cls_bpf.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651
  1. /*
  2. * Berkeley Packet Filter based traffic classifier
  3. *
  4. * Might be used to classify traffic through flexible, user-defined and
  5. * possibly JIT-ed BPF filters for traffic control as an alternative to
  6. * ematches.
  7. *
  8. * (C) 2013 Daniel Borkmann <dborkman@redhat.com>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/module.h>
  15. #include <linux/types.h>
  16. #include <linux/skbuff.h>
  17. #include <linux/filter.h>
  18. #include <linux/bpf.h>
  19. #include <net/rtnetlink.h>
  20. #include <net/pkt_cls.h>
  21. #include <net/sock.h>
  22. MODULE_LICENSE("GPL");
  23. MODULE_AUTHOR("Daniel Borkmann <dborkman@redhat.com>");
  24. MODULE_DESCRIPTION("TC BPF based classifier");
  25. #define CLS_BPF_NAME_LEN 256
  26. #define CLS_BPF_SUPPORTED_GEN_FLAGS \
  27. (TCA_CLS_FLAGS_SKIP_HW | TCA_CLS_FLAGS_SKIP_SW)
  28. struct cls_bpf_head {
  29. struct list_head plist;
  30. u32 hgen;
  31. struct rcu_head rcu;
  32. };
  33. struct cls_bpf_prog {
  34. struct bpf_prog *filter;
  35. struct list_head link;
  36. struct tcf_result res;
  37. bool exts_integrated;
  38. bool offloaded;
  39. u32 gen_flags;
  40. struct tcf_exts exts;
  41. u32 handle;
  42. u16 bpf_num_ops;
  43. struct sock_filter *bpf_ops;
  44. const char *bpf_name;
  45. struct tcf_proto *tp;
  46. struct rcu_head rcu;
  47. };
  48. static const struct nla_policy bpf_policy[TCA_BPF_MAX + 1] = {
  49. [TCA_BPF_CLASSID] = { .type = NLA_U32 },
  50. [TCA_BPF_FLAGS] = { .type = NLA_U32 },
  51. [TCA_BPF_FLAGS_GEN] = { .type = NLA_U32 },
  52. [TCA_BPF_FD] = { .type = NLA_U32 },
  53. [TCA_BPF_NAME] = { .type = NLA_NUL_STRING,
  54. .len = CLS_BPF_NAME_LEN },
  55. [TCA_BPF_OPS_LEN] = { .type = NLA_U16 },
  56. [TCA_BPF_OPS] = { .type = NLA_BINARY,
  57. .len = sizeof(struct sock_filter) * BPF_MAXINSNS },
  58. };
  59. static int cls_bpf_exec_opcode(int code)
  60. {
  61. switch (code) {
  62. case TC_ACT_OK:
  63. case TC_ACT_SHOT:
  64. case TC_ACT_STOLEN:
  65. case TC_ACT_TRAP:
  66. case TC_ACT_REDIRECT:
  67. case TC_ACT_UNSPEC:
  68. return code;
  69. default:
  70. return TC_ACT_UNSPEC;
  71. }
  72. }
  73. static int cls_bpf_classify(struct sk_buff *skb, const struct tcf_proto *tp,
  74. struct tcf_result *res)
  75. {
  76. struct cls_bpf_head *head = rcu_dereference_bh(tp->root);
  77. bool at_ingress = skb_at_tc_ingress(skb);
  78. struct cls_bpf_prog *prog;
  79. int ret = -1;
  80. /* Needed here for accessing maps. */
  81. rcu_read_lock();
  82. list_for_each_entry_rcu(prog, &head->plist, link) {
  83. int filter_res;
  84. qdisc_skb_cb(skb)->tc_classid = prog->res.classid;
  85. if (tc_skip_sw(prog->gen_flags)) {
  86. filter_res = prog->exts_integrated ? TC_ACT_UNSPEC : 0;
  87. } else if (at_ingress) {
  88. /* It is safe to push/pull even if skb_shared() */
  89. __skb_push(skb, skb->mac_len);
  90. bpf_compute_data_end(skb);
  91. filter_res = BPF_PROG_RUN(prog->filter, skb);
  92. __skb_pull(skb, skb->mac_len);
  93. } else {
  94. bpf_compute_data_end(skb);
  95. filter_res = BPF_PROG_RUN(prog->filter, skb);
  96. }
  97. if (prog->exts_integrated) {
  98. res->class = 0;
  99. res->classid = TC_H_MAJ(prog->res.classid) |
  100. qdisc_skb_cb(skb)->tc_classid;
  101. ret = cls_bpf_exec_opcode(filter_res);
  102. if (ret == TC_ACT_UNSPEC)
  103. continue;
  104. break;
  105. }
  106. if (filter_res == 0)
  107. continue;
  108. if (filter_res != -1) {
  109. res->class = 0;
  110. res->classid = filter_res;
  111. } else {
  112. *res = prog->res;
  113. }
  114. ret = tcf_exts_exec(skb, &prog->exts, res);
  115. if (ret < 0)
  116. continue;
  117. break;
  118. }
  119. rcu_read_unlock();
  120. return ret;
  121. }
  122. static bool cls_bpf_is_ebpf(const struct cls_bpf_prog *prog)
  123. {
  124. return !prog->bpf_ops;
  125. }
  126. static int cls_bpf_offload_cmd(struct tcf_proto *tp, struct cls_bpf_prog *prog,
  127. enum tc_clsbpf_command cmd)
  128. {
  129. struct net_device *dev = tp->q->dev_queue->dev;
  130. struct tc_cls_bpf_offload cls_bpf = {};
  131. int err;
  132. tc_cls_common_offload_init(&cls_bpf.common, tp);
  133. cls_bpf.command = cmd;
  134. cls_bpf.exts = &prog->exts;
  135. cls_bpf.prog = prog->filter;
  136. cls_bpf.name = prog->bpf_name;
  137. cls_bpf.exts_integrated = prog->exts_integrated;
  138. cls_bpf.gen_flags = prog->gen_flags;
  139. err = dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_CLSBPF, &cls_bpf);
  140. if (!err && (cmd == TC_CLSBPF_ADD || cmd == TC_CLSBPF_REPLACE))
  141. prog->gen_flags |= TCA_CLS_FLAGS_IN_HW;
  142. return err;
  143. }
  144. static int cls_bpf_offload(struct tcf_proto *tp, struct cls_bpf_prog *prog,
  145. struct cls_bpf_prog *oldprog)
  146. {
  147. struct net_device *dev = tp->q->dev_queue->dev;
  148. struct cls_bpf_prog *obj = prog;
  149. enum tc_clsbpf_command cmd;
  150. bool skip_sw;
  151. int ret;
  152. skip_sw = tc_skip_sw(prog->gen_flags) ||
  153. (oldprog && tc_skip_sw(oldprog->gen_flags));
  154. if (oldprog && oldprog->offloaded) {
  155. if (tc_should_offload(dev, tp, prog->gen_flags)) {
  156. cmd = TC_CLSBPF_REPLACE;
  157. } else if (!tc_skip_sw(prog->gen_flags)) {
  158. obj = oldprog;
  159. cmd = TC_CLSBPF_DESTROY;
  160. } else {
  161. return -EINVAL;
  162. }
  163. } else {
  164. if (!tc_should_offload(dev, tp, prog->gen_flags))
  165. return skip_sw ? -EINVAL : 0;
  166. cmd = TC_CLSBPF_ADD;
  167. }
  168. ret = cls_bpf_offload_cmd(tp, obj, cmd);
  169. if (ret)
  170. return skip_sw ? ret : 0;
  171. obj->offloaded = true;
  172. if (oldprog)
  173. oldprog->offloaded = false;
  174. return 0;
  175. }
  176. static void cls_bpf_stop_offload(struct tcf_proto *tp,
  177. struct cls_bpf_prog *prog)
  178. {
  179. int err;
  180. if (!prog->offloaded)
  181. return;
  182. err = cls_bpf_offload_cmd(tp, prog, TC_CLSBPF_DESTROY);
  183. if (err) {
  184. pr_err("Stopping hardware offload failed: %d\n", err);
  185. return;
  186. }
  187. prog->offloaded = false;
  188. }
  189. static void cls_bpf_offload_update_stats(struct tcf_proto *tp,
  190. struct cls_bpf_prog *prog)
  191. {
  192. if (!prog->offloaded)
  193. return;
  194. cls_bpf_offload_cmd(tp, prog, TC_CLSBPF_STATS);
  195. }
  196. static int cls_bpf_init(struct tcf_proto *tp)
  197. {
  198. struct cls_bpf_head *head;
  199. head = kzalloc(sizeof(*head), GFP_KERNEL);
  200. if (head == NULL)
  201. return -ENOBUFS;
  202. INIT_LIST_HEAD_RCU(&head->plist);
  203. rcu_assign_pointer(tp->root, head);
  204. return 0;
  205. }
  206. static void __cls_bpf_delete_prog(struct cls_bpf_prog *prog)
  207. {
  208. tcf_exts_destroy(&prog->exts);
  209. if (cls_bpf_is_ebpf(prog))
  210. bpf_prog_put(prog->filter);
  211. else
  212. bpf_prog_destroy(prog->filter);
  213. kfree(prog->bpf_name);
  214. kfree(prog->bpf_ops);
  215. kfree(prog);
  216. }
  217. static void cls_bpf_delete_prog_rcu(struct rcu_head *rcu)
  218. {
  219. __cls_bpf_delete_prog(container_of(rcu, struct cls_bpf_prog, rcu));
  220. }
  221. static void __cls_bpf_delete(struct tcf_proto *tp, struct cls_bpf_prog *prog)
  222. {
  223. cls_bpf_stop_offload(tp, prog);
  224. list_del_rcu(&prog->link);
  225. tcf_unbind_filter(tp, &prog->res);
  226. call_rcu(&prog->rcu, cls_bpf_delete_prog_rcu);
  227. }
  228. static int cls_bpf_delete(struct tcf_proto *tp, void *arg, bool *last)
  229. {
  230. struct cls_bpf_head *head = rtnl_dereference(tp->root);
  231. __cls_bpf_delete(tp, arg);
  232. *last = list_empty(&head->plist);
  233. return 0;
  234. }
  235. static void cls_bpf_destroy(struct tcf_proto *tp)
  236. {
  237. struct cls_bpf_head *head = rtnl_dereference(tp->root);
  238. struct cls_bpf_prog *prog, *tmp;
  239. list_for_each_entry_safe(prog, tmp, &head->plist, link)
  240. __cls_bpf_delete(tp, prog);
  241. kfree_rcu(head, rcu);
  242. }
  243. static void *cls_bpf_get(struct tcf_proto *tp, u32 handle)
  244. {
  245. struct cls_bpf_head *head = rtnl_dereference(tp->root);
  246. struct cls_bpf_prog *prog;
  247. list_for_each_entry(prog, &head->plist, link) {
  248. if (prog->handle == handle)
  249. return prog;
  250. }
  251. return NULL;
  252. }
  253. static int cls_bpf_prog_from_ops(struct nlattr **tb, struct cls_bpf_prog *prog)
  254. {
  255. struct sock_filter *bpf_ops;
  256. struct sock_fprog_kern fprog_tmp;
  257. struct bpf_prog *fp;
  258. u16 bpf_size, bpf_num_ops;
  259. int ret;
  260. bpf_num_ops = nla_get_u16(tb[TCA_BPF_OPS_LEN]);
  261. if (bpf_num_ops > BPF_MAXINSNS || bpf_num_ops == 0)
  262. return -EINVAL;
  263. bpf_size = bpf_num_ops * sizeof(*bpf_ops);
  264. if (bpf_size != nla_len(tb[TCA_BPF_OPS]))
  265. return -EINVAL;
  266. bpf_ops = kzalloc(bpf_size, GFP_KERNEL);
  267. if (bpf_ops == NULL)
  268. return -ENOMEM;
  269. memcpy(bpf_ops, nla_data(tb[TCA_BPF_OPS]), bpf_size);
  270. fprog_tmp.len = bpf_num_ops;
  271. fprog_tmp.filter = bpf_ops;
  272. ret = bpf_prog_create(&fp, &fprog_tmp);
  273. if (ret < 0) {
  274. kfree(bpf_ops);
  275. return ret;
  276. }
  277. prog->bpf_ops = bpf_ops;
  278. prog->bpf_num_ops = bpf_num_ops;
  279. prog->bpf_name = NULL;
  280. prog->filter = fp;
  281. return 0;
  282. }
  283. static int cls_bpf_prog_from_efd(struct nlattr **tb, struct cls_bpf_prog *prog,
  284. const struct tcf_proto *tp)
  285. {
  286. struct bpf_prog *fp;
  287. char *name = NULL;
  288. u32 bpf_fd;
  289. bpf_fd = nla_get_u32(tb[TCA_BPF_FD]);
  290. fp = bpf_prog_get_type(bpf_fd, BPF_PROG_TYPE_SCHED_CLS);
  291. if (IS_ERR(fp))
  292. return PTR_ERR(fp);
  293. if (tb[TCA_BPF_NAME]) {
  294. name = nla_memdup(tb[TCA_BPF_NAME], GFP_KERNEL);
  295. if (!name) {
  296. bpf_prog_put(fp);
  297. return -ENOMEM;
  298. }
  299. }
  300. prog->bpf_ops = NULL;
  301. prog->bpf_name = name;
  302. prog->filter = fp;
  303. if (fp->dst_needed && !(tp->q->flags & TCQ_F_INGRESS))
  304. netif_keep_dst(qdisc_dev(tp->q));
  305. return 0;
  306. }
  307. static int cls_bpf_set_parms(struct net *net, struct tcf_proto *tp,
  308. struct cls_bpf_prog *prog, unsigned long base,
  309. struct nlattr **tb, struct nlattr *est, bool ovr)
  310. {
  311. bool is_bpf, is_ebpf, have_exts = false;
  312. u32 gen_flags = 0;
  313. int ret;
  314. is_bpf = tb[TCA_BPF_OPS_LEN] && tb[TCA_BPF_OPS];
  315. is_ebpf = tb[TCA_BPF_FD];
  316. if ((!is_bpf && !is_ebpf) || (is_bpf && is_ebpf))
  317. return -EINVAL;
  318. ret = tcf_exts_validate(net, tp, tb, est, &prog->exts, ovr);
  319. if (ret < 0)
  320. return ret;
  321. if (tb[TCA_BPF_FLAGS]) {
  322. u32 bpf_flags = nla_get_u32(tb[TCA_BPF_FLAGS]);
  323. if (bpf_flags & ~TCA_BPF_FLAG_ACT_DIRECT)
  324. return -EINVAL;
  325. have_exts = bpf_flags & TCA_BPF_FLAG_ACT_DIRECT;
  326. }
  327. if (tb[TCA_BPF_FLAGS_GEN]) {
  328. gen_flags = nla_get_u32(tb[TCA_BPF_FLAGS_GEN]);
  329. if (gen_flags & ~CLS_BPF_SUPPORTED_GEN_FLAGS ||
  330. !tc_flags_valid(gen_flags))
  331. return -EINVAL;
  332. }
  333. prog->exts_integrated = have_exts;
  334. prog->gen_flags = gen_flags;
  335. ret = is_bpf ? cls_bpf_prog_from_ops(tb, prog) :
  336. cls_bpf_prog_from_efd(tb, prog, tp);
  337. if (ret < 0)
  338. return ret;
  339. if (tb[TCA_BPF_CLASSID]) {
  340. prog->res.classid = nla_get_u32(tb[TCA_BPF_CLASSID]);
  341. tcf_bind_filter(tp, &prog->res, base);
  342. }
  343. return 0;
  344. }
  345. static u32 cls_bpf_grab_new_handle(struct tcf_proto *tp,
  346. struct cls_bpf_head *head)
  347. {
  348. unsigned int i = 0x80000000;
  349. u32 handle;
  350. do {
  351. if (++head->hgen == 0x7FFFFFFF)
  352. head->hgen = 1;
  353. } while (--i > 0 && cls_bpf_get(tp, head->hgen));
  354. if (unlikely(i == 0)) {
  355. pr_err("Insufficient number of handles\n");
  356. handle = 0;
  357. } else {
  358. handle = head->hgen;
  359. }
  360. return handle;
  361. }
  362. static int cls_bpf_change(struct net *net, struct sk_buff *in_skb,
  363. struct tcf_proto *tp, unsigned long base,
  364. u32 handle, struct nlattr **tca,
  365. void **arg, bool ovr)
  366. {
  367. struct cls_bpf_head *head = rtnl_dereference(tp->root);
  368. struct cls_bpf_prog *oldprog = *arg;
  369. struct nlattr *tb[TCA_BPF_MAX + 1];
  370. struct cls_bpf_prog *prog;
  371. int ret;
  372. if (tca[TCA_OPTIONS] == NULL)
  373. return -EINVAL;
  374. ret = nla_parse_nested(tb, TCA_BPF_MAX, tca[TCA_OPTIONS], bpf_policy,
  375. NULL);
  376. if (ret < 0)
  377. return ret;
  378. prog = kzalloc(sizeof(*prog), GFP_KERNEL);
  379. if (!prog)
  380. return -ENOBUFS;
  381. ret = tcf_exts_init(&prog->exts, TCA_BPF_ACT, TCA_BPF_POLICE);
  382. if (ret < 0)
  383. goto errout;
  384. if (oldprog) {
  385. if (handle && oldprog->handle != handle) {
  386. ret = -EINVAL;
  387. goto errout;
  388. }
  389. }
  390. if (handle == 0)
  391. prog->handle = cls_bpf_grab_new_handle(tp, head);
  392. else
  393. prog->handle = handle;
  394. if (prog->handle == 0) {
  395. ret = -EINVAL;
  396. goto errout;
  397. }
  398. ret = cls_bpf_set_parms(net, tp, prog, base, tb, tca[TCA_RATE], ovr);
  399. if (ret < 0)
  400. goto errout;
  401. ret = cls_bpf_offload(tp, prog, oldprog);
  402. if (ret) {
  403. __cls_bpf_delete_prog(prog);
  404. return ret;
  405. }
  406. if (!tc_in_hw(prog->gen_flags))
  407. prog->gen_flags |= TCA_CLS_FLAGS_NOT_IN_HW;
  408. if (oldprog) {
  409. list_replace_rcu(&oldprog->link, &prog->link);
  410. tcf_unbind_filter(tp, &oldprog->res);
  411. call_rcu(&oldprog->rcu, cls_bpf_delete_prog_rcu);
  412. } else {
  413. list_add_rcu(&prog->link, &head->plist);
  414. }
  415. *arg = prog;
  416. return 0;
  417. errout:
  418. tcf_exts_destroy(&prog->exts);
  419. kfree(prog);
  420. return ret;
  421. }
  422. static int cls_bpf_dump_bpf_info(const struct cls_bpf_prog *prog,
  423. struct sk_buff *skb)
  424. {
  425. struct nlattr *nla;
  426. if (nla_put_u16(skb, TCA_BPF_OPS_LEN, prog->bpf_num_ops))
  427. return -EMSGSIZE;
  428. nla = nla_reserve(skb, TCA_BPF_OPS, prog->bpf_num_ops *
  429. sizeof(struct sock_filter));
  430. if (nla == NULL)
  431. return -EMSGSIZE;
  432. memcpy(nla_data(nla), prog->bpf_ops, nla_len(nla));
  433. return 0;
  434. }
  435. static int cls_bpf_dump_ebpf_info(const struct cls_bpf_prog *prog,
  436. struct sk_buff *skb)
  437. {
  438. struct nlattr *nla;
  439. if (prog->bpf_name &&
  440. nla_put_string(skb, TCA_BPF_NAME, prog->bpf_name))
  441. return -EMSGSIZE;
  442. if (nla_put_u32(skb, TCA_BPF_ID, prog->filter->aux->id))
  443. return -EMSGSIZE;
  444. nla = nla_reserve(skb, TCA_BPF_TAG, sizeof(prog->filter->tag));
  445. if (nla == NULL)
  446. return -EMSGSIZE;
  447. memcpy(nla_data(nla), prog->filter->tag, nla_len(nla));
  448. return 0;
  449. }
  450. static int cls_bpf_dump(struct net *net, struct tcf_proto *tp, void *fh,
  451. struct sk_buff *skb, struct tcmsg *tm)
  452. {
  453. struct cls_bpf_prog *prog = fh;
  454. struct nlattr *nest;
  455. u32 bpf_flags = 0;
  456. int ret;
  457. if (prog == NULL)
  458. return skb->len;
  459. tm->tcm_handle = prog->handle;
  460. cls_bpf_offload_update_stats(tp, prog);
  461. nest = nla_nest_start(skb, TCA_OPTIONS);
  462. if (nest == NULL)
  463. goto nla_put_failure;
  464. if (prog->res.classid &&
  465. nla_put_u32(skb, TCA_BPF_CLASSID, prog->res.classid))
  466. goto nla_put_failure;
  467. if (cls_bpf_is_ebpf(prog))
  468. ret = cls_bpf_dump_ebpf_info(prog, skb);
  469. else
  470. ret = cls_bpf_dump_bpf_info(prog, skb);
  471. if (ret)
  472. goto nla_put_failure;
  473. if (tcf_exts_dump(skb, &prog->exts) < 0)
  474. goto nla_put_failure;
  475. if (prog->exts_integrated)
  476. bpf_flags |= TCA_BPF_FLAG_ACT_DIRECT;
  477. if (bpf_flags && nla_put_u32(skb, TCA_BPF_FLAGS, bpf_flags))
  478. goto nla_put_failure;
  479. if (prog->gen_flags &&
  480. nla_put_u32(skb, TCA_BPF_FLAGS_GEN, prog->gen_flags))
  481. goto nla_put_failure;
  482. nla_nest_end(skb, nest);
  483. if (tcf_exts_dump_stats(skb, &prog->exts) < 0)
  484. goto nla_put_failure;
  485. return skb->len;
  486. nla_put_failure:
  487. nla_nest_cancel(skb, nest);
  488. return -1;
  489. }
  490. static void cls_bpf_walk(struct tcf_proto *tp, struct tcf_walker *arg)
  491. {
  492. struct cls_bpf_head *head = rtnl_dereference(tp->root);
  493. struct cls_bpf_prog *prog;
  494. list_for_each_entry(prog, &head->plist, link) {
  495. if (arg->count < arg->skip)
  496. goto skip;
  497. if (arg->fn(tp, prog, arg) < 0) {
  498. arg->stop = 1;
  499. break;
  500. }
  501. skip:
  502. arg->count++;
  503. }
  504. }
  505. static struct tcf_proto_ops cls_bpf_ops __read_mostly = {
  506. .kind = "bpf",
  507. .owner = THIS_MODULE,
  508. .classify = cls_bpf_classify,
  509. .init = cls_bpf_init,
  510. .destroy = cls_bpf_destroy,
  511. .get = cls_bpf_get,
  512. .change = cls_bpf_change,
  513. .delete = cls_bpf_delete,
  514. .walk = cls_bpf_walk,
  515. .dump = cls_bpf_dump,
  516. };
  517. static int __init cls_bpf_init_mod(void)
  518. {
  519. return register_tcf_proto_ops(&cls_bpf_ops);
  520. }
  521. static void __exit cls_bpf_exit_mod(void)
  522. {
  523. unregister_tcf_proto_ops(&cls_bpf_ops);
  524. }
  525. module_init(cls_bpf_init_mod);
  526. module_exit(cls_bpf_exit_mod);