cls_flower.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391
  1. /*
  2. * net/sched/cls_flower.c Flower classifier
  3. *
  4. * Copyright (c) 2015 Jiri Pirko <jiri@resnulli.us>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/init.h>
  13. #include <linux/module.h>
  14. #include <linux/rhashtable.h>
  15. #include <linux/workqueue.h>
  16. #include <linux/if_ether.h>
  17. #include <linux/in6.h>
  18. #include <linux/ip.h>
  19. #include <linux/mpls.h>
  20. #include <net/sch_generic.h>
  21. #include <net/pkt_cls.h>
  22. #include <net/ip.h>
  23. #include <net/flow_dissector.h>
  24. #include <net/dst.h>
  25. #include <net/dst_metadata.h>
  26. struct fl_flow_key {
  27. int indev_ifindex;
  28. struct flow_dissector_key_control control;
  29. struct flow_dissector_key_control enc_control;
  30. struct flow_dissector_key_basic basic;
  31. struct flow_dissector_key_eth_addrs eth;
  32. struct flow_dissector_key_vlan vlan;
  33. union {
  34. struct flow_dissector_key_ipv4_addrs ipv4;
  35. struct flow_dissector_key_ipv6_addrs ipv6;
  36. };
  37. struct flow_dissector_key_ports tp;
  38. struct flow_dissector_key_icmp icmp;
  39. struct flow_dissector_key_arp arp;
  40. struct flow_dissector_key_keyid enc_key_id;
  41. union {
  42. struct flow_dissector_key_ipv4_addrs enc_ipv4;
  43. struct flow_dissector_key_ipv6_addrs enc_ipv6;
  44. };
  45. struct flow_dissector_key_ports enc_tp;
  46. struct flow_dissector_key_mpls mpls;
  47. struct flow_dissector_key_tcp tcp;
  48. struct flow_dissector_key_ip ip;
  49. } __aligned(BITS_PER_LONG / 8); /* Ensure that we can do comparisons as longs. */
  50. struct fl_flow_mask_range {
  51. unsigned short int start;
  52. unsigned short int end;
  53. };
  54. struct fl_flow_mask {
  55. struct fl_flow_key key;
  56. struct fl_flow_mask_range range;
  57. struct rcu_head rcu;
  58. };
  59. struct cls_fl_head {
  60. struct rhashtable ht;
  61. struct fl_flow_mask mask;
  62. struct flow_dissector dissector;
  63. u32 hgen;
  64. bool mask_assigned;
  65. struct list_head filters;
  66. struct rhashtable_params ht_params;
  67. union {
  68. struct work_struct work;
  69. struct rcu_head rcu;
  70. };
  71. };
  72. struct cls_fl_filter {
  73. struct rhash_head ht_node;
  74. struct fl_flow_key mkey;
  75. struct tcf_exts exts;
  76. struct tcf_result res;
  77. struct fl_flow_key key;
  78. struct list_head list;
  79. u32 handle;
  80. u32 flags;
  81. struct rcu_head rcu;
  82. struct net_device *hw_dev;
  83. };
  84. static unsigned short int fl_mask_range(const struct fl_flow_mask *mask)
  85. {
  86. return mask->range.end - mask->range.start;
  87. }
  88. static void fl_mask_update_range(struct fl_flow_mask *mask)
  89. {
  90. const u8 *bytes = (const u8 *) &mask->key;
  91. size_t size = sizeof(mask->key);
  92. size_t i, first = 0, last = size - 1;
  93. for (i = 0; i < sizeof(mask->key); i++) {
  94. if (bytes[i]) {
  95. if (!first && i)
  96. first = i;
  97. last = i;
  98. }
  99. }
  100. mask->range.start = rounddown(first, sizeof(long));
  101. mask->range.end = roundup(last + 1, sizeof(long));
  102. }
  103. static void *fl_key_get_start(struct fl_flow_key *key,
  104. const struct fl_flow_mask *mask)
  105. {
  106. return (u8 *) key + mask->range.start;
  107. }
  108. static void fl_set_masked_key(struct fl_flow_key *mkey, struct fl_flow_key *key,
  109. struct fl_flow_mask *mask)
  110. {
  111. const long *lkey = fl_key_get_start(key, mask);
  112. const long *lmask = fl_key_get_start(&mask->key, mask);
  113. long *lmkey = fl_key_get_start(mkey, mask);
  114. int i;
  115. for (i = 0; i < fl_mask_range(mask); i += sizeof(long))
  116. *lmkey++ = *lkey++ & *lmask++;
  117. }
  118. static void fl_clear_masked_range(struct fl_flow_key *key,
  119. struct fl_flow_mask *mask)
  120. {
  121. memset(fl_key_get_start(key, mask), 0, fl_mask_range(mask));
  122. }
  123. static struct cls_fl_filter *fl_lookup(struct cls_fl_head *head,
  124. struct fl_flow_key *mkey)
  125. {
  126. return rhashtable_lookup_fast(&head->ht,
  127. fl_key_get_start(mkey, &head->mask),
  128. head->ht_params);
  129. }
  130. static int fl_classify(struct sk_buff *skb, const struct tcf_proto *tp,
  131. struct tcf_result *res)
  132. {
  133. struct cls_fl_head *head = rcu_dereference_bh(tp->root);
  134. struct cls_fl_filter *f;
  135. struct fl_flow_key skb_key;
  136. struct fl_flow_key skb_mkey;
  137. struct ip_tunnel_info *info;
  138. if (!atomic_read(&head->ht.nelems))
  139. return -1;
  140. fl_clear_masked_range(&skb_key, &head->mask);
  141. info = skb_tunnel_info(skb);
  142. if (info) {
  143. struct ip_tunnel_key *key = &info->key;
  144. switch (ip_tunnel_info_af(info)) {
  145. case AF_INET:
  146. skb_key.enc_control.addr_type =
  147. FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  148. skb_key.enc_ipv4.src = key->u.ipv4.src;
  149. skb_key.enc_ipv4.dst = key->u.ipv4.dst;
  150. break;
  151. case AF_INET6:
  152. skb_key.enc_control.addr_type =
  153. FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  154. skb_key.enc_ipv6.src = key->u.ipv6.src;
  155. skb_key.enc_ipv6.dst = key->u.ipv6.dst;
  156. break;
  157. }
  158. skb_key.enc_key_id.keyid = tunnel_id_to_key32(key->tun_id);
  159. skb_key.enc_tp.src = key->tp_src;
  160. skb_key.enc_tp.dst = key->tp_dst;
  161. }
  162. skb_key.indev_ifindex = skb->skb_iif;
  163. /* skb_flow_dissect() does not set n_proto in case an unknown protocol,
  164. * so do it rather here.
  165. */
  166. skb_key.basic.n_proto = skb->protocol;
  167. skb_flow_dissect(skb, &head->dissector, &skb_key, 0);
  168. fl_set_masked_key(&skb_mkey, &skb_key, &head->mask);
  169. f = fl_lookup(head, &skb_mkey);
  170. if (f && !tc_skip_sw(f->flags)) {
  171. *res = f->res;
  172. return tcf_exts_exec(skb, &f->exts, res);
  173. }
  174. return -1;
  175. }
  176. static int fl_init(struct tcf_proto *tp)
  177. {
  178. struct cls_fl_head *head;
  179. head = kzalloc(sizeof(*head), GFP_KERNEL);
  180. if (!head)
  181. return -ENOBUFS;
  182. INIT_LIST_HEAD_RCU(&head->filters);
  183. rcu_assign_pointer(tp->root, head);
  184. return 0;
  185. }
  186. static void fl_destroy_filter(struct rcu_head *head)
  187. {
  188. struct cls_fl_filter *f = container_of(head, struct cls_fl_filter, rcu);
  189. tcf_exts_destroy(&f->exts);
  190. kfree(f);
  191. }
  192. static void fl_hw_destroy_filter(struct tcf_proto *tp, struct cls_fl_filter *f)
  193. {
  194. struct tc_cls_flower_offload cls_flower = {};
  195. struct net_device *dev = f->hw_dev;
  196. if (!tc_can_offload(dev, tp))
  197. return;
  198. tc_cls_common_offload_init(&cls_flower.common, tp);
  199. cls_flower.command = TC_CLSFLOWER_DESTROY;
  200. cls_flower.cookie = (unsigned long) f;
  201. dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_CLSFLOWER, &cls_flower);
  202. }
  203. static int fl_hw_replace_filter(struct tcf_proto *tp,
  204. struct flow_dissector *dissector,
  205. struct fl_flow_key *mask,
  206. struct cls_fl_filter *f)
  207. {
  208. struct net_device *dev = tp->q->dev_queue->dev;
  209. struct tc_cls_flower_offload cls_flower = {};
  210. int err;
  211. if (!tc_can_offload(dev, tp)) {
  212. if (tcf_exts_get_dev(dev, &f->exts, &f->hw_dev) ||
  213. (f->hw_dev && !tc_can_offload(f->hw_dev, tp))) {
  214. f->hw_dev = dev;
  215. return tc_skip_sw(f->flags) ? -EINVAL : 0;
  216. }
  217. dev = f->hw_dev;
  218. cls_flower.egress_dev = true;
  219. } else {
  220. f->hw_dev = dev;
  221. }
  222. tc_cls_common_offload_init(&cls_flower.common, tp);
  223. cls_flower.command = TC_CLSFLOWER_REPLACE;
  224. cls_flower.cookie = (unsigned long) f;
  225. cls_flower.dissector = dissector;
  226. cls_flower.mask = mask;
  227. cls_flower.key = &f->mkey;
  228. cls_flower.exts = &f->exts;
  229. err = dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_CLSFLOWER,
  230. &cls_flower);
  231. if (!err)
  232. f->flags |= TCA_CLS_FLAGS_IN_HW;
  233. if (tc_skip_sw(f->flags))
  234. return err;
  235. return 0;
  236. }
  237. static void fl_hw_update_stats(struct tcf_proto *tp, struct cls_fl_filter *f)
  238. {
  239. struct tc_cls_flower_offload cls_flower = {};
  240. struct net_device *dev = f->hw_dev;
  241. if (!tc_can_offload(dev, tp))
  242. return;
  243. tc_cls_common_offload_init(&cls_flower.common, tp);
  244. cls_flower.command = TC_CLSFLOWER_STATS;
  245. cls_flower.cookie = (unsigned long) f;
  246. cls_flower.exts = &f->exts;
  247. dev->netdev_ops->ndo_setup_tc(dev, TC_CLSFLOWER_STATS,
  248. &cls_flower);
  249. }
  250. static void __fl_delete(struct tcf_proto *tp, struct cls_fl_filter *f)
  251. {
  252. list_del_rcu(&f->list);
  253. if (!tc_skip_hw(f->flags))
  254. fl_hw_destroy_filter(tp, f);
  255. tcf_unbind_filter(tp, &f->res);
  256. call_rcu(&f->rcu, fl_destroy_filter);
  257. }
  258. static void fl_destroy_sleepable(struct work_struct *work)
  259. {
  260. struct cls_fl_head *head = container_of(work, struct cls_fl_head,
  261. work);
  262. if (head->mask_assigned)
  263. rhashtable_destroy(&head->ht);
  264. kfree(head);
  265. module_put(THIS_MODULE);
  266. }
  267. static void fl_destroy_rcu(struct rcu_head *rcu)
  268. {
  269. struct cls_fl_head *head = container_of(rcu, struct cls_fl_head, rcu);
  270. INIT_WORK(&head->work, fl_destroy_sleepable);
  271. schedule_work(&head->work);
  272. }
  273. static void fl_destroy(struct tcf_proto *tp)
  274. {
  275. struct cls_fl_head *head = rtnl_dereference(tp->root);
  276. struct cls_fl_filter *f, *next;
  277. list_for_each_entry_safe(f, next, &head->filters, list)
  278. __fl_delete(tp, f);
  279. __module_get(THIS_MODULE);
  280. call_rcu(&head->rcu, fl_destroy_rcu);
  281. }
  282. static void *fl_get(struct tcf_proto *tp, u32 handle)
  283. {
  284. struct cls_fl_head *head = rtnl_dereference(tp->root);
  285. struct cls_fl_filter *f;
  286. list_for_each_entry(f, &head->filters, list)
  287. if (f->handle == handle)
  288. return f;
  289. return NULL;
  290. }
  291. static const struct nla_policy fl_policy[TCA_FLOWER_MAX + 1] = {
  292. [TCA_FLOWER_UNSPEC] = { .type = NLA_UNSPEC },
  293. [TCA_FLOWER_CLASSID] = { .type = NLA_U32 },
  294. [TCA_FLOWER_INDEV] = { .type = NLA_STRING,
  295. .len = IFNAMSIZ },
  296. [TCA_FLOWER_KEY_ETH_DST] = { .len = ETH_ALEN },
  297. [TCA_FLOWER_KEY_ETH_DST_MASK] = { .len = ETH_ALEN },
  298. [TCA_FLOWER_KEY_ETH_SRC] = { .len = ETH_ALEN },
  299. [TCA_FLOWER_KEY_ETH_SRC_MASK] = { .len = ETH_ALEN },
  300. [TCA_FLOWER_KEY_ETH_TYPE] = { .type = NLA_U16 },
  301. [TCA_FLOWER_KEY_IP_PROTO] = { .type = NLA_U8 },
  302. [TCA_FLOWER_KEY_IPV4_SRC] = { .type = NLA_U32 },
  303. [TCA_FLOWER_KEY_IPV4_SRC_MASK] = { .type = NLA_U32 },
  304. [TCA_FLOWER_KEY_IPV4_DST] = { .type = NLA_U32 },
  305. [TCA_FLOWER_KEY_IPV4_DST_MASK] = { .type = NLA_U32 },
  306. [TCA_FLOWER_KEY_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
  307. [TCA_FLOWER_KEY_IPV6_SRC_MASK] = { .len = sizeof(struct in6_addr) },
  308. [TCA_FLOWER_KEY_IPV6_DST] = { .len = sizeof(struct in6_addr) },
  309. [TCA_FLOWER_KEY_IPV6_DST_MASK] = { .len = sizeof(struct in6_addr) },
  310. [TCA_FLOWER_KEY_TCP_SRC] = { .type = NLA_U16 },
  311. [TCA_FLOWER_KEY_TCP_DST] = { .type = NLA_U16 },
  312. [TCA_FLOWER_KEY_UDP_SRC] = { .type = NLA_U16 },
  313. [TCA_FLOWER_KEY_UDP_DST] = { .type = NLA_U16 },
  314. [TCA_FLOWER_KEY_VLAN_ID] = { .type = NLA_U16 },
  315. [TCA_FLOWER_KEY_VLAN_PRIO] = { .type = NLA_U8 },
  316. [TCA_FLOWER_KEY_VLAN_ETH_TYPE] = { .type = NLA_U16 },
  317. [TCA_FLOWER_KEY_ENC_KEY_ID] = { .type = NLA_U32 },
  318. [TCA_FLOWER_KEY_ENC_IPV4_SRC] = { .type = NLA_U32 },
  319. [TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK] = { .type = NLA_U32 },
  320. [TCA_FLOWER_KEY_ENC_IPV4_DST] = { .type = NLA_U32 },
  321. [TCA_FLOWER_KEY_ENC_IPV4_DST_MASK] = { .type = NLA_U32 },
  322. [TCA_FLOWER_KEY_ENC_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
  323. [TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK] = { .len = sizeof(struct in6_addr) },
  324. [TCA_FLOWER_KEY_ENC_IPV6_DST] = { .len = sizeof(struct in6_addr) },
  325. [TCA_FLOWER_KEY_ENC_IPV6_DST_MASK] = { .len = sizeof(struct in6_addr) },
  326. [TCA_FLOWER_KEY_TCP_SRC_MASK] = { .type = NLA_U16 },
  327. [TCA_FLOWER_KEY_TCP_DST_MASK] = { .type = NLA_U16 },
  328. [TCA_FLOWER_KEY_UDP_SRC_MASK] = { .type = NLA_U16 },
  329. [TCA_FLOWER_KEY_UDP_DST_MASK] = { .type = NLA_U16 },
  330. [TCA_FLOWER_KEY_SCTP_SRC_MASK] = { .type = NLA_U16 },
  331. [TCA_FLOWER_KEY_SCTP_DST_MASK] = { .type = NLA_U16 },
  332. [TCA_FLOWER_KEY_SCTP_SRC] = { .type = NLA_U16 },
  333. [TCA_FLOWER_KEY_SCTP_DST] = { .type = NLA_U16 },
  334. [TCA_FLOWER_KEY_ENC_UDP_SRC_PORT] = { .type = NLA_U16 },
  335. [TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK] = { .type = NLA_U16 },
  336. [TCA_FLOWER_KEY_ENC_UDP_DST_PORT] = { .type = NLA_U16 },
  337. [TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK] = { .type = NLA_U16 },
  338. [TCA_FLOWER_KEY_FLAGS] = { .type = NLA_U32 },
  339. [TCA_FLOWER_KEY_FLAGS_MASK] = { .type = NLA_U32 },
  340. [TCA_FLOWER_KEY_ICMPV4_TYPE] = { .type = NLA_U8 },
  341. [TCA_FLOWER_KEY_ICMPV4_TYPE_MASK] = { .type = NLA_U8 },
  342. [TCA_FLOWER_KEY_ICMPV4_CODE] = { .type = NLA_U8 },
  343. [TCA_FLOWER_KEY_ICMPV4_CODE_MASK] = { .type = NLA_U8 },
  344. [TCA_FLOWER_KEY_ICMPV6_TYPE] = { .type = NLA_U8 },
  345. [TCA_FLOWER_KEY_ICMPV6_TYPE_MASK] = { .type = NLA_U8 },
  346. [TCA_FLOWER_KEY_ICMPV6_CODE] = { .type = NLA_U8 },
  347. [TCA_FLOWER_KEY_ICMPV6_CODE_MASK] = { .type = NLA_U8 },
  348. [TCA_FLOWER_KEY_ARP_SIP] = { .type = NLA_U32 },
  349. [TCA_FLOWER_KEY_ARP_SIP_MASK] = { .type = NLA_U32 },
  350. [TCA_FLOWER_KEY_ARP_TIP] = { .type = NLA_U32 },
  351. [TCA_FLOWER_KEY_ARP_TIP_MASK] = { .type = NLA_U32 },
  352. [TCA_FLOWER_KEY_ARP_OP] = { .type = NLA_U8 },
  353. [TCA_FLOWER_KEY_ARP_OP_MASK] = { .type = NLA_U8 },
  354. [TCA_FLOWER_KEY_ARP_SHA] = { .len = ETH_ALEN },
  355. [TCA_FLOWER_KEY_ARP_SHA_MASK] = { .len = ETH_ALEN },
  356. [TCA_FLOWER_KEY_ARP_THA] = { .len = ETH_ALEN },
  357. [TCA_FLOWER_KEY_ARP_THA_MASK] = { .len = ETH_ALEN },
  358. [TCA_FLOWER_KEY_MPLS_TTL] = { .type = NLA_U8 },
  359. [TCA_FLOWER_KEY_MPLS_BOS] = { .type = NLA_U8 },
  360. [TCA_FLOWER_KEY_MPLS_TC] = { .type = NLA_U8 },
  361. [TCA_FLOWER_KEY_MPLS_LABEL] = { .type = NLA_U32 },
  362. [TCA_FLOWER_KEY_TCP_FLAGS] = { .type = NLA_U16 },
  363. [TCA_FLOWER_KEY_TCP_FLAGS_MASK] = { .type = NLA_U16 },
  364. [TCA_FLOWER_KEY_IP_TOS] = { .type = NLA_U8 },
  365. [TCA_FLOWER_KEY_IP_TOS_MASK] = { .type = NLA_U8 },
  366. [TCA_FLOWER_KEY_IP_TTL] = { .type = NLA_U8 },
  367. [TCA_FLOWER_KEY_IP_TTL_MASK] = { .type = NLA_U8 },
  368. };
  369. static void fl_set_key_val(struct nlattr **tb,
  370. void *val, int val_type,
  371. void *mask, int mask_type, int len)
  372. {
  373. if (!tb[val_type])
  374. return;
  375. memcpy(val, nla_data(tb[val_type]), len);
  376. if (mask_type == TCA_FLOWER_UNSPEC || !tb[mask_type])
  377. memset(mask, 0xff, len);
  378. else
  379. memcpy(mask, nla_data(tb[mask_type]), len);
  380. }
  381. static int fl_set_key_mpls(struct nlattr **tb,
  382. struct flow_dissector_key_mpls *key_val,
  383. struct flow_dissector_key_mpls *key_mask)
  384. {
  385. if (tb[TCA_FLOWER_KEY_MPLS_TTL]) {
  386. key_val->mpls_ttl = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_TTL]);
  387. key_mask->mpls_ttl = MPLS_TTL_MASK;
  388. }
  389. if (tb[TCA_FLOWER_KEY_MPLS_BOS]) {
  390. u8 bos = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_BOS]);
  391. if (bos & ~MPLS_BOS_MASK)
  392. return -EINVAL;
  393. key_val->mpls_bos = bos;
  394. key_mask->mpls_bos = MPLS_BOS_MASK;
  395. }
  396. if (tb[TCA_FLOWER_KEY_MPLS_TC]) {
  397. u8 tc = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_TC]);
  398. if (tc & ~MPLS_TC_MASK)
  399. return -EINVAL;
  400. key_val->mpls_tc = tc;
  401. key_mask->mpls_tc = MPLS_TC_MASK;
  402. }
  403. if (tb[TCA_FLOWER_KEY_MPLS_LABEL]) {
  404. u32 label = nla_get_u32(tb[TCA_FLOWER_KEY_MPLS_LABEL]);
  405. if (label & ~MPLS_LABEL_MASK)
  406. return -EINVAL;
  407. key_val->mpls_label = label;
  408. key_mask->mpls_label = MPLS_LABEL_MASK;
  409. }
  410. return 0;
  411. }
  412. static void fl_set_key_vlan(struct nlattr **tb,
  413. struct flow_dissector_key_vlan *key_val,
  414. struct flow_dissector_key_vlan *key_mask)
  415. {
  416. #define VLAN_PRIORITY_MASK 0x7
  417. if (tb[TCA_FLOWER_KEY_VLAN_ID]) {
  418. key_val->vlan_id =
  419. nla_get_u16(tb[TCA_FLOWER_KEY_VLAN_ID]) & VLAN_VID_MASK;
  420. key_mask->vlan_id = VLAN_VID_MASK;
  421. }
  422. if (tb[TCA_FLOWER_KEY_VLAN_PRIO]) {
  423. key_val->vlan_priority =
  424. nla_get_u8(tb[TCA_FLOWER_KEY_VLAN_PRIO]) &
  425. VLAN_PRIORITY_MASK;
  426. key_mask->vlan_priority = VLAN_PRIORITY_MASK;
  427. }
  428. }
  429. static void fl_set_key_flag(u32 flower_key, u32 flower_mask,
  430. u32 *dissector_key, u32 *dissector_mask,
  431. u32 flower_flag_bit, u32 dissector_flag_bit)
  432. {
  433. if (flower_mask & flower_flag_bit) {
  434. *dissector_mask |= dissector_flag_bit;
  435. if (flower_key & flower_flag_bit)
  436. *dissector_key |= dissector_flag_bit;
  437. }
  438. }
  439. static int fl_set_key_flags(struct nlattr **tb,
  440. u32 *flags_key, u32 *flags_mask)
  441. {
  442. u32 key, mask;
  443. /* mask is mandatory for flags */
  444. if (!tb[TCA_FLOWER_KEY_FLAGS_MASK])
  445. return -EINVAL;
  446. key = be32_to_cpu(nla_get_u32(tb[TCA_FLOWER_KEY_FLAGS]));
  447. mask = be32_to_cpu(nla_get_u32(tb[TCA_FLOWER_KEY_FLAGS_MASK]));
  448. *flags_key = 0;
  449. *flags_mask = 0;
  450. fl_set_key_flag(key, mask, flags_key, flags_mask,
  451. TCA_FLOWER_KEY_FLAGS_IS_FRAGMENT, FLOW_DIS_IS_FRAGMENT);
  452. return 0;
  453. }
  454. static void fl_set_key_ip(struct nlattr **tb,
  455. struct flow_dissector_key_ip *key,
  456. struct flow_dissector_key_ip *mask)
  457. {
  458. fl_set_key_val(tb, &key->tos, TCA_FLOWER_KEY_IP_TOS,
  459. &mask->tos, TCA_FLOWER_KEY_IP_TOS_MASK,
  460. sizeof(key->tos));
  461. fl_set_key_val(tb, &key->ttl, TCA_FLOWER_KEY_IP_TTL,
  462. &mask->ttl, TCA_FLOWER_KEY_IP_TTL_MASK,
  463. sizeof(key->ttl));
  464. }
  465. static int fl_set_key(struct net *net, struct nlattr **tb,
  466. struct fl_flow_key *key, struct fl_flow_key *mask)
  467. {
  468. __be16 ethertype;
  469. int ret = 0;
  470. #ifdef CONFIG_NET_CLS_IND
  471. if (tb[TCA_FLOWER_INDEV]) {
  472. int err = tcf_change_indev(net, tb[TCA_FLOWER_INDEV]);
  473. if (err < 0)
  474. return err;
  475. key->indev_ifindex = err;
  476. mask->indev_ifindex = 0xffffffff;
  477. }
  478. #endif
  479. fl_set_key_val(tb, key->eth.dst, TCA_FLOWER_KEY_ETH_DST,
  480. mask->eth.dst, TCA_FLOWER_KEY_ETH_DST_MASK,
  481. sizeof(key->eth.dst));
  482. fl_set_key_val(tb, key->eth.src, TCA_FLOWER_KEY_ETH_SRC,
  483. mask->eth.src, TCA_FLOWER_KEY_ETH_SRC_MASK,
  484. sizeof(key->eth.src));
  485. if (tb[TCA_FLOWER_KEY_ETH_TYPE]) {
  486. ethertype = nla_get_be16(tb[TCA_FLOWER_KEY_ETH_TYPE]);
  487. if (ethertype == htons(ETH_P_8021Q)) {
  488. fl_set_key_vlan(tb, &key->vlan, &mask->vlan);
  489. fl_set_key_val(tb, &key->basic.n_proto,
  490. TCA_FLOWER_KEY_VLAN_ETH_TYPE,
  491. &mask->basic.n_proto, TCA_FLOWER_UNSPEC,
  492. sizeof(key->basic.n_proto));
  493. } else {
  494. key->basic.n_proto = ethertype;
  495. mask->basic.n_proto = cpu_to_be16(~0);
  496. }
  497. }
  498. if (key->basic.n_proto == htons(ETH_P_IP) ||
  499. key->basic.n_proto == htons(ETH_P_IPV6)) {
  500. fl_set_key_val(tb, &key->basic.ip_proto, TCA_FLOWER_KEY_IP_PROTO,
  501. &mask->basic.ip_proto, TCA_FLOWER_UNSPEC,
  502. sizeof(key->basic.ip_proto));
  503. fl_set_key_ip(tb, &key->ip, &mask->ip);
  504. }
  505. if (tb[TCA_FLOWER_KEY_IPV4_SRC] || tb[TCA_FLOWER_KEY_IPV4_DST]) {
  506. key->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  507. mask->control.addr_type = ~0;
  508. fl_set_key_val(tb, &key->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC,
  509. &mask->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC_MASK,
  510. sizeof(key->ipv4.src));
  511. fl_set_key_val(tb, &key->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST,
  512. &mask->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST_MASK,
  513. sizeof(key->ipv4.dst));
  514. } else if (tb[TCA_FLOWER_KEY_IPV6_SRC] || tb[TCA_FLOWER_KEY_IPV6_DST]) {
  515. key->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  516. mask->control.addr_type = ~0;
  517. fl_set_key_val(tb, &key->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC,
  518. &mask->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC_MASK,
  519. sizeof(key->ipv6.src));
  520. fl_set_key_val(tb, &key->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST,
  521. &mask->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST_MASK,
  522. sizeof(key->ipv6.dst));
  523. }
  524. if (key->basic.ip_proto == IPPROTO_TCP) {
  525. fl_set_key_val(tb, &key->tp.src, TCA_FLOWER_KEY_TCP_SRC,
  526. &mask->tp.src, TCA_FLOWER_KEY_TCP_SRC_MASK,
  527. sizeof(key->tp.src));
  528. fl_set_key_val(tb, &key->tp.dst, TCA_FLOWER_KEY_TCP_DST,
  529. &mask->tp.dst, TCA_FLOWER_KEY_TCP_DST_MASK,
  530. sizeof(key->tp.dst));
  531. fl_set_key_val(tb, &key->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS,
  532. &mask->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS_MASK,
  533. sizeof(key->tcp.flags));
  534. } else if (key->basic.ip_proto == IPPROTO_UDP) {
  535. fl_set_key_val(tb, &key->tp.src, TCA_FLOWER_KEY_UDP_SRC,
  536. &mask->tp.src, TCA_FLOWER_KEY_UDP_SRC_MASK,
  537. sizeof(key->tp.src));
  538. fl_set_key_val(tb, &key->tp.dst, TCA_FLOWER_KEY_UDP_DST,
  539. &mask->tp.dst, TCA_FLOWER_KEY_UDP_DST_MASK,
  540. sizeof(key->tp.dst));
  541. } else if (key->basic.ip_proto == IPPROTO_SCTP) {
  542. fl_set_key_val(tb, &key->tp.src, TCA_FLOWER_KEY_SCTP_SRC,
  543. &mask->tp.src, TCA_FLOWER_KEY_SCTP_SRC_MASK,
  544. sizeof(key->tp.src));
  545. fl_set_key_val(tb, &key->tp.dst, TCA_FLOWER_KEY_SCTP_DST,
  546. &mask->tp.dst, TCA_FLOWER_KEY_SCTP_DST_MASK,
  547. sizeof(key->tp.dst));
  548. } else if (key->basic.n_proto == htons(ETH_P_IP) &&
  549. key->basic.ip_proto == IPPROTO_ICMP) {
  550. fl_set_key_val(tb, &key->icmp.type, TCA_FLOWER_KEY_ICMPV4_TYPE,
  551. &mask->icmp.type,
  552. TCA_FLOWER_KEY_ICMPV4_TYPE_MASK,
  553. sizeof(key->icmp.type));
  554. fl_set_key_val(tb, &key->icmp.code, TCA_FLOWER_KEY_ICMPV4_CODE,
  555. &mask->icmp.code,
  556. TCA_FLOWER_KEY_ICMPV4_CODE_MASK,
  557. sizeof(key->icmp.code));
  558. } else if (key->basic.n_proto == htons(ETH_P_IPV6) &&
  559. key->basic.ip_proto == IPPROTO_ICMPV6) {
  560. fl_set_key_val(tb, &key->icmp.type, TCA_FLOWER_KEY_ICMPV6_TYPE,
  561. &mask->icmp.type,
  562. TCA_FLOWER_KEY_ICMPV6_TYPE_MASK,
  563. sizeof(key->icmp.type));
  564. fl_set_key_val(tb, &key->icmp.code, TCA_FLOWER_KEY_ICMPV6_CODE,
  565. &mask->icmp.code,
  566. TCA_FLOWER_KEY_ICMPV6_CODE_MASK,
  567. sizeof(key->icmp.code));
  568. } else if (key->basic.n_proto == htons(ETH_P_MPLS_UC) ||
  569. key->basic.n_proto == htons(ETH_P_MPLS_MC)) {
  570. ret = fl_set_key_mpls(tb, &key->mpls, &mask->mpls);
  571. if (ret)
  572. return ret;
  573. } else if (key->basic.n_proto == htons(ETH_P_ARP) ||
  574. key->basic.n_proto == htons(ETH_P_RARP)) {
  575. fl_set_key_val(tb, &key->arp.sip, TCA_FLOWER_KEY_ARP_SIP,
  576. &mask->arp.sip, TCA_FLOWER_KEY_ARP_SIP_MASK,
  577. sizeof(key->arp.sip));
  578. fl_set_key_val(tb, &key->arp.tip, TCA_FLOWER_KEY_ARP_TIP,
  579. &mask->arp.tip, TCA_FLOWER_KEY_ARP_TIP_MASK,
  580. sizeof(key->arp.tip));
  581. fl_set_key_val(tb, &key->arp.op, TCA_FLOWER_KEY_ARP_OP,
  582. &mask->arp.op, TCA_FLOWER_KEY_ARP_OP_MASK,
  583. sizeof(key->arp.op));
  584. fl_set_key_val(tb, key->arp.sha, TCA_FLOWER_KEY_ARP_SHA,
  585. mask->arp.sha, TCA_FLOWER_KEY_ARP_SHA_MASK,
  586. sizeof(key->arp.sha));
  587. fl_set_key_val(tb, key->arp.tha, TCA_FLOWER_KEY_ARP_THA,
  588. mask->arp.tha, TCA_FLOWER_KEY_ARP_THA_MASK,
  589. sizeof(key->arp.tha));
  590. }
  591. if (tb[TCA_FLOWER_KEY_ENC_IPV4_SRC] ||
  592. tb[TCA_FLOWER_KEY_ENC_IPV4_DST]) {
  593. key->enc_control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  594. mask->enc_control.addr_type = ~0;
  595. fl_set_key_val(tb, &key->enc_ipv4.src,
  596. TCA_FLOWER_KEY_ENC_IPV4_SRC,
  597. &mask->enc_ipv4.src,
  598. TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK,
  599. sizeof(key->enc_ipv4.src));
  600. fl_set_key_val(tb, &key->enc_ipv4.dst,
  601. TCA_FLOWER_KEY_ENC_IPV4_DST,
  602. &mask->enc_ipv4.dst,
  603. TCA_FLOWER_KEY_ENC_IPV4_DST_MASK,
  604. sizeof(key->enc_ipv4.dst));
  605. }
  606. if (tb[TCA_FLOWER_KEY_ENC_IPV6_SRC] ||
  607. tb[TCA_FLOWER_KEY_ENC_IPV6_DST]) {
  608. key->enc_control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  609. mask->enc_control.addr_type = ~0;
  610. fl_set_key_val(tb, &key->enc_ipv6.src,
  611. TCA_FLOWER_KEY_ENC_IPV6_SRC,
  612. &mask->enc_ipv6.src,
  613. TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK,
  614. sizeof(key->enc_ipv6.src));
  615. fl_set_key_val(tb, &key->enc_ipv6.dst,
  616. TCA_FLOWER_KEY_ENC_IPV6_DST,
  617. &mask->enc_ipv6.dst,
  618. TCA_FLOWER_KEY_ENC_IPV6_DST_MASK,
  619. sizeof(key->enc_ipv6.dst));
  620. }
  621. fl_set_key_val(tb, &key->enc_key_id.keyid, TCA_FLOWER_KEY_ENC_KEY_ID,
  622. &mask->enc_key_id.keyid, TCA_FLOWER_UNSPEC,
  623. sizeof(key->enc_key_id.keyid));
  624. fl_set_key_val(tb, &key->enc_tp.src, TCA_FLOWER_KEY_ENC_UDP_SRC_PORT,
  625. &mask->enc_tp.src, TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK,
  626. sizeof(key->enc_tp.src));
  627. fl_set_key_val(tb, &key->enc_tp.dst, TCA_FLOWER_KEY_ENC_UDP_DST_PORT,
  628. &mask->enc_tp.dst, TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK,
  629. sizeof(key->enc_tp.dst));
  630. if (tb[TCA_FLOWER_KEY_FLAGS])
  631. ret = fl_set_key_flags(tb, &key->control.flags, &mask->control.flags);
  632. return ret;
  633. }
  634. static bool fl_mask_eq(struct fl_flow_mask *mask1,
  635. struct fl_flow_mask *mask2)
  636. {
  637. const long *lmask1 = fl_key_get_start(&mask1->key, mask1);
  638. const long *lmask2 = fl_key_get_start(&mask2->key, mask2);
  639. return !memcmp(&mask1->range, &mask2->range, sizeof(mask1->range)) &&
  640. !memcmp(lmask1, lmask2, fl_mask_range(mask1));
  641. }
  642. static const struct rhashtable_params fl_ht_params = {
  643. .key_offset = offsetof(struct cls_fl_filter, mkey), /* base offset */
  644. .head_offset = offsetof(struct cls_fl_filter, ht_node),
  645. .automatic_shrinking = true,
  646. };
  647. static int fl_init_hashtable(struct cls_fl_head *head,
  648. struct fl_flow_mask *mask)
  649. {
  650. head->ht_params = fl_ht_params;
  651. head->ht_params.key_len = fl_mask_range(mask);
  652. head->ht_params.key_offset += mask->range.start;
  653. return rhashtable_init(&head->ht, &head->ht_params);
  654. }
  655. #define FL_KEY_MEMBER_OFFSET(member) offsetof(struct fl_flow_key, member)
  656. #define FL_KEY_MEMBER_SIZE(member) (sizeof(((struct fl_flow_key *) 0)->member))
  657. #define FL_KEY_IS_MASKED(mask, member) \
  658. memchr_inv(((char *)mask) + FL_KEY_MEMBER_OFFSET(member), \
  659. 0, FL_KEY_MEMBER_SIZE(member)) \
  660. #define FL_KEY_SET(keys, cnt, id, member) \
  661. do { \
  662. keys[cnt].key_id = id; \
  663. keys[cnt].offset = FL_KEY_MEMBER_OFFSET(member); \
  664. cnt++; \
  665. } while(0);
  666. #define FL_KEY_SET_IF_MASKED(mask, keys, cnt, id, member) \
  667. do { \
  668. if (FL_KEY_IS_MASKED(mask, member)) \
  669. FL_KEY_SET(keys, cnt, id, member); \
  670. } while(0);
  671. static void fl_init_dissector(struct cls_fl_head *head,
  672. struct fl_flow_mask *mask)
  673. {
  674. struct flow_dissector_key keys[FLOW_DISSECTOR_KEY_MAX];
  675. size_t cnt = 0;
  676. FL_KEY_SET(keys, cnt, FLOW_DISSECTOR_KEY_CONTROL, control);
  677. FL_KEY_SET(keys, cnt, FLOW_DISSECTOR_KEY_BASIC, basic);
  678. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  679. FLOW_DISSECTOR_KEY_ETH_ADDRS, eth);
  680. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  681. FLOW_DISSECTOR_KEY_IPV4_ADDRS, ipv4);
  682. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  683. FLOW_DISSECTOR_KEY_IPV6_ADDRS, ipv6);
  684. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  685. FLOW_DISSECTOR_KEY_PORTS, tp);
  686. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  687. FLOW_DISSECTOR_KEY_IP, ip);
  688. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  689. FLOW_DISSECTOR_KEY_TCP, tcp);
  690. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  691. FLOW_DISSECTOR_KEY_ICMP, icmp);
  692. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  693. FLOW_DISSECTOR_KEY_ARP, arp);
  694. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  695. FLOW_DISSECTOR_KEY_MPLS, mpls);
  696. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  697. FLOW_DISSECTOR_KEY_VLAN, vlan);
  698. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  699. FLOW_DISSECTOR_KEY_ENC_KEYID, enc_key_id);
  700. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  701. FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS, enc_ipv4);
  702. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  703. FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS, enc_ipv6);
  704. if (FL_KEY_IS_MASKED(&mask->key, enc_ipv4) ||
  705. FL_KEY_IS_MASKED(&mask->key, enc_ipv6))
  706. FL_KEY_SET(keys, cnt, FLOW_DISSECTOR_KEY_ENC_CONTROL,
  707. enc_control);
  708. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  709. FLOW_DISSECTOR_KEY_ENC_PORTS, enc_tp);
  710. skb_flow_dissector_init(&head->dissector, keys, cnt);
  711. }
  712. static int fl_check_assign_mask(struct cls_fl_head *head,
  713. struct fl_flow_mask *mask)
  714. {
  715. int err;
  716. if (head->mask_assigned) {
  717. if (!fl_mask_eq(&head->mask, mask))
  718. return -EINVAL;
  719. else
  720. return 0;
  721. }
  722. /* Mask is not assigned yet. So assign it and init hashtable
  723. * according to that.
  724. */
  725. err = fl_init_hashtable(head, mask);
  726. if (err)
  727. return err;
  728. memcpy(&head->mask, mask, sizeof(head->mask));
  729. head->mask_assigned = true;
  730. fl_init_dissector(head, mask);
  731. return 0;
  732. }
  733. static int fl_set_parms(struct net *net, struct tcf_proto *tp,
  734. struct cls_fl_filter *f, struct fl_flow_mask *mask,
  735. unsigned long base, struct nlattr **tb,
  736. struct nlattr *est, bool ovr)
  737. {
  738. int err;
  739. err = tcf_exts_validate(net, tp, tb, est, &f->exts, ovr);
  740. if (err < 0)
  741. return err;
  742. if (tb[TCA_FLOWER_CLASSID]) {
  743. f->res.classid = nla_get_u32(tb[TCA_FLOWER_CLASSID]);
  744. tcf_bind_filter(tp, &f->res, base);
  745. }
  746. err = fl_set_key(net, tb, &f->key, &mask->key);
  747. if (err)
  748. return err;
  749. fl_mask_update_range(mask);
  750. fl_set_masked_key(&f->mkey, &f->key, mask);
  751. return 0;
  752. }
  753. static u32 fl_grab_new_handle(struct tcf_proto *tp,
  754. struct cls_fl_head *head)
  755. {
  756. unsigned int i = 0x80000000;
  757. u32 handle;
  758. do {
  759. if (++head->hgen == 0x7FFFFFFF)
  760. head->hgen = 1;
  761. } while (--i > 0 && fl_get(tp, head->hgen));
  762. if (unlikely(i == 0)) {
  763. pr_err("Insufficient number of handles\n");
  764. handle = 0;
  765. } else {
  766. handle = head->hgen;
  767. }
  768. return handle;
  769. }
  770. static int fl_change(struct net *net, struct sk_buff *in_skb,
  771. struct tcf_proto *tp, unsigned long base,
  772. u32 handle, struct nlattr **tca,
  773. void **arg, bool ovr)
  774. {
  775. struct cls_fl_head *head = rtnl_dereference(tp->root);
  776. struct cls_fl_filter *fold = *arg;
  777. struct cls_fl_filter *fnew;
  778. struct nlattr **tb;
  779. struct fl_flow_mask mask = {};
  780. int err;
  781. if (!tca[TCA_OPTIONS])
  782. return -EINVAL;
  783. tb = kcalloc(TCA_FLOWER_MAX + 1, sizeof(struct nlattr *), GFP_KERNEL);
  784. if (!tb)
  785. return -ENOBUFS;
  786. err = nla_parse_nested(tb, TCA_FLOWER_MAX, tca[TCA_OPTIONS],
  787. fl_policy, NULL);
  788. if (err < 0)
  789. goto errout_tb;
  790. if (fold && handle && fold->handle != handle) {
  791. err = -EINVAL;
  792. goto errout_tb;
  793. }
  794. fnew = kzalloc(sizeof(*fnew), GFP_KERNEL);
  795. if (!fnew) {
  796. err = -ENOBUFS;
  797. goto errout_tb;
  798. }
  799. err = tcf_exts_init(&fnew->exts, TCA_FLOWER_ACT, 0);
  800. if (err < 0)
  801. goto errout;
  802. if (!handle) {
  803. handle = fl_grab_new_handle(tp, head);
  804. if (!handle) {
  805. err = -EINVAL;
  806. goto errout;
  807. }
  808. }
  809. fnew->handle = handle;
  810. if (tb[TCA_FLOWER_FLAGS]) {
  811. fnew->flags = nla_get_u32(tb[TCA_FLOWER_FLAGS]);
  812. if (!tc_flags_valid(fnew->flags)) {
  813. err = -EINVAL;
  814. goto errout;
  815. }
  816. }
  817. err = fl_set_parms(net, tp, fnew, &mask, base, tb, tca[TCA_RATE], ovr);
  818. if (err)
  819. goto errout;
  820. err = fl_check_assign_mask(head, &mask);
  821. if (err)
  822. goto errout;
  823. if (!tc_skip_sw(fnew->flags)) {
  824. if (!fold && fl_lookup(head, &fnew->mkey)) {
  825. err = -EEXIST;
  826. goto errout;
  827. }
  828. err = rhashtable_insert_fast(&head->ht, &fnew->ht_node,
  829. head->ht_params);
  830. if (err)
  831. goto errout;
  832. }
  833. if (!tc_skip_hw(fnew->flags)) {
  834. err = fl_hw_replace_filter(tp,
  835. &head->dissector,
  836. &mask.key,
  837. fnew);
  838. if (err)
  839. goto errout;
  840. }
  841. if (!tc_in_hw(fnew->flags))
  842. fnew->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
  843. if (fold) {
  844. if (!tc_skip_sw(fold->flags))
  845. rhashtable_remove_fast(&head->ht, &fold->ht_node,
  846. head->ht_params);
  847. if (!tc_skip_hw(fold->flags))
  848. fl_hw_destroy_filter(tp, fold);
  849. }
  850. *arg = fnew;
  851. if (fold) {
  852. list_replace_rcu(&fold->list, &fnew->list);
  853. tcf_unbind_filter(tp, &fold->res);
  854. call_rcu(&fold->rcu, fl_destroy_filter);
  855. } else {
  856. list_add_tail_rcu(&fnew->list, &head->filters);
  857. }
  858. kfree(tb);
  859. return 0;
  860. errout:
  861. tcf_exts_destroy(&fnew->exts);
  862. kfree(fnew);
  863. errout_tb:
  864. kfree(tb);
  865. return err;
  866. }
  867. static int fl_delete(struct tcf_proto *tp, void *arg, bool *last)
  868. {
  869. struct cls_fl_head *head = rtnl_dereference(tp->root);
  870. struct cls_fl_filter *f = arg;
  871. if (!tc_skip_sw(f->flags))
  872. rhashtable_remove_fast(&head->ht, &f->ht_node,
  873. head->ht_params);
  874. __fl_delete(tp, f);
  875. *last = list_empty(&head->filters);
  876. return 0;
  877. }
  878. static void fl_walk(struct tcf_proto *tp, struct tcf_walker *arg)
  879. {
  880. struct cls_fl_head *head = rtnl_dereference(tp->root);
  881. struct cls_fl_filter *f;
  882. list_for_each_entry_rcu(f, &head->filters, list) {
  883. if (arg->count < arg->skip)
  884. goto skip;
  885. if (arg->fn(tp, f, arg) < 0) {
  886. arg->stop = 1;
  887. break;
  888. }
  889. skip:
  890. arg->count++;
  891. }
  892. }
  893. static int fl_dump_key_val(struct sk_buff *skb,
  894. void *val, int val_type,
  895. void *mask, int mask_type, int len)
  896. {
  897. int err;
  898. if (!memchr_inv(mask, 0, len))
  899. return 0;
  900. err = nla_put(skb, val_type, len, val);
  901. if (err)
  902. return err;
  903. if (mask_type != TCA_FLOWER_UNSPEC) {
  904. err = nla_put(skb, mask_type, len, mask);
  905. if (err)
  906. return err;
  907. }
  908. return 0;
  909. }
  910. static int fl_dump_key_mpls(struct sk_buff *skb,
  911. struct flow_dissector_key_mpls *mpls_key,
  912. struct flow_dissector_key_mpls *mpls_mask)
  913. {
  914. int err;
  915. if (!memchr_inv(mpls_mask, 0, sizeof(*mpls_mask)))
  916. return 0;
  917. if (mpls_mask->mpls_ttl) {
  918. err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_TTL,
  919. mpls_key->mpls_ttl);
  920. if (err)
  921. return err;
  922. }
  923. if (mpls_mask->mpls_tc) {
  924. err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_TC,
  925. mpls_key->mpls_tc);
  926. if (err)
  927. return err;
  928. }
  929. if (mpls_mask->mpls_label) {
  930. err = nla_put_u32(skb, TCA_FLOWER_KEY_MPLS_LABEL,
  931. mpls_key->mpls_label);
  932. if (err)
  933. return err;
  934. }
  935. if (mpls_mask->mpls_bos) {
  936. err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_BOS,
  937. mpls_key->mpls_bos);
  938. if (err)
  939. return err;
  940. }
  941. return 0;
  942. }
  943. static int fl_dump_key_ip(struct sk_buff *skb,
  944. struct flow_dissector_key_ip *key,
  945. struct flow_dissector_key_ip *mask)
  946. {
  947. if (fl_dump_key_val(skb, &key->tos, TCA_FLOWER_KEY_IP_TOS, &mask->tos,
  948. TCA_FLOWER_KEY_IP_TOS_MASK, sizeof(key->tos)) ||
  949. fl_dump_key_val(skb, &key->ttl, TCA_FLOWER_KEY_IP_TTL, &mask->ttl,
  950. TCA_FLOWER_KEY_IP_TTL_MASK, sizeof(key->ttl)))
  951. return -1;
  952. return 0;
  953. }
  954. static int fl_dump_key_vlan(struct sk_buff *skb,
  955. struct flow_dissector_key_vlan *vlan_key,
  956. struct flow_dissector_key_vlan *vlan_mask)
  957. {
  958. int err;
  959. if (!memchr_inv(vlan_mask, 0, sizeof(*vlan_mask)))
  960. return 0;
  961. if (vlan_mask->vlan_id) {
  962. err = nla_put_u16(skb, TCA_FLOWER_KEY_VLAN_ID,
  963. vlan_key->vlan_id);
  964. if (err)
  965. return err;
  966. }
  967. if (vlan_mask->vlan_priority) {
  968. err = nla_put_u8(skb, TCA_FLOWER_KEY_VLAN_PRIO,
  969. vlan_key->vlan_priority);
  970. if (err)
  971. return err;
  972. }
  973. return 0;
  974. }
  975. static void fl_get_key_flag(u32 dissector_key, u32 dissector_mask,
  976. u32 *flower_key, u32 *flower_mask,
  977. u32 flower_flag_bit, u32 dissector_flag_bit)
  978. {
  979. if (dissector_mask & dissector_flag_bit) {
  980. *flower_mask |= flower_flag_bit;
  981. if (dissector_key & dissector_flag_bit)
  982. *flower_key |= flower_flag_bit;
  983. }
  984. }
  985. static int fl_dump_key_flags(struct sk_buff *skb, u32 flags_key, u32 flags_mask)
  986. {
  987. u32 key, mask;
  988. __be32 _key, _mask;
  989. int err;
  990. if (!memchr_inv(&flags_mask, 0, sizeof(flags_mask)))
  991. return 0;
  992. key = 0;
  993. mask = 0;
  994. fl_get_key_flag(flags_key, flags_mask, &key, &mask,
  995. TCA_FLOWER_KEY_FLAGS_IS_FRAGMENT, FLOW_DIS_IS_FRAGMENT);
  996. _key = cpu_to_be32(key);
  997. _mask = cpu_to_be32(mask);
  998. err = nla_put(skb, TCA_FLOWER_KEY_FLAGS, 4, &_key);
  999. if (err)
  1000. return err;
  1001. return nla_put(skb, TCA_FLOWER_KEY_FLAGS_MASK, 4, &_mask);
  1002. }
  1003. static int fl_dump(struct net *net, struct tcf_proto *tp, void *fh,
  1004. struct sk_buff *skb, struct tcmsg *t)
  1005. {
  1006. struct cls_fl_head *head = rtnl_dereference(tp->root);
  1007. struct cls_fl_filter *f = fh;
  1008. struct nlattr *nest;
  1009. struct fl_flow_key *key, *mask;
  1010. if (!f)
  1011. return skb->len;
  1012. t->tcm_handle = f->handle;
  1013. nest = nla_nest_start(skb, TCA_OPTIONS);
  1014. if (!nest)
  1015. goto nla_put_failure;
  1016. if (f->res.classid &&
  1017. nla_put_u32(skb, TCA_FLOWER_CLASSID, f->res.classid))
  1018. goto nla_put_failure;
  1019. key = &f->key;
  1020. mask = &head->mask.key;
  1021. if (mask->indev_ifindex) {
  1022. struct net_device *dev;
  1023. dev = __dev_get_by_index(net, key->indev_ifindex);
  1024. if (dev && nla_put_string(skb, TCA_FLOWER_INDEV, dev->name))
  1025. goto nla_put_failure;
  1026. }
  1027. if (!tc_skip_hw(f->flags))
  1028. fl_hw_update_stats(tp, f);
  1029. if (fl_dump_key_val(skb, key->eth.dst, TCA_FLOWER_KEY_ETH_DST,
  1030. mask->eth.dst, TCA_FLOWER_KEY_ETH_DST_MASK,
  1031. sizeof(key->eth.dst)) ||
  1032. fl_dump_key_val(skb, key->eth.src, TCA_FLOWER_KEY_ETH_SRC,
  1033. mask->eth.src, TCA_FLOWER_KEY_ETH_SRC_MASK,
  1034. sizeof(key->eth.src)) ||
  1035. fl_dump_key_val(skb, &key->basic.n_proto, TCA_FLOWER_KEY_ETH_TYPE,
  1036. &mask->basic.n_proto, TCA_FLOWER_UNSPEC,
  1037. sizeof(key->basic.n_proto)))
  1038. goto nla_put_failure;
  1039. if (fl_dump_key_mpls(skb, &key->mpls, &mask->mpls))
  1040. goto nla_put_failure;
  1041. if (fl_dump_key_vlan(skb, &key->vlan, &mask->vlan))
  1042. goto nla_put_failure;
  1043. if ((key->basic.n_proto == htons(ETH_P_IP) ||
  1044. key->basic.n_proto == htons(ETH_P_IPV6)) &&
  1045. (fl_dump_key_val(skb, &key->basic.ip_proto, TCA_FLOWER_KEY_IP_PROTO,
  1046. &mask->basic.ip_proto, TCA_FLOWER_UNSPEC,
  1047. sizeof(key->basic.ip_proto)) ||
  1048. fl_dump_key_ip(skb, &key->ip, &mask->ip)))
  1049. goto nla_put_failure;
  1050. if (key->control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS &&
  1051. (fl_dump_key_val(skb, &key->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC,
  1052. &mask->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC_MASK,
  1053. sizeof(key->ipv4.src)) ||
  1054. fl_dump_key_val(skb, &key->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST,
  1055. &mask->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST_MASK,
  1056. sizeof(key->ipv4.dst))))
  1057. goto nla_put_failure;
  1058. else if (key->control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS &&
  1059. (fl_dump_key_val(skb, &key->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC,
  1060. &mask->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC_MASK,
  1061. sizeof(key->ipv6.src)) ||
  1062. fl_dump_key_val(skb, &key->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST,
  1063. &mask->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST_MASK,
  1064. sizeof(key->ipv6.dst))))
  1065. goto nla_put_failure;
  1066. if (key->basic.ip_proto == IPPROTO_TCP &&
  1067. (fl_dump_key_val(skb, &key->tp.src, TCA_FLOWER_KEY_TCP_SRC,
  1068. &mask->tp.src, TCA_FLOWER_KEY_TCP_SRC_MASK,
  1069. sizeof(key->tp.src)) ||
  1070. fl_dump_key_val(skb, &key->tp.dst, TCA_FLOWER_KEY_TCP_DST,
  1071. &mask->tp.dst, TCA_FLOWER_KEY_TCP_DST_MASK,
  1072. sizeof(key->tp.dst)) ||
  1073. fl_dump_key_val(skb, &key->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS,
  1074. &mask->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS_MASK,
  1075. sizeof(key->tcp.flags))))
  1076. goto nla_put_failure;
  1077. else if (key->basic.ip_proto == IPPROTO_UDP &&
  1078. (fl_dump_key_val(skb, &key->tp.src, TCA_FLOWER_KEY_UDP_SRC,
  1079. &mask->tp.src, TCA_FLOWER_KEY_UDP_SRC_MASK,
  1080. sizeof(key->tp.src)) ||
  1081. fl_dump_key_val(skb, &key->tp.dst, TCA_FLOWER_KEY_UDP_DST,
  1082. &mask->tp.dst, TCA_FLOWER_KEY_UDP_DST_MASK,
  1083. sizeof(key->tp.dst))))
  1084. goto nla_put_failure;
  1085. else if (key->basic.ip_proto == IPPROTO_SCTP &&
  1086. (fl_dump_key_val(skb, &key->tp.src, TCA_FLOWER_KEY_SCTP_SRC,
  1087. &mask->tp.src, TCA_FLOWER_KEY_SCTP_SRC_MASK,
  1088. sizeof(key->tp.src)) ||
  1089. fl_dump_key_val(skb, &key->tp.dst, TCA_FLOWER_KEY_SCTP_DST,
  1090. &mask->tp.dst, TCA_FLOWER_KEY_SCTP_DST_MASK,
  1091. sizeof(key->tp.dst))))
  1092. goto nla_put_failure;
  1093. else if (key->basic.n_proto == htons(ETH_P_IP) &&
  1094. key->basic.ip_proto == IPPROTO_ICMP &&
  1095. (fl_dump_key_val(skb, &key->icmp.type,
  1096. TCA_FLOWER_KEY_ICMPV4_TYPE, &mask->icmp.type,
  1097. TCA_FLOWER_KEY_ICMPV4_TYPE_MASK,
  1098. sizeof(key->icmp.type)) ||
  1099. fl_dump_key_val(skb, &key->icmp.code,
  1100. TCA_FLOWER_KEY_ICMPV4_CODE, &mask->icmp.code,
  1101. TCA_FLOWER_KEY_ICMPV4_CODE_MASK,
  1102. sizeof(key->icmp.code))))
  1103. goto nla_put_failure;
  1104. else if (key->basic.n_proto == htons(ETH_P_IPV6) &&
  1105. key->basic.ip_proto == IPPROTO_ICMPV6 &&
  1106. (fl_dump_key_val(skb, &key->icmp.type,
  1107. TCA_FLOWER_KEY_ICMPV6_TYPE, &mask->icmp.type,
  1108. TCA_FLOWER_KEY_ICMPV6_TYPE_MASK,
  1109. sizeof(key->icmp.type)) ||
  1110. fl_dump_key_val(skb, &key->icmp.code,
  1111. TCA_FLOWER_KEY_ICMPV6_CODE, &mask->icmp.code,
  1112. TCA_FLOWER_KEY_ICMPV6_CODE_MASK,
  1113. sizeof(key->icmp.code))))
  1114. goto nla_put_failure;
  1115. else if ((key->basic.n_proto == htons(ETH_P_ARP) ||
  1116. key->basic.n_proto == htons(ETH_P_RARP)) &&
  1117. (fl_dump_key_val(skb, &key->arp.sip,
  1118. TCA_FLOWER_KEY_ARP_SIP, &mask->arp.sip,
  1119. TCA_FLOWER_KEY_ARP_SIP_MASK,
  1120. sizeof(key->arp.sip)) ||
  1121. fl_dump_key_val(skb, &key->arp.tip,
  1122. TCA_FLOWER_KEY_ARP_TIP, &mask->arp.tip,
  1123. TCA_FLOWER_KEY_ARP_TIP_MASK,
  1124. sizeof(key->arp.tip)) ||
  1125. fl_dump_key_val(skb, &key->arp.op,
  1126. TCA_FLOWER_KEY_ARP_OP, &mask->arp.op,
  1127. TCA_FLOWER_KEY_ARP_OP_MASK,
  1128. sizeof(key->arp.op)) ||
  1129. fl_dump_key_val(skb, key->arp.sha, TCA_FLOWER_KEY_ARP_SHA,
  1130. mask->arp.sha, TCA_FLOWER_KEY_ARP_SHA_MASK,
  1131. sizeof(key->arp.sha)) ||
  1132. fl_dump_key_val(skb, key->arp.tha, TCA_FLOWER_KEY_ARP_THA,
  1133. mask->arp.tha, TCA_FLOWER_KEY_ARP_THA_MASK,
  1134. sizeof(key->arp.tha))))
  1135. goto nla_put_failure;
  1136. if (key->enc_control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS &&
  1137. (fl_dump_key_val(skb, &key->enc_ipv4.src,
  1138. TCA_FLOWER_KEY_ENC_IPV4_SRC, &mask->enc_ipv4.src,
  1139. TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK,
  1140. sizeof(key->enc_ipv4.src)) ||
  1141. fl_dump_key_val(skb, &key->enc_ipv4.dst,
  1142. TCA_FLOWER_KEY_ENC_IPV4_DST, &mask->enc_ipv4.dst,
  1143. TCA_FLOWER_KEY_ENC_IPV4_DST_MASK,
  1144. sizeof(key->enc_ipv4.dst))))
  1145. goto nla_put_failure;
  1146. else if (key->enc_control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS &&
  1147. (fl_dump_key_val(skb, &key->enc_ipv6.src,
  1148. TCA_FLOWER_KEY_ENC_IPV6_SRC, &mask->enc_ipv6.src,
  1149. TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK,
  1150. sizeof(key->enc_ipv6.src)) ||
  1151. fl_dump_key_val(skb, &key->enc_ipv6.dst,
  1152. TCA_FLOWER_KEY_ENC_IPV6_DST,
  1153. &mask->enc_ipv6.dst,
  1154. TCA_FLOWER_KEY_ENC_IPV6_DST_MASK,
  1155. sizeof(key->enc_ipv6.dst))))
  1156. goto nla_put_failure;
  1157. if (fl_dump_key_val(skb, &key->enc_key_id, TCA_FLOWER_KEY_ENC_KEY_ID,
  1158. &mask->enc_key_id, TCA_FLOWER_UNSPEC,
  1159. sizeof(key->enc_key_id)) ||
  1160. fl_dump_key_val(skb, &key->enc_tp.src,
  1161. TCA_FLOWER_KEY_ENC_UDP_SRC_PORT,
  1162. &mask->enc_tp.src,
  1163. TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK,
  1164. sizeof(key->enc_tp.src)) ||
  1165. fl_dump_key_val(skb, &key->enc_tp.dst,
  1166. TCA_FLOWER_KEY_ENC_UDP_DST_PORT,
  1167. &mask->enc_tp.dst,
  1168. TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK,
  1169. sizeof(key->enc_tp.dst)))
  1170. goto nla_put_failure;
  1171. if (fl_dump_key_flags(skb, key->control.flags, mask->control.flags))
  1172. goto nla_put_failure;
  1173. if (f->flags && nla_put_u32(skb, TCA_FLOWER_FLAGS, f->flags))
  1174. goto nla_put_failure;
  1175. if (tcf_exts_dump(skb, &f->exts))
  1176. goto nla_put_failure;
  1177. nla_nest_end(skb, nest);
  1178. if (tcf_exts_dump_stats(skb, &f->exts) < 0)
  1179. goto nla_put_failure;
  1180. return skb->len;
  1181. nla_put_failure:
  1182. nla_nest_cancel(skb, nest);
  1183. return -1;
  1184. }
  1185. static struct tcf_proto_ops cls_fl_ops __read_mostly = {
  1186. .kind = "flower",
  1187. .classify = fl_classify,
  1188. .init = fl_init,
  1189. .destroy = fl_destroy,
  1190. .get = fl_get,
  1191. .change = fl_change,
  1192. .delete = fl_delete,
  1193. .walk = fl_walk,
  1194. .dump = fl_dump,
  1195. .owner = THIS_MODULE,
  1196. };
  1197. static int __init cls_fl_init(void)
  1198. {
  1199. return register_tcf_proto_ops(&cls_fl_ops);
  1200. }
  1201. static void __exit cls_fl_exit(void)
  1202. {
  1203. unregister_tcf_proto_ops(&cls_fl_ops);
  1204. }
  1205. module_init(cls_fl_init);
  1206. module_exit(cls_fl_exit);
  1207. MODULE_AUTHOR("Jiri Pirko <jiri@resnulli.us>");
  1208. MODULE_DESCRIPTION("Flower classifier");
  1209. MODULE_LICENSE("GPL v2");