sch_sfb.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729
  1. /*
  2. * net/sched/sch_sfb.c Stochastic Fair Blue
  3. *
  4. * Copyright (c) 2008-2011 Juliusz Chroboczek <jch@pps.jussieu.fr>
  5. * Copyright (c) 2011 Eric Dumazet <eric.dumazet@gmail.com>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * version 2 as published by the Free Software Foundation.
  10. *
  11. * W. Feng, D. Kandlur, D. Saha, K. Shin. Blue:
  12. * A New Class of Active Queue Management Algorithms.
  13. * U. Michigan CSE-TR-387-99, April 1999.
  14. *
  15. * http://www.thefengs.com/wuchang/blue/CSE-TR-387-99.pdf
  16. *
  17. */
  18. #include <linux/module.h>
  19. #include <linux/types.h>
  20. #include <linux/kernel.h>
  21. #include <linux/errno.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/random.h>
  24. #include <linux/jhash.h>
  25. #include <net/ip.h>
  26. #include <net/pkt_sched.h>
  27. #include <net/pkt_cls.h>
  28. #include <net/inet_ecn.h>
  29. /*
  30. * SFB uses two B[l][n] : L x N arrays of bins (L levels, N bins per level)
  31. * This implementation uses L = 8 and N = 16
  32. * This permits us to split one 32bit hash (provided per packet by rxhash or
  33. * external classifier) into 8 subhashes of 4 bits.
  34. */
  35. #define SFB_BUCKET_SHIFT 4
  36. #define SFB_NUMBUCKETS (1 << SFB_BUCKET_SHIFT) /* N bins per Level */
  37. #define SFB_BUCKET_MASK (SFB_NUMBUCKETS - 1)
  38. #define SFB_LEVELS (32 / SFB_BUCKET_SHIFT) /* L */
  39. /* SFB algo uses a virtual queue, named "bin" */
  40. struct sfb_bucket {
  41. u16 qlen; /* length of virtual queue */
  42. u16 p_mark; /* marking probability */
  43. };
  44. /* We use a double buffering right before hash change
  45. * (Section 4.4 of SFB reference : moving hash functions)
  46. */
  47. struct sfb_bins {
  48. u32 perturbation; /* jhash perturbation */
  49. struct sfb_bucket bins[SFB_LEVELS][SFB_NUMBUCKETS];
  50. };
  51. struct sfb_sched_data {
  52. struct Qdisc *qdisc;
  53. struct tcf_proto __rcu *filter_list;
  54. struct tcf_block *block;
  55. unsigned long rehash_interval;
  56. unsigned long warmup_time; /* double buffering warmup time in jiffies */
  57. u32 max;
  58. u32 bin_size; /* maximum queue length per bin */
  59. u32 increment; /* d1 */
  60. u32 decrement; /* d2 */
  61. u32 limit; /* HARD maximal queue length */
  62. u32 penalty_rate;
  63. u32 penalty_burst;
  64. u32 tokens_avail;
  65. unsigned long rehash_time;
  66. unsigned long token_time;
  67. u8 slot; /* current active bins (0 or 1) */
  68. bool double_buffering;
  69. struct sfb_bins bins[2];
  70. struct {
  71. u32 earlydrop;
  72. u32 penaltydrop;
  73. u32 bucketdrop;
  74. u32 queuedrop;
  75. u32 childdrop; /* drops in child qdisc */
  76. u32 marked; /* ECN mark */
  77. } stats;
  78. };
  79. /*
  80. * Each queued skb might be hashed on one or two bins
  81. * We store in skb_cb the two hash values.
  82. * (A zero value means double buffering was not used)
  83. */
  84. struct sfb_skb_cb {
  85. u32 hashes[2];
  86. };
  87. static inline struct sfb_skb_cb *sfb_skb_cb(const struct sk_buff *skb)
  88. {
  89. qdisc_cb_private_validate(skb, sizeof(struct sfb_skb_cb));
  90. return (struct sfb_skb_cb *)qdisc_skb_cb(skb)->data;
  91. }
  92. /*
  93. * If using 'internal' SFB flow classifier, hash comes from skb rxhash
  94. * If using external classifier, hash comes from the classid.
  95. */
  96. static u32 sfb_hash(const struct sk_buff *skb, u32 slot)
  97. {
  98. return sfb_skb_cb(skb)->hashes[slot];
  99. }
  100. /* Probabilities are coded as Q0.16 fixed-point values,
  101. * with 0xFFFF representing 65535/65536 (almost 1.0)
  102. * Addition and subtraction are saturating in [0, 65535]
  103. */
  104. static u32 prob_plus(u32 p1, u32 p2)
  105. {
  106. u32 res = p1 + p2;
  107. return min_t(u32, res, SFB_MAX_PROB);
  108. }
  109. static u32 prob_minus(u32 p1, u32 p2)
  110. {
  111. return p1 > p2 ? p1 - p2 : 0;
  112. }
  113. static void increment_one_qlen(u32 sfbhash, u32 slot, struct sfb_sched_data *q)
  114. {
  115. int i;
  116. struct sfb_bucket *b = &q->bins[slot].bins[0][0];
  117. for (i = 0; i < SFB_LEVELS; i++) {
  118. u32 hash = sfbhash & SFB_BUCKET_MASK;
  119. sfbhash >>= SFB_BUCKET_SHIFT;
  120. if (b[hash].qlen < 0xFFFF)
  121. b[hash].qlen++;
  122. b += SFB_NUMBUCKETS; /* next level */
  123. }
  124. }
  125. static void increment_qlen(const struct sk_buff *skb, struct sfb_sched_data *q)
  126. {
  127. u32 sfbhash;
  128. sfbhash = sfb_hash(skb, 0);
  129. if (sfbhash)
  130. increment_one_qlen(sfbhash, 0, q);
  131. sfbhash = sfb_hash(skb, 1);
  132. if (sfbhash)
  133. increment_one_qlen(sfbhash, 1, q);
  134. }
  135. static void decrement_one_qlen(u32 sfbhash, u32 slot,
  136. struct sfb_sched_data *q)
  137. {
  138. int i;
  139. struct sfb_bucket *b = &q->bins[slot].bins[0][0];
  140. for (i = 0; i < SFB_LEVELS; i++) {
  141. u32 hash = sfbhash & SFB_BUCKET_MASK;
  142. sfbhash >>= SFB_BUCKET_SHIFT;
  143. if (b[hash].qlen > 0)
  144. b[hash].qlen--;
  145. b += SFB_NUMBUCKETS; /* next level */
  146. }
  147. }
  148. static void decrement_qlen(const struct sk_buff *skb, struct sfb_sched_data *q)
  149. {
  150. u32 sfbhash;
  151. sfbhash = sfb_hash(skb, 0);
  152. if (sfbhash)
  153. decrement_one_qlen(sfbhash, 0, q);
  154. sfbhash = sfb_hash(skb, 1);
  155. if (sfbhash)
  156. decrement_one_qlen(sfbhash, 1, q);
  157. }
  158. static void decrement_prob(struct sfb_bucket *b, struct sfb_sched_data *q)
  159. {
  160. b->p_mark = prob_minus(b->p_mark, q->decrement);
  161. }
  162. static void increment_prob(struct sfb_bucket *b, struct sfb_sched_data *q)
  163. {
  164. b->p_mark = prob_plus(b->p_mark, q->increment);
  165. }
  166. static void sfb_zero_all_buckets(struct sfb_sched_data *q)
  167. {
  168. memset(&q->bins, 0, sizeof(q->bins));
  169. }
  170. /*
  171. * compute max qlen, max p_mark, and avg p_mark
  172. */
  173. static u32 sfb_compute_qlen(u32 *prob_r, u32 *avgpm_r, const struct sfb_sched_data *q)
  174. {
  175. int i;
  176. u32 qlen = 0, prob = 0, totalpm = 0;
  177. const struct sfb_bucket *b = &q->bins[q->slot].bins[0][0];
  178. for (i = 0; i < SFB_LEVELS * SFB_NUMBUCKETS; i++) {
  179. if (qlen < b->qlen)
  180. qlen = b->qlen;
  181. totalpm += b->p_mark;
  182. if (prob < b->p_mark)
  183. prob = b->p_mark;
  184. b++;
  185. }
  186. *prob_r = prob;
  187. *avgpm_r = totalpm / (SFB_LEVELS * SFB_NUMBUCKETS);
  188. return qlen;
  189. }
  190. static void sfb_init_perturbation(u32 slot, struct sfb_sched_data *q)
  191. {
  192. q->bins[slot].perturbation = prandom_u32();
  193. }
  194. static void sfb_swap_slot(struct sfb_sched_data *q)
  195. {
  196. sfb_init_perturbation(q->slot, q);
  197. q->slot ^= 1;
  198. q->double_buffering = false;
  199. }
  200. /* Non elastic flows are allowed to use part of the bandwidth, expressed
  201. * in "penalty_rate" packets per second, with "penalty_burst" burst
  202. */
  203. static bool sfb_rate_limit(struct sk_buff *skb, struct sfb_sched_data *q)
  204. {
  205. if (q->penalty_rate == 0 || q->penalty_burst == 0)
  206. return true;
  207. if (q->tokens_avail < 1) {
  208. unsigned long age = min(10UL * HZ, jiffies - q->token_time);
  209. q->tokens_avail = (age * q->penalty_rate) / HZ;
  210. if (q->tokens_avail > q->penalty_burst)
  211. q->tokens_avail = q->penalty_burst;
  212. q->token_time = jiffies;
  213. if (q->tokens_avail < 1)
  214. return true;
  215. }
  216. q->tokens_avail--;
  217. return false;
  218. }
  219. static bool sfb_classify(struct sk_buff *skb, struct tcf_proto *fl,
  220. int *qerr, u32 *salt)
  221. {
  222. struct tcf_result res;
  223. int result;
  224. result = tcf_classify(skb, fl, &res, false);
  225. if (result >= 0) {
  226. #ifdef CONFIG_NET_CLS_ACT
  227. switch (result) {
  228. case TC_ACT_STOLEN:
  229. case TC_ACT_QUEUED:
  230. case TC_ACT_TRAP:
  231. *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
  232. case TC_ACT_SHOT:
  233. return false;
  234. }
  235. #endif
  236. *salt = TC_H_MIN(res.classid);
  237. return true;
  238. }
  239. return false;
  240. }
  241. static int sfb_enqueue(struct sk_buff *skb, struct Qdisc *sch,
  242. struct sk_buff **to_free)
  243. {
  244. struct sfb_sched_data *q = qdisc_priv(sch);
  245. struct Qdisc *child = q->qdisc;
  246. struct tcf_proto *fl;
  247. int i;
  248. u32 p_min = ~0;
  249. u32 minqlen = ~0;
  250. u32 r, sfbhash;
  251. u32 slot = q->slot;
  252. int ret = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
  253. if (unlikely(sch->q.qlen >= q->limit)) {
  254. qdisc_qstats_overlimit(sch);
  255. q->stats.queuedrop++;
  256. goto drop;
  257. }
  258. if (q->rehash_interval > 0) {
  259. unsigned long limit = q->rehash_time + q->rehash_interval;
  260. if (unlikely(time_after(jiffies, limit))) {
  261. sfb_swap_slot(q);
  262. q->rehash_time = jiffies;
  263. } else if (unlikely(!q->double_buffering && q->warmup_time > 0 &&
  264. time_after(jiffies, limit - q->warmup_time))) {
  265. q->double_buffering = true;
  266. }
  267. }
  268. fl = rcu_dereference_bh(q->filter_list);
  269. if (fl) {
  270. u32 salt;
  271. /* If using external classifiers, get result and record it. */
  272. if (!sfb_classify(skb, fl, &ret, &salt))
  273. goto other_drop;
  274. sfbhash = jhash_1word(salt, q->bins[slot].perturbation);
  275. } else {
  276. sfbhash = skb_get_hash_perturb(skb, q->bins[slot].perturbation);
  277. }
  278. if (!sfbhash)
  279. sfbhash = 1;
  280. sfb_skb_cb(skb)->hashes[slot] = sfbhash;
  281. for (i = 0; i < SFB_LEVELS; i++) {
  282. u32 hash = sfbhash & SFB_BUCKET_MASK;
  283. struct sfb_bucket *b = &q->bins[slot].bins[i][hash];
  284. sfbhash >>= SFB_BUCKET_SHIFT;
  285. if (b->qlen == 0)
  286. decrement_prob(b, q);
  287. else if (b->qlen >= q->bin_size)
  288. increment_prob(b, q);
  289. if (minqlen > b->qlen)
  290. minqlen = b->qlen;
  291. if (p_min > b->p_mark)
  292. p_min = b->p_mark;
  293. }
  294. slot ^= 1;
  295. sfb_skb_cb(skb)->hashes[slot] = 0;
  296. if (unlikely(minqlen >= q->max)) {
  297. qdisc_qstats_overlimit(sch);
  298. q->stats.bucketdrop++;
  299. goto drop;
  300. }
  301. if (unlikely(p_min >= SFB_MAX_PROB)) {
  302. /* Inelastic flow */
  303. if (q->double_buffering) {
  304. sfbhash = skb_get_hash_perturb(skb,
  305. q->bins[slot].perturbation);
  306. if (!sfbhash)
  307. sfbhash = 1;
  308. sfb_skb_cb(skb)->hashes[slot] = sfbhash;
  309. for (i = 0; i < SFB_LEVELS; i++) {
  310. u32 hash = sfbhash & SFB_BUCKET_MASK;
  311. struct sfb_bucket *b = &q->bins[slot].bins[i][hash];
  312. sfbhash >>= SFB_BUCKET_SHIFT;
  313. if (b->qlen == 0)
  314. decrement_prob(b, q);
  315. else if (b->qlen >= q->bin_size)
  316. increment_prob(b, q);
  317. }
  318. }
  319. if (sfb_rate_limit(skb, q)) {
  320. qdisc_qstats_overlimit(sch);
  321. q->stats.penaltydrop++;
  322. goto drop;
  323. }
  324. goto enqueue;
  325. }
  326. r = prandom_u32() & SFB_MAX_PROB;
  327. if (unlikely(r < p_min)) {
  328. if (unlikely(p_min > SFB_MAX_PROB / 2)) {
  329. /* If we're marking that many packets, then either
  330. * this flow is unresponsive, or we're badly congested.
  331. * In either case, we want to start dropping packets.
  332. */
  333. if (r < (p_min - SFB_MAX_PROB / 2) * 2) {
  334. q->stats.earlydrop++;
  335. goto drop;
  336. }
  337. }
  338. if (INET_ECN_set_ce(skb)) {
  339. q->stats.marked++;
  340. } else {
  341. q->stats.earlydrop++;
  342. goto drop;
  343. }
  344. }
  345. enqueue:
  346. ret = qdisc_enqueue(skb, child, to_free);
  347. if (likely(ret == NET_XMIT_SUCCESS)) {
  348. qdisc_qstats_backlog_inc(sch, skb);
  349. sch->q.qlen++;
  350. increment_qlen(skb, q);
  351. } else if (net_xmit_drop_count(ret)) {
  352. q->stats.childdrop++;
  353. qdisc_qstats_drop(sch);
  354. }
  355. return ret;
  356. drop:
  357. qdisc_drop(skb, sch, to_free);
  358. return NET_XMIT_CN;
  359. other_drop:
  360. if (ret & __NET_XMIT_BYPASS)
  361. qdisc_qstats_drop(sch);
  362. kfree_skb(skb);
  363. return ret;
  364. }
  365. static struct sk_buff *sfb_dequeue(struct Qdisc *sch)
  366. {
  367. struct sfb_sched_data *q = qdisc_priv(sch);
  368. struct Qdisc *child = q->qdisc;
  369. struct sk_buff *skb;
  370. skb = child->dequeue(q->qdisc);
  371. if (skb) {
  372. qdisc_bstats_update(sch, skb);
  373. qdisc_qstats_backlog_dec(sch, skb);
  374. sch->q.qlen--;
  375. decrement_qlen(skb, q);
  376. }
  377. return skb;
  378. }
  379. static struct sk_buff *sfb_peek(struct Qdisc *sch)
  380. {
  381. struct sfb_sched_data *q = qdisc_priv(sch);
  382. struct Qdisc *child = q->qdisc;
  383. return child->ops->peek(child);
  384. }
  385. /* No sfb_drop -- impossible since the child doesn't return the dropped skb. */
  386. static void sfb_reset(struct Qdisc *sch)
  387. {
  388. struct sfb_sched_data *q = qdisc_priv(sch);
  389. qdisc_reset(q->qdisc);
  390. sch->qstats.backlog = 0;
  391. sch->q.qlen = 0;
  392. q->slot = 0;
  393. q->double_buffering = false;
  394. sfb_zero_all_buckets(q);
  395. sfb_init_perturbation(0, q);
  396. }
  397. static void sfb_destroy(struct Qdisc *sch)
  398. {
  399. struct sfb_sched_data *q = qdisc_priv(sch);
  400. tcf_block_put(q->block);
  401. qdisc_destroy(q->qdisc);
  402. }
  403. static const struct nla_policy sfb_policy[TCA_SFB_MAX + 1] = {
  404. [TCA_SFB_PARMS] = { .len = sizeof(struct tc_sfb_qopt) },
  405. };
  406. static const struct tc_sfb_qopt sfb_default_ops = {
  407. .rehash_interval = 600 * MSEC_PER_SEC,
  408. .warmup_time = 60 * MSEC_PER_SEC,
  409. .limit = 0,
  410. .max = 25,
  411. .bin_size = 20,
  412. .increment = (SFB_MAX_PROB + 500) / 1000, /* 0.1 % */
  413. .decrement = (SFB_MAX_PROB + 3000) / 6000,
  414. .penalty_rate = 10,
  415. .penalty_burst = 20,
  416. };
  417. static int sfb_change(struct Qdisc *sch, struct nlattr *opt)
  418. {
  419. struct sfb_sched_data *q = qdisc_priv(sch);
  420. struct Qdisc *child;
  421. struct nlattr *tb[TCA_SFB_MAX + 1];
  422. const struct tc_sfb_qopt *ctl = &sfb_default_ops;
  423. u32 limit;
  424. int err;
  425. if (opt) {
  426. err = nla_parse_nested(tb, TCA_SFB_MAX, opt, sfb_policy, NULL);
  427. if (err < 0)
  428. return -EINVAL;
  429. if (tb[TCA_SFB_PARMS] == NULL)
  430. return -EINVAL;
  431. ctl = nla_data(tb[TCA_SFB_PARMS]);
  432. }
  433. limit = ctl->limit;
  434. if (limit == 0)
  435. limit = qdisc_dev(sch)->tx_queue_len;
  436. child = fifo_create_dflt(sch, &pfifo_qdisc_ops, limit);
  437. if (IS_ERR(child))
  438. return PTR_ERR(child);
  439. if (child != &noop_qdisc)
  440. qdisc_hash_add(child, true);
  441. sch_tree_lock(sch);
  442. qdisc_tree_reduce_backlog(q->qdisc, q->qdisc->q.qlen,
  443. q->qdisc->qstats.backlog);
  444. qdisc_destroy(q->qdisc);
  445. q->qdisc = child;
  446. q->rehash_interval = msecs_to_jiffies(ctl->rehash_interval);
  447. q->warmup_time = msecs_to_jiffies(ctl->warmup_time);
  448. q->rehash_time = jiffies;
  449. q->limit = limit;
  450. q->increment = ctl->increment;
  451. q->decrement = ctl->decrement;
  452. q->max = ctl->max;
  453. q->bin_size = ctl->bin_size;
  454. q->penalty_rate = ctl->penalty_rate;
  455. q->penalty_burst = ctl->penalty_burst;
  456. q->tokens_avail = ctl->penalty_burst;
  457. q->token_time = jiffies;
  458. q->slot = 0;
  459. q->double_buffering = false;
  460. sfb_zero_all_buckets(q);
  461. sfb_init_perturbation(0, q);
  462. sfb_init_perturbation(1, q);
  463. sch_tree_unlock(sch);
  464. return 0;
  465. }
  466. static int sfb_init(struct Qdisc *sch, struct nlattr *opt)
  467. {
  468. struct sfb_sched_data *q = qdisc_priv(sch);
  469. int err;
  470. err = tcf_block_get(&q->block, &q->filter_list);
  471. if (err)
  472. return err;
  473. q->qdisc = &noop_qdisc;
  474. return sfb_change(sch, opt);
  475. }
  476. static int sfb_dump(struct Qdisc *sch, struct sk_buff *skb)
  477. {
  478. struct sfb_sched_data *q = qdisc_priv(sch);
  479. struct nlattr *opts;
  480. struct tc_sfb_qopt opt = {
  481. .rehash_interval = jiffies_to_msecs(q->rehash_interval),
  482. .warmup_time = jiffies_to_msecs(q->warmup_time),
  483. .limit = q->limit,
  484. .max = q->max,
  485. .bin_size = q->bin_size,
  486. .increment = q->increment,
  487. .decrement = q->decrement,
  488. .penalty_rate = q->penalty_rate,
  489. .penalty_burst = q->penalty_burst,
  490. };
  491. sch->qstats.backlog = q->qdisc->qstats.backlog;
  492. opts = nla_nest_start(skb, TCA_OPTIONS);
  493. if (opts == NULL)
  494. goto nla_put_failure;
  495. if (nla_put(skb, TCA_SFB_PARMS, sizeof(opt), &opt))
  496. goto nla_put_failure;
  497. return nla_nest_end(skb, opts);
  498. nla_put_failure:
  499. nla_nest_cancel(skb, opts);
  500. return -EMSGSIZE;
  501. }
  502. static int sfb_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
  503. {
  504. struct sfb_sched_data *q = qdisc_priv(sch);
  505. struct tc_sfb_xstats st = {
  506. .earlydrop = q->stats.earlydrop,
  507. .penaltydrop = q->stats.penaltydrop,
  508. .bucketdrop = q->stats.bucketdrop,
  509. .queuedrop = q->stats.queuedrop,
  510. .childdrop = q->stats.childdrop,
  511. .marked = q->stats.marked,
  512. };
  513. st.maxqlen = sfb_compute_qlen(&st.maxprob, &st.avgprob, q);
  514. return gnet_stats_copy_app(d, &st, sizeof(st));
  515. }
  516. static int sfb_dump_class(struct Qdisc *sch, unsigned long cl,
  517. struct sk_buff *skb, struct tcmsg *tcm)
  518. {
  519. return -ENOSYS;
  520. }
  521. static int sfb_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
  522. struct Qdisc **old)
  523. {
  524. struct sfb_sched_data *q = qdisc_priv(sch);
  525. if (new == NULL)
  526. new = &noop_qdisc;
  527. *old = qdisc_replace(sch, new, &q->qdisc);
  528. return 0;
  529. }
  530. static struct Qdisc *sfb_leaf(struct Qdisc *sch, unsigned long arg)
  531. {
  532. struct sfb_sched_data *q = qdisc_priv(sch);
  533. return q->qdisc;
  534. }
  535. static unsigned long sfb_get(struct Qdisc *sch, u32 classid)
  536. {
  537. return 1;
  538. }
  539. static void sfb_put(struct Qdisc *sch, unsigned long arg)
  540. {
  541. }
  542. static int sfb_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
  543. struct nlattr **tca, unsigned long *arg)
  544. {
  545. return -ENOSYS;
  546. }
  547. static int sfb_delete(struct Qdisc *sch, unsigned long cl)
  548. {
  549. return -ENOSYS;
  550. }
  551. static void sfb_walk(struct Qdisc *sch, struct qdisc_walker *walker)
  552. {
  553. if (!walker->stop) {
  554. if (walker->count >= walker->skip)
  555. if (walker->fn(sch, 1, walker) < 0) {
  556. walker->stop = 1;
  557. return;
  558. }
  559. walker->count++;
  560. }
  561. }
  562. static struct tcf_block *sfb_tcf_block(struct Qdisc *sch, unsigned long cl)
  563. {
  564. struct sfb_sched_data *q = qdisc_priv(sch);
  565. if (cl)
  566. return NULL;
  567. return q->block;
  568. }
  569. static unsigned long sfb_bind(struct Qdisc *sch, unsigned long parent,
  570. u32 classid)
  571. {
  572. return 0;
  573. }
  574. static const struct Qdisc_class_ops sfb_class_ops = {
  575. .graft = sfb_graft,
  576. .leaf = sfb_leaf,
  577. .get = sfb_get,
  578. .put = sfb_put,
  579. .change = sfb_change_class,
  580. .delete = sfb_delete,
  581. .walk = sfb_walk,
  582. .tcf_block = sfb_tcf_block,
  583. .bind_tcf = sfb_bind,
  584. .unbind_tcf = sfb_put,
  585. .dump = sfb_dump_class,
  586. };
  587. static struct Qdisc_ops sfb_qdisc_ops __read_mostly = {
  588. .id = "sfb",
  589. .priv_size = sizeof(struct sfb_sched_data),
  590. .cl_ops = &sfb_class_ops,
  591. .enqueue = sfb_enqueue,
  592. .dequeue = sfb_dequeue,
  593. .peek = sfb_peek,
  594. .init = sfb_init,
  595. .reset = sfb_reset,
  596. .destroy = sfb_destroy,
  597. .change = sfb_change,
  598. .dump = sfb_dump,
  599. .dump_stats = sfb_dump_stats,
  600. .owner = THIS_MODULE,
  601. };
  602. static int __init sfb_module_init(void)
  603. {
  604. return register_qdisc(&sfb_qdisc_ops);
  605. }
  606. static void __exit sfb_module_exit(void)
  607. {
  608. unregister_qdisc(&sfb_qdisc_ops);
  609. }
  610. module_init(sfb_module_init)
  611. module_exit(sfb_module_exit)
  612. MODULE_DESCRIPTION("Stochastic Fair Blue queue discipline");
  613. MODULE_AUTHOR("Juliusz Chroboczek");
  614. MODULE_AUTHOR("Eric Dumazet");
  615. MODULE_LICENSE("GPL");