype of the underlaying pageblocks (either
  6311. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  6312. * in range must have the same migratetype and it must
  6313. * be either of the two.
  6314. *
  6315. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  6316. * aligned, however it's the caller's responsibility to guarantee that
  6317. * we are the only thread that changes migrate type of pageblocks the
  6318. * pages fall in.
  6319. *
  6320. * The PFN range must belong to a single zone.
  6321. *
  6322. * Returns zero on success or negative error code. On success all
  6323. * pages which PFN is in [start, end) are allocated for the caller and
  6324. * need to be freed with free_contig_range().
  6325. */
  6326. int alloc_contig_range(unsigned long start, unsigned long end,
  6327. unsigned migratetype)
  6328. {
  6329. unsigned long outer_start, outer_end;
  6330. unsigned int order;
  6331. int ret = 0;
  6332. struct compact_control cc = {
  6333. .nr_migratepages = 0,
  6334. .order = -1,
  6335. .zone = page_zone(pfn_to_page(start)),
  6336. .mode = MIGRATE_SYNC,
  6337. .ignore_skip_hint = true,
  6338. };
  6339. INIT_LIST_HEAD(&cc.migratepages);
  6340. /*
  6341. * What we do here is we mark all pageblocks in range as
  6342. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  6343. * have different sizes, and due to the way page allocator
  6344. * work, we align the range to biggest of the two pages so
  6345. * that page allocator won't try to merge buddies from
  6346. * different pageblocks and change MIGRATE_ISOLATE to some
  6347. * other migration type.
  6348. *
  6349. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  6350. * migrate the pages from an unaligned range (ie. pages that
  6351. * we are interested in). This will put all the pages in
  6352. * range back to page allocator as MIGRATE_ISOLATE.
  6353. *
  6354. * When this is done, we take the pages in range from page
  6355. * allocator removing them from the buddy system. This way
  6356. * page allocator will never consider using them.
  6357. *
  6358. * This lets us mark the pageblocks back as
  6359. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  6360. * aligned range but not in the unaligned, original range are
  6361. * put back to page allocator so that buddy can use them.
  6362. */
  6363. ret = start_isolate_page_range(pfn_max_align_down(start),
  6364. pfn_max_align_up(end), migratetype,
  6365. false);
  6366. if (ret)
  6367. return ret;
  6368. /*
  6369. * In case of -EBUSY, we'd like to know which page causes problem.
  6370. * So, just fall through. We will check it in test_pages_isolated().
  6371. */
  6372. ret = __alloc_contig_migrate_range(&cc, start, end);
  6373. if (ret && ret != -EBUSY)
  6374. goto done;
  6375. /*
  6376. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  6377. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  6378. * more, all pages in [start, end) are free in page allocator.
  6379. * What we are going to do is to allocate all pages from
  6380. * [start, end) (that is remove them from page allocator).
  6381. *
  6382. * The only problem is that pages at the beginning and at the
  6383. * end of interesting range may be not aligned with pages that
  6384. * page allocator holds, ie. they can be part of higher order
  6385. * pages. Because of this, we reserve the bigger range and
  6386. * once this is done free the pages we are not interested in.
  6387. *
  6388. * We don't have to hold zone->lock here because the pages are
  6389. * isolated thus they won't get removed from buddy.
  6390. */
  6391. lru_add_drain_all();
  6392. drain_all_pages(cc.zone);
  6393. order = 0;
  6394. outer_start = start;
  6395. while (!PageBuddy(pfn_to_page(outer_start))) {
  6396. if (++order >= MAX_ORDER) {
  6397. outer_start = start;
  6398. break;
  6399. }
  6400. outer_start &= ~0UL << order;
  6401. }
  6402. if (outer_start != start) {
  6403. order = page_order(pfn_to_page(outer_start));
  6404. /*
  6405. * outer_start page could be small order buddy page and
  6406. * it doesn't include start page. Adjust outer_start
  6407. * in this case to report failed page properly
  6408. * on tracepoint in test_pages_isolated()
  6409. */
  6410. if (outer_start + (1UL << order) <= start)
  6411. outer_start = start;
  6412. }
  6413. /* Make sure the range is really isolated. */
  6414. if (test_pages_isolated(outer_start, end, false)) {
  6415. pr_info("%s: [%lx, %lx) PFNs busy\n",
  6416. __func__, outer_start, end);
  6417. ret = -EBUSY;
  6418. goto done;
  6419. }
  6420. /* Grab isolated pages from freelists. */
  6421. outer_end = isolate_freepages_range(&cc, outer_start, end);
  6422. if (!outer_end) {
  6423. ret = -EBUSY;
  6424. goto done;
  6425. }
  6426. /* Free head and tail (if any) */
  6427. if (start != outer_start)
  6428. free_contig_range(outer_start, start - outer_start);
  6429. if (end != outer_end)
  6430. free_contig_range(end, outer_end - end);
  6431. done:
  6432. undo_isolate_page_range(pfn_max_align_down(start),
  6433. pfn_max_align_up(end), migratetype);
  6434. return ret;
  6435. }
  6436. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  6437. {
  6438. unsigned int count = 0;
  6439. for (; nr_pages--; pfn++) {
  6440. struct page *page = pfn_to_page(pfn);
  6441. count += page_count(page) != 1;
  6442. __free_page(page);
  6443. }
  6444. WARN(count != 0, "%d pages are still in use!\n", count);
  6445. }
  6446. #endif
  6447. #ifdef CONFIG_MEMORY_HOTPLUG
  6448. /*
  6449. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  6450. * page high values need to be recalulated.
  6451. */
  6452. void __meminit zone_pcp_update(struct zone *zone)
  6453. {
  6454. unsigned cpu;
  6455. mutex_lock(&pcp_batch_high_lock);
  6456. for_each_possible_cpu(cpu)
  6457. pageset_set_high_and_batch(zone,
  6458. per_cpu_ptr(zone->pageset, cpu));
  6459. mutex_unlock(&pcp_batch_high_lock);
  6460. }
  6461. #endif
  6462. void zone_pcp_reset(struct zone *zone)
  6463. {
  6464. unsigned long flags;
  6465. int cpu;
  6466. struct per_cpu_pageset *pset;
  6467. /* avoid races with drain_pages() */
  6468. local_irq_save(flags);
  6469. if (zone->pageset != &boot_pageset) {
  6470. for_each_online_cpu(cpu) {
  6471. pset = per_cpu_ptr(zone->pageset, cpu);
  6472. drain_zonestat(zone, pset);
  6473. }
  6474. free_percpu(zone->pageset);
  6475. zone->pageset = &boot_pageset;
  6476. }
  6477. local_irq_restore(flags);
  6478. }
  6479. #ifdef CONFIG_MEMORY_HOTREMOVE
  6480. /*
  6481. * All pages in the range must be in a single zone and isolated
  6482. * before calling this.
  6483. */
  6484. void
  6485. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  6486. {
  6487. struct page *page;
  6488. struct zone *zone;
  6489. unsigned int order, i;
  6490. unsigned long pfn;
  6491. unsigned long flags;
  6492. /* find the first valid pfn */
  6493. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  6494. if (pfn_valid(pfn))
  6495. break;
  6496. if (pfn == end_pfn)
  6497. return;
  6498. zone = page_zone(pfn_to_page(pfn));
  6499. spin_lock_irqsave(&zone->lock, flags);
  6500. pfn = start_pfn;
  6501. while (pfn < end_pfn) {
  6502. if (!pfn_valid(pfn)) {
  6503. pfn++;
  6504. continue;
  6505. }
  6506. page = pfn_to_page(pfn);
  6507. /*
  6508. * The HWPoisoned page may be not in buddy system, and
  6509. * page_count() is not 0.
  6510. */
  6511. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  6512. pfn++;
  6513. SetPageReserved(page);
  6514. continue;
  6515. }
  6516. BUG_ON(page_count(page));
  6517. BUG_ON(!PageBuddy(page));
  6518. order = page_order(page);
  6519. #ifdef CONFIG_DEBUG_VM
  6520. pr_info("remove from free list %lx %d %lx\n",
  6521. pfn, 1 << order, end_pfn);
  6522. #endif
  6523. list_del(&page->lru);
  6524. rmv_page_order(page);
  6525. zone->free_area[order].nr_free--;
  6526. for (i = 0; i < (1 << order); i++)
  6527. SetPageReserved((page+i));
  6528. pfn += (1 << order);
  6529. }
  6530. spin_unlock_irqrestore(&zone->lock, flags);
  6531. }
  6532. #endif
  6533. bool is_free_buddy_page(struct page *page)
  6534. {
  6535. struct zone *zone = page_zone(page);
  6536. unsigned long pfn = page_to_pfn(page);
  6537. unsigned long flags;
  6538. unsigned int order;
  6539. spin_lock_irqsave(&zone->lock, flags);
  6540. for (order = 0; order < MAX_ORDER; order++) {
  6541. struct page *page_head = page - (pfn & ((1 << order) - 1));
  6542. if (PageBuddy(page_head) && page_order(page_head) >= order)
  6543. break;
  6544. }
  6545. spin_unlock_irqrestore(&zone->lock, flags);
  6546. return order < MAX_ORDER;
  6547. }