cafe_nand.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
  1. /*
  2. * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
  3. *
  4. * The data sheet for this device can be found at:
  5. * http://wiki.laptop.org/go/Datasheets
  6. *
  7. * Copyright © 2006 Red Hat, Inc.
  8. * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
  9. */
  10. #define DEBUG
  11. #include <linux/device.h>
  12. #undef DEBUG
  13. #include <linux/mtd/mtd.h>
  14. #include <linux/mtd/rawnand.h>
  15. #include <linux/mtd/partitions.h>
  16. #include <linux/rslib.h>
  17. #include <linux/pci.h>
  18. #include <linux/delay.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/slab.h>
  22. #include <linux/module.h>
  23. #include <asm/io.h>
  24. #define CAFE_NAND_CTRL1 0x00
  25. #define CAFE_NAND_CTRL2 0x04
  26. #define CAFE_NAND_CTRL3 0x08
  27. #define CAFE_NAND_STATUS 0x0c
  28. #define CAFE_NAND_IRQ 0x10
  29. #define CAFE_NAND_IRQ_MASK 0x14
  30. #define CAFE_NAND_DATA_LEN 0x18
  31. #define CAFE_NAND_ADDR1 0x1c
  32. #define CAFE_NAND_ADDR2 0x20
  33. #define CAFE_NAND_TIMING1 0x24
  34. #define CAFE_NAND_TIMING2 0x28
  35. #define CAFE_NAND_TIMING3 0x2c
  36. #define CAFE_NAND_NONMEM 0x30
  37. #define CAFE_NAND_ECC_RESULT 0x3C
  38. #define CAFE_NAND_DMA_CTRL 0x40
  39. #define CAFE_NAND_DMA_ADDR0 0x44
  40. #define CAFE_NAND_DMA_ADDR1 0x48
  41. #define CAFE_NAND_ECC_SYN01 0x50
  42. #define CAFE_NAND_ECC_SYN23 0x54
  43. #define CAFE_NAND_ECC_SYN45 0x58
  44. #define CAFE_NAND_ECC_SYN67 0x5c
  45. #define CAFE_NAND_READ_DATA 0x1000
  46. #define CAFE_NAND_WRITE_DATA 0x2000
  47. #define CAFE_GLOBAL_CTRL 0x3004
  48. #define CAFE_GLOBAL_IRQ 0x3008
  49. #define CAFE_GLOBAL_IRQ_MASK 0x300c
  50. #define CAFE_NAND_RESET 0x3034
  51. /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
  52. #define CTRL1_CHIPSELECT (1<<19)
  53. struct cafe_priv {
  54. struct nand_chip nand;
  55. struct pci_dev *pdev;
  56. void __iomem *mmio;
  57. struct rs_control *rs;
  58. uint32_t ctl1;
  59. uint32_t ctl2;
  60. int datalen;
  61. int nr_data;
  62. int data_pos;
  63. int page_addr;
  64. bool usedma;
  65. dma_addr_t dmaaddr;
  66. unsigned char *dmabuf;
  67. };
  68. static int usedma = 1;
  69. module_param(usedma, int, 0644);
  70. static int skipbbt = 0;
  71. module_param(skipbbt, int, 0644);
  72. static int debug = 0;
  73. module_param(debug, int, 0644);
  74. static int regdebug = 0;
  75. module_param(regdebug, int, 0644);
  76. static int checkecc = 1;
  77. module_param(checkecc, int, 0644);
  78. static unsigned int numtimings;
  79. static int timing[3];
  80. module_param_array(timing, int, &numtimings, 0644);
  81. static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
  82. /* Hrm. Why isn't this already conditional on something in the struct device? */
  83. #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
  84. /* Make it easier to switch to PIO if we need to */
  85. #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
  86. #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
  87. static int cafe_device_ready(struct nand_chip *chip)
  88. {
  89. struct cafe_priv *cafe = nand_get_controller_data(chip);
  90. int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
  91. uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
  92. cafe_writel(cafe, irqs, NAND_IRQ);
  93. cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
  94. result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
  95. cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
  96. return result;
  97. }
  98. static void cafe_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
  99. {
  100. struct cafe_priv *cafe = nand_get_controller_data(chip);
  101. if (cafe->usedma)
  102. memcpy(cafe->dmabuf + cafe->datalen, buf, len);
  103. else
  104. memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
  105. cafe->datalen += len;
  106. cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
  107. len, cafe->datalen);
  108. }
  109. static void cafe_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
  110. {
  111. struct cafe_priv *cafe = nand_get_controller_data(chip);
  112. if (cafe->usedma)
  113. memcpy(buf, cafe->dmabuf + cafe->datalen, len);
  114. else
  115. memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
  116. cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
  117. len, cafe->datalen);
  118. cafe->datalen += len;
  119. }
  120. static uint8_t cafe_read_byte(struct nand_chip *chip)
  121. {
  122. struct cafe_priv *cafe = nand_get_controller_data(chip);
  123. uint8_t d;
  124. cafe_read_buf(chip, &d, 1);
  125. cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
  126. return d;
  127. }
  128. static void cafe_nand_cmdfunc(struct nand_chip *chip, unsigned command,
  129. int column, int page_addr)
  130. {
  131. struct mtd_info *mtd = nand_to_mtd(chip);
  132. struct cafe_priv *cafe = nand_get_controller_data(chip);
  133. int adrbytes = 0;
  134. uint32_t ctl1;
  135. uint32_t doneint = 0x80000000;
  136. cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
  137. command, column, page_addr);
  138. if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
  139. /* Second half of a command we already calculated */
  140. cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
  141. ctl1 = cafe->ctl1;
  142. cafe->ctl2 &= ~(1<<30);
  143. cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
  144. cafe->ctl1, cafe->nr_data);
  145. goto do_command;
  146. }
  147. /* Reset ECC engine */
  148. cafe_writel(cafe, 0, NAND_CTRL2);
  149. /* Emulate NAND_CMD_READOOB on large-page chips */
  150. if (mtd->writesize > 512 &&
  151. command == NAND_CMD_READOOB) {
  152. column += mtd->writesize;
  153. command = NAND_CMD_READ0;
  154. }
  155. /* FIXME: Do we need to send read command before sending data
  156. for small-page chips, to position the buffer correctly? */
  157. if (column != -1) {
  158. cafe_writel(cafe, column, NAND_ADDR1);
  159. adrbytes = 2;
  160. if (page_addr != -1)
  161. goto write_adr2;
  162. } else if (page_addr != -1) {
  163. cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
  164. page_addr >>= 16;
  165. write_adr2:
  166. cafe_writel(cafe, page_addr, NAND_ADDR2);
  167. adrbytes += 2;
  168. if (mtd->size > mtd->writesize << 16)
  169. adrbytes++;
  170. }
  171. cafe->data_pos = cafe->datalen = 0;
  172. /* Set command valid bit, mask in the chip select bit */
  173. ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
  174. /* Set RD or WR bits as appropriate */
  175. if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
  176. ctl1 |= (1<<26); /* rd */
  177. /* Always 5 bytes, for now */
  178. cafe->datalen = 4;
  179. /* And one address cycle -- even for STATUS, since the controller doesn't work without */
  180. adrbytes = 1;
  181. } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
  182. command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
  183. ctl1 |= 1<<26; /* rd */
  184. /* For now, assume just read to end of page */
  185. cafe->datalen = mtd->writesize + mtd->oobsize - column;
  186. } else if (command == NAND_CMD_SEQIN)
  187. ctl1 |= 1<<25; /* wr */
  188. /* Set number of address bytes */
  189. if (adrbytes)
  190. ctl1 |= ((adrbytes-1)|8) << 27;
  191. if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
  192. /* Ignore the first command of a pair; the hardware
  193. deals with them both at once, later */
  194. cafe->ctl1 = ctl1;
  195. cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
  196. cafe->ctl1, cafe->datalen);
  197. return;
  198. }
  199. /* RNDOUT and READ0 commands need a following byte */
  200. if (command == NAND_CMD_RNDOUT)
  201. cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
  202. else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
  203. cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
  204. do_command:
  205. cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
  206. cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
  207. /* NB: The datasheet lies -- we really should be subtracting 1 here */
  208. cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
  209. cafe_writel(cafe, 0x90000000, NAND_IRQ);
  210. if (cafe->usedma && (ctl1 & (3<<25))) {
  211. uint32_t dmactl = 0xc0000000 + cafe->datalen;
  212. /* If WR or RD bits set, set up DMA */
  213. if (ctl1 & (1<<26)) {
  214. /* It's a read */
  215. dmactl |= (1<<29);
  216. /* ... so it's done when the DMA is done, not just
  217. the command. */
  218. doneint = 0x10000000;
  219. }
  220. cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
  221. }
  222. cafe->datalen = 0;
  223. if (unlikely(regdebug)) {
  224. int i;
  225. printk("About to write command %08x to register 0\n", ctl1);
  226. for (i=4; i< 0x5c; i+=4)
  227. printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
  228. }
  229. cafe_writel(cafe, ctl1, NAND_CTRL1);
  230. /* Apply this short delay always to ensure that we do wait tWB in
  231. * any case on any machine. */
  232. ndelay(100);
  233. if (1) {
  234. int c;
  235. uint32_t irqs;
  236. for (c = 500000; c != 0; c--) {
  237. irqs = cafe_readl(cafe, NAND_IRQ);
  238. if (irqs & doneint)
  239. break;
  240. udelay(1);
  241. if (!(c % 100000))
  242. cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
  243. cpu_relax();
  244. }
  245. cafe_writel(cafe, doneint, NAND_IRQ);
  246. cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
  247. command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
  248. }
  249. WARN_ON(cafe->ctl2 & (1<<30));
  250. switch (command) {
  251. case NAND_CMD_CACHEDPROG:
  252. case NAND_CMD_PAGEPROG:
  253. case NAND_CMD_ERASE1:
  254. case NAND_CMD_ERASE2:
  255. case NAND_CMD_SEQIN:
  256. case NAND_CMD_RNDIN:
  257. case NAND_CMD_STATUS:
  258. case NAND_CMD_RNDOUT:
  259. cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
  260. return;
  261. }
  262. nand_wait_ready(chip);
  263. cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
  264. }
  265. static void cafe_select_chip(struct nand_chip *chip, int chipnr)
  266. {
  267. struct cafe_priv *cafe = nand_get_controller_data(chip);
  268. cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
  269. /* Mask the appropriate bit into the stored value of ctl1
  270. which will be used by cafe_nand_cmdfunc() */
  271. if (chipnr)
  272. cafe->ctl1 |= CTRL1_CHIPSELECT;
  273. else
  274. cafe->ctl1 &= ~CTRL1_CHIPSELECT;
  275. }
  276. static irqreturn_t cafe_nand_interrupt(int irq, void *id)
  277. {
  278. struct mtd_info *mtd = id;
  279. struct nand_chip *chip = mtd_to_nand(mtd);
  280. struct cafe_priv *cafe = nand_get_controller_data(chip);
  281. uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
  282. cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
  283. if (!irqs)
  284. return IRQ_NONE;
  285. cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
  286. return IRQ_HANDLED;
  287. }
  288. static int cafe_nand_write_oob(struct nand_chip *chip, int page)
  289. {
  290. struct mtd_info *mtd = nand_to_mtd(chip);
  291. return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
  292. mtd->oobsize);
  293. }
  294. /* Don't use -- use nand_read_oob_std for now */
  295. static int cafe_nand_read_oob(struct nand_chip *chip, int page)
  296. {
  297. struct mtd_info *mtd = nand_to_mtd(chip);
  298. return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
  299. }
  300. /**
  301. * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
  302. * @mtd: mtd info structure
  303. * @chip: nand chip info structure
  304. * @buf: buffer to store read data
  305. * @oob_required: caller expects OOB data read to chip->oob_poi
  306. *
  307. * The hw generator calculates the error syndrome automatically. Therefore
  308. * we need a special oob layout and handling.
  309. */
  310. static int cafe_nand_read_page(struct nand_chip *chip, uint8_t *buf,
  311. int oob_required, int page)
  312. {
  313. struct mtd_info *mtd = nand_to_mtd(chip);
  314. struct cafe_priv *cafe = nand_get_controller_data(chip);
  315. unsigned int max_bitflips = 0;
  316. cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
  317. cafe_readl(cafe, NAND_ECC_RESULT),
  318. cafe_readl(cafe, NAND_ECC_SYN01));
  319. nand_read_page_op(chip, page, 0, buf, mtd->writesize);
  320. chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
  321. if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
  322. unsigned short syn[8], pat[4];
  323. int pos[4];
  324. u8 *oob = chip->oob_poi;
  325. int i, n;
  326. for (i=0; i<8; i+=2) {
  327. uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
  328. syn[i] = cafe->rs->codec->index_of[tmp & 0xfff];
  329. syn[i+1] = cafe->rs->codec->index_of[(tmp >> 16) & 0xfff];
  330. }
  331. n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
  332. pat);
  333. for (i = 0; i < n; i++) {
  334. int p = pos[i];
  335. /* The 12-bit symbols are mapped to bytes here */
  336. if (p > 1374) {
  337. /* out of range */
  338. n = -1374;
  339. } else if (p == 0) {
  340. /* high four bits do not correspond to data */
  341. if (pat[i] > 0xff)
  342. n = -2048;
  343. else
  344. buf[0] ^= pat[i];
  345. } else if (p == 1365) {
  346. buf[2047] ^= pat[i] >> 4;
  347. oob[0] ^= pat[i] << 4;
  348. } else if (p > 1365) {
  349. if ((p & 1) == 1) {
  350. oob[3*p/2 - 2048] ^= pat[i] >> 4;
  351. oob[3*p/2 - 2047] ^= pat[i] << 4;
  352. } else {
  353. oob[3*p/2 - 2049] ^= pat[i] >> 8;
  354. oob[3*p/2 - 2048] ^= pat[i];
  355. }
  356. } else if ((p & 1) == 1) {
  357. buf[3*p/2] ^= pat[i] >> 4;
  358. buf[3*p/2 + 1] ^= pat[i] << 4;
  359. } else {
  360. buf[3*p/2 - 1] ^= pat[i] >> 8;
  361. buf[3*p/2] ^= pat[i];
  362. }
  363. }
  364. if (n < 0) {
  365. dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
  366. cafe_readl(cafe, NAND_ADDR2) * 2048);
  367. for (i = 0; i < 0x5c; i += 4)
  368. printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
  369. mtd->ecc_stats.failed++;
  370. } else {
  371. dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
  372. mtd->ecc_stats.corrected += n;
  373. max_bitflips = max_t(unsigned int, max_bitflips, n);
  374. }
  375. }
  376. return max_bitflips;
  377. }
  378. static int cafe_ooblayout_ecc(struct mtd_info *mtd, int section,
  379. struct mtd_oob_region *oobregion)
  380. {
  381. struct nand_chip *chip = mtd_to_nand(mtd);
  382. if (section)
  383. return -ERANGE;
  384. oobregion->offset = 0;
  385. oobregion->length = chip->ecc.total;
  386. return 0;
  387. }
  388. static int cafe_ooblayout_free(struct mtd_info *mtd, int section,
  389. struct mtd_oob_region *oobregion)
  390. {
  391. struct nand_chip *chip = mtd_to_nand(mtd);
  392. if (section)
  393. return -ERANGE;
  394. oobregion->offset = chip->ecc.total;
  395. oobregion->length = mtd->oobsize - chip->ecc.total;
  396. return 0;
  397. }
  398. static const struct mtd_ooblayout_ops cafe_ooblayout_ops = {
  399. .ecc = cafe_ooblayout_ecc,
  400. .free = cafe_ooblayout_free,
  401. };
  402. /* Ick. The BBT code really ought to be able to work this bit out
  403. for itself from the above, at least for the 2KiB case */
  404. static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
  405. static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
  406. static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
  407. static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
  408. static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
  409. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  410. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  411. .offs = 14,
  412. .len = 4,
  413. .veroffs = 18,
  414. .maxblocks = 4,
  415. .pattern = cafe_bbt_pattern_2048
  416. };
  417. static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
  418. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  419. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  420. .offs = 14,
  421. .len = 4,
  422. .veroffs = 18,
  423. .maxblocks = 4,
  424. .pattern = cafe_mirror_pattern_2048
  425. };
  426. static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
  427. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  428. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  429. .offs = 14,
  430. .len = 1,
  431. .veroffs = 15,
  432. .maxblocks = 4,
  433. .pattern = cafe_bbt_pattern_512
  434. };
  435. static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
  436. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  437. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  438. .offs = 14,
  439. .len = 1,
  440. .veroffs = 15,
  441. .maxblocks = 4,
  442. .pattern = cafe_mirror_pattern_512
  443. };
  444. static int cafe_nand_write_page_lowlevel(struct nand_chip *chip,
  445. const uint8_t *buf, int oob_required,
  446. int page)
  447. {
  448. struct mtd_info *mtd = nand_to_mtd(chip);
  449. struct cafe_priv *cafe = nand_get_controller_data(chip);
  450. nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
  451. chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
  452. /* Set up ECC autogeneration */
  453. cafe->ctl2 |= (1<<30);
  454. return nand_prog_page_end_op(chip);
  455. }
  456. static int cafe_nand_block_bad(struct nand_chip *chip, loff_t ofs)
  457. {
  458. return 0;
  459. }
  460. /* F_2[X]/(X**6+X+1) */
  461. static unsigned short gf64_mul(u8 a, u8 b)
  462. {
  463. u8 c;
  464. unsigned int i;
  465. c = 0;
  466. for (i = 0; i < 6; i++) {
  467. if (a & 1)
  468. c ^= b;
  469. a >>= 1;
  470. b <<= 1;
  471. if ((b & 0x40) != 0)
  472. b ^= 0x43;
  473. }
  474. return c;
  475. }
  476. /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */
  477. static u16 gf4096_mul(u16 a, u16 b)
  478. {
  479. u8 ah, al, bh, bl, ch, cl;
  480. ah = a >> 6;
  481. al = a & 0x3f;
  482. bh = b >> 6;
  483. bl = b & 0x3f;
  484. ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
  485. cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
  486. return (ch << 6) ^ cl;
  487. }
  488. static int cafe_mul(int x)
  489. {
  490. if (x == 0)
  491. return 1;
  492. return gf4096_mul(x, 0xe01);
  493. }
  494. static int cafe_nand_attach_chip(struct nand_chip *chip)
  495. {
  496. struct mtd_info *mtd = nand_to_mtd(chip);
  497. struct cafe_priv *cafe = nand_get_controller_data(chip);
  498. int err = 0;
  499. cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112,
  500. &cafe->dmaaddr, GFP_KERNEL);
  501. if (!cafe->dmabuf)
  502. return -ENOMEM;
  503. /* Set up DMA address */
  504. cafe_writel(cafe, lower_32_bits(cafe->dmaaddr), NAND_DMA_ADDR0);
  505. cafe_writel(cafe, upper_32_bits(cafe->dmaaddr), NAND_DMA_ADDR1);
  506. cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
  507. cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
  508. /* Restore the DMA flag */
  509. cafe->usedma = usedma;
  510. cafe->ctl2 = BIT(27); /* Reed-Solomon ECC */
  511. if (mtd->writesize == 2048)
  512. cafe->ctl2 |= BIT(29); /* 2KiB page size */
  513. /* Set up ECC according to the type of chip we found */
  514. mtd_set_ooblayout(mtd, &cafe_ooblayout_ops);
  515. if (mtd->writesize == 2048) {
  516. cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
  517. cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
  518. } else if (mtd->writesize == 512) {
  519. cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
  520. cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
  521. } else {
  522. dev_warn(&cafe->pdev->dev,
  523. "Unexpected NAND flash writesize %d. Aborting\n",
  524. mtd->writesize);
  525. err = -ENOTSUPP;
  526. goto out_free_dma;
  527. }
  528. cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
  529. cafe->nand.ecc.size = mtd->writesize;
  530. cafe->nand.ecc.bytes = 14;
  531. cafe->nand.ecc.strength = 4;
  532. cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
  533. cafe->nand.ecc.write_oob = cafe_nand_write_oob;
  534. cafe->nand.ecc.read_page = cafe_nand_read_page;
  535. cafe->nand.ecc.read_oob = cafe_nand_read_oob;
  536. return 0;
  537. out_free_dma:
  538. dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
  539. return err;
  540. }
  541. static void cafe_nand_detach_chip(struct nand_chip *chip)
  542. {
  543. struct cafe_priv *cafe = nand_get_controller_data(chip);
  544. dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
  545. }
  546. static const struct nand_controller_ops cafe_nand_controller_ops = {
  547. .attach_chip = cafe_nand_attach_chip,
  548. .detach_chip = cafe_nand_detach_chip,
  549. };
  550. static int cafe_nand_probe(struct pci_dev *pdev,
  551. const struct pci_device_id *ent)
  552. {
  553. struct mtd_info *mtd;
  554. struct cafe_priv *cafe;
  555. uint32_t ctrl;
  556. int err = 0;
  557. /* Very old versions shared the same PCI ident for all three
  558. functions on the chip. Verify the class too... */
  559. if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
  560. return -ENODEV;
  561. err = pci_enable_device(pdev);
  562. if (err)
  563. return err;
  564. pci_set_master(pdev);
  565. cafe = kzalloc(sizeof(*cafe), GFP_KERNEL);
  566. if (!cafe)
  567. return -ENOMEM;
  568. mtd = nand_to_mtd(&cafe->nand);
  569. mtd->dev.parent = &pdev->dev;
  570. nand_set_controller_data(&cafe->nand, cafe);
  571. cafe->pdev = pdev;
  572. cafe->mmio = pci_iomap(pdev, 0, 0);
  573. if (!cafe->mmio) {
  574. dev_warn(&pdev->dev, "failed to iomap\n");
  575. err = -ENOMEM;
  576. goto out_free_mtd;
  577. }
  578. cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
  579. if (!cafe->rs) {
  580. err = -ENOMEM;
  581. goto out_ior;
  582. }
  583. cafe->nand.legacy.cmdfunc = cafe_nand_cmdfunc;
  584. cafe->nand.legacy.dev_ready = cafe_device_ready;
  585. cafe->nand.legacy.read_byte = cafe_read_byte;
  586. cafe->nand.legacy.read_buf = cafe_read_buf;
  587. cafe->nand.legacy.write_buf = cafe_write_buf;
  588. cafe->nand.select_chip = cafe_select_chip;
  589. cafe->nand.legacy.set_features = nand_get_set_features_notsupp;
  590. cafe->nand.legacy.get_features = nand_get_set_features_notsupp;
  591. cafe->nand.chip_delay = 0;
  592. /* Enable the following for a flash based bad block table */
  593. cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
  594. if (skipbbt) {
  595. cafe->nand.options |= NAND_SKIP_BBTSCAN;
  596. cafe->nand.legacy.block_bad = cafe_nand_block_bad;
  597. }
  598. if (numtimings && numtimings != 3) {
  599. dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
  600. }
  601. if (numtimings == 3) {
  602. cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
  603. timing[0], timing[1], timing[2]);
  604. } else {
  605. timing[0] = cafe_readl(cafe, NAND_TIMING1);
  606. timing[1] = cafe_readl(cafe, NAND_TIMING2);
  607. timing[2] = cafe_readl(cafe, NAND_TIMING3);
  608. if (timing[0] | timing[1] | timing[2]) {
  609. cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
  610. timing[0], timing[1], timing[2]);
  611. } else {
  612. dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
  613. timing[0] = timing[1] = timing[2] = 0xffffffff;
  614. }
  615. }
  616. /* Start off by resetting the NAND controller completely */
  617. cafe_writel(cafe, 1, NAND_RESET);
  618. cafe_writel(cafe, 0, NAND_RESET);
  619. cafe_writel(cafe, timing[0], NAND_TIMING1);
  620. cafe_writel(cafe, timing[1], NAND_TIMING2);
  621. cafe_writel(cafe, timing[2], NAND_TIMING3);
  622. cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
  623. err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
  624. "CAFE NAND", mtd);
  625. if (err) {
  626. dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
  627. goto out_ior;
  628. }
  629. /* Disable master reset, enable NAND clock */
  630. ctrl = cafe_readl(cafe, GLOBAL_CTRL);
  631. ctrl &= 0xffffeff0;
  632. ctrl |= 0x00007000;
  633. cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
  634. cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
  635. cafe_writel(cafe, 0, NAND_DMA_CTRL);
  636. cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
  637. cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
  638. /* Enable NAND IRQ in global IRQ mask register */
  639. cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
  640. cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
  641. cafe_readl(cafe, GLOBAL_CTRL),
  642. cafe_readl(cafe, GLOBAL_IRQ_MASK));
  643. /* Do not use the DMA during the NAND identification */
  644. cafe->usedma = 0;
  645. /* Scan to find existence of the device */
  646. cafe->nand.dummy_controller.ops = &cafe_nand_controller_ops;
  647. err = nand_scan(&cafe->nand, 2);
  648. if (err)
  649. goto out_irq;
  650. pci_set_drvdata(pdev, mtd);
  651. mtd->name = "cafe_nand";
  652. err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
  653. if (err)
  654. goto out_cleanup_nand;
  655. goto out;
  656. out_cleanup_nand:
  657. nand_cleanup(&cafe->nand);
  658. out_irq:
  659. /* Disable NAND IRQ in global IRQ mask register */
  660. cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
  661. free_irq(pdev->irq, mtd);
  662. out_ior:
  663. pci_iounmap(pdev, cafe->mmio);
  664. out_free_mtd:
  665. kfree(cafe);
  666. out:
  667. return err;
  668. }
  669. static void cafe_nand_remove(struct pci_dev *pdev)
  670. {
  671. struct mtd_info *mtd = pci_get_drvdata(pdev);
  672. struct nand_chip *chip = mtd_to_nand(mtd);
  673. struct cafe_priv *cafe = nand_get_controller_data(chip);
  674. /* Disable NAND IRQ in global IRQ mask register */
  675. cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
  676. free_irq(pdev->irq, mtd);
  677. nand_release(chip);
  678. free_rs(cafe->rs);
  679. pci_iounmap(pdev, cafe->mmio);
  680. dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
  681. kfree(cafe);
  682. }
  683. static const struct pci_device_id cafe_nand_tbl[] = {
  684. { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
  685. PCI_ANY_ID, PCI_ANY_ID },
  686. { }
  687. };
  688. MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
  689. static int cafe_nand_resume(struct pci_dev *pdev)
  690. {
  691. uint32_t ctrl;
  692. struct mtd_info *mtd = pci_get_drvdata(pdev);
  693. struct nand_chip *chip = mtd_to_nand(mtd);
  694. struct cafe_priv *cafe = nand_get_controller_data(chip);
  695. /* Start off by resetting the NAND controller completely */
  696. cafe_writel(cafe, 1, NAND_RESET);
  697. cafe_writel(cafe, 0, NAND_RESET);
  698. cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
  699. /* Restore timing configuration */
  700. cafe_writel(cafe, timing[0], NAND_TIMING1);
  701. cafe_writel(cafe, timing[1], NAND_TIMING2);
  702. cafe_writel(cafe, timing[2], NAND_TIMING3);
  703. /* Disable master reset, enable NAND clock */
  704. ctrl = cafe_readl(cafe, GLOBAL_CTRL);
  705. ctrl &= 0xffffeff0;
  706. ctrl |= 0x00007000;
  707. cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
  708. cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
  709. cafe_writel(cafe, 0, NAND_DMA_CTRL);
  710. cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
  711. cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
  712. /* Set up DMA address */
  713. cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
  714. if (sizeof(cafe->dmaaddr) > 4)
  715. /* Shift in two parts to shut the compiler up */
  716. cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
  717. else
  718. cafe_writel(cafe, 0, NAND_DMA_ADDR1);
  719. /* Enable NAND IRQ in global IRQ mask register */
  720. cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
  721. return 0;
  722. }
  723. static struct pci_driver cafe_nand_pci_driver = {
  724. .name = "CAFÉ NAND",
  725. .id_table = cafe_nand_tbl,
  726. .probe = cafe_nand_probe,
  727. .remove = cafe_nand_remove,
  728. .resume = cafe_nand_resume,
  729. };
  730. module_pci_driver(cafe_nand_pci_driver);
  731. MODULE_LICENSE("GPL");
  732. MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
  733. MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");