ipmr.c 74 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136
  1. /*
  2. * IP multicast routing support for mrouted 3.6/3.8
  3. *
  4. * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
  5. * Linux Consultancy and Custom Driver Development
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. *
  12. * Fixes:
  13. * Michael Chastain : Incorrect size of copying.
  14. * Alan Cox : Added the cache manager code
  15. * Alan Cox : Fixed the clone/copy bug and device race.
  16. * Mike McLagan : Routing by source
  17. * Malcolm Beattie : Buffer handling fixes.
  18. * Alexey Kuznetsov : Double buffer free and other fixes.
  19. * SVR Anand : Fixed several multicast bugs and problems.
  20. * Alexey Kuznetsov : Status, optimisations and more.
  21. * Brad Parker : Better behaviour on mrouted upcall
  22. * overflow.
  23. * Carlos Picoto : PIMv1 Support
  24. * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
  25. * Relax this requirement to work with older peers.
  26. *
  27. */
  28. #include <linux/uaccess.h>
  29. #include <linux/types.h>
  30. #include <linux/capability.h>
  31. #include <linux/errno.h>
  32. #include <linux/timer.h>
  33. #include <linux/mm.h>
  34. #include <linux/kernel.h>
  35. #include <linux/fcntl.h>
  36. #include <linux/stat.h>
  37. #include <linux/socket.h>
  38. #include <linux/in.h>
  39. #include <linux/inet.h>
  40. #include <linux/netdevice.h>
  41. #include <linux/inetdevice.h>
  42. #include <linux/igmp.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/seq_file.h>
  45. #include <linux/mroute.h>
  46. #include <linux/init.h>
  47. #include <linux/if_ether.h>
  48. #include <linux/slab.h>
  49. #include <net/net_namespace.h>
  50. #include <net/ip.h>
  51. #include <net/protocol.h>
  52. #include <linux/skbuff.h>
  53. #include <net/route.h>
  54. #include <net/sock.h>
  55. #include <net/icmp.h>
  56. #include <net/udp.h>
  57. #include <net/raw.h>
  58. #include <linux/notifier.h>
  59. #include <linux/if_arp.h>
  60. #include <linux/netfilter_ipv4.h>
  61. #include <linux/compat.h>
  62. #include <linux/export.h>
  63. #include <net/ip_tunnels.h>
  64. #include <net/checksum.h>
  65. #include <net/netlink.h>
  66. #include <net/fib_rules.h>
  67. #include <linux/netconf.h>
  68. #include <net/nexthop.h>
  69. struct ipmr_rule {
  70. struct fib_rule common;
  71. };
  72. struct ipmr_result {
  73. struct mr_table *mrt;
  74. };
  75. /* Big lock, protecting vif table, mrt cache and mroute socket state.
  76. * Note that the changes are semaphored via rtnl_lock.
  77. */
  78. static DEFINE_RWLOCK(mrt_lock);
  79. /* Multicast router control variables */
  80. /* Special spinlock for queue of unresolved entries */
  81. static DEFINE_SPINLOCK(mfc_unres_lock);
  82. /* We return to original Alan's scheme. Hash table of resolved
  83. * entries is changed only in process context and protected
  84. * with weak lock mrt_lock. Queue of unresolved entries is protected
  85. * with strong spinlock mfc_unres_lock.
  86. *
  87. * In this case data path is free of exclusive locks at all.
  88. */
  89. static struct kmem_cache *mrt_cachep __read_mostly;
  90. static struct mr_table *ipmr_new_table(struct net *net, u32 id);
  91. static void ipmr_free_table(struct mr_table *mrt);
  92. static void ip_mr_forward(struct net *net, struct mr_table *mrt,
  93. struct net_device *dev, struct sk_buff *skb,
  94. struct mfc_cache *cache, int local);
  95. static int ipmr_cache_report(struct mr_table *mrt,
  96. struct sk_buff *pkt, vifi_t vifi, int assert);
  97. static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  98. struct mfc_cache *c, struct rtmsg *rtm);
  99. static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
  100. int cmd);
  101. static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt);
  102. static void mroute_clean_tables(struct mr_table *mrt, bool all);
  103. static void ipmr_expire_process(unsigned long arg);
  104. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  105. #define ipmr_for_each_table(mrt, net) \
  106. list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
  107. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  108. {
  109. struct mr_table *mrt;
  110. ipmr_for_each_table(mrt, net) {
  111. if (mrt->id == id)
  112. return mrt;
  113. }
  114. return NULL;
  115. }
  116. static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
  117. struct mr_table **mrt)
  118. {
  119. int err;
  120. struct ipmr_result res;
  121. struct fib_lookup_arg arg = {
  122. .result = &res,
  123. .flags = FIB_LOOKUP_NOREF,
  124. };
  125. /* update flow if oif or iif point to device enslaved to l3mdev */
  126. l3mdev_update_flow(net, flowi4_to_flowi(flp4));
  127. err = fib_rules_lookup(net->ipv4.mr_rules_ops,
  128. flowi4_to_flowi(flp4), 0, &arg);
  129. if (err < 0)
  130. return err;
  131. *mrt = res.mrt;
  132. return 0;
  133. }
  134. static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
  135. int flags, struct fib_lookup_arg *arg)
  136. {
  137. struct ipmr_result *res = arg->result;
  138. struct mr_table *mrt;
  139. switch (rule->action) {
  140. case FR_ACT_TO_TBL:
  141. break;
  142. case FR_ACT_UNREACHABLE:
  143. return -ENETUNREACH;
  144. case FR_ACT_PROHIBIT:
  145. return -EACCES;
  146. case FR_ACT_BLACKHOLE:
  147. default:
  148. return -EINVAL;
  149. }
  150. arg->table = fib_rule_get_table(rule, arg);
  151. mrt = ipmr_get_table(rule->fr_net, arg->table);
  152. if (!mrt)
  153. return -EAGAIN;
  154. res->mrt = mrt;
  155. return 0;
  156. }
  157. static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
  158. {
  159. return 1;
  160. }
  161. static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
  162. FRA_GENERIC_POLICY,
  163. };
  164. static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
  165. struct fib_rule_hdr *frh, struct nlattr **tb)
  166. {
  167. return 0;
  168. }
  169. static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
  170. struct nlattr **tb)
  171. {
  172. return 1;
  173. }
  174. static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
  175. struct fib_rule_hdr *frh)
  176. {
  177. frh->dst_len = 0;
  178. frh->src_len = 0;
  179. frh->tos = 0;
  180. return 0;
  181. }
  182. static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
  183. .family = RTNL_FAMILY_IPMR,
  184. .rule_size = sizeof(struct ipmr_rule),
  185. .addr_size = sizeof(u32),
  186. .action = ipmr_rule_action,
  187. .match = ipmr_rule_match,
  188. .configure = ipmr_rule_configure,
  189. .compare = ipmr_rule_compare,
  190. .fill = ipmr_rule_fill,
  191. .nlgroup = RTNLGRP_IPV4_RULE,
  192. .policy = ipmr_rule_policy,
  193. .owner = THIS_MODULE,
  194. };
  195. static int __net_init ipmr_rules_init(struct net *net)
  196. {
  197. struct fib_rules_ops *ops;
  198. struct mr_table *mrt;
  199. int err;
  200. ops = fib_rules_register(&ipmr_rules_ops_template, net);
  201. if (IS_ERR(ops))
  202. return PTR_ERR(ops);
  203. INIT_LIST_HEAD(&net->ipv4.mr_tables);
  204. mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  205. if (IS_ERR(mrt)) {
  206. err = PTR_ERR(mrt);
  207. goto err1;
  208. }
  209. err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
  210. if (err < 0)
  211. goto err2;
  212. net->ipv4.mr_rules_ops = ops;
  213. return 0;
  214. err2:
  215. ipmr_free_table(mrt);
  216. err1:
  217. fib_rules_unregister(ops);
  218. return err;
  219. }
  220. static void __net_exit ipmr_rules_exit(struct net *net)
  221. {
  222. struct mr_table *mrt, *next;
  223. rtnl_lock();
  224. list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
  225. list_del(&mrt->list);
  226. ipmr_free_table(mrt);
  227. }
  228. fib_rules_unregister(net->ipv4.mr_rules_ops);
  229. rtnl_unlock();
  230. }
  231. #else
  232. #define ipmr_for_each_table(mrt, net) \
  233. for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
  234. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  235. {
  236. return net->ipv4.mrt;
  237. }
  238. static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
  239. struct mr_table **mrt)
  240. {
  241. *mrt = net->ipv4.mrt;
  242. return 0;
  243. }
  244. static int __net_init ipmr_rules_init(struct net *net)
  245. {
  246. struct mr_table *mrt;
  247. mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  248. if (IS_ERR(mrt))
  249. return PTR_ERR(mrt);
  250. net->ipv4.mrt = mrt;
  251. return 0;
  252. }
  253. static void __net_exit ipmr_rules_exit(struct net *net)
  254. {
  255. rtnl_lock();
  256. ipmr_free_table(net->ipv4.mrt);
  257. net->ipv4.mrt = NULL;
  258. rtnl_unlock();
  259. }
  260. #endif
  261. static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
  262. const void *ptr)
  263. {
  264. const struct mfc_cache_cmp_arg *cmparg = arg->key;
  265. struct mfc_cache *c = (struct mfc_cache *)ptr;
  266. return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
  267. cmparg->mfc_origin != c->mfc_origin;
  268. }
  269. static const struct rhashtable_params ipmr_rht_params = {
  270. .head_offset = offsetof(struct mfc_cache, mnode),
  271. .key_offset = offsetof(struct mfc_cache, cmparg),
  272. .key_len = sizeof(struct mfc_cache_cmp_arg),
  273. .nelem_hint = 3,
  274. .locks_mul = 1,
  275. .obj_cmpfn = ipmr_hash_cmp,
  276. .automatic_shrinking = true,
  277. };
  278. static struct mr_table *ipmr_new_table(struct net *net, u32 id)
  279. {
  280. struct mr_table *mrt;
  281. /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
  282. if (id != RT_TABLE_DEFAULT && id >= 1000000000)
  283. return ERR_PTR(-EINVAL);
  284. mrt = ipmr_get_table(net, id);
  285. if (mrt)
  286. return mrt;
  287. mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
  288. if (!mrt)
  289. return ERR_PTR(-ENOMEM);
  290. write_pnet(&mrt->net, net);
  291. mrt->id = id;
  292. rhltable_init(&mrt->mfc_hash, &ipmr_rht_params);
  293. INIT_LIST_HEAD(&mrt->mfc_cache_list);
  294. INIT_LIST_HEAD(&mrt->mfc_unres_queue);
  295. setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
  296. (unsigned long)mrt);
  297. mrt->mroute_reg_vif_num = -1;
  298. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  299. list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
  300. #endif
  301. return mrt;
  302. }
  303. static void ipmr_free_table(struct mr_table *mrt)
  304. {
  305. del_timer_sync(&mrt->ipmr_expire_timer);
  306. mroute_clean_tables(mrt, true);
  307. rhltable_destroy(&mrt->mfc_hash);
  308. kfree(mrt);
  309. }
  310. /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
  311. static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
  312. {
  313. struct net *net = dev_net(dev);
  314. dev_close(dev);
  315. dev = __dev_get_by_name(net, "tunl0");
  316. if (dev) {
  317. const struct net_device_ops *ops = dev->netdev_ops;
  318. struct ifreq ifr;
  319. struct ip_tunnel_parm p;
  320. memset(&p, 0, sizeof(p));
  321. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  322. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  323. p.iph.version = 4;
  324. p.iph.ihl = 5;
  325. p.iph.protocol = IPPROTO_IPIP;
  326. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  327. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  328. if (ops->ndo_do_ioctl) {
  329. mm_segment_t oldfs = get_fs();
  330. set_fs(KERNEL_DS);
  331. ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
  332. set_fs(oldfs);
  333. }
  334. }
  335. }
  336. /* Initialize ipmr pimreg/tunnel in_device */
  337. static bool ipmr_init_vif_indev(const struct net_device *dev)
  338. {
  339. struct in_device *in_dev;
  340. ASSERT_RTNL();
  341. in_dev = __in_dev_get_rtnl(dev);
  342. if (!in_dev)
  343. return false;
  344. ipv4_devconf_setall(in_dev);
  345. neigh_parms_data_state_setall(in_dev->arp_parms);
  346. IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
  347. return true;
  348. }
  349. static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
  350. {
  351. struct net_device *dev;
  352. dev = __dev_get_by_name(net, "tunl0");
  353. if (dev) {
  354. const struct net_device_ops *ops = dev->netdev_ops;
  355. int err;
  356. struct ifreq ifr;
  357. struct ip_tunnel_parm p;
  358. memset(&p, 0, sizeof(p));
  359. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  360. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  361. p.iph.version = 4;
  362. p.iph.ihl = 5;
  363. p.iph.protocol = IPPROTO_IPIP;
  364. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  365. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  366. if (ops->ndo_do_ioctl) {
  367. mm_segment_t oldfs = get_fs();
  368. set_fs(KERNEL_DS);
  369. err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
  370. set_fs(oldfs);
  371. } else {
  372. err = -EOPNOTSUPP;
  373. }
  374. dev = NULL;
  375. if (err == 0 &&
  376. (dev = __dev_get_by_name(net, p.name)) != NULL) {
  377. dev->flags |= IFF_MULTICAST;
  378. if (!ipmr_init_vif_indev(dev))
  379. goto failure;
  380. if (dev_open(dev))
  381. goto failure;
  382. dev_hold(dev);
  383. }
  384. }
  385. return dev;
  386. failure:
  387. unregister_netdevice(dev);
  388. return NULL;
  389. }
  390. #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  391. static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
  392. {
  393. struct net *net = dev_net(dev);
  394. struct mr_table *mrt;
  395. struct flowi4 fl4 = {
  396. .flowi4_oif = dev->ifindex,
  397. .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
  398. .flowi4_mark = skb->mark,
  399. };
  400. int err;
  401. err = ipmr_fib_lookup(net, &fl4, &mrt);
  402. if (err < 0) {
  403. kfree_skb(skb);
  404. return err;
  405. }
  406. read_lock(&mrt_lock);
  407. dev->stats.tx_bytes += skb->len;
  408. dev->stats.tx_packets++;
  409. ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
  410. read_unlock(&mrt_lock);
  411. kfree_skb(skb);
  412. return NETDEV_TX_OK;
  413. }
  414. static int reg_vif_get_iflink(const struct net_device *dev)
  415. {
  416. return 0;
  417. }
  418. static const struct net_device_ops reg_vif_netdev_ops = {
  419. .ndo_start_xmit = reg_vif_xmit,
  420. .ndo_get_iflink = reg_vif_get_iflink,
  421. };
  422. static void reg_vif_setup(struct net_device *dev)
  423. {
  424. dev->type = ARPHRD_PIMREG;
  425. dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
  426. dev->flags = IFF_NOARP;
  427. dev->netdev_ops = &reg_vif_netdev_ops;
  428. dev->needs_free_netdev = true;
  429. dev->features |= NETIF_F_NETNS_LOCAL;
  430. }
  431. static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
  432. {
  433. struct net_device *dev;
  434. char name[IFNAMSIZ];
  435. if (mrt->id == RT_TABLE_DEFAULT)
  436. sprintf(name, "pimreg");
  437. else
  438. sprintf(name, "pimreg%u", mrt->id);
  439. dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
  440. if (!dev)
  441. return NULL;
  442. dev_net_set(dev, net);
  443. if (register_netdevice(dev)) {
  444. free_netdev(dev);
  445. return NULL;
  446. }
  447. if (!ipmr_init_vif_indev(dev))
  448. goto failure;
  449. if (dev_open(dev))
  450. goto failure;
  451. dev_hold(dev);
  452. return dev;
  453. failure:
  454. unregister_netdevice(dev);
  455. return NULL;
  456. }
  457. /* called with rcu_read_lock() */
  458. static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
  459. unsigned int pimlen)
  460. {
  461. struct net_device *reg_dev = NULL;
  462. struct iphdr *encap;
  463. encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
  464. /* Check that:
  465. * a. packet is really sent to a multicast group
  466. * b. packet is not a NULL-REGISTER
  467. * c. packet is not truncated
  468. */
  469. if (!ipv4_is_multicast(encap->daddr) ||
  470. encap->tot_len == 0 ||
  471. ntohs(encap->tot_len) + pimlen > skb->len)
  472. return 1;
  473. read_lock(&mrt_lock);
  474. if (mrt->mroute_reg_vif_num >= 0)
  475. reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
  476. read_unlock(&mrt_lock);
  477. if (!reg_dev)
  478. return 1;
  479. skb->mac_header = skb->network_header;
  480. skb_pull(skb, (u8 *)encap - skb->data);
  481. skb_reset_network_header(skb);
  482. skb->protocol = htons(ETH_P_IP);
  483. skb->ip_summed = CHECKSUM_NONE;
  484. skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
  485. netif_rx(skb);
  486. return NET_RX_SUCCESS;
  487. }
  488. #else
  489. static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
  490. {
  491. return NULL;
  492. }
  493. #endif
  494. /**
  495. * vif_delete - Delete a VIF entry
  496. * @notify: Set to 1, if the caller is a notifier_call
  497. */
  498. static int vif_delete(struct mr_table *mrt, int vifi, int notify,
  499. struct list_head *head)
  500. {
  501. struct vif_device *v;
  502. struct net_device *dev;
  503. struct in_device *in_dev;
  504. if (vifi < 0 || vifi >= mrt->maxvif)
  505. return -EADDRNOTAVAIL;
  506. v = &mrt->vif_table[vifi];
  507. write_lock_bh(&mrt_lock);
  508. dev = v->dev;
  509. v->dev = NULL;
  510. if (!dev) {
  511. write_unlock_bh(&mrt_lock);
  512. return -EADDRNOTAVAIL;
  513. }
  514. if (vifi == mrt->mroute_reg_vif_num)
  515. mrt->mroute_reg_vif_num = -1;
  516. if (vifi + 1 == mrt->maxvif) {
  517. int tmp;
  518. for (tmp = vifi - 1; tmp >= 0; tmp--) {
  519. if (VIF_EXISTS(mrt, tmp))
  520. break;
  521. }
  522. mrt->maxvif = tmp+1;
  523. }
  524. write_unlock_bh(&mrt_lock);
  525. dev_set_allmulti(dev, -1);
  526. in_dev = __in_dev_get_rtnl(dev);
  527. if (in_dev) {
  528. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
  529. inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
  530. NETCONFA_MC_FORWARDING,
  531. dev->ifindex, &in_dev->cnf);
  532. ip_rt_multicast_event(in_dev);
  533. }
  534. if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
  535. unregister_netdevice_queue(dev, head);
  536. dev_put(dev);
  537. return 0;
  538. }
  539. static void ipmr_cache_free_rcu(struct rcu_head *head)
  540. {
  541. struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
  542. kmem_cache_free(mrt_cachep, c);
  543. }
  544. static inline void ipmr_cache_free(struct mfc_cache *c)
  545. {
  546. call_rcu(&c->rcu, ipmr_cache_free_rcu);
  547. }
  548. /* Destroy an unresolved cache entry, killing queued skbs
  549. * and reporting error to netlink readers.
  550. */
  551. static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
  552. {
  553. struct net *net = read_pnet(&mrt->net);
  554. struct sk_buff *skb;
  555. struct nlmsgerr *e;
  556. atomic_dec(&mrt->cache_resolve_queue_len);
  557. while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
  558. if (ip_hdr(skb)->version == 0) {
  559. struct nlmsghdr *nlh = skb_pull(skb,
  560. sizeof(struct iphdr));
  561. nlh->nlmsg_type = NLMSG_ERROR;
  562. nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
  563. skb_trim(skb, nlh->nlmsg_len);
  564. e = nlmsg_data(nlh);
  565. e->error = -ETIMEDOUT;
  566. memset(&e->msg, 0, sizeof(e->msg));
  567. rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
  568. } else {
  569. kfree_skb(skb);
  570. }
  571. }
  572. ipmr_cache_free(c);
  573. }
  574. /* Timer process for the unresolved queue. */
  575. static void ipmr_expire_process(unsigned long arg)
  576. {
  577. struct mr_table *mrt = (struct mr_table *)arg;
  578. unsigned long now;
  579. unsigned long expires;
  580. struct mfc_cache *c, *next;
  581. if (!spin_trylock(&mfc_unres_lock)) {
  582. mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
  583. return;
  584. }
  585. if (list_empty(&mrt->mfc_unres_queue))
  586. goto out;
  587. now = jiffies;
  588. expires = 10*HZ;
  589. list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
  590. if (time_after(c->mfc_un.unres.expires, now)) {
  591. unsigned long interval = c->mfc_un.unres.expires - now;
  592. if (interval < expires)
  593. expires = interval;
  594. continue;
  595. }
  596. list_del(&c->list);
  597. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  598. ipmr_destroy_unres(mrt, c);
  599. }
  600. if (!list_empty(&mrt->mfc_unres_queue))
  601. mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
  602. out:
  603. spin_unlock(&mfc_unres_lock);
  604. }
  605. /* Fill oifs list. It is called under write locked mrt_lock. */
  606. static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
  607. unsigned char *ttls)
  608. {
  609. int vifi;
  610. cache->mfc_un.res.minvif = MAXVIFS;
  611. cache->mfc_un.res.maxvif = 0;
  612. memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
  613. for (vifi = 0; vifi < mrt->maxvif; vifi++) {
  614. if (VIF_EXISTS(mrt, vifi) &&
  615. ttls[vifi] && ttls[vifi] < 255) {
  616. cache->mfc_un.res.ttls[vifi] = ttls[vifi];
  617. if (cache->mfc_un.res.minvif > vifi)
  618. cache->mfc_un.res.minvif = vifi;
  619. if (cache->mfc_un.res.maxvif <= vifi)
  620. cache->mfc_un.res.maxvif = vifi + 1;
  621. }
  622. }
  623. cache->mfc_un.res.lastuse = jiffies;
  624. }
  625. static int vif_add(struct net *net, struct mr_table *mrt,
  626. struct vifctl *vifc, int mrtsock)
  627. {
  628. int vifi = vifc->vifc_vifi;
  629. struct vif_device *v = &mrt->vif_table[vifi];
  630. struct net_device *dev;
  631. struct in_device *in_dev;
  632. int err;
  633. /* Is vif busy ? */
  634. if (VIF_EXISTS(mrt, vifi))
  635. return -EADDRINUSE;
  636. switch (vifc->vifc_flags) {
  637. case VIFF_REGISTER:
  638. if (!ipmr_pimsm_enabled())
  639. return -EINVAL;
  640. /* Special Purpose VIF in PIM
  641. * All the packets will be sent to the daemon
  642. */
  643. if (mrt->mroute_reg_vif_num >= 0)
  644. return -EADDRINUSE;
  645. dev = ipmr_reg_vif(net, mrt);
  646. if (!dev)
  647. return -ENOBUFS;
  648. err = dev_set_allmulti(dev, 1);
  649. if (err) {
  650. unregister_netdevice(dev);
  651. dev_put(dev);
  652. return err;
  653. }
  654. break;
  655. case VIFF_TUNNEL:
  656. dev = ipmr_new_tunnel(net, vifc);
  657. if (!dev)
  658. return -ENOBUFS;
  659. err = dev_set_allmulti(dev, 1);
  660. if (err) {
  661. ipmr_del_tunnel(dev, vifc);
  662. dev_put(dev);
  663. return err;
  664. }
  665. break;
  666. case VIFF_USE_IFINDEX:
  667. case 0:
  668. if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
  669. dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
  670. if (dev && !__in_dev_get_rtnl(dev)) {
  671. dev_put(dev);
  672. return -EADDRNOTAVAIL;
  673. }
  674. } else {
  675. dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
  676. }
  677. if (!dev)
  678. return -EADDRNOTAVAIL;
  679. err = dev_set_allmulti(dev, 1);
  680. if (err) {
  681. dev_put(dev);
  682. return err;
  683. }
  684. break;
  685. default:
  686. return -EINVAL;
  687. }
  688. in_dev = __in_dev_get_rtnl(dev);
  689. if (!in_dev) {
  690. dev_put(dev);
  691. return -EADDRNOTAVAIL;
  692. }
  693. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
  694. inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
  695. dev->ifindex, &in_dev->cnf);
  696. ip_rt_multicast_event(in_dev);
  697. /* Fill in the VIF structures */
  698. v->rate_limit = vifc->vifc_rate_limit;
  699. v->local = vifc->vifc_lcl_addr.s_addr;
  700. v->remote = vifc->vifc_rmt_addr.s_addr;
  701. v->flags = vifc->vifc_flags;
  702. if (!mrtsock)
  703. v->flags |= VIFF_STATIC;
  704. v->threshold = vifc->vifc_threshold;
  705. v->bytes_in = 0;
  706. v->bytes_out = 0;
  707. v->pkt_in = 0;
  708. v->pkt_out = 0;
  709. v->link = dev->ifindex;
  710. if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
  711. v->link = dev_get_iflink(dev);
  712. /* And finish update writing critical data */
  713. write_lock_bh(&mrt_lock);
  714. v->dev = dev;
  715. if (v->flags & VIFF_REGISTER)
  716. mrt->mroute_reg_vif_num = vifi;
  717. if (vifi+1 > mrt->maxvif)
  718. mrt->maxvif = vifi+1;
  719. write_unlock_bh(&mrt_lock);
  720. return 0;
  721. }
  722. /* called with rcu_read_lock() */
  723. static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
  724. __be32 origin,
  725. __be32 mcastgrp)
  726. {
  727. struct mfc_cache_cmp_arg arg = {
  728. .mfc_mcastgrp = mcastgrp,
  729. .mfc_origin = origin
  730. };
  731. struct rhlist_head *tmp, *list;
  732. struct mfc_cache *c;
  733. list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
  734. rhl_for_each_entry_rcu(c, tmp, list, mnode)
  735. return c;
  736. return NULL;
  737. }
  738. /* Look for a (*,*,oif) entry */
  739. static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
  740. int vifi)
  741. {
  742. struct mfc_cache_cmp_arg arg = {
  743. .mfc_mcastgrp = htonl(INADDR_ANY),
  744. .mfc_origin = htonl(INADDR_ANY)
  745. };
  746. struct rhlist_head *tmp, *list;
  747. struct mfc_cache *c;
  748. list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
  749. rhl_for_each_entry_rcu(c, tmp, list, mnode)
  750. if (c->mfc_un.res.ttls[vifi] < 255)
  751. return c;
  752. return NULL;
  753. }
  754. /* Look for a (*,G) entry */
  755. static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
  756. __be32 mcastgrp, int vifi)
  757. {
  758. struct mfc_cache_cmp_arg arg = {
  759. .mfc_mcastgrp = mcastgrp,
  760. .mfc_origin = htonl(INADDR_ANY)
  761. };
  762. struct rhlist_head *tmp, *list;
  763. struct mfc_cache *c, *proxy;
  764. if (mcastgrp == htonl(INADDR_ANY))
  765. goto skip;
  766. list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
  767. rhl_for_each_entry_rcu(c, tmp, list, mnode) {
  768. if (c->mfc_un.res.ttls[vifi] < 255)
  769. return c;
  770. /* It's ok if the vifi is part of the static tree */
  771. proxy = ipmr_cache_find_any_parent(mrt, c->mfc_parent);
  772. if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
  773. return c;
  774. }
  775. skip:
  776. return ipmr_cache_find_any_parent(mrt, vifi);
  777. }
  778. /* Look for a (S,G,iif) entry if parent != -1 */
  779. static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
  780. __be32 origin, __be32 mcastgrp,
  781. int parent)
  782. {
  783. struct mfc_cache_cmp_arg arg = {
  784. .mfc_mcastgrp = mcastgrp,
  785. .mfc_origin = origin,
  786. };
  787. struct rhlist_head *tmp, *list;
  788. struct mfc_cache *c;
  789. list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
  790. rhl_for_each_entry_rcu(c, tmp, list, mnode)
  791. if (parent == -1 || parent == c->mfc_parent)
  792. return c;
  793. return NULL;
  794. }
  795. /* Allocate a multicast cache entry */
  796. static struct mfc_cache *ipmr_cache_alloc(void)
  797. {
  798. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
  799. if (c) {
  800. c->mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
  801. c->mfc_un.res.minvif = MAXVIFS;
  802. }
  803. return c;
  804. }
  805. static struct mfc_cache *ipmr_cache_alloc_unres(void)
  806. {
  807. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
  808. if (c) {
  809. skb_queue_head_init(&c->mfc_un.unres.unresolved);
  810. c->mfc_un.unres.expires = jiffies + 10*HZ;
  811. }
  812. return c;
  813. }
  814. /* A cache entry has gone into a resolved state from queued */
  815. static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
  816. struct mfc_cache *uc, struct mfc_cache *c)
  817. {
  818. struct sk_buff *skb;
  819. struct nlmsgerr *e;
  820. /* Play the pending entries through our router */
  821. while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
  822. if (ip_hdr(skb)->version == 0) {
  823. struct nlmsghdr *nlh = skb_pull(skb,
  824. sizeof(struct iphdr));
  825. if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
  826. nlh->nlmsg_len = skb_tail_pointer(skb) -
  827. (u8 *)nlh;
  828. } else {
  829. nlh->nlmsg_type = NLMSG_ERROR;
  830. nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
  831. skb_trim(skb, nlh->nlmsg_len);
  832. e = nlmsg_data(nlh);
  833. e->error = -EMSGSIZE;
  834. memset(&e->msg, 0, sizeof(e->msg));
  835. }
  836. rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
  837. } else {
  838. ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
  839. }
  840. }
  841. }
  842. /* Bounce a cache query up to mrouted and netlink.
  843. *
  844. * Called under mrt_lock.
  845. */
  846. static int ipmr_cache_report(struct mr_table *mrt,
  847. struct sk_buff *pkt, vifi_t vifi, int assert)
  848. {
  849. const int ihl = ip_hdrlen(pkt);
  850. struct sock *mroute_sk;
  851. struct igmphdr *igmp;
  852. struct igmpmsg *msg;
  853. struct sk_buff *skb;
  854. int ret;
  855. if (assert == IGMPMSG_WHOLEPKT)
  856. skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
  857. else
  858. skb = alloc_skb(128, GFP_ATOMIC);
  859. if (!skb)
  860. return -ENOBUFS;
  861. if (assert == IGMPMSG_WHOLEPKT) {
  862. /* Ugly, but we have no choice with this interface.
  863. * Duplicate old header, fix ihl, length etc.
  864. * And all this only to mangle msg->im_msgtype and
  865. * to set msg->im_mbz to "mbz" :-)
  866. */
  867. skb_push(skb, sizeof(struct iphdr));
  868. skb_reset_network_header(skb);
  869. skb_reset_transport_header(skb);
  870. msg = (struct igmpmsg *)skb_network_header(skb);
  871. memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
  872. msg->im_msgtype = IGMPMSG_WHOLEPKT;
  873. msg->im_mbz = 0;
  874. msg->im_vif = mrt->mroute_reg_vif_num;
  875. ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
  876. ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
  877. sizeof(struct iphdr));
  878. } else {
  879. /* Copy the IP header */
  880. skb_set_network_header(skb, skb->len);
  881. skb_put(skb, ihl);
  882. skb_copy_to_linear_data(skb, pkt->data, ihl);
  883. /* Flag to the kernel this is a route add */
  884. ip_hdr(skb)->protocol = 0;
  885. msg = (struct igmpmsg *)skb_network_header(skb);
  886. msg->im_vif = vifi;
  887. skb_dst_set(skb, dst_clone(skb_dst(pkt)));
  888. /* Add our header */
  889. igmp = skb_put(skb, sizeof(struct igmphdr));
  890. igmp->type = assert;
  891. msg->im_msgtype = assert;
  892. igmp->code = 0;
  893. ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
  894. skb->transport_header = skb->network_header;
  895. }
  896. rcu_read_lock();
  897. mroute_sk = rcu_dereference(mrt->mroute_sk);
  898. if (!mroute_sk) {
  899. rcu_read_unlock();
  900. kfree_skb(skb);
  901. return -EINVAL;
  902. }
  903. igmpmsg_netlink_event(mrt, skb);
  904. /* Deliver to mrouted */
  905. ret = sock_queue_rcv_skb(mroute_sk, skb);
  906. rcu_read_unlock();
  907. if (ret < 0) {
  908. net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
  909. kfree_skb(skb);
  910. }
  911. return ret;
  912. }
  913. /* Queue a packet for resolution. It gets locked cache entry! */
  914. static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
  915. struct sk_buff *skb, struct net_device *dev)
  916. {
  917. const struct iphdr *iph = ip_hdr(skb);
  918. struct mfc_cache *c;
  919. bool found = false;
  920. int err;
  921. spin_lock_bh(&mfc_unres_lock);
  922. list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
  923. if (c->mfc_mcastgrp == iph->daddr &&
  924. c->mfc_origin == iph->saddr) {
  925. found = true;
  926. break;
  927. }
  928. }
  929. if (!found) {
  930. /* Create a new entry if allowable */
  931. if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
  932. (c = ipmr_cache_alloc_unres()) == NULL) {
  933. spin_unlock_bh(&mfc_unres_lock);
  934. kfree_skb(skb);
  935. return -ENOBUFS;
  936. }
  937. /* Fill in the new cache entry */
  938. c->mfc_parent = -1;
  939. c->mfc_origin = iph->saddr;
  940. c->mfc_mcastgrp = iph->daddr;
  941. /* Reflect first query at mrouted. */
  942. err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
  943. if (err < 0) {
  944. /* If the report failed throw the cache entry
  945. out - Brad Parker
  946. */
  947. spin_unlock_bh(&mfc_unres_lock);
  948. ipmr_cache_free(c);
  949. kfree_skb(skb);
  950. return err;
  951. }
  952. atomic_inc(&mrt->cache_resolve_queue_len);
  953. list_add(&c->list, &mrt->mfc_unres_queue);
  954. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  955. if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
  956. mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
  957. }
  958. /* See if we can append the packet */
  959. if (c->mfc_un.unres.unresolved.qlen > 3) {
  960. kfree_skb(skb);
  961. err = -ENOBUFS;
  962. } else {
  963. if (dev) {
  964. skb->dev = dev;
  965. skb->skb_iif = dev->ifindex;
  966. }
  967. skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
  968. err = 0;
  969. }
  970. spin_unlock_bh(&mfc_unres_lock);
  971. return err;
  972. }
  973. /* MFC cache manipulation by user space mroute daemon */
  974. static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
  975. {
  976. struct mfc_cache *c;
  977. /* The entries are added/deleted only under RTNL */
  978. rcu_read_lock();
  979. c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
  980. mfc->mfcc_mcastgrp.s_addr, parent);
  981. rcu_read_unlock();
  982. if (!c)
  983. return -ENOENT;
  984. rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
  985. list_del_rcu(&c->list);
  986. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  987. ipmr_cache_free(c);
  988. return 0;
  989. }
  990. static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
  991. struct mfcctl *mfc, int mrtsock, int parent)
  992. {
  993. struct mfc_cache *uc, *c;
  994. bool found;
  995. int ret;
  996. if (mfc->mfcc_parent >= MAXVIFS)
  997. return -ENFILE;
  998. /* The entries are added/deleted only under RTNL */
  999. rcu_read_lock();
  1000. c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
  1001. mfc->mfcc_mcastgrp.s_addr, parent);
  1002. rcu_read_unlock();
  1003. if (c) {
  1004. write_lock_bh(&mrt_lock);
  1005. c->mfc_parent = mfc->mfcc_parent;
  1006. ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
  1007. if (!mrtsock)
  1008. c->mfc_flags |= MFC_STATIC;
  1009. write_unlock_bh(&mrt_lock);
  1010. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  1011. return 0;
  1012. }
  1013. if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
  1014. !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
  1015. return -EINVAL;
  1016. c = ipmr_cache_alloc();
  1017. if (!c)
  1018. return -ENOMEM;
  1019. c->mfc_origin = mfc->mfcc_origin.s_addr;
  1020. c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
  1021. c->mfc_parent = mfc->mfcc_parent;
  1022. ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
  1023. if (!mrtsock)
  1024. c->mfc_flags |= MFC_STATIC;
  1025. ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->mnode,
  1026. ipmr_rht_params);
  1027. if (ret) {
  1028. pr_err("ipmr: rhtable insert error %d\n", ret);
  1029. ipmr_cache_free(c);
  1030. return ret;
  1031. }
  1032. list_add_tail_rcu(&c->list, &mrt->mfc_cache_list);
  1033. /* Check to see if we resolved a queued list. If so we
  1034. * need to send on the frames and tidy up.
  1035. */
  1036. found = false;
  1037. spin_lock_bh(&mfc_unres_lock);
  1038. list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
  1039. if (uc->mfc_origin == c->mfc_origin &&
  1040. uc->mfc_mcastgrp == c->mfc_mcastgrp) {
  1041. list_del(&uc->list);
  1042. atomic_dec(&mrt->cache_resolve_queue_len);
  1043. found = true;
  1044. break;
  1045. }
  1046. }
  1047. if (list_empty(&mrt->mfc_unres_queue))
  1048. del_timer(&mrt->ipmr_expire_timer);
  1049. spin_unlock_bh(&mfc_unres_lock);
  1050. if (found) {
  1051. ipmr_cache_resolve(net, mrt, uc, c);
  1052. ipmr_cache_free(uc);
  1053. }
  1054. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  1055. return 0;
  1056. }
  1057. /* Close the multicast socket, and clear the vif tables etc */
  1058. static void mroute_clean_tables(struct mr_table *mrt, bool all)
  1059. {
  1060. struct mfc_cache *c, *tmp;
  1061. LIST_HEAD(list);
  1062. int i;
  1063. /* Shut down all active vif entries */
  1064. for (i = 0; i < mrt->maxvif; i++) {
  1065. if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
  1066. continue;
  1067. vif_delete(mrt, i, 0, &list);
  1068. }
  1069. unregister_netdevice_many(&list);
  1070. /* Wipe the cache */
  1071. list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
  1072. if (!all && (c->mfc_flags & MFC_STATIC))
  1073. continue;
  1074. rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
  1075. list_del_rcu(&c->list);
  1076. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  1077. ipmr_cache_free(c);
  1078. }
  1079. if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
  1080. spin_lock_bh(&mfc_unres_lock);
  1081. list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
  1082. list_del(&c->list);
  1083. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  1084. ipmr_destroy_unres(mrt, c);
  1085. }
  1086. spin_unlock_bh(&mfc_unres_lock);
  1087. }
  1088. }
  1089. /* called from ip_ra_control(), before an RCU grace period,
  1090. * we dont need to call synchronize_rcu() here
  1091. */
  1092. static void mrtsock_destruct(struct sock *sk)
  1093. {
  1094. struct net *net = sock_net(sk);
  1095. struct mr_table *mrt;
  1096. ASSERT_RTNL();
  1097. ipmr_for_each_table(mrt, net) {
  1098. if (sk == rtnl_dereference(mrt->mroute_sk)) {
  1099. IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
  1100. inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
  1101. NETCONFA_MC_FORWARDING,
  1102. NETCONFA_IFINDEX_ALL,
  1103. net->ipv4.devconf_all);
  1104. RCU_INIT_POINTER(mrt->mroute_sk, NULL);
  1105. mroute_clean_tables(mrt, false);
  1106. }
  1107. }
  1108. }
  1109. /* Socket options and virtual interface manipulation. The whole
  1110. * virtual interface system is a complete heap, but unfortunately
  1111. * that's how BSD mrouted happens to think. Maybe one day with a proper
  1112. * MOSPF/PIM router set up we can clean this up.
  1113. */
  1114. int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
  1115. unsigned int optlen)
  1116. {
  1117. struct net *net = sock_net(sk);
  1118. int val, ret = 0, parent = 0;
  1119. struct mr_table *mrt;
  1120. struct vifctl vif;
  1121. struct mfcctl mfc;
  1122. u32 uval;
  1123. /* There's one exception to the lock - MRT_DONE which needs to unlock */
  1124. rtnl_lock();
  1125. if (sk->sk_type != SOCK_RAW ||
  1126. inet_sk(sk)->inet_num != IPPROTO_IGMP) {
  1127. ret = -EOPNOTSUPP;
  1128. goto out_unlock;
  1129. }
  1130. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1131. if (!mrt) {
  1132. ret = -ENOENT;
  1133. goto out_unlock;
  1134. }
  1135. if (optname != MRT_INIT) {
  1136. if (sk != rcu_access_pointer(mrt->mroute_sk) &&
  1137. !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
  1138. ret = -EACCES;
  1139. goto out_unlock;
  1140. }
  1141. }
  1142. switch (optname) {
  1143. case MRT_INIT:
  1144. if (optlen != sizeof(int)) {
  1145. ret = -EINVAL;
  1146. break;
  1147. }
  1148. if (rtnl_dereference(mrt->mroute_sk)) {
  1149. ret = -EADDRINUSE;
  1150. break;
  1151. }
  1152. ret = ip_ra_control(sk, 1, mrtsock_destruct);
  1153. if (ret == 0) {
  1154. rcu_assign_pointer(mrt->mroute_sk, sk);
  1155. IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
  1156. inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
  1157. NETCONFA_MC_FORWARDING,
  1158. NETCONFA_IFINDEX_ALL,
  1159. net->ipv4.devconf_all);
  1160. }
  1161. break;
  1162. case MRT_DONE:
  1163. if (sk != rcu_access_pointer(mrt->mroute_sk)) {
  1164. ret = -EACCES;
  1165. } else {
  1166. ret = ip_ra_control(sk, 0, NULL);
  1167. goto out_unlock;
  1168. }
  1169. break;
  1170. case MRT_ADD_VIF:
  1171. case MRT_DEL_VIF:
  1172. if (optlen != sizeof(vif)) {
  1173. ret = -EINVAL;
  1174. break;
  1175. }
  1176. if (copy_from_user(&vif, optval, sizeof(vif))) {
  1177. ret = -EFAULT;
  1178. break;
  1179. }
  1180. if (vif.vifc_vifi >= MAXVIFS) {
  1181. ret = -ENFILE;
  1182. break;
  1183. }
  1184. if (optname == MRT_ADD_VIF) {
  1185. ret = vif_add(net, mrt, &vif,
  1186. sk == rtnl_dereference(mrt->mroute_sk));
  1187. } else {
  1188. ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
  1189. }
  1190. break;
  1191. /* Manipulate the forwarding caches. These live
  1192. * in a sort of kernel/user symbiosis.
  1193. */
  1194. case MRT_ADD_MFC:
  1195. case MRT_DEL_MFC:
  1196. parent = -1;
  1197. case MRT_ADD_MFC_PROXY:
  1198. case MRT_DEL_MFC_PROXY:
  1199. if (optlen != sizeof(mfc)) {
  1200. ret = -EINVAL;
  1201. break;
  1202. }
  1203. if (copy_from_user(&mfc, optval, sizeof(mfc))) {
  1204. ret = -EFAULT;
  1205. break;
  1206. }
  1207. if (parent == 0)
  1208. parent = mfc.mfcc_parent;
  1209. if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
  1210. ret = ipmr_mfc_delete(mrt, &mfc, parent);
  1211. else
  1212. ret = ipmr_mfc_add(net, mrt, &mfc,
  1213. sk == rtnl_dereference(mrt->mroute_sk),
  1214. parent);
  1215. break;
  1216. /* Control PIM assert. */
  1217. case MRT_ASSERT:
  1218. if (optlen != sizeof(val)) {
  1219. ret = -EINVAL;
  1220. break;
  1221. }
  1222. if (get_user(val, (int __user *)optval)) {
  1223. ret = -EFAULT;
  1224. break;
  1225. }
  1226. mrt->mroute_do_assert = val;
  1227. break;
  1228. case MRT_PIM:
  1229. if (!ipmr_pimsm_enabled()) {
  1230. ret = -ENOPROTOOPT;
  1231. break;
  1232. }
  1233. if (optlen != sizeof(val)) {
  1234. ret = -EINVAL;
  1235. break;
  1236. }
  1237. if (get_user(val, (int __user *)optval)) {
  1238. ret = -EFAULT;
  1239. break;
  1240. }
  1241. val = !!val;
  1242. if (val != mrt->mroute_do_pim) {
  1243. mrt->mroute_do_pim = val;
  1244. mrt->mroute_do_assert = val;
  1245. }
  1246. break;
  1247. case MRT_TABLE:
  1248. if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
  1249. ret = -ENOPROTOOPT;
  1250. break;
  1251. }
  1252. if (optlen != sizeof(uval)) {
  1253. ret = -EINVAL;
  1254. break;
  1255. }
  1256. if (get_user(uval, (u32 __user *)optval)) {
  1257. ret = -EFAULT;
  1258. break;
  1259. }
  1260. if (sk == rtnl_dereference(mrt->mroute_sk)) {
  1261. ret = -EBUSY;
  1262. } else {
  1263. mrt = ipmr_new_table(net, uval);
  1264. if (IS_ERR(mrt))
  1265. ret = PTR_ERR(mrt);
  1266. else
  1267. raw_sk(sk)->ipmr_table = uval;
  1268. }
  1269. break;
  1270. /* Spurious command, or MRT_VERSION which you cannot set. */
  1271. default:
  1272. ret = -ENOPROTOOPT;
  1273. }
  1274. out_unlock:
  1275. rtnl_unlock();
  1276. return ret;
  1277. }
  1278. /* Getsock opt support for the multicast routing system. */
  1279. int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
  1280. {
  1281. int olr;
  1282. int val;
  1283. struct net *net = sock_net(sk);
  1284. struct mr_table *mrt;
  1285. if (sk->sk_type != SOCK_RAW ||
  1286. inet_sk(sk)->inet_num != IPPROTO_IGMP)
  1287. return -EOPNOTSUPP;
  1288. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1289. if (!mrt)
  1290. return -ENOENT;
  1291. switch (optname) {
  1292. case MRT_VERSION:
  1293. val = 0x0305;
  1294. break;
  1295. case MRT_PIM:
  1296. if (!ipmr_pimsm_enabled())
  1297. return -ENOPROTOOPT;
  1298. val = mrt->mroute_do_pim;
  1299. break;
  1300. case MRT_ASSERT:
  1301. val = mrt->mroute_do_assert;
  1302. break;
  1303. default:
  1304. return -ENOPROTOOPT;
  1305. }
  1306. if (get_user(olr, optlen))
  1307. return -EFAULT;
  1308. olr = min_t(unsigned int, olr, sizeof(int));
  1309. if (olr < 0)
  1310. return -EINVAL;
  1311. if (put_user(olr, optlen))
  1312. return -EFAULT;
  1313. if (copy_to_user(optval, &val, olr))
  1314. return -EFAULT;
  1315. return 0;
  1316. }
  1317. /* The IP multicast ioctl support routines. */
  1318. int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
  1319. {
  1320. struct sioc_sg_req sr;
  1321. struct sioc_vif_req vr;
  1322. struct vif_device *vif;
  1323. struct mfc_cache *c;
  1324. struct net *net = sock_net(sk);
  1325. struct mr_table *mrt;
  1326. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1327. if (!mrt)
  1328. return -ENOENT;
  1329. switch (cmd) {
  1330. case SIOCGETVIFCNT:
  1331. if (copy_from_user(&vr, arg, sizeof(vr)))
  1332. return -EFAULT;
  1333. if (vr.vifi >= mrt->maxvif)
  1334. return -EINVAL;
  1335. read_lock(&mrt_lock);
  1336. vif = &mrt->vif_table[vr.vifi];
  1337. if (VIF_EXISTS(mrt, vr.vifi)) {
  1338. vr.icount = vif->pkt_in;
  1339. vr.ocount = vif->pkt_out;
  1340. vr.ibytes = vif->bytes_in;
  1341. vr.obytes = vif->bytes_out;
  1342. read_unlock(&mrt_lock);
  1343. if (copy_to_user(arg, &vr, sizeof(vr)))
  1344. return -EFAULT;
  1345. return 0;
  1346. }
  1347. read_unlock(&mrt_lock);
  1348. return -EADDRNOTAVAIL;
  1349. case SIOCGETSGCNT:
  1350. if (copy_from_user(&sr, arg, sizeof(sr)))
  1351. return -EFAULT;
  1352. rcu_read_lock();
  1353. c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
  1354. if (c) {
  1355. sr.pktcnt = c->mfc_un.res.pkt;
  1356. sr.bytecnt = c->mfc_un.res.bytes;
  1357. sr.wrong_if = c->mfc_un.res.wrong_if;
  1358. rcu_read_unlock();
  1359. if (copy_to_user(arg, &sr, sizeof(sr)))
  1360. return -EFAULT;
  1361. return 0;
  1362. }
  1363. rcu_read_unlock();
  1364. return -EADDRNOTAVAIL;
  1365. default:
  1366. return -ENOIOCTLCMD;
  1367. }
  1368. }
  1369. #ifdef CONFIG_COMPAT
  1370. struct compat_sioc_sg_req {
  1371. struct in_addr src;
  1372. struct in_addr grp;
  1373. compat_ulong_t pktcnt;
  1374. compat_ulong_t bytecnt;
  1375. compat_ulong_t wrong_if;
  1376. };
  1377. struct compat_sioc_vif_req {
  1378. vifi_t vifi; /* Which iface */
  1379. compat_ulong_t icount;
  1380. compat_ulong_t ocount;
  1381. compat_ulong_t ibytes;
  1382. compat_ulong_t obytes;
  1383. };
  1384. int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
  1385. {
  1386. struct compat_sioc_sg_req sr;
  1387. struct compat_sioc_vif_req vr;
  1388. struct vif_device *vif;
  1389. struct mfc_cache *c;
  1390. struct net *net = sock_net(sk);
  1391. struct mr_table *mrt;
  1392. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1393. if (!mrt)
  1394. return -ENOENT;
  1395. switch (cmd) {
  1396. case SIOCGETVIFCNT:
  1397. if (copy_from_user(&vr, arg, sizeof(vr)))
  1398. return -EFAULT;
  1399. if (vr.vifi >= mrt->maxvif)
  1400. return -EINVAL;
  1401. read_lock(&mrt_lock);
  1402. vif = &mrt->vif_table[vr.vifi];
  1403. if (VIF_EXISTS(mrt, vr.vifi)) {
  1404. vr.icount = vif->pkt_in;
  1405. vr.ocount = vif->pkt_out;
  1406. vr.ibytes = vif->bytes_in;
  1407. vr.obytes = vif->bytes_out;
  1408. read_unlock(&mrt_lock);
  1409. if (copy_to_user(arg, &vr, sizeof(vr)))
  1410. return -EFAULT;
  1411. return 0;
  1412. }
  1413. read_unlock(&mrt_lock);
  1414. return -EADDRNOTAVAIL;
  1415. case SIOCGETSGCNT:
  1416. if (copy_from_user(&sr, arg, sizeof(sr)))
  1417. return -EFAULT;
  1418. rcu_read_lock();
  1419. c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
  1420. if (c) {
  1421. sr.pktcnt = c->mfc_un.res.pkt;
  1422. sr.bytecnt = c->mfc_un.res.bytes;
  1423. sr.wrong_if = c->mfc_un.res.wrong_if;
  1424. rcu_read_unlock();
  1425. if (copy_to_user(arg, &sr, sizeof(sr)))
  1426. return -EFAULT;
  1427. return 0;
  1428. }
  1429. rcu_read_unlock();
  1430. return -EADDRNOTAVAIL;
  1431. default:
  1432. return -ENOIOCTLCMD;
  1433. }
  1434. }
  1435. #endif
  1436. static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
  1437. {
  1438. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  1439. struct net *net = dev_net(dev);
  1440. struct mr_table *mrt;
  1441. struct vif_device *v;
  1442. int ct;
  1443. if (event != NETDEV_UNREGISTER)
  1444. return NOTIFY_DONE;
  1445. ipmr_for_each_table(mrt, net) {
  1446. v = &mrt->vif_table[0];
  1447. for (ct = 0; ct < mrt->maxvif; ct++, v++) {
  1448. if (v->dev == dev)
  1449. vif_delete(mrt, ct, 1, NULL);
  1450. }
  1451. }
  1452. return NOTIFY_DONE;
  1453. }
  1454. static struct notifier_block ip_mr_notifier = {
  1455. .notifier_call = ipmr_device_event,
  1456. };
  1457. /* Encapsulate a packet by attaching a valid IPIP header to it.
  1458. * This avoids tunnel drivers and other mess and gives us the speed so
  1459. * important for multicast video.
  1460. */
  1461. static void ip_encap(struct net *net, struct sk_buff *skb,
  1462. __be32 saddr, __be32 daddr)
  1463. {
  1464. struct iphdr *iph;
  1465. const struct iphdr *old_iph = ip_hdr(skb);
  1466. skb_push(skb, sizeof(struct iphdr));
  1467. skb->transport_header = skb->network_header;
  1468. skb_reset_network_header(skb);
  1469. iph = ip_hdr(skb);
  1470. iph->version = 4;
  1471. iph->tos = old_iph->tos;
  1472. iph->ttl = old_iph->ttl;
  1473. iph->frag_off = 0;
  1474. iph->daddr = daddr;
  1475. iph->saddr = saddr;
  1476. iph->protocol = IPPROTO_IPIP;
  1477. iph->ihl = 5;
  1478. iph->tot_len = htons(skb->len);
  1479. ip_select_ident(net, skb, NULL);
  1480. ip_send_check(iph);
  1481. memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
  1482. nf_reset(skb);
  1483. }
  1484. static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
  1485. struct sk_buff *skb)
  1486. {
  1487. struct ip_options *opt = &(IPCB(skb)->opt);
  1488. IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
  1489. IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
  1490. if (unlikely(opt->optlen))
  1491. ip_forward_options(skb);
  1492. return dst_output(net, sk, skb);
  1493. }
  1494. /* Processing handlers for ipmr_forward */
  1495. static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
  1496. struct sk_buff *skb, struct mfc_cache *c, int vifi)
  1497. {
  1498. const struct iphdr *iph = ip_hdr(skb);
  1499. struct vif_device *vif = &mrt->vif_table[vifi];
  1500. struct net_device *dev;
  1501. struct rtable *rt;
  1502. struct flowi4 fl4;
  1503. int encap = 0;
  1504. if (!vif->dev)
  1505. goto out_free;
  1506. if (vif->flags & VIFF_REGISTER) {
  1507. vif->pkt_out++;
  1508. vif->bytes_out += skb->len;
  1509. vif->dev->stats.tx_bytes += skb->len;
  1510. vif->dev->stats.tx_packets++;
  1511. ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
  1512. goto out_free;
  1513. }
  1514. if (vif->flags & VIFF_TUNNEL) {
  1515. rt = ip_route_output_ports(net, &fl4, NULL,
  1516. vif->remote, vif->local,
  1517. 0, 0,
  1518. IPPROTO_IPIP,
  1519. RT_TOS(iph->tos), vif->link);
  1520. if (IS_ERR(rt))
  1521. goto out_free;
  1522. encap = sizeof(struct iphdr);
  1523. } else {
  1524. rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
  1525. 0, 0,
  1526. IPPROTO_IPIP,
  1527. RT_TOS(iph->tos), vif->link);
  1528. if (IS_ERR(rt))
  1529. goto out_free;
  1530. }
  1531. dev = rt->dst.dev;
  1532. if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
  1533. /* Do not fragment multicasts. Alas, IPv4 does not
  1534. * allow to send ICMP, so that packets will disappear
  1535. * to blackhole.
  1536. */
  1537. IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
  1538. ip_rt_put(rt);
  1539. goto out_free;
  1540. }
  1541. encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
  1542. if (skb_cow(skb, encap)) {
  1543. ip_rt_put(rt);
  1544. goto out_free;
  1545. }
  1546. vif->pkt_out++;
  1547. vif->bytes_out += skb->len;
  1548. skb_dst_drop(skb);
  1549. skb_dst_set(skb, &rt->dst);
  1550. ip_decrease_ttl(ip_hdr(skb));
  1551. /* FIXME: forward and output firewalls used to be called here.
  1552. * What do we do with netfilter? -- RR
  1553. */
  1554. if (vif->flags & VIFF_TUNNEL) {
  1555. ip_encap(net, skb, vif->local, vif->remote);
  1556. /* FIXME: extra output firewall step used to be here. --RR */
  1557. vif->dev->stats.tx_packets++;
  1558. vif->dev->stats.tx_bytes += skb->len;
  1559. }
  1560. IPCB(skb)->flags |= IPSKB_FORWARDED;
  1561. /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
  1562. * not only before forwarding, but after forwarding on all output
  1563. * interfaces. It is clear, if mrouter runs a multicasting
  1564. * program, it should receive packets not depending to what interface
  1565. * program is joined.
  1566. * If we will not make it, the program will have to join on all
  1567. * interfaces. On the other hand, multihoming host (or router, but
  1568. * not mrouter) cannot join to more than one interface - it will
  1569. * result in receiving multiple packets.
  1570. */
  1571. NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
  1572. net, NULL, skb, skb->dev, dev,
  1573. ipmr_forward_finish);
  1574. return;
  1575. out_free:
  1576. kfree_skb(skb);
  1577. }
  1578. static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
  1579. {
  1580. int ct;
  1581. for (ct = mrt->maxvif-1; ct >= 0; ct--) {
  1582. if (mrt->vif_table[ct].dev == dev)
  1583. break;
  1584. }
  1585. return ct;
  1586. }
  1587. /* "local" means that we should preserve one skb (for local delivery) */
  1588. static void ip_mr_forward(struct net *net, struct mr_table *mrt,
  1589. struct net_device *dev, struct sk_buff *skb,
  1590. struct mfc_cache *cache, int local)
  1591. {
  1592. int true_vifi = ipmr_find_vif(mrt, dev);
  1593. int psend = -1;
  1594. int vif, ct;
  1595. vif = cache->mfc_parent;
  1596. cache->mfc_un.res.pkt++;
  1597. cache->mfc_un.res.bytes += skb->len;
  1598. cache->mfc_un.res.lastuse = jiffies;
  1599. if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
  1600. struct mfc_cache *cache_proxy;
  1601. /* For an (*,G) entry, we only check that the incomming
  1602. * interface is part of the static tree.
  1603. */
  1604. cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
  1605. if (cache_proxy &&
  1606. cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
  1607. goto forward;
  1608. }
  1609. /* Wrong interface: drop packet and (maybe) send PIM assert. */
  1610. if (mrt->vif_table[vif].dev != dev) {
  1611. if (rt_is_output_route(skb_rtable(skb))) {
  1612. /* It is our own packet, looped back.
  1613. * Very complicated situation...
  1614. *
  1615. * The best workaround until routing daemons will be
  1616. * fixed is not to redistribute packet, if it was
  1617. * send through wrong interface. It means, that
  1618. * multicast applications WILL NOT work for
  1619. * (S,G), which have default multicast route pointing
  1620. * to wrong oif. In any case, it is not a good
  1621. * idea to use multicasting applications on router.
  1622. */
  1623. goto dont_forward;
  1624. }
  1625. cache->mfc_un.res.wrong_if++;
  1626. if (true_vifi >= 0 && mrt->mroute_do_assert &&
  1627. /* pimsm uses asserts, when switching from RPT to SPT,
  1628. * so that we cannot check that packet arrived on an oif.
  1629. * It is bad, but otherwise we would need to move pretty
  1630. * large chunk of pimd to kernel. Ough... --ANK
  1631. */
  1632. (mrt->mroute_do_pim ||
  1633. cache->mfc_un.res.ttls[true_vifi] < 255) &&
  1634. time_after(jiffies,
  1635. cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
  1636. cache->mfc_un.res.last_assert = jiffies;
  1637. ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
  1638. }
  1639. goto dont_forward;
  1640. }
  1641. forward:
  1642. mrt->vif_table[vif].pkt_in++;
  1643. mrt->vif_table[vif].bytes_in += skb->len;
  1644. /* Forward the frame */
  1645. if (cache->mfc_origin == htonl(INADDR_ANY) &&
  1646. cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
  1647. if (true_vifi >= 0 &&
  1648. true_vifi != cache->mfc_parent &&
  1649. ip_hdr(skb)->ttl >
  1650. cache->mfc_un.res.ttls[cache->mfc_parent]) {
  1651. /* It's an (*,*) entry and the packet is not coming from
  1652. * the upstream: forward the packet to the upstream
  1653. * only.
  1654. */
  1655. psend = cache->mfc_parent;
  1656. goto last_forward;
  1657. }
  1658. goto dont_forward;
  1659. }
  1660. for (ct = cache->mfc_un.res.maxvif - 1;
  1661. ct >= cache->mfc_un.res.minvif; ct--) {
  1662. /* For (*,G) entry, don't forward to the incoming interface */
  1663. if ((cache->mfc_origin != htonl(INADDR_ANY) ||
  1664. ct != true_vifi) &&
  1665. ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
  1666. if (psend != -1) {
  1667. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1668. if (skb2)
  1669. ipmr_queue_xmit(net, mrt, skb2, cache,
  1670. psend);
  1671. }
  1672. psend = ct;
  1673. }
  1674. }
  1675. last_forward:
  1676. if (psend != -1) {
  1677. if (local) {
  1678. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1679. if (skb2)
  1680. ipmr_queue_xmit(net, mrt, skb2, cache, psend);
  1681. } else {
  1682. ipmr_queue_xmit(net, mrt, skb, cache, psend);
  1683. return;
  1684. }
  1685. }
  1686. dont_forward:
  1687. if (!local)
  1688. kfree_skb(skb);
  1689. }
  1690. static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
  1691. {
  1692. struct rtable *rt = skb_rtable(skb);
  1693. struct iphdr *iph = ip_hdr(skb);
  1694. struct flowi4 fl4 = {
  1695. .daddr = iph->daddr,
  1696. .saddr = iph->saddr,
  1697. .flowi4_tos = RT_TOS(iph->tos),
  1698. .flowi4_oif = (rt_is_output_route(rt) ?
  1699. skb->dev->ifindex : 0),
  1700. .flowi4_iif = (rt_is_output_route(rt) ?
  1701. LOOPBACK_IFINDEX :
  1702. skb->dev->ifindex),
  1703. .flowi4_mark = skb->mark,
  1704. };
  1705. struct mr_table *mrt;
  1706. int err;
  1707. err = ipmr_fib_lookup(net, &fl4, &mrt);
  1708. if (err)
  1709. return ERR_PTR(err);
  1710. return mrt;
  1711. }
  1712. /* Multicast packets for forwarding arrive here
  1713. * Called with rcu_read_lock();
  1714. */
  1715. int ip_mr_input(struct sk_buff *skb)
  1716. {
  1717. struct mfc_cache *cache;
  1718. struct net *net = dev_net(skb->dev);
  1719. int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
  1720. struct mr_table *mrt;
  1721. struct net_device *dev;
  1722. /* skb->dev passed in is the loX master dev for vrfs.
  1723. * As there are no vifs associated with loopback devices,
  1724. * get the proper interface that does have a vif associated with it.
  1725. */
  1726. dev = skb->dev;
  1727. if (netif_is_l3_master(skb->dev)) {
  1728. dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
  1729. if (!dev) {
  1730. kfree_skb(skb);
  1731. return -ENODEV;
  1732. }
  1733. }
  1734. /* Packet is looped back after forward, it should not be
  1735. * forwarded second time, but still can be delivered locally.
  1736. */
  1737. if (IPCB(skb)->flags & IPSKB_FORWARDED)
  1738. goto dont_forward;
  1739. mrt = ipmr_rt_fib_lookup(net, skb);
  1740. if (IS_ERR(mrt)) {
  1741. kfree_skb(skb);
  1742. return PTR_ERR(mrt);
  1743. }
  1744. if (!local) {
  1745. if (IPCB(skb)->opt.router_alert) {
  1746. if (ip_call_ra_chain(skb))
  1747. return 0;
  1748. } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
  1749. /* IGMPv1 (and broken IGMPv2 implementations sort of
  1750. * Cisco IOS <= 11.2(8)) do not put router alert
  1751. * option to IGMP packets destined to routable
  1752. * groups. It is very bad, because it means
  1753. * that we can forward NO IGMP messages.
  1754. */
  1755. struct sock *mroute_sk;
  1756. mroute_sk = rcu_dereference(mrt->mroute_sk);
  1757. if (mroute_sk) {
  1758. nf_reset(skb);
  1759. raw_rcv(mroute_sk, skb);
  1760. return 0;
  1761. }
  1762. }
  1763. }
  1764. /* already under rcu_read_lock() */
  1765. cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
  1766. if (!cache) {
  1767. int vif = ipmr_find_vif(mrt, dev);
  1768. if (vif >= 0)
  1769. cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
  1770. vif);
  1771. }
  1772. /* No usable cache entry */
  1773. if (!cache) {
  1774. int vif;
  1775. if (local) {
  1776. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1777. ip_local_deliver(skb);
  1778. if (!skb2)
  1779. return -ENOBUFS;
  1780. skb = skb2;
  1781. }
  1782. read_lock(&mrt_lock);
  1783. vif = ipmr_find_vif(mrt, dev);
  1784. if (vif >= 0) {
  1785. int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev);
  1786. read_unlock(&mrt_lock);
  1787. return err2;
  1788. }
  1789. read_unlock(&mrt_lock);
  1790. kfree_skb(skb);
  1791. return -ENODEV;
  1792. }
  1793. read_lock(&mrt_lock);
  1794. ip_mr_forward(net, mrt, dev, skb, cache, local);
  1795. read_unlock(&mrt_lock);
  1796. if (local)
  1797. return ip_local_deliver(skb);
  1798. return 0;
  1799. dont_forward:
  1800. if (local)
  1801. return ip_local_deliver(skb);
  1802. kfree_skb(skb);
  1803. return 0;
  1804. }
  1805. #ifdef CONFIG_IP_PIMSM_V1
  1806. /* Handle IGMP messages of PIMv1 */
  1807. int pim_rcv_v1(struct sk_buff *skb)
  1808. {
  1809. struct igmphdr *pim;
  1810. struct net *net = dev_net(skb->dev);
  1811. struct mr_table *mrt;
  1812. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1813. goto drop;
  1814. pim = igmp_hdr(skb);
  1815. mrt = ipmr_rt_fib_lookup(net, skb);
  1816. if (IS_ERR(mrt))
  1817. goto drop;
  1818. if (!mrt->mroute_do_pim ||
  1819. pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
  1820. goto drop;
  1821. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1822. drop:
  1823. kfree_skb(skb);
  1824. }
  1825. return 0;
  1826. }
  1827. #endif
  1828. #ifdef CONFIG_IP_PIMSM_V2
  1829. static int pim_rcv(struct sk_buff *skb)
  1830. {
  1831. struct pimreghdr *pim;
  1832. struct net *net = dev_net(skb->dev);
  1833. struct mr_table *mrt;
  1834. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1835. goto drop;
  1836. pim = (struct pimreghdr *)skb_transport_header(skb);
  1837. if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
  1838. (pim->flags & PIM_NULL_REGISTER) ||
  1839. (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
  1840. csum_fold(skb_checksum(skb, 0, skb->len, 0))))
  1841. goto drop;
  1842. mrt = ipmr_rt_fib_lookup(net, skb);
  1843. if (IS_ERR(mrt))
  1844. goto drop;
  1845. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1846. drop:
  1847. kfree_skb(skb);
  1848. }
  1849. return 0;
  1850. }
  1851. #endif
  1852. static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  1853. struct mfc_cache *c, struct rtmsg *rtm)
  1854. {
  1855. struct rta_mfc_stats mfcs;
  1856. struct nlattr *mp_attr;
  1857. struct rtnexthop *nhp;
  1858. unsigned long lastuse;
  1859. int ct;
  1860. /* If cache is unresolved, don't try to parse IIF and OIF */
  1861. if (c->mfc_parent >= MAXVIFS) {
  1862. rtm->rtm_flags |= RTNH_F_UNRESOLVED;
  1863. return -ENOENT;
  1864. }
  1865. if (VIF_EXISTS(mrt, c->mfc_parent) &&
  1866. nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
  1867. return -EMSGSIZE;
  1868. if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
  1869. return -EMSGSIZE;
  1870. for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
  1871. if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
  1872. if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
  1873. nla_nest_cancel(skb, mp_attr);
  1874. return -EMSGSIZE;
  1875. }
  1876. nhp->rtnh_flags = 0;
  1877. nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
  1878. nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
  1879. nhp->rtnh_len = sizeof(*nhp);
  1880. }
  1881. }
  1882. nla_nest_end(skb, mp_attr);
  1883. lastuse = READ_ONCE(c->mfc_un.res.lastuse);
  1884. lastuse = time_after_eq(jiffies, lastuse) ? jiffies - lastuse : 0;
  1885. mfcs.mfcs_packets = c->mfc_un.res.pkt;
  1886. mfcs.mfcs_bytes = c->mfc_un.res.bytes;
  1887. mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
  1888. if (nla_put_64bit(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs, RTA_PAD) ||
  1889. nla_put_u64_64bit(skb, RTA_EXPIRES, jiffies_to_clock_t(lastuse),
  1890. RTA_PAD))
  1891. return -EMSGSIZE;
  1892. rtm->rtm_type = RTN_MULTICAST;
  1893. return 1;
  1894. }
  1895. int ipmr_get_route(struct net *net, struct sk_buff *skb,
  1896. __be32 saddr, __be32 daddr,
  1897. struct rtmsg *rtm, u32 portid)
  1898. {
  1899. struct mfc_cache *cache;
  1900. struct mr_table *mrt;
  1901. int err;
  1902. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  1903. if (!mrt)
  1904. return -ENOENT;
  1905. rcu_read_lock();
  1906. cache = ipmr_cache_find(mrt, saddr, daddr);
  1907. if (!cache && skb->dev) {
  1908. int vif = ipmr_find_vif(mrt, skb->dev);
  1909. if (vif >= 0)
  1910. cache = ipmr_cache_find_any(mrt, daddr, vif);
  1911. }
  1912. if (!cache) {
  1913. struct sk_buff *skb2;
  1914. struct iphdr *iph;
  1915. struct net_device *dev;
  1916. int vif = -1;
  1917. dev = skb->dev;
  1918. read_lock(&mrt_lock);
  1919. if (dev)
  1920. vif = ipmr_find_vif(mrt, dev);
  1921. if (vif < 0) {
  1922. read_unlock(&mrt_lock);
  1923. rcu_read_unlock();
  1924. return -ENODEV;
  1925. }
  1926. skb2 = skb_clone(skb, GFP_ATOMIC);
  1927. if (!skb2) {
  1928. read_unlock(&mrt_lock);
  1929. rcu_read_unlock();
  1930. return -ENOMEM;
  1931. }
  1932. NETLINK_CB(skb2).portid = portid;
  1933. skb_push(skb2, sizeof(struct iphdr));
  1934. skb_reset_network_header(skb2);
  1935. iph = ip_hdr(skb2);
  1936. iph->ihl = sizeof(struct iphdr) >> 2;
  1937. iph->saddr = saddr;
  1938. iph->daddr = daddr;
  1939. iph->version = 0;
  1940. err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
  1941. read_unlock(&mrt_lock);
  1942. rcu_read_unlock();
  1943. return err;
  1944. }
  1945. read_lock(&mrt_lock);
  1946. err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
  1947. read_unlock(&mrt_lock);
  1948. rcu_read_unlock();
  1949. return err;
  1950. }
  1951. static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  1952. u32 portid, u32 seq, struct mfc_cache *c, int cmd,
  1953. int flags)
  1954. {
  1955. struct nlmsghdr *nlh;
  1956. struct rtmsg *rtm;
  1957. int err;
  1958. nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
  1959. if (!nlh)
  1960. return -EMSGSIZE;
  1961. rtm = nlmsg_data(nlh);
  1962. rtm->rtm_family = RTNL_FAMILY_IPMR;
  1963. rtm->rtm_dst_len = 32;
  1964. rtm->rtm_src_len = 32;
  1965. rtm->rtm_tos = 0;
  1966. rtm->rtm_table = mrt->id;
  1967. if (nla_put_u32(skb, RTA_TABLE, mrt->id))
  1968. goto nla_put_failure;
  1969. rtm->rtm_type = RTN_MULTICAST;
  1970. rtm->rtm_scope = RT_SCOPE_UNIVERSE;
  1971. if (c->mfc_flags & MFC_STATIC)
  1972. rtm->rtm_protocol = RTPROT_STATIC;
  1973. else
  1974. rtm->rtm_protocol = RTPROT_MROUTED;
  1975. rtm->rtm_flags = 0;
  1976. if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
  1977. nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
  1978. goto nla_put_failure;
  1979. err = __ipmr_fill_mroute(mrt, skb, c, rtm);
  1980. /* do not break the dump if cache is unresolved */
  1981. if (err < 0 && err != -ENOENT)
  1982. goto nla_put_failure;
  1983. nlmsg_end(skb, nlh);
  1984. return 0;
  1985. nla_put_failure:
  1986. nlmsg_cancel(skb, nlh);
  1987. return -EMSGSIZE;
  1988. }
  1989. static size_t mroute_msgsize(bool unresolved, int maxvif)
  1990. {
  1991. size_t len =
  1992. NLMSG_ALIGN(sizeof(struct rtmsg))
  1993. + nla_total_size(4) /* RTA_TABLE */
  1994. + nla_total_size(4) /* RTA_SRC */
  1995. + nla_total_size(4) /* RTA_DST */
  1996. ;
  1997. if (!unresolved)
  1998. len = len
  1999. + nla_total_size(4) /* RTA_IIF */
  2000. + nla_total_size(0) /* RTA_MULTIPATH */
  2001. + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
  2002. /* RTA_MFC_STATS */
  2003. + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
  2004. ;
  2005. return len;
  2006. }
  2007. static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
  2008. int cmd)
  2009. {
  2010. struct net *net = read_pnet(&mrt->net);
  2011. struct sk_buff *skb;
  2012. int err = -ENOBUFS;
  2013. skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
  2014. GFP_ATOMIC);
  2015. if (!skb)
  2016. goto errout;
  2017. err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
  2018. if (err < 0)
  2019. goto errout;
  2020. rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
  2021. return;
  2022. errout:
  2023. kfree_skb(skb);
  2024. if (err < 0)
  2025. rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
  2026. }
  2027. static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
  2028. {
  2029. size_t len =
  2030. NLMSG_ALIGN(sizeof(struct rtgenmsg))
  2031. + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */
  2032. + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */
  2033. + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */
  2034. + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */
  2035. /* IPMRA_CREPORT_PKT */
  2036. + nla_total_size(payloadlen)
  2037. ;
  2038. return len;
  2039. }
  2040. static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt)
  2041. {
  2042. struct net *net = read_pnet(&mrt->net);
  2043. struct nlmsghdr *nlh;
  2044. struct rtgenmsg *rtgenm;
  2045. struct igmpmsg *msg;
  2046. struct sk_buff *skb;
  2047. struct nlattr *nla;
  2048. int payloadlen;
  2049. payloadlen = pkt->len - sizeof(struct igmpmsg);
  2050. msg = (struct igmpmsg *)skb_network_header(pkt);
  2051. skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
  2052. if (!skb)
  2053. goto errout;
  2054. nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
  2055. sizeof(struct rtgenmsg), 0);
  2056. if (!nlh)
  2057. goto errout;
  2058. rtgenm = nlmsg_data(nlh);
  2059. rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
  2060. if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
  2061. nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif) ||
  2062. nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
  2063. msg->im_src.s_addr) ||
  2064. nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
  2065. msg->im_dst.s_addr))
  2066. goto nla_put_failure;
  2067. nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
  2068. if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
  2069. nla_data(nla), payloadlen))
  2070. goto nla_put_failure;
  2071. nlmsg_end(skb, nlh);
  2072. rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
  2073. return;
  2074. nla_put_failure:
  2075. nlmsg_cancel(skb, nlh);
  2076. errout:
  2077. kfree_skb(skb);
  2078. rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
  2079. }
  2080. static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
  2081. struct netlink_ext_ack *extack)
  2082. {
  2083. struct net *net = sock_net(in_skb->sk);
  2084. struct nlattr *tb[RTA_MAX + 1];
  2085. struct sk_buff *skb = NULL;
  2086. struct mfc_cache *cache;
  2087. struct mr_table *mrt;
  2088. struct rtmsg *rtm;
  2089. __be32 src, grp;
  2090. u32 tableid;
  2091. int err;
  2092. err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX,
  2093. rtm_ipv4_policy, extack);
  2094. if (err < 0)
  2095. goto errout;
  2096. rtm = nlmsg_data(nlh);
  2097. src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
  2098. grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
  2099. tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
  2100. mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
  2101. if (!mrt) {
  2102. err = -ENOENT;
  2103. goto errout_free;
  2104. }
  2105. /* entries are added/deleted only under RTNL */
  2106. rcu_read_lock();
  2107. cache = ipmr_cache_find(mrt, src, grp);
  2108. rcu_read_unlock();
  2109. if (!cache) {
  2110. err = -ENOENT;
  2111. goto errout_free;
  2112. }
  2113. skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
  2114. if (!skb) {
  2115. err = -ENOBUFS;
  2116. goto errout_free;
  2117. }
  2118. err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
  2119. nlh->nlmsg_seq, cache,
  2120. RTM_NEWROUTE, 0);
  2121. if (err < 0)
  2122. goto errout_free;
  2123. err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
  2124. errout:
  2125. return err;
  2126. errout_free:
  2127. kfree_skb(skb);
  2128. goto errout;
  2129. }
  2130. static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
  2131. {
  2132. struct net *net = sock_net(skb->sk);
  2133. struct mr_table *mrt;
  2134. struct mfc_cache *mfc;
  2135. unsigned int t = 0, s_t;
  2136. unsigned int e = 0, s_e;
  2137. s_t = cb->args[0];
  2138. s_e = cb->args[1];
  2139. rcu_read_lock();
  2140. ipmr_for_each_table(mrt, net) {
  2141. if (t < s_t)
  2142. goto next_table;
  2143. list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list) {
  2144. if (e < s_e)
  2145. goto next_entry;
  2146. if (ipmr_fill_mroute(mrt, skb,
  2147. NETLINK_CB(cb->skb).portid,
  2148. cb->nlh->nlmsg_seq,
  2149. mfc, RTM_NEWROUTE,
  2150. NLM_F_MULTI) < 0)
  2151. goto done;
  2152. next_entry:
  2153. e++;
  2154. }
  2155. e = 0;
  2156. s_e = 0;
  2157. spin_lock_bh(&mfc_unres_lock);
  2158. list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
  2159. if (e < s_e)
  2160. goto next_entry2;
  2161. if (ipmr_fill_mroute(mrt, skb,
  2162. NETLINK_CB(cb->skb).portid,
  2163. cb->nlh->nlmsg_seq,
  2164. mfc, RTM_NEWROUTE,
  2165. NLM_F_MULTI) < 0) {
  2166. spin_unlock_bh(&mfc_unres_lock);
  2167. goto done;
  2168. }
  2169. next_entry2:
  2170. e++;
  2171. }
  2172. spin_unlock_bh(&mfc_unres_lock);
  2173. e = 0;
  2174. s_e = 0;
  2175. next_table:
  2176. t++;
  2177. }
  2178. done:
  2179. rcu_read_unlock();
  2180. cb->args[1] = e;
  2181. cb->args[0] = t;
  2182. return skb->len;
  2183. }
  2184. static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
  2185. [RTA_SRC] = { .type = NLA_U32 },
  2186. [RTA_DST] = { .type = NLA_U32 },
  2187. [RTA_IIF] = { .type = NLA_U32 },
  2188. [RTA_TABLE] = { .type = NLA_U32 },
  2189. [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
  2190. };
  2191. static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
  2192. {
  2193. switch (rtm_protocol) {
  2194. case RTPROT_STATIC:
  2195. case RTPROT_MROUTED:
  2196. return true;
  2197. }
  2198. return false;
  2199. }
  2200. static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
  2201. {
  2202. struct rtnexthop *rtnh = nla_data(nla);
  2203. int remaining = nla_len(nla), vifi = 0;
  2204. while (rtnh_ok(rtnh, remaining)) {
  2205. mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
  2206. if (++vifi == MAXVIFS)
  2207. break;
  2208. rtnh = rtnh_next(rtnh, &remaining);
  2209. }
  2210. return remaining > 0 ? -EINVAL : vifi;
  2211. }
  2212. /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
  2213. static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
  2214. struct mfcctl *mfcc, int *mrtsock,
  2215. struct mr_table **mrtret,
  2216. struct netlink_ext_ack *extack)
  2217. {
  2218. struct net_device *dev = NULL;
  2219. u32 tblid = RT_TABLE_DEFAULT;
  2220. struct mr_table *mrt;
  2221. struct nlattr *attr;
  2222. struct rtmsg *rtm;
  2223. int ret, rem;
  2224. ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy,
  2225. extack);
  2226. if (ret < 0)
  2227. goto out;
  2228. rtm = nlmsg_data(nlh);
  2229. ret = -EINVAL;
  2230. if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
  2231. rtm->rtm_type != RTN_MULTICAST ||
  2232. rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
  2233. !ipmr_rtm_validate_proto(rtm->rtm_protocol))
  2234. goto out;
  2235. memset(mfcc, 0, sizeof(*mfcc));
  2236. mfcc->mfcc_parent = -1;
  2237. ret = 0;
  2238. nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
  2239. switch (nla_type(attr)) {
  2240. case RTA_SRC:
  2241. mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
  2242. break;
  2243. case RTA_DST:
  2244. mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
  2245. break;
  2246. case RTA_IIF:
  2247. dev = __dev_get_by_index(net, nla_get_u32(attr));
  2248. if (!dev) {
  2249. ret = -ENODEV;
  2250. goto out;
  2251. }
  2252. break;
  2253. case RTA_MULTIPATH:
  2254. if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
  2255. ret = -EINVAL;
  2256. goto out;
  2257. }
  2258. break;
  2259. case RTA_PREFSRC:
  2260. ret = 1;
  2261. break;
  2262. case RTA_TABLE:
  2263. tblid = nla_get_u32(attr);
  2264. break;
  2265. }
  2266. }
  2267. mrt = ipmr_get_table(net, tblid);
  2268. if (!mrt) {
  2269. ret = -ENOENT;
  2270. goto out;
  2271. }
  2272. *mrtret = mrt;
  2273. *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
  2274. if (dev)
  2275. mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
  2276. out:
  2277. return ret;
  2278. }
  2279. /* takes care of both newroute and delroute */
  2280. static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
  2281. struct netlink_ext_ack *extack)
  2282. {
  2283. struct net *net = sock_net(skb->sk);
  2284. int ret, mrtsock, parent;
  2285. struct mr_table *tbl;
  2286. struct mfcctl mfcc;
  2287. mrtsock = 0;
  2288. tbl = NULL;
  2289. ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
  2290. if (ret < 0)
  2291. return ret;
  2292. parent = ret ? mfcc.mfcc_parent : -1;
  2293. if (nlh->nlmsg_type == RTM_NEWROUTE)
  2294. return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
  2295. else
  2296. return ipmr_mfc_delete(tbl, &mfcc, parent);
  2297. }
  2298. static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
  2299. {
  2300. u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
  2301. if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
  2302. nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
  2303. nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
  2304. mrt->mroute_reg_vif_num) ||
  2305. nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
  2306. mrt->mroute_do_assert) ||
  2307. nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim))
  2308. return false;
  2309. return true;
  2310. }
  2311. static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
  2312. {
  2313. struct nlattr *vif_nest;
  2314. struct vif_device *vif;
  2315. /* if the VIF doesn't exist just continue */
  2316. if (!VIF_EXISTS(mrt, vifid))
  2317. return true;
  2318. vif = &mrt->vif_table[vifid];
  2319. vif_nest = nla_nest_start(skb, IPMRA_VIF);
  2320. if (!vif_nest)
  2321. return false;
  2322. if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) ||
  2323. nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
  2324. nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
  2325. nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
  2326. IPMRA_VIFA_PAD) ||
  2327. nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
  2328. IPMRA_VIFA_PAD) ||
  2329. nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
  2330. IPMRA_VIFA_PAD) ||
  2331. nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
  2332. IPMRA_VIFA_PAD) ||
  2333. nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
  2334. nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
  2335. nla_nest_cancel(skb, vif_nest);
  2336. return false;
  2337. }
  2338. nla_nest_end(skb, vif_nest);
  2339. return true;
  2340. }
  2341. static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
  2342. {
  2343. struct net *net = sock_net(skb->sk);
  2344. struct nlmsghdr *nlh = NULL;
  2345. unsigned int t = 0, s_t;
  2346. unsigned int e = 0, s_e;
  2347. struct mr_table *mrt;
  2348. s_t = cb->args[0];
  2349. s_e = cb->args[1];
  2350. ipmr_for_each_table(mrt, net) {
  2351. struct nlattr *vifs, *af;
  2352. struct ifinfomsg *hdr;
  2353. u32 i;
  2354. if (t < s_t)
  2355. goto skip_table;
  2356. nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
  2357. cb->nlh->nlmsg_seq, RTM_NEWLINK,
  2358. sizeof(*hdr), NLM_F_MULTI);
  2359. if (!nlh)
  2360. break;
  2361. hdr = nlmsg_data(nlh);
  2362. memset(hdr, 0, sizeof(*hdr));
  2363. hdr->ifi_family = RTNL_FAMILY_IPMR;
  2364. af = nla_nest_start(skb, IFLA_AF_SPEC);
  2365. if (!af) {
  2366. nlmsg_cancel(skb, nlh);
  2367. goto out;
  2368. }
  2369. if (!ipmr_fill_table(mrt, skb)) {
  2370. nlmsg_cancel(skb, nlh);
  2371. goto out;
  2372. }
  2373. vifs = nla_nest_start(skb, IPMRA_TABLE_VIFS);
  2374. if (!vifs) {
  2375. nla_nest_end(skb, af);
  2376. nlmsg_end(skb, nlh);
  2377. goto out;
  2378. }
  2379. for (i = 0; i < mrt->maxvif; i++) {
  2380. if (e < s_e)
  2381. goto skip_entry;
  2382. if (!ipmr_fill_vif(mrt, i, skb)) {
  2383. nla_nest_end(skb, vifs);
  2384. nla_nest_end(skb, af);
  2385. nlmsg_end(skb, nlh);
  2386. goto out;
  2387. }
  2388. skip_entry:
  2389. e++;
  2390. }
  2391. s_e = 0;
  2392. e = 0;
  2393. nla_nest_end(skb, vifs);
  2394. nla_nest_end(skb, af);
  2395. nlmsg_end(skb, nlh);
  2396. skip_table:
  2397. t++;
  2398. }
  2399. out:
  2400. cb->args[1] = e;
  2401. cb->args[0] = t;
  2402. return skb->len;
  2403. }
  2404. #ifdef CONFIG_PROC_FS
  2405. /* The /proc interfaces to multicast routing :
  2406. * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
  2407. */
  2408. struct ipmr_vif_iter {
  2409. struct seq_net_private p;
  2410. struct mr_table *mrt;
  2411. int ct;
  2412. };
  2413. static struct vif_device *ipmr_vif_seq_idx(struct net *net,
  2414. struct ipmr_vif_iter *iter,
  2415. loff_t pos)
  2416. {
  2417. struct mr_table *mrt = iter->mrt;
  2418. for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
  2419. if (!VIF_EXISTS(mrt, iter->ct))
  2420. continue;
  2421. if (pos-- == 0)
  2422. return &mrt->vif_table[iter->ct];
  2423. }
  2424. return NULL;
  2425. }
  2426. static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
  2427. __acquires(mrt_lock)
  2428. {
  2429. struct ipmr_vif_iter *iter = seq->private;
  2430. struct net *net = seq_file_net(seq);
  2431. struct mr_table *mrt;
  2432. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  2433. if (!mrt)
  2434. return ERR_PTR(-ENOENT);
  2435. iter->mrt = mrt;
  2436. read_lock(&mrt_lock);
  2437. return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
  2438. : SEQ_START_TOKEN;
  2439. }
  2440. static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2441. {
  2442. struct ipmr_vif_iter *iter = seq->private;
  2443. struct net *net = seq_file_net(seq);
  2444. struct mr_table *mrt = iter->mrt;
  2445. ++*pos;
  2446. if (v == SEQ_START_TOKEN)
  2447. return ipmr_vif_seq_idx(net, iter, 0);
  2448. while (++iter->ct < mrt->maxvif) {
  2449. if (!VIF_EXISTS(mrt, iter->ct))
  2450. continue;
  2451. return &mrt->vif_table[iter->ct];
  2452. }
  2453. return NULL;
  2454. }
  2455. static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
  2456. __releases(mrt_lock)
  2457. {
  2458. read_unlock(&mrt_lock);
  2459. }
  2460. static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
  2461. {
  2462. struct ipmr_vif_iter *iter = seq->private;
  2463. struct mr_table *mrt = iter->mrt;
  2464. if (v == SEQ_START_TOKEN) {
  2465. seq_puts(seq,
  2466. "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
  2467. } else {
  2468. const struct vif_device *vif = v;
  2469. const char *name = vif->dev ? vif->dev->name : "none";
  2470. seq_printf(seq,
  2471. "%2zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
  2472. vif - mrt->vif_table,
  2473. name, vif->bytes_in, vif->pkt_in,
  2474. vif->bytes_out, vif->pkt_out,
  2475. vif->flags, vif->local, vif->remote);
  2476. }
  2477. return 0;
  2478. }
  2479. static const struct seq_operations ipmr_vif_seq_ops = {
  2480. .start = ipmr_vif_seq_start,
  2481. .next = ipmr_vif_seq_next,
  2482. .stop = ipmr_vif_seq_stop,
  2483. .show = ipmr_vif_seq_show,
  2484. };
  2485. static int ipmr_vif_open(struct inode *inode, struct file *file)
  2486. {
  2487. return seq_open_net(inode, file, &ipmr_vif_seq_ops,
  2488. sizeof(struct ipmr_vif_iter));
  2489. }
  2490. static const struct file_operations ipmr_vif_fops = {
  2491. .owner = THIS_MODULE,
  2492. .open = ipmr_vif_open,
  2493. .read = seq_read,
  2494. .llseek = seq_lseek,
  2495. .release = seq_release_net,
  2496. };
  2497. struct ipmr_mfc_iter {
  2498. struct seq_net_private p;
  2499. struct mr_table *mrt;
  2500. struct list_head *cache;
  2501. };
  2502. static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
  2503. struct ipmr_mfc_iter *it, loff_t pos)
  2504. {
  2505. struct mr_table *mrt = it->mrt;
  2506. struct mfc_cache *mfc;
  2507. rcu_read_lock();
  2508. it->cache = &mrt->mfc_cache_list;
  2509. list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list)
  2510. if (pos-- == 0)
  2511. return mfc;
  2512. rcu_read_unlock();
  2513. spin_lock_bh(&mfc_unres_lock);
  2514. it->cache = &mrt->mfc_unres_queue;
  2515. list_for_each_entry(mfc, it->cache, list)
  2516. if (pos-- == 0)
  2517. return mfc;
  2518. spin_unlock_bh(&mfc_unres_lock);
  2519. it->cache = NULL;
  2520. return NULL;
  2521. }
  2522. static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
  2523. {
  2524. struct ipmr_mfc_iter *it = seq->private;
  2525. struct net *net = seq_file_net(seq);
  2526. struct mr_table *mrt;
  2527. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  2528. if (!mrt)
  2529. return ERR_PTR(-ENOENT);
  2530. it->mrt = mrt;
  2531. it->cache = NULL;
  2532. return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
  2533. : SEQ_START_TOKEN;
  2534. }
  2535. static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2536. {
  2537. struct ipmr_mfc_iter *it = seq->private;
  2538. struct net *net = seq_file_net(seq);
  2539. struct mr_table *mrt = it->mrt;
  2540. struct mfc_cache *mfc = v;
  2541. ++*pos;
  2542. if (v == SEQ_START_TOKEN)
  2543. return ipmr_mfc_seq_idx(net, seq->private, 0);
  2544. if (mfc->list.next != it->cache)
  2545. return list_entry(mfc->list.next, struct mfc_cache, list);
  2546. if (it->cache == &mrt->mfc_unres_queue)
  2547. goto end_of_list;
  2548. /* exhausted cache_array, show unresolved */
  2549. rcu_read_unlock();
  2550. it->cache = &mrt->mfc_unres_queue;
  2551. spin_lock_bh(&mfc_unres_lock);
  2552. if (!list_empty(it->cache))
  2553. return list_first_entry(it->cache, struct mfc_cache, list);
  2554. end_of_list:
  2555. spin_unlock_bh(&mfc_unres_lock);
  2556. it->cache = NULL;
  2557. return NULL;
  2558. }
  2559. static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
  2560. {
  2561. struct ipmr_mfc_iter *it = seq->private;
  2562. struct mr_table *mrt = it->mrt;
  2563. if (it->cache == &mrt->mfc_unres_queue)
  2564. spin_unlock_bh(&mfc_unres_lock);
  2565. else if (it->cache == &mrt->mfc_cache_list)
  2566. rcu_read_unlock();
  2567. }
  2568. static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
  2569. {
  2570. int n;
  2571. if (v == SEQ_START_TOKEN) {
  2572. seq_puts(seq,
  2573. "Group Origin Iif Pkts Bytes Wrong Oifs\n");
  2574. } else {
  2575. const struct mfc_cache *mfc = v;
  2576. const struct ipmr_mfc_iter *it = seq->private;
  2577. const struct mr_table *mrt = it->mrt;
  2578. seq_printf(seq, "%08X %08X %-3hd",
  2579. (__force u32) mfc->mfc_mcastgrp,
  2580. (__force u32) mfc->mfc_origin,
  2581. mfc->mfc_parent);
  2582. if (it->cache != &mrt->mfc_unres_queue) {
  2583. seq_printf(seq, " %8lu %8lu %8lu",
  2584. mfc->mfc_un.res.pkt,
  2585. mfc->mfc_un.res.bytes,
  2586. mfc->mfc_un.res.wrong_if);
  2587. for (n = mfc->mfc_un.res.minvif;
  2588. n < mfc->mfc_un.res.maxvif; n++) {
  2589. if (VIF_EXISTS(mrt, n) &&
  2590. mfc->mfc_un.res.ttls[n] < 255)
  2591. seq_printf(seq,
  2592. " %2d:%-3d",
  2593. n, mfc->mfc_un.res.ttls[n]);
  2594. }
  2595. } else {
  2596. /* unresolved mfc_caches don't contain
  2597. * pkt, bytes and wrong_if values
  2598. */
  2599. seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
  2600. }
  2601. seq_putc(seq, '\n');
  2602. }
  2603. return 0;
  2604. }
  2605. static const struct seq_operations ipmr_mfc_seq_ops = {
  2606. .start = ipmr_mfc_seq_start,
  2607. .next = ipmr_mfc_seq_next,
  2608. .stop = ipmr_mfc_seq_stop,
  2609. .show = ipmr_mfc_seq_show,
  2610. };
  2611. static int ipmr_mfc_open(struct inode *inode, struct file *file)
  2612. {
  2613. return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
  2614. sizeof(struct ipmr_mfc_iter));
  2615. }
  2616. static const struct file_operations ipmr_mfc_fops = {
  2617. .owner = THIS_MODULE,
  2618. .open = ipmr_mfc_open,
  2619. .read = seq_read,
  2620. .llseek = seq_lseek,
  2621. .release = seq_release_net,
  2622. };
  2623. #endif
  2624. #ifdef CONFIG_IP_PIMSM_V2
  2625. static const struct net_protocol pim_protocol = {
  2626. .handler = pim_rcv,
  2627. .netns_ok = 1,
  2628. };
  2629. #endif
  2630. /* Setup for IP multicast routing */
  2631. static int __net_init ipmr_net_init(struct net *net)
  2632. {
  2633. int err;
  2634. err = ipmr_rules_init(net);
  2635. if (err < 0)
  2636. goto fail;
  2637. #ifdef CONFIG_PROC_FS
  2638. err = -ENOMEM;
  2639. if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
  2640. goto proc_vif_fail;
  2641. if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
  2642. goto proc_cache_fail;
  2643. #endif
  2644. return 0;
  2645. #ifdef CONFIG_PROC_FS
  2646. proc_cache_fail:
  2647. remove_proc_entry("ip_mr_vif", net->proc_net);
  2648. proc_vif_fail:
  2649. ipmr_rules_exit(net);
  2650. #endif
  2651. fail:
  2652. return err;
  2653. }
  2654. static void __net_exit ipmr_net_exit(struct net *net)
  2655. {
  2656. #ifdef CONFIG_PROC_FS
  2657. remove_proc_entry("ip_mr_cache", net->proc_net);
  2658. remove_proc_entry("ip_mr_vif", net->proc_net);
  2659. #endif
  2660. ipmr_rules_exit(net);
  2661. }
  2662. static struct pernet_operations ipmr_net_ops = {
  2663. .init = ipmr_net_init,
  2664. .exit = ipmr_net_exit,
  2665. };
  2666. int __init ip_mr_init(void)
  2667. {
  2668. int err;
  2669. mrt_cachep = kmem_cache_create("ip_mrt_cache",
  2670. sizeof(struct mfc_cache),
  2671. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
  2672. NULL);
  2673. err = register_pernet_subsys(&ipmr_net_ops);
  2674. if (err)
  2675. goto reg_pernet_fail;
  2676. err = register_netdevice_notifier(&ip_mr_notifier);
  2677. if (err)
  2678. goto reg_notif_fail;
  2679. #ifdef CONFIG_IP_PIMSM_V2
  2680. if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
  2681. pr_err("%s: can't add PIM protocol\n", __func__);
  2682. err = -EAGAIN;
  2683. goto add_proto_fail;
  2684. }
  2685. #endif
  2686. rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
  2687. ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
  2688. rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
  2689. ipmr_rtm_route, NULL, 0);
  2690. rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
  2691. ipmr_rtm_route, NULL, 0);
  2692. rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
  2693. NULL, ipmr_rtm_dumplink, 0);
  2694. return 0;
  2695. #ifdef CONFIG_IP_PIMSM_V2
  2696. add_proto_fail:
  2697. unregister_netdevice_notifier(&ip_mr_notifier);
  2698. #endif
  2699. reg_notif_fail:
  2700. unregister_pernet_subsys(&ipmr_net_ops);
  2701. reg_pernet_fail:
  2702. kmem_cache_destroy(mrt_cachep);
  2703. return err;
  2704. }