smc_ib.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529
  1. /*
  2. * Shared Memory Communications over RDMA (SMC-R) and RoCE
  3. *
  4. * IB infrastructure:
  5. * Establish SMC-R as an Infiniband Client to be notified about added and
  6. * removed IB devices of type RDMA.
  7. * Determine device and port characteristics for these IB devices.
  8. *
  9. * Copyright IBM Corp. 2016
  10. *
  11. * Author(s): Ursula Braun <ubraun@linux.vnet.ibm.com>
  12. */
  13. #include <linux/random.h>
  14. #include <linux/workqueue.h>
  15. #include <linux/scatterlist.h>
  16. #include <rdma/ib_verbs.h>
  17. #include "smc_pnet.h"
  18. #include "smc_ib.h"
  19. #include "smc_core.h"
  20. #include "smc_wr.h"
  21. #include "smc.h"
  22. #define SMC_QP_MIN_RNR_TIMER 5
  23. #define SMC_QP_TIMEOUT 15 /* 4096 * 2 ** timeout usec */
  24. #define SMC_QP_RETRY_CNT 7 /* 7: infinite */
  25. #define SMC_QP_RNR_RETRY 7 /* 7: infinite */
  26. struct smc_ib_devices smc_ib_devices = { /* smc-registered ib devices */
  27. .lock = __SPIN_LOCK_UNLOCKED(smc_ib_devices.lock),
  28. .list = LIST_HEAD_INIT(smc_ib_devices.list),
  29. };
  30. #define SMC_LOCAL_SYSTEMID_RESET "%%%%%%%"
  31. u8 local_systemid[SMC_SYSTEMID_LEN] = SMC_LOCAL_SYSTEMID_RESET; /* unique system
  32. * identifier
  33. */
  34. static int smc_ib_modify_qp_init(struct smc_link *lnk)
  35. {
  36. struct ib_qp_attr qp_attr;
  37. memset(&qp_attr, 0, sizeof(qp_attr));
  38. qp_attr.qp_state = IB_QPS_INIT;
  39. qp_attr.pkey_index = 0;
  40. qp_attr.port_num = lnk->ibport;
  41. qp_attr.qp_access_flags = IB_ACCESS_LOCAL_WRITE
  42. | IB_ACCESS_REMOTE_WRITE;
  43. return ib_modify_qp(lnk->roce_qp, &qp_attr,
  44. IB_QP_STATE | IB_QP_PKEY_INDEX |
  45. IB_QP_ACCESS_FLAGS | IB_QP_PORT);
  46. }
  47. static int smc_ib_modify_qp_rtr(struct smc_link *lnk)
  48. {
  49. enum ib_qp_attr_mask qp_attr_mask =
  50. IB_QP_STATE | IB_QP_AV | IB_QP_PATH_MTU | IB_QP_DEST_QPN |
  51. IB_QP_RQ_PSN | IB_QP_MAX_DEST_RD_ATOMIC | IB_QP_MIN_RNR_TIMER;
  52. struct ib_qp_attr qp_attr;
  53. memset(&qp_attr, 0, sizeof(qp_attr));
  54. qp_attr.qp_state = IB_QPS_RTR;
  55. qp_attr.path_mtu = min(lnk->path_mtu, lnk->peer_mtu);
  56. qp_attr.ah_attr.type = RDMA_AH_ATTR_TYPE_ROCE;
  57. rdma_ah_set_port_num(&qp_attr.ah_attr, lnk->ibport);
  58. rdma_ah_set_grh(&qp_attr.ah_attr, NULL, 0, 0, 1, 0);
  59. rdma_ah_set_dgid_raw(&qp_attr.ah_attr, lnk->peer_gid);
  60. memcpy(&qp_attr.ah_attr.roce.dmac, lnk->peer_mac,
  61. sizeof(lnk->peer_mac));
  62. qp_attr.dest_qp_num = lnk->peer_qpn;
  63. qp_attr.rq_psn = lnk->peer_psn; /* starting receive packet seq # */
  64. qp_attr.max_dest_rd_atomic = 1; /* max # of resources for incoming
  65. * requests
  66. */
  67. qp_attr.min_rnr_timer = SMC_QP_MIN_RNR_TIMER;
  68. return ib_modify_qp(lnk->roce_qp, &qp_attr, qp_attr_mask);
  69. }
  70. int smc_ib_modify_qp_rts(struct smc_link *lnk)
  71. {
  72. struct ib_qp_attr qp_attr;
  73. memset(&qp_attr, 0, sizeof(qp_attr));
  74. qp_attr.qp_state = IB_QPS_RTS;
  75. qp_attr.timeout = SMC_QP_TIMEOUT; /* local ack timeout */
  76. qp_attr.retry_cnt = SMC_QP_RETRY_CNT; /* retry count */
  77. qp_attr.rnr_retry = SMC_QP_RNR_RETRY; /* RNR retries, 7=infinite */
  78. qp_attr.sq_psn = lnk->psn_initial; /* starting send packet seq # */
  79. qp_attr.max_rd_atomic = 1; /* # of outstanding RDMA reads and
  80. * atomic ops allowed
  81. */
  82. return ib_modify_qp(lnk->roce_qp, &qp_attr,
  83. IB_QP_STATE | IB_QP_TIMEOUT | IB_QP_RETRY_CNT |
  84. IB_QP_SQ_PSN | IB_QP_RNR_RETRY |
  85. IB_QP_MAX_QP_RD_ATOMIC);
  86. }
  87. int smc_ib_modify_qp_reset(struct smc_link *lnk)
  88. {
  89. struct ib_qp_attr qp_attr;
  90. memset(&qp_attr, 0, sizeof(qp_attr));
  91. qp_attr.qp_state = IB_QPS_RESET;
  92. return ib_modify_qp(lnk->roce_qp, &qp_attr, IB_QP_STATE);
  93. }
  94. int smc_ib_ready_link(struct smc_link *lnk)
  95. {
  96. struct smc_link_group *lgr =
  97. container_of(lnk, struct smc_link_group, lnk[0]);
  98. int rc = 0;
  99. rc = smc_ib_modify_qp_init(lnk);
  100. if (rc)
  101. goto out;
  102. rc = smc_ib_modify_qp_rtr(lnk);
  103. if (rc)
  104. goto out;
  105. smc_wr_remember_qp_attr(lnk);
  106. rc = ib_req_notify_cq(lnk->smcibdev->roce_cq_recv,
  107. IB_CQ_SOLICITED_MASK);
  108. if (rc)
  109. goto out;
  110. rc = smc_wr_rx_post_init(lnk);
  111. if (rc)
  112. goto out;
  113. smc_wr_remember_qp_attr(lnk);
  114. if (lgr->role == SMC_SERV) {
  115. rc = smc_ib_modify_qp_rts(lnk);
  116. if (rc)
  117. goto out;
  118. smc_wr_remember_qp_attr(lnk);
  119. }
  120. out:
  121. return rc;
  122. }
  123. /* process context wrapper for might_sleep smc_ib_remember_port_attr */
  124. static void smc_ib_port_event_work(struct work_struct *work)
  125. {
  126. struct smc_ib_device *smcibdev = container_of(
  127. work, struct smc_ib_device, port_event_work);
  128. u8 port_idx;
  129. for_each_set_bit(port_idx, &smcibdev->port_event_mask, SMC_MAX_PORTS) {
  130. smc_ib_remember_port_attr(smcibdev, port_idx + 1);
  131. clear_bit(port_idx, &smcibdev->port_event_mask);
  132. }
  133. }
  134. /* can be called in IRQ context */
  135. static void smc_ib_global_event_handler(struct ib_event_handler *handler,
  136. struct ib_event *ibevent)
  137. {
  138. struct smc_ib_device *smcibdev;
  139. u8 port_idx;
  140. smcibdev = container_of(handler, struct smc_ib_device, event_handler);
  141. switch (ibevent->event) {
  142. case IB_EVENT_PORT_ERR:
  143. port_idx = ibevent->element.port_num - 1;
  144. set_bit(port_idx, &smcibdev->port_event_mask);
  145. schedule_work(&smcibdev->port_event_work);
  146. /* fall through */
  147. case IB_EVENT_DEVICE_FATAL:
  148. /* tbd in follow-on patch:
  149. * abnormal close of corresponding connections
  150. */
  151. break;
  152. case IB_EVENT_PORT_ACTIVE:
  153. port_idx = ibevent->element.port_num - 1;
  154. set_bit(port_idx, &smcibdev->port_event_mask);
  155. schedule_work(&smcibdev->port_event_work);
  156. break;
  157. default:
  158. break;
  159. }
  160. }
  161. void smc_ib_dealloc_protection_domain(struct smc_link *lnk)
  162. {
  163. ib_dealloc_pd(lnk->roce_pd);
  164. lnk->roce_pd = NULL;
  165. }
  166. int smc_ib_create_protection_domain(struct smc_link *lnk)
  167. {
  168. int rc;
  169. lnk->roce_pd = ib_alloc_pd(lnk->smcibdev->ibdev, 0);
  170. rc = PTR_ERR_OR_ZERO(lnk->roce_pd);
  171. if (IS_ERR(lnk->roce_pd))
  172. lnk->roce_pd = NULL;
  173. return rc;
  174. }
  175. static void smc_ib_qp_event_handler(struct ib_event *ibevent, void *priv)
  176. {
  177. switch (ibevent->event) {
  178. case IB_EVENT_DEVICE_FATAL:
  179. case IB_EVENT_GID_CHANGE:
  180. case IB_EVENT_PORT_ERR:
  181. case IB_EVENT_QP_ACCESS_ERR:
  182. /* tbd in follow-on patch:
  183. * abnormal close of corresponding connections
  184. */
  185. break;
  186. default:
  187. break;
  188. }
  189. }
  190. void smc_ib_destroy_queue_pair(struct smc_link *lnk)
  191. {
  192. ib_destroy_qp(lnk->roce_qp);
  193. lnk->roce_qp = NULL;
  194. }
  195. /* create a queue pair within the protection domain for a link */
  196. int smc_ib_create_queue_pair(struct smc_link *lnk)
  197. {
  198. struct ib_qp_init_attr qp_attr = {
  199. .event_handler = smc_ib_qp_event_handler,
  200. .qp_context = lnk,
  201. .send_cq = lnk->smcibdev->roce_cq_send,
  202. .recv_cq = lnk->smcibdev->roce_cq_recv,
  203. .srq = NULL,
  204. .cap = {
  205. /* include unsolicited rdma_writes as well,
  206. * there are max. 2 RDMA_WRITE per 1 WR_SEND
  207. */
  208. .max_send_wr = SMC_WR_BUF_CNT * 3,
  209. .max_recv_wr = SMC_WR_BUF_CNT * 3,
  210. .max_send_sge = SMC_IB_MAX_SEND_SGE,
  211. .max_recv_sge = 1,
  212. },
  213. .sq_sig_type = IB_SIGNAL_REQ_WR,
  214. .qp_type = IB_QPT_RC,
  215. };
  216. int rc;
  217. lnk->roce_qp = ib_create_qp(lnk->roce_pd, &qp_attr);
  218. rc = PTR_ERR_OR_ZERO(lnk->roce_qp);
  219. if (IS_ERR(lnk->roce_qp))
  220. lnk->roce_qp = NULL;
  221. else
  222. smc_wr_remember_qp_attr(lnk);
  223. return rc;
  224. }
  225. void smc_ib_put_memory_region(struct ib_mr *mr)
  226. {
  227. ib_dereg_mr(mr);
  228. }
  229. static int smc_ib_map_mr_sg(struct smc_buf_desc *buf_slot)
  230. {
  231. unsigned int offset = 0;
  232. int sg_num;
  233. /* map the largest prefix of a dma mapped SG list */
  234. sg_num = ib_map_mr_sg(buf_slot->mr_rx[SMC_SINGLE_LINK],
  235. buf_slot->sgt[SMC_SINGLE_LINK].sgl,
  236. buf_slot->sgt[SMC_SINGLE_LINK].orig_nents,
  237. &offset, PAGE_SIZE);
  238. return sg_num;
  239. }
  240. /* Allocate a memory region and map the dma mapped SG list of buf_slot */
  241. int smc_ib_get_memory_region(struct ib_pd *pd, int access_flags,
  242. struct smc_buf_desc *buf_slot)
  243. {
  244. if (buf_slot->mr_rx[SMC_SINGLE_LINK])
  245. return 0; /* already done */
  246. buf_slot->mr_rx[SMC_SINGLE_LINK] =
  247. ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG, 1 << buf_slot->order);
  248. if (IS_ERR(buf_slot->mr_rx[SMC_SINGLE_LINK])) {
  249. int rc;
  250. rc = PTR_ERR(buf_slot->mr_rx[SMC_SINGLE_LINK]);
  251. buf_slot->mr_rx[SMC_SINGLE_LINK] = NULL;
  252. return rc;
  253. }
  254. if (smc_ib_map_mr_sg(buf_slot) != 1)
  255. return -EINVAL;
  256. return 0;
  257. }
  258. /* synchronize buffer usage for cpu access */
  259. void smc_ib_sync_sg_for_cpu(struct smc_ib_device *smcibdev,
  260. struct smc_buf_desc *buf_slot,
  261. enum dma_data_direction data_direction)
  262. {
  263. struct scatterlist *sg;
  264. unsigned int i;
  265. /* for now there is just one DMA address */
  266. for_each_sg(buf_slot->sgt[SMC_SINGLE_LINK].sgl, sg,
  267. buf_slot->sgt[SMC_SINGLE_LINK].nents, i) {
  268. if (!sg_dma_len(sg))
  269. break;
  270. ib_dma_sync_single_for_cpu(smcibdev->ibdev,
  271. sg_dma_address(sg),
  272. sg_dma_len(sg),
  273. data_direction);
  274. }
  275. }
  276. /* synchronize buffer usage for device access */
  277. void smc_ib_sync_sg_for_device(struct smc_ib_device *smcibdev,
  278. struct smc_buf_desc *buf_slot,
  279. enum dma_data_direction data_direction)
  280. {
  281. struct scatterlist *sg;
  282. unsigned int i;
  283. /* for now there is just one DMA address */
  284. for_each_sg(buf_slot->sgt[SMC_SINGLE_LINK].sgl, sg,
  285. buf_slot->sgt[SMC_SINGLE_LINK].nents, i) {
  286. if (!sg_dma_len(sg))
  287. break;
  288. ib_dma_sync_single_for_device(smcibdev->ibdev,
  289. sg_dma_address(sg),
  290. sg_dma_len(sg),
  291. data_direction);
  292. }
  293. }
  294. /* Map a new TX or RX buffer SG-table to DMA */
  295. int smc_ib_buf_map_sg(struct smc_ib_device *smcibdev,
  296. struct smc_buf_desc *buf_slot,
  297. enum dma_data_direction data_direction)
  298. {
  299. int mapped_nents;
  300. mapped_nents = ib_dma_map_sg(smcibdev->ibdev,
  301. buf_slot->sgt[SMC_SINGLE_LINK].sgl,
  302. buf_slot->sgt[SMC_SINGLE_LINK].orig_nents,
  303. data_direction);
  304. if (!mapped_nents)
  305. return -ENOMEM;
  306. return mapped_nents;
  307. }
  308. void smc_ib_buf_unmap_sg(struct smc_ib_device *smcibdev,
  309. struct smc_buf_desc *buf_slot,
  310. enum dma_data_direction data_direction)
  311. {
  312. if (!buf_slot->sgt[SMC_SINGLE_LINK].sgl->dma_address)
  313. return; /* already unmapped */
  314. ib_dma_unmap_sg(smcibdev->ibdev,
  315. buf_slot->sgt[SMC_SINGLE_LINK].sgl,
  316. buf_slot->sgt[SMC_SINGLE_LINK].orig_nents,
  317. data_direction);
  318. buf_slot->sgt[SMC_SINGLE_LINK].sgl->dma_address = 0;
  319. }
  320. static int smc_ib_fill_gid_and_mac(struct smc_ib_device *smcibdev, u8 ibport)
  321. {
  322. struct net_device *ndev;
  323. int rc;
  324. rc = ib_query_gid(smcibdev->ibdev, ibport, 0,
  325. &smcibdev->gid[ibport - 1], NULL);
  326. /* the SMC protocol requires specification of the roce MAC address;
  327. * if net_device cannot be determined, it can be derived from gid 0
  328. */
  329. ndev = smcibdev->ibdev->get_netdev(smcibdev->ibdev, ibport);
  330. if (ndev) {
  331. memcpy(&smcibdev->mac, ndev->dev_addr, ETH_ALEN);
  332. } else if (!rc) {
  333. memcpy(&smcibdev->mac[ibport - 1][0],
  334. &smcibdev->gid[ibport - 1].raw[8], 3);
  335. memcpy(&smcibdev->mac[ibport - 1][3],
  336. &smcibdev->gid[ibport - 1].raw[13], 3);
  337. smcibdev->mac[ibport - 1][0] &= ~0x02;
  338. }
  339. return rc;
  340. }
  341. /* Create an identifier unique for this instance of SMC-R.
  342. * The MAC-address of the first active registered IB device
  343. * plus a random 2-byte number is used to create this identifier.
  344. * This name is delivered to the peer during connection initialization.
  345. */
  346. static inline void smc_ib_define_local_systemid(struct smc_ib_device *smcibdev,
  347. u8 ibport)
  348. {
  349. memcpy(&local_systemid[2], &smcibdev->mac[ibport - 1],
  350. sizeof(smcibdev->mac[ibport - 1]));
  351. get_random_bytes(&local_systemid[0], 2);
  352. }
  353. bool smc_ib_port_active(struct smc_ib_device *smcibdev, u8 ibport)
  354. {
  355. return smcibdev->pattr[ibport - 1].state == IB_PORT_ACTIVE;
  356. }
  357. int smc_ib_remember_port_attr(struct smc_ib_device *smcibdev, u8 ibport)
  358. {
  359. int rc;
  360. memset(&smcibdev->pattr[ibport - 1], 0,
  361. sizeof(smcibdev->pattr[ibport - 1]));
  362. rc = ib_query_port(smcibdev->ibdev, ibport,
  363. &smcibdev->pattr[ibport - 1]);
  364. if (rc)
  365. goto out;
  366. rc = smc_ib_fill_gid_and_mac(smcibdev, ibport);
  367. if (rc)
  368. goto out;
  369. if (!strncmp(local_systemid, SMC_LOCAL_SYSTEMID_RESET,
  370. sizeof(local_systemid)) &&
  371. smc_ib_port_active(smcibdev, ibport))
  372. /* create unique system identifier */
  373. smc_ib_define_local_systemid(smcibdev, ibport);
  374. out:
  375. return rc;
  376. }
  377. long smc_ib_setup_per_ibdev(struct smc_ib_device *smcibdev)
  378. {
  379. struct ib_cq_init_attr cqattr = {
  380. .cqe = SMC_WR_MAX_CQE, .comp_vector = 0 };
  381. long rc;
  382. smcibdev->roce_cq_send = ib_create_cq(smcibdev->ibdev,
  383. smc_wr_tx_cq_handler, NULL,
  384. smcibdev, &cqattr);
  385. rc = PTR_ERR_OR_ZERO(smcibdev->roce_cq_send);
  386. if (IS_ERR(smcibdev->roce_cq_send)) {
  387. smcibdev->roce_cq_send = NULL;
  388. return rc;
  389. }
  390. smcibdev->roce_cq_recv = ib_create_cq(smcibdev->ibdev,
  391. smc_wr_rx_cq_handler, NULL,
  392. smcibdev, &cqattr);
  393. rc = PTR_ERR_OR_ZERO(smcibdev->roce_cq_recv);
  394. if (IS_ERR(smcibdev->roce_cq_recv)) {
  395. smcibdev->roce_cq_recv = NULL;
  396. goto err;
  397. }
  398. INIT_IB_EVENT_HANDLER(&smcibdev->event_handler, smcibdev->ibdev,
  399. smc_ib_global_event_handler);
  400. ib_register_event_handler(&smcibdev->event_handler);
  401. smc_wr_add_dev(smcibdev);
  402. smcibdev->initialized = 1;
  403. return rc;
  404. err:
  405. ib_destroy_cq(smcibdev->roce_cq_send);
  406. return rc;
  407. }
  408. static void smc_ib_cleanup_per_ibdev(struct smc_ib_device *smcibdev)
  409. {
  410. if (!smcibdev->initialized)
  411. return;
  412. smc_wr_remove_dev(smcibdev);
  413. ib_unregister_event_handler(&smcibdev->event_handler);
  414. ib_destroy_cq(smcibdev->roce_cq_recv);
  415. ib_destroy_cq(smcibdev->roce_cq_send);
  416. }
  417. static struct ib_client smc_ib_client;
  418. /* callback function for ib_register_client() */
  419. static void smc_ib_add_dev(struct ib_device *ibdev)
  420. {
  421. struct smc_ib_device *smcibdev;
  422. if (ibdev->node_type != RDMA_NODE_IB_CA)
  423. return;
  424. smcibdev = kzalloc(sizeof(*smcibdev), GFP_KERNEL);
  425. if (!smcibdev)
  426. return;
  427. smcibdev->ibdev = ibdev;
  428. INIT_WORK(&smcibdev->port_event_work, smc_ib_port_event_work);
  429. spin_lock(&smc_ib_devices.lock);
  430. list_add_tail(&smcibdev->list, &smc_ib_devices.list);
  431. spin_unlock(&smc_ib_devices.lock);
  432. ib_set_client_data(ibdev, &smc_ib_client, smcibdev);
  433. }
  434. /* callback function for ib_register_client() */
  435. static void smc_ib_remove_dev(struct ib_device *ibdev, void *client_data)
  436. {
  437. struct smc_ib_device *smcibdev;
  438. smcibdev = ib_get_client_data(ibdev, &smc_ib_client);
  439. ib_set_client_data(ibdev, &smc_ib_client, NULL);
  440. spin_lock(&smc_ib_devices.lock);
  441. list_del_init(&smcibdev->list); /* remove from smc_ib_devices */
  442. spin_unlock(&smc_ib_devices.lock);
  443. smc_pnet_remove_by_ibdev(smcibdev);
  444. smc_ib_cleanup_per_ibdev(smcibdev);
  445. kfree(smcibdev);
  446. }
  447. static struct ib_client smc_ib_client = {
  448. .name = "smc_ib",
  449. .add = smc_ib_add_dev,
  450. .remove = smc_ib_remove_dev,
  451. };
  452. int __init smc_ib_register_client(void)
  453. {
  454. return ib_register_client(&smc_ib_client);
  455. }
  456. void smc_ib_unregister_client(void)
  457. {
  458. ib_unregister_client(&smc_ib_client);
  459. }