smc_rx.c 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221
  1. /*
  2. * Shared Memory Communications over RDMA (SMC-R) and RoCE
  3. *
  4. * Manage RMBE
  5. * copy new RMBE data into user space
  6. *
  7. * Copyright IBM Corp. 2016
  8. *
  9. * Author(s): Ursula Braun <ubraun@linux.vnet.ibm.com>
  10. */
  11. #include <linux/net.h>
  12. #include <linux/rcupdate.h>
  13. #include <linux/sched/signal.h>
  14. #include <net/sock.h>
  15. #include "smc.h"
  16. #include "smc_core.h"
  17. #include "smc_cdc.h"
  18. #include "smc_tx.h" /* smc_tx_consumer_update() */
  19. #include "smc_rx.h"
  20. /* callback implementation for sk.sk_data_ready()
  21. * to wakeup rcvbuf consumers that blocked with smc_rx_wait_data().
  22. * indirectly called by smc_cdc_msg_recv_action().
  23. */
  24. static void smc_rx_data_ready(struct sock *sk)
  25. {
  26. struct socket_wq *wq;
  27. /* derived from sock_def_readable() */
  28. /* called already in smc_listen_work() */
  29. rcu_read_lock();
  30. wq = rcu_dereference(sk->sk_wq);
  31. if (skwq_has_sleeper(wq))
  32. wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
  33. POLLRDNORM | POLLRDBAND);
  34. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  35. if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
  36. (sk->sk_state == SMC_CLOSED))
  37. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  38. rcu_read_unlock();
  39. }
  40. /* blocks rcvbuf consumer until >=len bytes available or timeout or interrupted
  41. * @smc smc socket
  42. * @timeo pointer to max seconds to wait, pointer to value 0 for no timeout
  43. * Returns:
  44. * 1 if at least 1 byte available in rcvbuf or if socket error/shutdown.
  45. * 0 otherwise (nothing in rcvbuf nor timeout, e.g. interrupted).
  46. */
  47. static int smc_rx_wait_data(struct smc_sock *smc, long *timeo)
  48. {
  49. DEFINE_WAIT_FUNC(wait, woken_wake_function);
  50. struct smc_connection *conn = &smc->conn;
  51. struct sock *sk = &smc->sk;
  52. int rc;
  53. if (atomic_read(&conn->bytes_to_rcv))
  54. return 1;
  55. sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
  56. add_wait_queue(sk_sleep(sk), &wait);
  57. rc = sk_wait_event(sk, timeo,
  58. sk->sk_err ||
  59. sk->sk_shutdown & RCV_SHUTDOWN ||
  60. sock_flag(sk, SOCK_DONE) ||
  61. atomic_read(&conn->bytes_to_rcv) ||
  62. smc_cdc_rxed_any_close_or_senddone(conn),
  63. &wait);
  64. remove_wait_queue(sk_sleep(sk), &wait);
  65. sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
  66. return rc;
  67. }
  68. /* rcvbuf consumer: main API called by socket layer.
  69. * called under sk lock.
  70. */
  71. int smc_rx_recvmsg(struct smc_sock *smc, struct msghdr *msg, size_t len,
  72. int flags)
  73. {
  74. size_t copylen, read_done = 0, read_remaining = len;
  75. size_t chunk_len, chunk_off, chunk_len_sum;
  76. struct smc_connection *conn = &smc->conn;
  77. union smc_host_cursor cons;
  78. int readable, chunk;
  79. char *rcvbuf_base;
  80. struct sock *sk;
  81. long timeo;
  82. int target; /* Read at least these many bytes */
  83. int rc;
  84. if (unlikely(flags & MSG_ERRQUEUE))
  85. return -EINVAL; /* future work for sk.sk_family == AF_SMC */
  86. if (flags & MSG_OOB)
  87. return -EINVAL; /* future work */
  88. sk = &smc->sk;
  89. if (sk->sk_state == SMC_LISTEN)
  90. return -ENOTCONN;
  91. timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
  92. target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
  93. msg->msg_namelen = 0;
  94. /* we currently use 1 RMBE per RMB, so RMBE == RMB base addr */
  95. rcvbuf_base = conn->rmb_desc->cpu_addr;
  96. do { /* while (read_remaining) */
  97. if (read_done >= target)
  98. break;
  99. if (atomic_read(&conn->bytes_to_rcv))
  100. goto copy;
  101. if (read_done) {
  102. if (sk->sk_err ||
  103. sk->sk_state == SMC_CLOSED ||
  104. (sk->sk_shutdown & RCV_SHUTDOWN) ||
  105. !timeo ||
  106. signal_pending(current) ||
  107. smc_cdc_rxed_any_close_or_senddone(conn) ||
  108. conn->local_tx_ctrl.conn_state_flags.
  109. peer_conn_abort)
  110. break;
  111. } else {
  112. if (sock_flag(sk, SOCK_DONE))
  113. break;
  114. if (sk->sk_err) {
  115. read_done = sock_error(sk);
  116. break;
  117. }
  118. if (sk->sk_shutdown & RCV_SHUTDOWN ||
  119. smc_cdc_rxed_any_close_or_senddone(conn) ||
  120. conn->local_tx_ctrl.conn_state_flags.
  121. peer_conn_abort)
  122. break;
  123. if (sk->sk_state == SMC_CLOSED) {
  124. if (!sock_flag(sk, SOCK_DONE)) {
  125. /* This occurs when user tries to read
  126. * from never connected socket.
  127. */
  128. read_done = -ENOTCONN;
  129. break;
  130. }
  131. break;
  132. }
  133. if (signal_pending(current)) {
  134. read_done = sock_intr_errno(timeo);
  135. break;
  136. }
  137. }
  138. if (!atomic_read(&conn->bytes_to_rcv)) {
  139. smc_rx_wait_data(smc, &timeo);
  140. continue;
  141. }
  142. copy:
  143. /* initialize variables for 1st iteration of subsequent loop */
  144. /* could be just 1 byte, even after smc_rx_wait_data above */
  145. readable = atomic_read(&conn->bytes_to_rcv);
  146. /* not more than what user space asked for */
  147. copylen = min_t(size_t, read_remaining, readable);
  148. smc_curs_write(&cons,
  149. smc_curs_read(&conn->local_tx_ctrl.cons, conn),
  150. conn);
  151. /* determine chunks where to read from rcvbuf */
  152. /* either unwrapped case, or 1st chunk of wrapped case */
  153. chunk_len = min_t(size_t,
  154. copylen, conn->rmbe_size - cons.count);
  155. chunk_len_sum = chunk_len;
  156. chunk_off = cons.count;
  157. smc_rmb_sync_sg_for_cpu(conn);
  158. for (chunk = 0; chunk < 2; chunk++) {
  159. if (!(flags & MSG_TRUNC)) {
  160. rc = memcpy_to_msg(msg, rcvbuf_base + chunk_off,
  161. chunk_len);
  162. if (rc) {
  163. if (!read_done)
  164. read_done = -EFAULT;
  165. smc_rmb_sync_sg_for_device(conn);
  166. goto out;
  167. }
  168. }
  169. read_remaining -= chunk_len;
  170. read_done += chunk_len;
  171. if (chunk_len_sum == copylen)
  172. break; /* either on 1st or 2nd iteration */
  173. /* prepare next (== 2nd) iteration */
  174. chunk_len = copylen - chunk_len; /* remainder */
  175. chunk_len_sum += chunk_len;
  176. chunk_off = 0; /* modulo offset in recv ring buffer */
  177. }
  178. smc_rmb_sync_sg_for_device(conn);
  179. /* update cursors */
  180. if (!(flags & MSG_PEEK)) {
  181. smc_curs_add(conn->rmbe_size, &cons, copylen);
  182. /* increased in recv tasklet smc_cdc_msg_rcv() */
  183. smp_mb__before_atomic();
  184. atomic_sub(copylen, &conn->bytes_to_rcv);
  185. /* guarantee 0 <= bytes_to_rcv <= rmbe_size */
  186. smp_mb__after_atomic();
  187. smc_curs_write(&conn->local_tx_ctrl.cons,
  188. smc_curs_read(&cons, conn),
  189. conn);
  190. /* send consumer cursor update if required */
  191. /* similar to advertising new TCP rcv_wnd if required */
  192. smc_tx_consumer_update(conn);
  193. }
  194. } while (read_remaining);
  195. out:
  196. return read_done;
  197. }
  198. /* Initialize receive properties on connection establishment. NB: not __init! */
  199. void smc_rx_init(struct smc_sock *smc)
  200. {
  201. smc->sk.sk_data_ready = smc_rx_data_ready;
  202. }