fib_trie.c 66 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759
  1. /*
  2. * This program is free software; you can redistribute it and/or
  3. * modify it under the terms of the GNU General Public License
  4. * as published by the Free Software Foundation; either version
  5. * 2 of the License, or (at your option) any later version.
  6. *
  7. * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
  8. * & Swedish University of Agricultural Sciences.
  9. *
  10. * Jens Laas <jens.laas@data.slu.se> Swedish University of
  11. * Agricultural Sciences.
  12. *
  13. * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
  14. *
  15. * This work is based on the LPC-trie which is originally described in:
  16. *
  17. * An experimental study of compression methods for dynamic tries
  18. * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19. * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20. *
  21. *
  22. * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23. * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24. *
  25. *
  26. * Code from fib_hash has been reused which includes the following header:
  27. *
  28. *
  29. * INET An implementation of the TCP/IP protocol suite for the LINUX
  30. * operating system. INET is implemented using the BSD Socket
  31. * interface as the means of communication with the user level.
  32. *
  33. * IPv4 FIB: lookup engine and maintenance routines.
  34. *
  35. *
  36. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37. *
  38. * This program is free software; you can redistribute it and/or
  39. * modify it under the terms of the GNU General Public License
  40. * as published by the Free Software Foundation; either version
  41. * 2 of the License, or (at your option) any later version.
  42. *
  43. * Substantial contributions to this work comes from:
  44. *
  45. * David S. Miller, <davem@davemloft.net>
  46. * Stephen Hemminger <shemminger@osdl.org>
  47. * Paul E. McKenney <paulmck@us.ibm.com>
  48. * Patrick McHardy <kaber@trash.net>
  49. */
  50. #define VERSION "0.409"
  51. #include <linux/uaccess.h>
  52. #include <linux/bitops.h>
  53. #include <linux/types.h>
  54. #include <linux/kernel.h>
  55. #include <linux/mm.h>
  56. #include <linux/string.h>
  57. #include <linux/socket.h>
  58. #include <linux/sockios.h>
  59. #include <linux/errno.h>
  60. #include <linux/in.h>
  61. #include <linux/inet.h>
  62. #include <linux/inetdevice.h>
  63. #include <linux/netdevice.h>
  64. #include <linux/if_arp.h>
  65. #include <linux/proc_fs.h>
  66. #include <linux/rcupdate.h>
  67. #include <linux/skbuff.h>
  68. #include <linux/netlink.h>
  69. #include <linux/init.h>
  70. #include <linux/list.h>
  71. #include <linux/slab.h>
  72. #include <linux/export.h>
  73. #include <linux/vmalloc.h>
  74. #include <linux/notifier.h>
  75. #include <net/net_namespace.h>
  76. #include <net/ip.h>
  77. #include <net/protocol.h>
  78. #include <net/route.h>
  79. #include <net/tcp.h>
  80. #include <net/sock.h>
  81. #include <net/ip_fib.h>
  82. #include <net/fib_notifier.h>
  83. #include <trace/events/fib.h>
  84. #include "fib_lookup.h"
  85. static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
  86. enum fib_event_type event_type, u32 dst,
  87. int dst_len, struct fib_info *fi,
  88. u8 tos, u8 type, u32 tb_id)
  89. {
  90. struct fib_entry_notifier_info info = {
  91. .dst = dst,
  92. .dst_len = dst_len,
  93. .fi = fi,
  94. .tos = tos,
  95. .type = type,
  96. .tb_id = tb_id,
  97. };
  98. return call_fib4_notifier(nb, net, event_type, &info.info);
  99. }
  100. static int call_fib_entry_notifiers(struct net *net,
  101. enum fib_event_type event_type, u32 dst,
  102. int dst_len, struct fib_info *fi,
  103. u8 tos, u8 type, u32 tb_id)
  104. {
  105. struct fib_entry_notifier_info info = {
  106. .dst = dst,
  107. .dst_len = dst_len,
  108. .fi = fi,
  109. .tos = tos,
  110. .type = type,
  111. .tb_id = tb_id,
  112. };
  113. return call_fib4_notifiers(net, event_type, &info.info);
  114. }
  115. #define MAX_STAT_DEPTH 32
  116. #define KEYLENGTH (8*sizeof(t_key))
  117. #define KEY_MAX ((t_key)~0)
  118. typedef unsigned int t_key;
  119. #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
  120. #define IS_TNODE(n) ((n)->bits)
  121. #define IS_LEAF(n) (!(n)->bits)
  122. struct key_vector {
  123. t_key key;
  124. unsigned char pos; /* 2log(KEYLENGTH) bits needed */
  125. unsigned char bits; /* 2log(KEYLENGTH) bits needed */
  126. unsigned char slen;
  127. union {
  128. /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
  129. struct hlist_head leaf;
  130. /* This array is valid if (pos | bits) > 0 (TNODE) */
  131. struct key_vector __rcu *tnode[0];
  132. };
  133. };
  134. struct tnode {
  135. struct rcu_head rcu;
  136. t_key empty_children; /* KEYLENGTH bits needed */
  137. t_key full_children; /* KEYLENGTH bits needed */
  138. struct key_vector __rcu *parent;
  139. struct key_vector kv[1];
  140. #define tn_bits kv[0].bits
  141. };
  142. #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
  143. #define LEAF_SIZE TNODE_SIZE(1)
  144. #ifdef CONFIG_IP_FIB_TRIE_STATS
  145. struct trie_use_stats {
  146. unsigned int gets;
  147. unsigned int backtrack;
  148. unsigned int semantic_match_passed;
  149. unsigned int semantic_match_miss;
  150. unsigned int null_node_hit;
  151. unsigned int resize_node_skipped;
  152. };
  153. #endif
  154. struct trie_stat {
  155. unsigned int totdepth;
  156. unsigned int maxdepth;
  157. unsigned int tnodes;
  158. unsigned int leaves;
  159. unsigned int nullpointers;
  160. unsigned int prefixes;
  161. unsigned int nodesizes[MAX_STAT_DEPTH];
  162. };
  163. struct trie {
  164. struct key_vector kv[1];
  165. #ifdef CONFIG_IP_FIB_TRIE_STATS
  166. struct trie_use_stats __percpu *stats;
  167. #endif
  168. };
  169. static struct key_vector *resize(struct trie *t, struct key_vector *tn);
  170. static size_t tnode_free_size;
  171. /*
  172. * synchronize_rcu after call_rcu for that many pages; it should be especially
  173. * useful before resizing the root node with PREEMPT_NONE configs; the value was
  174. * obtained experimentally, aiming to avoid visible slowdown.
  175. */
  176. static const int sync_pages = 128;
  177. static struct kmem_cache *fn_alias_kmem __read_mostly;
  178. static struct kmem_cache *trie_leaf_kmem __read_mostly;
  179. static inline struct tnode *tn_info(struct key_vector *kv)
  180. {
  181. return container_of(kv, struct tnode, kv[0]);
  182. }
  183. /* caller must hold RTNL */
  184. #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
  185. #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
  186. /* caller must hold RCU read lock or RTNL */
  187. #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
  188. #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
  189. /* wrapper for rcu_assign_pointer */
  190. static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
  191. {
  192. if (n)
  193. rcu_assign_pointer(tn_info(n)->parent, tp);
  194. }
  195. #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
  196. /* This provides us with the number of children in this node, in the case of a
  197. * leaf this will return 0 meaning none of the children are accessible.
  198. */
  199. static inline unsigned long child_length(const struct key_vector *tn)
  200. {
  201. return (1ul << tn->bits) & ~(1ul);
  202. }
  203. #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
  204. static inline unsigned long get_index(t_key key, struct key_vector *kv)
  205. {
  206. unsigned long index = key ^ kv->key;
  207. if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
  208. return 0;
  209. return index >> kv->pos;
  210. }
  211. /* To understand this stuff, an understanding of keys and all their bits is
  212. * necessary. Every node in the trie has a key associated with it, but not
  213. * all of the bits in that key are significant.
  214. *
  215. * Consider a node 'n' and its parent 'tp'.
  216. *
  217. * If n is a leaf, every bit in its key is significant. Its presence is
  218. * necessitated by path compression, since during a tree traversal (when
  219. * searching for a leaf - unless we are doing an insertion) we will completely
  220. * ignore all skipped bits we encounter. Thus we need to verify, at the end of
  221. * a potentially successful search, that we have indeed been walking the
  222. * correct key path.
  223. *
  224. * Note that we can never "miss" the correct key in the tree if present by
  225. * following the wrong path. Path compression ensures that segments of the key
  226. * that are the same for all keys with a given prefix are skipped, but the
  227. * skipped part *is* identical for each node in the subtrie below the skipped
  228. * bit! trie_insert() in this implementation takes care of that.
  229. *
  230. * if n is an internal node - a 'tnode' here, the various parts of its key
  231. * have many different meanings.
  232. *
  233. * Example:
  234. * _________________________________________________________________
  235. * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
  236. * -----------------------------------------------------------------
  237. * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
  238. *
  239. * _________________________________________________________________
  240. * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
  241. * -----------------------------------------------------------------
  242. * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
  243. *
  244. * tp->pos = 22
  245. * tp->bits = 3
  246. * n->pos = 13
  247. * n->bits = 4
  248. *
  249. * First, let's just ignore the bits that come before the parent tp, that is
  250. * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
  251. * point we do not use them for anything.
  252. *
  253. * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
  254. * index into the parent's child array. That is, they will be used to find
  255. * 'n' among tp's children.
  256. *
  257. * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
  258. * for the node n.
  259. *
  260. * All the bits we have seen so far are significant to the node n. The rest
  261. * of the bits are really not needed or indeed known in n->key.
  262. *
  263. * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
  264. * n's child array, and will of course be different for each child.
  265. *
  266. * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
  267. * at this point.
  268. */
  269. static const int halve_threshold = 25;
  270. static const int inflate_threshold = 50;
  271. static const int halve_threshold_root = 15;
  272. static const int inflate_threshold_root = 30;
  273. static void __alias_free_mem(struct rcu_head *head)
  274. {
  275. struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
  276. kmem_cache_free(fn_alias_kmem, fa);
  277. }
  278. static inline void alias_free_mem_rcu(struct fib_alias *fa)
  279. {
  280. call_rcu(&fa->rcu, __alias_free_mem);
  281. }
  282. #define TNODE_KMALLOC_MAX \
  283. ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  284. #define TNODE_VMALLOC_MAX \
  285. ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  286. static void __node_free_rcu(struct rcu_head *head)
  287. {
  288. struct tnode *n = container_of(head, struct tnode, rcu);
  289. if (!n->tn_bits)
  290. kmem_cache_free(trie_leaf_kmem, n);
  291. else
  292. kvfree(n);
  293. }
  294. #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
  295. static struct tnode *tnode_alloc(int bits)
  296. {
  297. size_t size;
  298. /* verify bits is within bounds */
  299. if (bits > TNODE_VMALLOC_MAX)
  300. return NULL;
  301. /* determine size and verify it is non-zero and didn't overflow */
  302. size = TNODE_SIZE(1ul << bits);
  303. if (size <= PAGE_SIZE)
  304. return kzalloc(size, GFP_KERNEL);
  305. else
  306. return vzalloc(size);
  307. }
  308. static inline void empty_child_inc(struct key_vector *n)
  309. {
  310. ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
  311. }
  312. static inline void empty_child_dec(struct key_vector *n)
  313. {
  314. tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
  315. }
  316. static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
  317. {
  318. struct key_vector *l;
  319. struct tnode *kv;
  320. kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
  321. if (!kv)
  322. return NULL;
  323. /* initialize key vector */
  324. l = kv->kv;
  325. l->key = key;
  326. l->pos = 0;
  327. l->bits = 0;
  328. l->slen = fa->fa_slen;
  329. /* link leaf to fib alias */
  330. INIT_HLIST_HEAD(&l->leaf);
  331. hlist_add_head(&fa->fa_list, &l->leaf);
  332. return l;
  333. }
  334. static struct key_vector *tnode_new(t_key key, int pos, int bits)
  335. {
  336. unsigned int shift = pos + bits;
  337. struct key_vector *tn;
  338. struct tnode *tnode;
  339. /* verify bits and pos their msb bits clear and values are valid */
  340. BUG_ON(!bits || (shift > KEYLENGTH));
  341. tnode = tnode_alloc(bits);
  342. if (!tnode)
  343. return NULL;
  344. pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
  345. sizeof(struct key_vector *) << bits);
  346. if (bits == KEYLENGTH)
  347. tnode->full_children = 1;
  348. else
  349. tnode->empty_children = 1ul << bits;
  350. tn = tnode->kv;
  351. tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
  352. tn->pos = pos;
  353. tn->bits = bits;
  354. tn->slen = pos;
  355. return tn;
  356. }
  357. /* Check whether a tnode 'n' is "full", i.e. it is an internal node
  358. * and no bits are skipped. See discussion in dyntree paper p. 6
  359. */
  360. static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
  361. {
  362. return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
  363. }
  364. /* Add a child at position i overwriting the old value.
  365. * Update the value of full_children and empty_children.
  366. */
  367. static void put_child(struct key_vector *tn, unsigned long i,
  368. struct key_vector *n)
  369. {
  370. struct key_vector *chi = get_child(tn, i);
  371. int isfull, wasfull;
  372. BUG_ON(i >= child_length(tn));
  373. /* update emptyChildren, overflow into fullChildren */
  374. if (!n && chi)
  375. empty_child_inc(tn);
  376. if (n && !chi)
  377. empty_child_dec(tn);
  378. /* update fullChildren */
  379. wasfull = tnode_full(tn, chi);
  380. isfull = tnode_full(tn, n);
  381. if (wasfull && !isfull)
  382. tn_info(tn)->full_children--;
  383. else if (!wasfull && isfull)
  384. tn_info(tn)->full_children++;
  385. if (n && (tn->slen < n->slen))
  386. tn->slen = n->slen;
  387. rcu_assign_pointer(tn->tnode[i], n);
  388. }
  389. static void update_children(struct key_vector *tn)
  390. {
  391. unsigned long i;
  392. /* update all of the child parent pointers */
  393. for (i = child_length(tn); i;) {
  394. struct key_vector *inode = get_child(tn, --i);
  395. if (!inode)
  396. continue;
  397. /* Either update the children of a tnode that
  398. * already belongs to us or update the child
  399. * to point to ourselves.
  400. */
  401. if (node_parent(inode) == tn)
  402. update_children(inode);
  403. else
  404. node_set_parent(inode, tn);
  405. }
  406. }
  407. static inline void put_child_root(struct key_vector *tp, t_key key,
  408. struct key_vector *n)
  409. {
  410. if (IS_TRIE(tp))
  411. rcu_assign_pointer(tp->tnode[0], n);
  412. else
  413. put_child(tp, get_index(key, tp), n);
  414. }
  415. static inline void tnode_free_init(struct key_vector *tn)
  416. {
  417. tn_info(tn)->rcu.next = NULL;
  418. }
  419. static inline void tnode_free_append(struct key_vector *tn,
  420. struct key_vector *n)
  421. {
  422. tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
  423. tn_info(tn)->rcu.next = &tn_info(n)->rcu;
  424. }
  425. static void tnode_free(struct key_vector *tn)
  426. {
  427. struct callback_head *head = &tn_info(tn)->rcu;
  428. while (head) {
  429. head = head->next;
  430. tnode_free_size += TNODE_SIZE(1ul << tn->bits);
  431. node_free(tn);
  432. tn = container_of(head, struct tnode, rcu)->kv;
  433. }
  434. if (tnode_free_size >= PAGE_SIZE * sync_pages) {
  435. tnode_free_size = 0;
  436. synchronize_rcu();
  437. }
  438. }
  439. static struct key_vector *replace(struct trie *t,
  440. struct key_vector *oldtnode,
  441. struct key_vector *tn)
  442. {
  443. struct key_vector *tp = node_parent(oldtnode);
  444. unsigned long i;
  445. /* setup the parent pointer out of and back into this node */
  446. NODE_INIT_PARENT(tn, tp);
  447. put_child_root(tp, tn->key, tn);
  448. /* update all of the child parent pointers */
  449. update_children(tn);
  450. /* all pointers should be clean so we are done */
  451. tnode_free(oldtnode);
  452. /* resize children now that oldtnode is freed */
  453. for (i = child_length(tn); i;) {
  454. struct key_vector *inode = get_child(tn, --i);
  455. /* resize child node */
  456. if (tnode_full(tn, inode))
  457. tn = resize(t, inode);
  458. }
  459. return tp;
  460. }
  461. static struct key_vector *inflate(struct trie *t,
  462. struct key_vector *oldtnode)
  463. {
  464. struct key_vector *tn;
  465. unsigned long i;
  466. t_key m;
  467. pr_debug("In inflate\n");
  468. tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
  469. if (!tn)
  470. goto notnode;
  471. /* prepare oldtnode to be freed */
  472. tnode_free_init(oldtnode);
  473. /* Assemble all of the pointers in our cluster, in this case that
  474. * represents all of the pointers out of our allocated nodes that
  475. * point to existing tnodes and the links between our allocated
  476. * nodes.
  477. */
  478. for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
  479. struct key_vector *inode = get_child(oldtnode, --i);
  480. struct key_vector *node0, *node1;
  481. unsigned long j, k;
  482. /* An empty child */
  483. if (!inode)
  484. continue;
  485. /* A leaf or an internal node with skipped bits */
  486. if (!tnode_full(oldtnode, inode)) {
  487. put_child(tn, get_index(inode->key, tn), inode);
  488. continue;
  489. }
  490. /* drop the node in the old tnode free list */
  491. tnode_free_append(oldtnode, inode);
  492. /* An internal node with two children */
  493. if (inode->bits == 1) {
  494. put_child(tn, 2 * i + 1, get_child(inode, 1));
  495. put_child(tn, 2 * i, get_child(inode, 0));
  496. continue;
  497. }
  498. /* We will replace this node 'inode' with two new
  499. * ones, 'node0' and 'node1', each with half of the
  500. * original children. The two new nodes will have
  501. * a position one bit further down the key and this
  502. * means that the "significant" part of their keys
  503. * (see the discussion near the top of this file)
  504. * will differ by one bit, which will be "0" in
  505. * node0's key and "1" in node1's key. Since we are
  506. * moving the key position by one step, the bit that
  507. * we are moving away from - the bit at position
  508. * (tn->pos) - is the one that will differ between
  509. * node0 and node1. So... we synthesize that bit in the
  510. * two new keys.
  511. */
  512. node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
  513. if (!node1)
  514. goto nomem;
  515. node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
  516. tnode_free_append(tn, node1);
  517. if (!node0)
  518. goto nomem;
  519. tnode_free_append(tn, node0);
  520. /* populate child pointers in new nodes */
  521. for (k = child_length(inode), j = k / 2; j;) {
  522. put_child(node1, --j, get_child(inode, --k));
  523. put_child(node0, j, get_child(inode, j));
  524. put_child(node1, --j, get_child(inode, --k));
  525. put_child(node0, j, get_child(inode, j));
  526. }
  527. /* link new nodes to parent */
  528. NODE_INIT_PARENT(node1, tn);
  529. NODE_INIT_PARENT(node0, tn);
  530. /* link parent to nodes */
  531. put_child(tn, 2 * i + 1, node1);
  532. put_child(tn, 2 * i, node0);
  533. }
  534. /* setup the parent pointers into and out of this node */
  535. return replace(t, oldtnode, tn);
  536. nomem:
  537. /* all pointers should be clean so we are done */
  538. tnode_free(tn);
  539. notnode:
  540. return NULL;
  541. }
  542. static struct key_vector *halve(struct trie *t,
  543. struct key_vector *oldtnode)
  544. {
  545. struct key_vector *tn;
  546. unsigned long i;
  547. pr_debug("In halve\n");
  548. tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
  549. if (!tn)
  550. goto notnode;
  551. /* prepare oldtnode to be freed */
  552. tnode_free_init(oldtnode);
  553. /* Assemble all of the pointers in our cluster, in this case that
  554. * represents all of the pointers out of our allocated nodes that
  555. * point to existing tnodes and the links between our allocated
  556. * nodes.
  557. */
  558. for (i = child_length(oldtnode); i;) {
  559. struct key_vector *node1 = get_child(oldtnode, --i);
  560. struct key_vector *node0 = get_child(oldtnode, --i);
  561. struct key_vector *inode;
  562. /* At least one of the children is empty */
  563. if (!node1 || !node0) {
  564. put_child(tn, i / 2, node1 ? : node0);
  565. continue;
  566. }
  567. /* Two nonempty children */
  568. inode = tnode_new(node0->key, oldtnode->pos, 1);
  569. if (!inode)
  570. goto nomem;
  571. tnode_free_append(tn, inode);
  572. /* initialize pointers out of node */
  573. put_child(inode, 1, node1);
  574. put_child(inode, 0, node0);
  575. NODE_INIT_PARENT(inode, tn);
  576. /* link parent to node */
  577. put_child(tn, i / 2, inode);
  578. }
  579. /* setup the parent pointers into and out of this node */
  580. return replace(t, oldtnode, tn);
  581. nomem:
  582. /* all pointers should be clean so we are done */
  583. tnode_free(tn);
  584. notnode:
  585. return NULL;
  586. }
  587. static struct key_vector *collapse(struct trie *t,
  588. struct key_vector *oldtnode)
  589. {
  590. struct key_vector *n, *tp;
  591. unsigned long i;
  592. /* scan the tnode looking for that one child that might still exist */
  593. for (n = NULL, i = child_length(oldtnode); !n && i;)
  594. n = get_child(oldtnode, --i);
  595. /* compress one level */
  596. tp = node_parent(oldtnode);
  597. put_child_root(tp, oldtnode->key, n);
  598. node_set_parent(n, tp);
  599. /* drop dead node */
  600. node_free(oldtnode);
  601. return tp;
  602. }
  603. static unsigned char update_suffix(struct key_vector *tn)
  604. {
  605. unsigned char slen = tn->pos;
  606. unsigned long stride, i;
  607. unsigned char slen_max;
  608. /* only vector 0 can have a suffix length greater than or equal to
  609. * tn->pos + tn->bits, the second highest node will have a suffix
  610. * length at most of tn->pos + tn->bits - 1
  611. */
  612. slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
  613. /* search though the list of children looking for nodes that might
  614. * have a suffix greater than the one we currently have. This is
  615. * why we start with a stride of 2 since a stride of 1 would
  616. * represent the nodes with suffix length equal to tn->pos
  617. */
  618. for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
  619. struct key_vector *n = get_child(tn, i);
  620. if (!n || (n->slen <= slen))
  621. continue;
  622. /* update stride and slen based on new value */
  623. stride <<= (n->slen - slen);
  624. slen = n->slen;
  625. i &= ~(stride - 1);
  626. /* stop searching if we have hit the maximum possible value */
  627. if (slen >= slen_max)
  628. break;
  629. }
  630. tn->slen = slen;
  631. return slen;
  632. }
  633. /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
  634. * the Helsinki University of Technology and Matti Tikkanen of Nokia
  635. * Telecommunications, page 6:
  636. * "A node is doubled if the ratio of non-empty children to all
  637. * children in the *doubled* node is at least 'high'."
  638. *
  639. * 'high' in this instance is the variable 'inflate_threshold'. It
  640. * is expressed as a percentage, so we multiply it with
  641. * child_length() and instead of multiplying by 2 (since the
  642. * child array will be doubled by inflate()) and multiplying
  643. * the left-hand side by 100 (to handle the percentage thing) we
  644. * multiply the left-hand side by 50.
  645. *
  646. * The left-hand side may look a bit weird: child_length(tn)
  647. * - tn->empty_children is of course the number of non-null children
  648. * in the current node. tn->full_children is the number of "full"
  649. * children, that is non-null tnodes with a skip value of 0.
  650. * All of those will be doubled in the resulting inflated tnode, so
  651. * we just count them one extra time here.
  652. *
  653. * A clearer way to write this would be:
  654. *
  655. * to_be_doubled = tn->full_children;
  656. * not_to_be_doubled = child_length(tn) - tn->empty_children -
  657. * tn->full_children;
  658. *
  659. * new_child_length = child_length(tn) * 2;
  660. *
  661. * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
  662. * new_child_length;
  663. * if (new_fill_factor >= inflate_threshold)
  664. *
  665. * ...and so on, tho it would mess up the while () loop.
  666. *
  667. * anyway,
  668. * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
  669. * inflate_threshold
  670. *
  671. * avoid a division:
  672. * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
  673. * inflate_threshold * new_child_length
  674. *
  675. * expand not_to_be_doubled and to_be_doubled, and shorten:
  676. * 100 * (child_length(tn) - tn->empty_children +
  677. * tn->full_children) >= inflate_threshold * new_child_length
  678. *
  679. * expand new_child_length:
  680. * 100 * (child_length(tn) - tn->empty_children +
  681. * tn->full_children) >=
  682. * inflate_threshold * child_length(tn) * 2
  683. *
  684. * shorten again:
  685. * 50 * (tn->full_children + child_length(tn) -
  686. * tn->empty_children) >= inflate_threshold *
  687. * child_length(tn)
  688. *
  689. */
  690. static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
  691. {
  692. unsigned long used = child_length(tn);
  693. unsigned long threshold = used;
  694. /* Keep root node larger */
  695. threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
  696. used -= tn_info(tn)->empty_children;
  697. used += tn_info(tn)->full_children;
  698. /* if bits == KEYLENGTH then pos = 0, and will fail below */
  699. return (used > 1) && tn->pos && ((50 * used) >= threshold);
  700. }
  701. static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
  702. {
  703. unsigned long used = child_length(tn);
  704. unsigned long threshold = used;
  705. /* Keep root node larger */
  706. threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
  707. used -= tn_info(tn)->empty_children;
  708. /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
  709. return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
  710. }
  711. static inline bool should_collapse(struct key_vector *tn)
  712. {
  713. unsigned long used = child_length(tn);
  714. used -= tn_info(tn)->empty_children;
  715. /* account for bits == KEYLENGTH case */
  716. if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
  717. used -= KEY_MAX;
  718. /* One child or none, time to drop us from the trie */
  719. return used < 2;
  720. }
  721. #define MAX_WORK 10
  722. static struct key_vector *resize(struct trie *t, struct key_vector *tn)
  723. {
  724. #ifdef CONFIG_IP_FIB_TRIE_STATS
  725. struct trie_use_stats __percpu *stats = t->stats;
  726. #endif
  727. struct key_vector *tp = node_parent(tn);
  728. unsigned long cindex = get_index(tn->key, tp);
  729. int max_work = MAX_WORK;
  730. pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
  731. tn, inflate_threshold, halve_threshold);
  732. /* track the tnode via the pointer from the parent instead of
  733. * doing it ourselves. This way we can let RCU fully do its
  734. * thing without us interfering
  735. */
  736. BUG_ON(tn != get_child(tp, cindex));
  737. /* Double as long as the resulting node has a number of
  738. * nonempty nodes that are above the threshold.
  739. */
  740. while (should_inflate(tp, tn) && max_work) {
  741. tp = inflate(t, tn);
  742. if (!tp) {
  743. #ifdef CONFIG_IP_FIB_TRIE_STATS
  744. this_cpu_inc(stats->resize_node_skipped);
  745. #endif
  746. break;
  747. }
  748. max_work--;
  749. tn = get_child(tp, cindex);
  750. }
  751. /* update parent in case inflate failed */
  752. tp = node_parent(tn);
  753. /* Return if at least one inflate is run */
  754. if (max_work != MAX_WORK)
  755. return tp;
  756. /* Halve as long as the number of empty children in this
  757. * node is above threshold.
  758. */
  759. while (should_halve(tp, tn) && max_work) {
  760. tp = halve(t, tn);
  761. if (!tp) {
  762. #ifdef CONFIG_IP_FIB_TRIE_STATS
  763. this_cpu_inc(stats->resize_node_skipped);
  764. #endif
  765. break;
  766. }
  767. max_work--;
  768. tn = get_child(tp, cindex);
  769. }
  770. /* Only one child remains */
  771. if (should_collapse(tn))
  772. return collapse(t, tn);
  773. /* update parent in case halve failed */
  774. return node_parent(tn);
  775. }
  776. static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
  777. {
  778. unsigned char node_slen = tn->slen;
  779. while ((node_slen > tn->pos) && (node_slen > slen)) {
  780. slen = update_suffix(tn);
  781. if (node_slen == slen)
  782. break;
  783. tn = node_parent(tn);
  784. node_slen = tn->slen;
  785. }
  786. }
  787. static void node_push_suffix(struct key_vector *tn, unsigned char slen)
  788. {
  789. while (tn->slen < slen) {
  790. tn->slen = slen;
  791. tn = node_parent(tn);
  792. }
  793. }
  794. /* rcu_read_lock needs to be hold by caller from readside */
  795. static struct key_vector *fib_find_node(struct trie *t,
  796. struct key_vector **tp, u32 key)
  797. {
  798. struct key_vector *pn, *n = t->kv;
  799. unsigned long index = 0;
  800. do {
  801. pn = n;
  802. n = get_child_rcu(n, index);
  803. if (!n)
  804. break;
  805. index = get_cindex(key, n);
  806. /* This bit of code is a bit tricky but it combines multiple
  807. * checks into a single check. The prefix consists of the
  808. * prefix plus zeros for the bits in the cindex. The index
  809. * is the difference between the key and this value. From
  810. * this we can actually derive several pieces of data.
  811. * if (index >= (1ul << bits))
  812. * we have a mismatch in skip bits and failed
  813. * else
  814. * we know the value is cindex
  815. *
  816. * This check is safe even if bits == KEYLENGTH due to the
  817. * fact that we can only allocate a node with 32 bits if a
  818. * long is greater than 32 bits.
  819. */
  820. if (index >= (1ul << n->bits)) {
  821. n = NULL;
  822. break;
  823. }
  824. /* keep searching until we find a perfect match leaf or NULL */
  825. } while (IS_TNODE(n));
  826. *tp = pn;
  827. return n;
  828. }
  829. /* Return the first fib alias matching TOS with
  830. * priority less than or equal to PRIO.
  831. */
  832. static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
  833. u8 tos, u32 prio, u32 tb_id)
  834. {
  835. struct fib_alias *fa;
  836. if (!fah)
  837. return NULL;
  838. hlist_for_each_entry(fa, fah, fa_list) {
  839. if (fa->fa_slen < slen)
  840. continue;
  841. if (fa->fa_slen != slen)
  842. break;
  843. if (fa->tb_id > tb_id)
  844. continue;
  845. if (fa->tb_id != tb_id)
  846. break;
  847. if (fa->fa_tos > tos)
  848. continue;
  849. if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
  850. return fa;
  851. }
  852. return NULL;
  853. }
  854. static void trie_rebalance(struct trie *t, struct key_vector *tn)
  855. {
  856. while (!IS_TRIE(tn))
  857. tn = resize(t, tn);
  858. }
  859. static int fib_insert_node(struct trie *t, struct key_vector *tp,
  860. struct fib_alias *new, t_key key)
  861. {
  862. struct key_vector *n, *l;
  863. l = leaf_new(key, new);
  864. if (!l)
  865. goto noleaf;
  866. /* retrieve child from parent node */
  867. n = get_child(tp, get_index(key, tp));
  868. /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
  869. *
  870. * Add a new tnode here
  871. * first tnode need some special handling
  872. * leaves us in position for handling as case 3
  873. */
  874. if (n) {
  875. struct key_vector *tn;
  876. tn = tnode_new(key, __fls(key ^ n->key), 1);
  877. if (!tn)
  878. goto notnode;
  879. /* initialize routes out of node */
  880. NODE_INIT_PARENT(tn, tp);
  881. put_child(tn, get_index(key, tn) ^ 1, n);
  882. /* start adding routes into the node */
  883. put_child_root(tp, key, tn);
  884. node_set_parent(n, tn);
  885. /* parent now has a NULL spot where the leaf can go */
  886. tp = tn;
  887. }
  888. /* Case 3: n is NULL, and will just insert a new leaf */
  889. node_push_suffix(tp, new->fa_slen);
  890. NODE_INIT_PARENT(l, tp);
  891. put_child_root(tp, key, l);
  892. trie_rebalance(t, tp);
  893. return 0;
  894. notnode:
  895. node_free(l);
  896. noleaf:
  897. return -ENOMEM;
  898. }
  899. static int fib_insert_alias(struct trie *t, struct key_vector *tp,
  900. struct key_vector *l, struct fib_alias *new,
  901. struct fib_alias *fa, t_key key)
  902. {
  903. if (!l)
  904. return fib_insert_node(t, tp, new, key);
  905. if (fa) {
  906. hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
  907. } else {
  908. struct fib_alias *last;
  909. hlist_for_each_entry(last, &l->leaf, fa_list) {
  910. if (new->fa_slen < last->fa_slen)
  911. break;
  912. if ((new->fa_slen == last->fa_slen) &&
  913. (new->tb_id > last->tb_id))
  914. break;
  915. fa = last;
  916. }
  917. if (fa)
  918. hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
  919. else
  920. hlist_add_head_rcu(&new->fa_list, &l->leaf);
  921. }
  922. /* if we added to the tail node then we need to update slen */
  923. if (l->slen < new->fa_slen) {
  924. l->slen = new->fa_slen;
  925. node_push_suffix(tp, new->fa_slen);
  926. }
  927. return 0;
  928. }
  929. static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
  930. {
  931. if (plen > KEYLENGTH) {
  932. NL_SET_ERR_MSG(extack, "Invalid prefix length");
  933. return false;
  934. }
  935. if ((plen < KEYLENGTH) && (key << plen)) {
  936. NL_SET_ERR_MSG(extack,
  937. "Invalid prefix for given prefix length");
  938. return false;
  939. }
  940. return true;
  941. }
  942. /* Caller must hold RTNL. */
  943. int fib_table_insert(struct net *net, struct fib_table *tb,
  944. struct fib_config *cfg, struct netlink_ext_ack *extack)
  945. {
  946. enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
  947. struct trie *t = (struct trie *)tb->tb_data;
  948. struct fib_alias *fa, *new_fa;
  949. struct key_vector *l, *tp;
  950. u16 nlflags = NLM_F_EXCL;
  951. struct fib_info *fi;
  952. u8 plen = cfg->fc_dst_len;
  953. u8 slen = KEYLENGTH - plen;
  954. u8 tos = cfg->fc_tos;
  955. u32 key;
  956. int err;
  957. key = ntohl(cfg->fc_dst);
  958. if (!fib_valid_key_len(key, plen, extack))
  959. return -EINVAL;
  960. pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
  961. fi = fib_create_info(cfg, extack);
  962. if (IS_ERR(fi)) {
  963. err = PTR_ERR(fi);
  964. goto err;
  965. }
  966. l = fib_find_node(t, &tp, key);
  967. fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
  968. tb->tb_id) : NULL;
  969. /* Now fa, if non-NULL, points to the first fib alias
  970. * with the same keys [prefix,tos,priority], if such key already
  971. * exists or to the node before which we will insert new one.
  972. *
  973. * If fa is NULL, we will need to allocate a new one and
  974. * insert to the tail of the section matching the suffix length
  975. * of the new alias.
  976. */
  977. if (fa && fa->fa_tos == tos &&
  978. fa->fa_info->fib_priority == fi->fib_priority) {
  979. struct fib_alias *fa_first, *fa_match;
  980. err = -EEXIST;
  981. if (cfg->fc_nlflags & NLM_F_EXCL)
  982. goto out;
  983. nlflags &= ~NLM_F_EXCL;
  984. /* We have 2 goals:
  985. * 1. Find exact match for type, scope, fib_info to avoid
  986. * duplicate routes
  987. * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
  988. */
  989. fa_match = NULL;
  990. fa_first = fa;
  991. hlist_for_each_entry_from(fa, fa_list) {
  992. if ((fa->fa_slen != slen) ||
  993. (fa->tb_id != tb->tb_id) ||
  994. (fa->fa_tos != tos))
  995. break;
  996. if (fa->fa_info->fib_priority != fi->fib_priority)
  997. break;
  998. if (fa->fa_type == cfg->fc_type &&
  999. fa->fa_info == fi) {
  1000. fa_match = fa;
  1001. break;
  1002. }
  1003. }
  1004. if (cfg->fc_nlflags & NLM_F_REPLACE) {
  1005. struct fib_info *fi_drop;
  1006. u8 state;
  1007. nlflags |= NLM_F_REPLACE;
  1008. fa = fa_first;
  1009. if (fa_match) {
  1010. if (fa == fa_match)
  1011. err = 0;
  1012. goto out;
  1013. }
  1014. err = -ENOBUFS;
  1015. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1016. if (!new_fa)
  1017. goto out;
  1018. fi_drop = fa->fa_info;
  1019. new_fa->fa_tos = fa->fa_tos;
  1020. new_fa->fa_info = fi;
  1021. new_fa->fa_type = cfg->fc_type;
  1022. state = fa->fa_state;
  1023. new_fa->fa_state = state & ~FA_S_ACCESSED;
  1024. new_fa->fa_slen = fa->fa_slen;
  1025. new_fa->tb_id = tb->tb_id;
  1026. new_fa->fa_default = -1;
  1027. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
  1028. key, plen, fi,
  1029. new_fa->fa_tos, cfg->fc_type,
  1030. tb->tb_id);
  1031. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
  1032. tb->tb_id, &cfg->fc_nlinfo, nlflags);
  1033. hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
  1034. alias_free_mem_rcu(fa);
  1035. fib_release_info(fi_drop);
  1036. if (state & FA_S_ACCESSED)
  1037. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1038. goto succeeded;
  1039. }
  1040. /* Error if we find a perfect match which
  1041. * uses the same scope, type, and nexthop
  1042. * information.
  1043. */
  1044. if (fa_match)
  1045. goto out;
  1046. if (cfg->fc_nlflags & NLM_F_APPEND) {
  1047. event = FIB_EVENT_ENTRY_APPEND;
  1048. nlflags |= NLM_F_APPEND;
  1049. } else {
  1050. fa = fa_first;
  1051. }
  1052. }
  1053. err = -ENOENT;
  1054. if (!(cfg->fc_nlflags & NLM_F_CREATE))
  1055. goto out;
  1056. nlflags |= NLM_F_CREATE;
  1057. err = -ENOBUFS;
  1058. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1059. if (!new_fa)
  1060. goto out;
  1061. new_fa->fa_info = fi;
  1062. new_fa->fa_tos = tos;
  1063. new_fa->fa_type = cfg->fc_type;
  1064. new_fa->fa_state = 0;
  1065. new_fa->fa_slen = slen;
  1066. new_fa->tb_id = tb->tb_id;
  1067. new_fa->fa_default = -1;
  1068. /* Insert new entry to the list. */
  1069. err = fib_insert_alias(t, tp, l, new_fa, fa, key);
  1070. if (err)
  1071. goto out_free_new_fa;
  1072. if (!plen)
  1073. tb->tb_num_default++;
  1074. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1075. call_fib_entry_notifiers(net, event, key, plen, fi, tos, cfg->fc_type,
  1076. tb->tb_id);
  1077. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
  1078. &cfg->fc_nlinfo, nlflags);
  1079. succeeded:
  1080. return 0;
  1081. out_free_new_fa:
  1082. kmem_cache_free(fn_alias_kmem, new_fa);
  1083. out:
  1084. fib_release_info(fi);
  1085. err:
  1086. return err;
  1087. }
  1088. static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
  1089. {
  1090. t_key prefix = n->key;
  1091. return (key ^ prefix) & (prefix | -prefix);
  1092. }
  1093. /* should be called with rcu_read_lock */
  1094. int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
  1095. struct fib_result *res, int fib_flags)
  1096. {
  1097. struct trie *t = (struct trie *) tb->tb_data;
  1098. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1099. struct trie_use_stats __percpu *stats = t->stats;
  1100. #endif
  1101. const t_key key = ntohl(flp->daddr);
  1102. struct key_vector *n, *pn;
  1103. struct fib_alias *fa;
  1104. unsigned long index;
  1105. t_key cindex;
  1106. trace_fib_table_lookup(tb->tb_id, flp);
  1107. pn = t->kv;
  1108. cindex = 0;
  1109. n = get_child_rcu(pn, cindex);
  1110. if (!n)
  1111. return -EAGAIN;
  1112. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1113. this_cpu_inc(stats->gets);
  1114. #endif
  1115. /* Step 1: Travel to the longest prefix match in the trie */
  1116. for (;;) {
  1117. index = get_cindex(key, n);
  1118. /* This bit of code is a bit tricky but it combines multiple
  1119. * checks into a single check. The prefix consists of the
  1120. * prefix plus zeros for the "bits" in the prefix. The index
  1121. * is the difference between the key and this value. From
  1122. * this we can actually derive several pieces of data.
  1123. * if (index >= (1ul << bits))
  1124. * we have a mismatch in skip bits and failed
  1125. * else
  1126. * we know the value is cindex
  1127. *
  1128. * This check is safe even if bits == KEYLENGTH due to the
  1129. * fact that we can only allocate a node with 32 bits if a
  1130. * long is greater than 32 bits.
  1131. */
  1132. if (index >= (1ul << n->bits))
  1133. break;
  1134. /* we have found a leaf. Prefixes have already been compared */
  1135. if (IS_LEAF(n))
  1136. goto found;
  1137. /* only record pn and cindex if we are going to be chopping
  1138. * bits later. Otherwise we are just wasting cycles.
  1139. */
  1140. if (n->slen > n->pos) {
  1141. pn = n;
  1142. cindex = index;
  1143. }
  1144. n = get_child_rcu(n, index);
  1145. if (unlikely(!n))
  1146. goto backtrace;
  1147. }
  1148. /* Step 2: Sort out leaves and begin backtracing for longest prefix */
  1149. for (;;) {
  1150. /* record the pointer where our next node pointer is stored */
  1151. struct key_vector __rcu **cptr = n->tnode;
  1152. /* This test verifies that none of the bits that differ
  1153. * between the key and the prefix exist in the region of
  1154. * the lsb and higher in the prefix.
  1155. */
  1156. if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
  1157. goto backtrace;
  1158. /* exit out and process leaf */
  1159. if (unlikely(IS_LEAF(n)))
  1160. break;
  1161. /* Don't bother recording parent info. Since we are in
  1162. * prefix match mode we will have to come back to wherever
  1163. * we started this traversal anyway
  1164. */
  1165. while ((n = rcu_dereference(*cptr)) == NULL) {
  1166. backtrace:
  1167. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1168. if (!n)
  1169. this_cpu_inc(stats->null_node_hit);
  1170. #endif
  1171. /* If we are at cindex 0 there are no more bits for
  1172. * us to strip at this level so we must ascend back
  1173. * up one level to see if there are any more bits to
  1174. * be stripped there.
  1175. */
  1176. while (!cindex) {
  1177. t_key pkey = pn->key;
  1178. /* If we don't have a parent then there is
  1179. * nothing for us to do as we do not have any
  1180. * further nodes to parse.
  1181. */
  1182. if (IS_TRIE(pn))
  1183. return -EAGAIN;
  1184. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1185. this_cpu_inc(stats->backtrack);
  1186. #endif
  1187. /* Get Child's index */
  1188. pn = node_parent_rcu(pn);
  1189. cindex = get_index(pkey, pn);
  1190. }
  1191. /* strip the least significant bit from the cindex */
  1192. cindex &= cindex - 1;
  1193. /* grab pointer for next child node */
  1194. cptr = &pn->tnode[cindex];
  1195. }
  1196. }
  1197. found:
  1198. /* this line carries forward the xor from earlier in the function */
  1199. index = key ^ n->key;
  1200. /* Step 3: Process the leaf, if that fails fall back to backtracing */
  1201. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  1202. struct fib_info *fi = fa->fa_info;
  1203. int nhsel, err;
  1204. if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
  1205. if (index >= (1ul << fa->fa_slen))
  1206. continue;
  1207. }
  1208. if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
  1209. continue;
  1210. if (fi->fib_dead)
  1211. continue;
  1212. if (fa->fa_info->fib_scope < flp->flowi4_scope)
  1213. continue;
  1214. fib_alias_accessed(fa);
  1215. err = fib_props[fa->fa_type].error;
  1216. if (unlikely(err < 0)) {
  1217. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1218. this_cpu_inc(stats->semantic_match_passed);
  1219. #endif
  1220. return err;
  1221. }
  1222. if (fi->fib_flags & RTNH_F_DEAD)
  1223. continue;
  1224. for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
  1225. const struct fib_nh *nh = &fi->fib_nh[nhsel];
  1226. struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
  1227. if (nh->nh_flags & RTNH_F_DEAD)
  1228. continue;
  1229. if (in_dev &&
  1230. IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
  1231. nh->nh_flags & RTNH_F_LINKDOWN &&
  1232. !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
  1233. continue;
  1234. if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
  1235. if (flp->flowi4_oif &&
  1236. flp->flowi4_oif != nh->nh_oif)
  1237. continue;
  1238. }
  1239. if (!(fib_flags & FIB_LOOKUP_NOREF))
  1240. refcount_inc(&fi->fib_clntref);
  1241. res->prefix = htonl(n->key);
  1242. res->prefixlen = KEYLENGTH - fa->fa_slen;
  1243. res->nh_sel = nhsel;
  1244. res->type = fa->fa_type;
  1245. res->scope = fi->fib_scope;
  1246. res->fi = fi;
  1247. res->table = tb;
  1248. res->fa_head = &n->leaf;
  1249. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1250. this_cpu_inc(stats->semantic_match_passed);
  1251. #endif
  1252. trace_fib_table_lookup_nh(nh);
  1253. return err;
  1254. }
  1255. }
  1256. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1257. this_cpu_inc(stats->semantic_match_miss);
  1258. #endif
  1259. goto backtrace;
  1260. }
  1261. EXPORT_SYMBOL_GPL(fib_table_lookup);
  1262. static void fib_remove_alias(struct trie *t, struct key_vector *tp,
  1263. struct key_vector *l, struct fib_alias *old)
  1264. {
  1265. /* record the location of the previous list_info entry */
  1266. struct hlist_node **pprev = old->fa_list.pprev;
  1267. struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
  1268. /* remove the fib_alias from the list */
  1269. hlist_del_rcu(&old->fa_list);
  1270. /* if we emptied the list this leaf will be freed and we can sort
  1271. * out parent suffix lengths as a part of trie_rebalance
  1272. */
  1273. if (hlist_empty(&l->leaf)) {
  1274. if (tp->slen == l->slen)
  1275. node_pull_suffix(tp, tp->pos);
  1276. put_child_root(tp, l->key, NULL);
  1277. node_free(l);
  1278. trie_rebalance(t, tp);
  1279. return;
  1280. }
  1281. /* only access fa if it is pointing at the last valid hlist_node */
  1282. if (*pprev)
  1283. return;
  1284. /* update the trie with the latest suffix length */
  1285. l->slen = fa->fa_slen;
  1286. node_pull_suffix(tp, fa->fa_slen);
  1287. }
  1288. /* Caller must hold RTNL. */
  1289. int fib_table_delete(struct net *net, struct fib_table *tb,
  1290. struct fib_config *cfg, struct netlink_ext_ack *extack)
  1291. {
  1292. struct trie *t = (struct trie *) tb->tb_data;
  1293. struct fib_alias *fa, *fa_to_delete;
  1294. struct key_vector *l, *tp;
  1295. u8 plen = cfg->fc_dst_len;
  1296. u8 slen = KEYLENGTH - plen;
  1297. u8 tos = cfg->fc_tos;
  1298. u32 key;
  1299. key = ntohl(cfg->fc_dst);
  1300. if (!fib_valid_key_len(key, plen, extack))
  1301. return -EINVAL;
  1302. l = fib_find_node(t, &tp, key);
  1303. if (!l)
  1304. return -ESRCH;
  1305. fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
  1306. if (!fa)
  1307. return -ESRCH;
  1308. pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
  1309. fa_to_delete = NULL;
  1310. hlist_for_each_entry_from(fa, fa_list) {
  1311. struct fib_info *fi = fa->fa_info;
  1312. if ((fa->fa_slen != slen) ||
  1313. (fa->tb_id != tb->tb_id) ||
  1314. (fa->fa_tos != tos))
  1315. break;
  1316. if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
  1317. (cfg->fc_scope == RT_SCOPE_NOWHERE ||
  1318. fa->fa_info->fib_scope == cfg->fc_scope) &&
  1319. (!cfg->fc_prefsrc ||
  1320. fi->fib_prefsrc == cfg->fc_prefsrc) &&
  1321. (!cfg->fc_protocol ||
  1322. fi->fib_protocol == cfg->fc_protocol) &&
  1323. fib_nh_match(cfg, fi, extack) == 0) {
  1324. fa_to_delete = fa;
  1325. break;
  1326. }
  1327. }
  1328. if (!fa_to_delete)
  1329. return -ESRCH;
  1330. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
  1331. fa_to_delete->fa_info, tos,
  1332. fa_to_delete->fa_type, tb->tb_id);
  1333. rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
  1334. &cfg->fc_nlinfo, 0);
  1335. if (!plen)
  1336. tb->tb_num_default--;
  1337. fib_remove_alias(t, tp, l, fa_to_delete);
  1338. if (fa_to_delete->fa_state & FA_S_ACCESSED)
  1339. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1340. fib_release_info(fa_to_delete->fa_info);
  1341. alias_free_mem_rcu(fa_to_delete);
  1342. return 0;
  1343. }
  1344. /* Scan for the next leaf starting at the provided key value */
  1345. static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
  1346. {
  1347. struct key_vector *pn, *n = *tn;
  1348. unsigned long cindex;
  1349. /* this loop is meant to try and find the key in the trie */
  1350. do {
  1351. /* record parent and next child index */
  1352. pn = n;
  1353. cindex = (key > pn->key) ? get_index(key, pn) : 0;
  1354. if (cindex >> pn->bits)
  1355. break;
  1356. /* descend into the next child */
  1357. n = get_child_rcu(pn, cindex++);
  1358. if (!n)
  1359. break;
  1360. /* guarantee forward progress on the keys */
  1361. if (IS_LEAF(n) && (n->key >= key))
  1362. goto found;
  1363. } while (IS_TNODE(n));
  1364. /* this loop will search for the next leaf with a greater key */
  1365. while (!IS_TRIE(pn)) {
  1366. /* if we exhausted the parent node we will need to climb */
  1367. if (cindex >= (1ul << pn->bits)) {
  1368. t_key pkey = pn->key;
  1369. pn = node_parent_rcu(pn);
  1370. cindex = get_index(pkey, pn) + 1;
  1371. continue;
  1372. }
  1373. /* grab the next available node */
  1374. n = get_child_rcu(pn, cindex++);
  1375. if (!n)
  1376. continue;
  1377. /* no need to compare keys since we bumped the index */
  1378. if (IS_LEAF(n))
  1379. goto found;
  1380. /* Rescan start scanning in new node */
  1381. pn = n;
  1382. cindex = 0;
  1383. }
  1384. *tn = pn;
  1385. return NULL; /* Root of trie */
  1386. found:
  1387. /* if we are at the limit for keys just return NULL for the tnode */
  1388. *tn = pn;
  1389. return n;
  1390. }
  1391. static void fib_trie_free(struct fib_table *tb)
  1392. {
  1393. struct trie *t = (struct trie *)tb->tb_data;
  1394. struct key_vector *pn = t->kv;
  1395. unsigned long cindex = 1;
  1396. struct hlist_node *tmp;
  1397. struct fib_alias *fa;
  1398. /* walk trie in reverse order and free everything */
  1399. for (;;) {
  1400. struct key_vector *n;
  1401. if (!(cindex--)) {
  1402. t_key pkey = pn->key;
  1403. if (IS_TRIE(pn))
  1404. break;
  1405. n = pn;
  1406. pn = node_parent(pn);
  1407. /* drop emptied tnode */
  1408. put_child_root(pn, n->key, NULL);
  1409. node_free(n);
  1410. cindex = get_index(pkey, pn);
  1411. continue;
  1412. }
  1413. /* grab the next available node */
  1414. n = get_child(pn, cindex);
  1415. if (!n)
  1416. continue;
  1417. if (IS_TNODE(n)) {
  1418. /* record pn and cindex for leaf walking */
  1419. pn = n;
  1420. cindex = 1ul << n->bits;
  1421. continue;
  1422. }
  1423. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1424. hlist_del_rcu(&fa->fa_list);
  1425. alias_free_mem_rcu(fa);
  1426. }
  1427. put_child_root(pn, n->key, NULL);
  1428. node_free(n);
  1429. }
  1430. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1431. free_percpu(t->stats);
  1432. #endif
  1433. kfree(tb);
  1434. }
  1435. struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
  1436. {
  1437. struct trie *ot = (struct trie *)oldtb->tb_data;
  1438. struct key_vector *l, *tp = ot->kv;
  1439. struct fib_table *local_tb;
  1440. struct fib_alias *fa;
  1441. struct trie *lt;
  1442. t_key key = 0;
  1443. if (oldtb->tb_data == oldtb->__data)
  1444. return oldtb;
  1445. local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
  1446. if (!local_tb)
  1447. return NULL;
  1448. lt = (struct trie *)local_tb->tb_data;
  1449. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1450. struct key_vector *local_l = NULL, *local_tp;
  1451. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1452. struct fib_alias *new_fa;
  1453. if (local_tb->tb_id != fa->tb_id)
  1454. continue;
  1455. /* clone fa for new local table */
  1456. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1457. if (!new_fa)
  1458. goto out;
  1459. memcpy(new_fa, fa, sizeof(*fa));
  1460. /* insert clone into table */
  1461. if (!local_l)
  1462. local_l = fib_find_node(lt, &local_tp, l->key);
  1463. if (fib_insert_alias(lt, local_tp, local_l, new_fa,
  1464. NULL, l->key)) {
  1465. kmem_cache_free(fn_alias_kmem, new_fa);
  1466. goto out;
  1467. }
  1468. }
  1469. /* stop loop if key wrapped back to 0 */
  1470. key = l->key + 1;
  1471. if (key < l->key)
  1472. break;
  1473. }
  1474. return local_tb;
  1475. out:
  1476. fib_trie_free(local_tb);
  1477. return NULL;
  1478. }
  1479. /* Caller must hold RTNL */
  1480. void fib_table_flush_external(struct fib_table *tb)
  1481. {
  1482. struct trie *t = (struct trie *)tb->tb_data;
  1483. struct key_vector *pn = t->kv;
  1484. unsigned long cindex = 1;
  1485. struct hlist_node *tmp;
  1486. struct fib_alias *fa;
  1487. /* walk trie in reverse order */
  1488. for (;;) {
  1489. unsigned char slen = 0;
  1490. struct key_vector *n;
  1491. if (!(cindex--)) {
  1492. t_key pkey = pn->key;
  1493. /* cannot resize the trie vector */
  1494. if (IS_TRIE(pn))
  1495. break;
  1496. /* update the suffix to address pulled leaves */
  1497. if (pn->slen > pn->pos)
  1498. update_suffix(pn);
  1499. /* resize completed node */
  1500. pn = resize(t, pn);
  1501. cindex = get_index(pkey, pn);
  1502. continue;
  1503. }
  1504. /* grab the next available node */
  1505. n = get_child(pn, cindex);
  1506. if (!n)
  1507. continue;
  1508. if (IS_TNODE(n)) {
  1509. /* record pn and cindex for leaf walking */
  1510. pn = n;
  1511. cindex = 1ul << n->bits;
  1512. continue;
  1513. }
  1514. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1515. /* if alias was cloned to local then we just
  1516. * need to remove the local copy from main
  1517. */
  1518. if (tb->tb_id != fa->tb_id) {
  1519. hlist_del_rcu(&fa->fa_list);
  1520. alias_free_mem_rcu(fa);
  1521. continue;
  1522. }
  1523. /* record local slen */
  1524. slen = fa->fa_slen;
  1525. }
  1526. /* update leaf slen */
  1527. n->slen = slen;
  1528. if (hlist_empty(&n->leaf)) {
  1529. put_child_root(pn, n->key, NULL);
  1530. node_free(n);
  1531. }
  1532. }
  1533. }
  1534. /* Caller must hold RTNL. */
  1535. int fib_table_flush(struct net *net, struct fib_table *tb)
  1536. {
  1537. struct trie *t = (struct trie *)tb->tb_data;
  1538. struct key_vector *pn = t->kv;
  1539. unsigned long cindex = 1;
  1540. struct hlist_node *tmp;
  1541. struct fib_alias *fa;
  1542. int found = 0;
  1543. /* walk trie in reverse order */
  1544. for (;;) {
  1545. unsigned char slen = 0;
  1546. struct key_vector *n;
  1547. if (!(cindex--)) {
  1548. t_key pkey = pn->key;
  1549. /* cannot resize the trie vector */
  1550. if (IS_TRIE(pn))
  1551. break;
  1552. /* update the suffix to address pulled leaves */
  1553. if (pn->slen > pn->pos)
  1554. update_suffix(pn);
  1555. /* resize completed node */
  1556. pn = resize(t, pn);
  1557. cindex = get_index(pkey, pn);
  1558. continue;
  1559. }
  1560. /* grab the next available node */
  1561. n = get_child(pn, cindex);
  1562. if (!n)
  1563. continue;
  1564. if (IS_TNODE(n)) {
  1565. /* record pn and cindex for leaf walking */
  1566. pn = n;
  1567. cindex = 1ul << n->bits;
  1568. continue;
  1569. }
  1570. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1571. struct fib_info *fi = fa->fa_info;
  1572. if (!fi || !(fi->fib_flags & RTNH_F_DEAD) ||
  1573. tb->tb_id != fa->tb_id) {
  1574. slen = fa->fa_slen;
  1575. continue;
  1576. }
  1577. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
  1578. n->key,
  1579. KEYLENGTH - fa->fa_slen,
  1580. fi, fa->fa_tos, fa->fa_type,
  1581. tb->tb_id);
  1582. hlist_del_rcu(&fa->fa_list);
  1583. fib_release_info(fa->fa_info);
  1584. alias_free_mem_rcu(fa);
  1585. found++;
  1586. }
  1587. /* update leaf slen */
  1588. n->slen = slen;
  1589. if (hlist_empty(&n->leaf)) {
  1590. put_child_root(pn, n->key, NULL);
  1591. node_free(n);
  1592. }
  1593. }
  1594. pr_debug("trie_flush found=%d\n", found);
  1595. return found;
  1596. }
  1597. static void fib_leaf_notify(struct net *net, struct key_vector *l,
  1598. struct fib_table *tb, struct notifier_block *nb)
  1599. {
  1600. struct fib_alias *fa;
  1601. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1602. struct fib_info *fi = fa->fa_info;
  1603. if (!fi)
  1604. continue;
  1605. /* local and main table can share the same trie,
  1606. * so don't notify twice for the same entry.
  1607. */
  1608. if (tb->tb_id != fa->tb_id)
  1609. continue;
  1610. call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
  1611. KEYLENGTH - fa->fa_slen, fi, fa->fa_tos,
  1612. fa->fa_type, fa->tb_id);
  1613. }
  1614. }
  1615. static void fib_table_notify(struct net *net, struct fib_table *tb,
  1616. struct notifier_block *nb)
  1617. {
  1618. struct trie *t = (struct trie *)tb->tb_data;
  1619. struct key_vector *l, *tp = t->kv;
  1620. t_key key = 0;
  1621. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1622. fib_leaf_notify(net, l, tb, nb);
  1623. key = l->key + 1;
  1624. /* stop in case of wrap around */
  1625. if (key < l->key)
  1626. break;
  1627. }
  1628. }
  1629. void fib_notify(struct net *net, struct notifier_block *nb)
  1630. {
  1631. unsigned int h;
  1632. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1633. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1634. struct fib_table *tb;
  1635. hlist_for_each_entry_rcu(tb, head, tb_hlist)
  1636. fib_table_notify(net, tb, nb);
  1637. }
  1638. }
  1639. static void __trie_free_rcu(struct rcu_head *head)
  1640. {
  1641. struct fib_table *tb = container_of(head, struct fib_table, rcu);
  1642. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1643. struct trie *t = (struct trie *)tb->tb_data;
  1644. if (tb->tb_data == tb->__data)
  1645. free_percpu(t->stats);
  1646. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1647. kfree(tb);
  1648. }
  1649. void fib_free_table(struct fib_table *tb)
  1650. {
  1651. call_rcu(&tb->rcu, __trie_free_rcu);
  1652. }
  1653. static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
  1654. struct sk_buff *skb, struct netlink_callback *cb)
  1655. {
  1656. __be32 xkey = htonl(l->key);
  1657. struct fib_alias *fa;
  1658. int i, s_i;
  1659. s_i = cb->args[4];
  1660. i = 0;
  1661. /* rcu_read_lock is hold by caller */
  1662. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1663. int err;
  1664. if (i < s_i) {
  1665. i++;
  1666. continue;
  1667. }
  1668. if (tb->tb_id != fa->tb_id) {
  1669. i++;
  1670. continue;
  1671. }
  1672. err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
  1673. cb->nlh->nlmsg_seq, RTM_NEWROUTE,
  1674. tb->tb_id, fa->fa_type,
  1675. xkey, KEYLENGTH - fa->fa_slen,
  1676. fa->fa_tos, fa->fa_info, NLM_F_MULTI);
  1677. if (err < 0) {
  1678. cb->args[4] = i;
  1679. return err;
  1680. }
  1681. i++;
  1682. }
  1683. cb->args[4] = i;
  1684. return skb->len;
  1685. }
  1686. /* rcu_read_lock needs to be hold by caller from readside */
  1687. int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
  1688. struct netlink_callback *cb)
  1689. {
  1690. struct trie *t = (struct trie *)tb->tb_data;
  1691. struct key_vector *l, *tp = t->kv;
  1692. /* Dump starting at last key.
  1693. * Note: 0.0.0.0/0 (ie default) is first key.
  1694. */
  1695. int count = cb->args[2];
  1696. t_key key = cb->args[3];
  1697. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1698. int err;
  1699. err = fn_trie_dump_leaf(l, tb, skb, cb);
  1700. if (err < 0) {
  1701. cb->args[3] = key;
  1702. cb->args[2] = count;
  1703. return err;
  1704. }
  1705. ++count;
  1706. key = l->key + 1;
  1707. memset(&cb->args[4], 0,
  1708. sizeof(cb->args) - 4*sizeof(cb->args[0]));
  1709. /* stop loop if key wrapped back to 0 */
  1710. if (key < l->key)
  1711. break;
  1712. }
  1713. cb->args[3] = key;
  1714. cb->args[2] = count;
  1715. return skb->len;
  1716. }
  1717. void __init fib_trie_init(void)
  1718. {
  1719. fn_alias_kmem = kmem_cache_create("ip_fib_alias",
  1720. sizeof(struct fib_alias),
  1721. 0, SLAB_PANIC, NULL);
  1722. trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
  1723. LEAF_SIZE,
  1724. 0, SLAB_PANIC, NULL);
  1725. }
  1726. struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
  1727. {
  1728. struct fib_table *tb;
  1729. struct trie *t;
  1730. size_t sz = sizeof(*tb);
  1731. if (!alias)
  1732. sz += sizeof(struct trie);
  1733. tb = kzalloc(sz, GFP_KERNEL);
  1734. if (!tb)
  1735. return NULL;
  1736. tb->tb_id = id;
  1737. tb->tb_num_default = 0;
  1738. tb->tb_data = (alias ? alias->__data : tb->__data);
  1739. if (alias)
  1740. return tb;
  1741. t = (struct trie *) tb->tb_data;
  1742. t->kv[0].pos = KEYLENGTH;
  1743. t->kv[0].slen = KEYLENGTH;
  1744. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1745. t->stats = alloc_percpu(struct trie_use_stats);
  1746. if (!t->stats) {
  1747. kfree(tb);
  1748. tb = NULL;
  1749. }
  1750. #endif
  1751. return tb;
  1752. }
  1753. #ifdef CONFIG_PROC_FS
  1754. /* Depth first Trie walk iterator */
  1755. struct fib_trie_iter {
  1756. struct seq_net_private p;
  1757. struct fib_table *tb;
  1758. struct key_vector *tnode;
  1759. unsigned int index;
  1760. unsigned int depth;
  1761. };
  1762. static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
  1763. {
  1764. unsigned long cindex = iter->index;
  1765. struct key_vector *pn = iter->tnode;
  1766. t_key pkey;
  1767. pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
  1768. iter->tnode, iter->index, iter->depth);
  1769. while (!IS_TRIE(pn)) {
  1770. while (cindex < child_length(pn)) {
  1771. struct key_vector *n = get_child_rcu(pn, cindex++);
  1772. if (!n)
  1773. continue;
  1774. if (IS_LEAF(n)) {
  1775. iter->tnode = pn;
  1776. iter->index = cindex;
  1777. } else {
  1778. /* push down one level */
  1779. iter->tnode = n;
  1780. iter->index = 0;
  1781. ++iter->depth;
  1782. }
  1783. return n;
  1784. }
  1785. /* Current node exhausted, pop back up */
  1786. pkey = pn->key;
  1787. pn = node_parent_rcu(pn);
  1788. cindex = get_index(pkey, pn) + 1;
  1789. --iter->depth;
  1790. }
  1791. /* record root node so further searches know we are done */
  1792. iter->tnode = pn;
  1793. iter->index = 0;
  1794. return NULL;
  1795. }
  1796. static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
  1797. struct trie *t)
  1798. {
  1799. struct key_vector *n, *pn;
  1800. if (!t)
  1801. return NULL;
  1802. pn = t->kv;
  1803. n = rcu_dereference(pn->tnode[0]);
  1804. if (!n)
  1805. return NULL;
  1806. if (IS_TNODE(n)) {
  1807. iter->tnode = n;
  1808. iter->index = 0;
  1809. iter->depth = 1;
  1810. } else {
  1811. iter->tnode = pn;
  1812. iter->index = 0;
  1813. iter->depth = 0;
  1814. }
  1815. return n;
  1816. }
  1817. static void trie_collect_stats(struct trie *t, struct trie_stat *s)
  1818. {
  1819. struct key_vector *n;
  1820. struct fib_trie_iter iter;
  1821. memset(s, 0, sizeof(*s));
  1822. rcu_read_lock();
  1823. for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
  1824. if (IS_LEAF(n)) {
  1825. struct fib_alias *fa;
  1826. s->leaves++;
  1827. s->totdepth += iter.depth;
  1828. if (iter.depth > s->maxdepth)
  1829. s->maxdepth = iter.depth;
  1830. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
  1831. ++s->prefixes;
  1832. } else {
  1833. s->tnodes++;
  1834. if (n->bits < MAX_STAT_DEPTH)
  1835. s->nodesizes[n->bits]++;
  1836. s->nullpointers += tn_info(n)->empty_children;
  1837. }
  1838. }
  1839. rcu_read_unlock();
  1840. }
  1841. /*
  1842. * This outputs /proc/net/fib_triestats
  1843. */
  1844. static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
  1845. {
  1846. unsigned int i, max, pointers, bytes, avdepth;
  1847. if (stat->leaves)
  1848. avdepth = stat->totdepth*100 / stat->leaves;
  1849. else
  1850. avdepth = 0;
  1851. seq_printf(seq, "\tAver depth: %u.%02d\n",
  1852. avdepth / 100, avdepth % 100);
  1853. seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
  1854. seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
  1855. bytes = LEAF_SIZE * stat->leaves;
  1856. seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
  1857. bytes += sizeof(struct fib_alias) * stat->prefixes;
  1858. seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
  1859. bytes += TNODE_SIZE(0) * stat->tnodes;
  1860. max = MAX_STAT_DEPTH;
  1861. while (max > 0 && stat->nodesizes[max-1] == 0)
  1862. max--;
  1863. pointers = 0;
  1864. for (i = 1; i < max; i++)
  1865. if (stat->nodesizes[i] != 0) {
  1866. seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
  1867. pointers += (1<<i) * stat->nodesizes[i];
  1868. }
  1869. seq_putc(seq, '\n');
  1870. seq_printf(seq, "\tPointers: %u\n", pointers);
  1871. bytes += sizeof(struct key_vector *) * pointers;
  1872. seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
  1873. seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
  1874. }
  1875. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1876. static void trie_show_usage(struct seq_file *seq,
  1877. const struct trie_use_stats __percpu *stats)
  1878. {
  1879. struct trie_use_stats s = { 0 };
  1880. int cpu;
  1881. /* loop through all of the CPUs and gather up the stats */
  1882. for_each_possible_cpu(cpu) {
  1883. const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
  1884. s.gets += pcpu->gets;
  1885. s.backtrack += pcpu->backtrack;
  1886. s.semantic_match_passed += pcpu->semantic_match_passed;
  1887. s.semantic_match_miss += pcpu->semantic_match_miss;
  1888. s.null_node_hit += pcpu->null_node_hit;
  1889. s.resize_node_skipped += pcpu->resize_node_skipped;
  1890. }
  1891. seq_printf(seq, "\nCounters:\n---------\n");
  1892. seq_printf(seq, "gets = %u\n", s.gets);
  1893. seq_printf(seq, "backtracks = %u\n", s.backtrack);
  1894. seq_printf(seq, "semantic match passed = %u\n",
  1895. s.semantic_match_passed);
  1896. seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
  1897. seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
  1898. seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
  1899. }
  1900. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1901. static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
  1902. {
  1903. if (tb->tb_id == RT_TABLE_LOCAL)
  1904. seq_puts(seq, "Local:\n");
  1905. else if (tb->tb_id == RT_TABLE_MAIN)
  1906. seq_puts(seq, "Main:\n");
  1907. else
  1908. seq_printf(seq, "Id %d:\n", tb->tb_id);
  1909. }
  1910. static int fib_triestat_seq_show(struct seq_file *seq, void *v)
  1911. {
  1912. struct net *net = (struct net *)seq->private;
  1913. unsigned int h;
  1914. seq_printf(seq,
  1915. "Basic info: size of leaf:"
  1916. " %zd bytes, size of tnode: %zd bytes.\n",
  1917. LEAF_SIZE, TNODE_SIZE(0));
  1918. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1919. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1920. struct fib_table *tb;
  1921. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1922. struct trie *t = (struct trie *) tb->tb_data;
  1923. struct trie_stat stat;
  1924. if (!t)
  1925. continue;
  1926. fib_table_print(seq, tb);
  1927. trie_collect_stats(t, &stat);
  1928. trie_show_stats(seq, &stat);
  1929. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1930. trie_show_usage(seq, t->stats);
  1931. #endif
  1932. }
  1933. }
  1934. return 0;
  1935. }
  1936. static int fib_triestat_seq_open(struct inode *inode, struct file *file)
  1937. {
  1938. return single_open_net(inode, file, fib_triestat_seq_show);
  1939. }
  1940. static const struct file_operations fib_triestat_fops = {
  1941. .owner = THIS_MODULE,
  1942. .open = fib_triestat_seq_open,
  1943. .read = seq_read,
  1944. .llseek = seq_lseek,
  1945. .release = single_release_net,
  1946. };
  1947. static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
  1948. {
  1949. struct fib_trie_iter *iter = seq->private;
  1950. struct net *net = seq_file_net(seq);
  1951. loff_t idx = 0;
  1952. unsigned int h;
  1953. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1954. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1955. struct fib_table *tb;
  1956. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1957. struct key_vector *n;
  1958. for (n = fib_trie_get_first(iter,
  1959. (struct trie *) tb->tb_data);
  1960. n; n = fib_trie_get_next(iter))
  1961. if (pos == idx++) {
  1962. iter->tb = tb;
  1963. return n;
  1964. }
  1965. }
  1966. }
  1967. return NULL;
  1968. }
  1969. static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
  1970. __acquires(RCU)
  1971. {
  1972. rcu_read_lock();
  1973. return fib_trie_get_idx(seq, *pos);
  1974. }
  1975. static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1976. {
  1977. struct fib_trie_iter *iter = seq->private;
  1978. struct net *net = seq_file_net(seq);
  1979. struct fib_table *tb = iter->tb;
  1980. struct hlist_node *tb_node;
  1981. unsigned int h;
  1982. struct key_vector *n;
  1983. ++*pos;
  1984. /* next node in same table */
  1985. n = fib_trie_get_next(iter);
  1986. if (n)
  1987. return n;
  1988. /* walk rest of this hash chain */
  1989. h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
  1990. while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
  1991. tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
  1992. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  1993. if (n)
  1994. goto found;
  1995. }
  1996. /* new hash chain */
  1997. while (++h < FIB_TABLE_HASHSZ) {
  1998. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1999. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  2000. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  2001. if (n)
  2002. goto found;
  2003. }
  2004. }
  2005. return NULL;
  2006. found:
  2007. iter->tb = tb;
  2008. return n;
  2009. }
  2010. static void fib_trie_seq_stop(struct seq_file *seq, void *v)
  2011. __releases(RCU)
  2012. {
  2013. rcu_read_unlock();
  2014. }
  2015. static void seq_indent(struct seq_file *seq, int n)
  2016. {
  2017. while (n-- > 0)
  2018. seq_puts(seq, " ");
  2019. }
  2020. static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
  2021. {
  2022. switch (s) {
  2023. case RT_SCOPE_UNIVERSE: return "universe";
  2024. case RT_SCOPE_SITE: return "site";
  2025. case RT_SCOPE_LINK: return "link";
  2026. case RT_SCOPE_HOST: return "host";
  2027. case RT_SCOPE_NOWHERE: return "nowhere";
  2028. default:
  2029. snprintf(buf, len, "scope=%d", s);
  2030. return buf;
  2031. }
  2032. }
  2033. static const char *const rtn_type_names[__RTN_MAX] = {
  2034. [RTN_UNSPEC] = "UNSPEC",
  2035. [RTN_UNICAST] = "UNICAST",
  2036. [RTN_LOCAL] = "LOCAL",
  2037. [RTN_BROADCAST] = "BROADCAST",
  2038. [RTN_ANYCAST] = "ANYCAST",
  2039. [RTN_MULTICAST] = "MULTICAST",
  2040. [RTN_BLACKHOLE] = "BLACKHOLE",
  2041. [RTN_UNREACHABLE] = "UNREACHABLE",
  2042. [RTN_PROHIBIT] = "PROHIBIT",
  2043. [RTN_THROW] = "THROW",
  2044. [RTN_NAT] = "NAT",
  2045. [RTN_XRESOLVE] = "XRESOLVE",
  2046. };
  2047. static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
  2048. {
  2049. if (t < __RTN_MAX && rtn_type_names[t])
  2050. return rtn_type_names[t];
  2051. snprintf(buf, len, "type %u", t);
  2052. return buf;
  2053. }
  2054. /* Pretty print the trie */
  2055. static int fib_trie_seq_show(struct seq_file *seq, void *v)
  2056. {
  2057. const struct fib_trie_iter *iter = seq->private;
  2058. struct key_vector *n = v;
  2059. if (IS_TRIE(node_parent_rcu(n)))
  2060. fib_table_print(seq, iter->tb);
  2061. if (IS_TNODE(n)) {
  2062. __be32 prf = htonl(n->key);
  2063. seq_indent(seq, iter->depth-1);
  2064. seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
  2065. &prf, KEYLENGTH - n->pos - n->bits, n->bits,
  2066. tn_info(n)->full_children,
  2067. tn_info(n)->empty_children);
  2068. } else {
  2069. __be32 val = htonl(n->key);
  2070. struct fib_alias *fa;
  2071. seq_indent(seq, iter->depth);
  2072. seq_printf(seq, " |-- %pI4\n", &val);
  2073. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  2074. char buf1[32], buf2[32];
  2075. seq_indent(seq, iter->depth + 1);
  2076. seq_printf(seq, " /%zu %s %s",
  2077. KEYLENGTH - fa->fa_slen,
  2078. rtn_scope(buf1, sizeof(buf1),
  2079. fa->fa_info->fib_scope),
  2080. rtn_type(buf2, sizeof(buf2),
  2081. fa->fa_type));
  2082. if (fa->fa_tos)
  2083. seq_printf(seq, " tos=%d", fa->fa_tos);
  2084. seq_putc(seq, '\n');
  2085. }
  2086. }
  2087. return 0;
  2088. }
  2089. static const struct seq_operations fib_trie_seq_ops = {
  2090. .start = fib_trie_seq_start,
  2091. .next = fib_trie_seq_next,
  2092. .stop = fib_trie_seq_stop,
  2093. .show = fib_trie_seq_show,
  2094. };
  2095. static int fib_trie_seq_open(struct inode *inode, struct file *file)
  2096. {
  2097. return seq_open_net(inode, file, &fib_trie_seq_ops,
  2098. sizeof(struct fib_trie_iter));
  2099. }
  2100. static const struct file_operations fib_trie_fops = {
  2101. .owner = THIS_MODULE,
  2102. .open = fib_trie_seq_open,
  2103. .read = seq_read,
  2104. .llseek = seq_lseek,
  2105. .release = seq_release_net,
  2106. };
  2107. struct fib_route_iter {
  2108. struct seq_net_private p;
  2109. struct fib_table *main_tb;
  2110. struct key_vector *tnode;
  2111. loff_t pos;
  2112. t_key key;
  2113. };
  2114. static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
  2115. loff_t pos)
  2116. {
  2117. struct key_vector *l, **tp = &iter->tnode;
  2118. t_key key;
  2119. /* use cached location of previously found key */
  2120. if (iter->pos > 0 && pos >= iter->pos) {
  2121. key = iter->key;
  2122. } else {
  2123. iter->pos = 1;
  2124. key = 0;
  2125. }
  2126. pos -= iter->pos;
  2127. while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
  2128. key = l->key + 1;
  2129. iter->pos++;
  2130. l = NULL;
  2131. /* handle unlikely case of a key wrap */
  2132. if (!key)
  2133. break;
  2134. }
  2135. if (l)
  2136. iter->key = l->key; /* remember it */
  2137. else
  2138. iter->pos = 0; /* forget it */
  2139. return l;
  2140. }
  2141. static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
  2142. __acquires(RCU)
  2143. {
  2144. struct fib_route_iter *iter = seq->private;
  2145. struct fib_table *tb;
  2146. struct trie *t;
  2147. rcu_read_lock();
  2148. tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
  2149. if (!tb)
  2150. return NULL;
  2151. iter->main_tb = tb;
  2152. t = (struct trie *)tb->tb_data;
  2153. iter->tnode = t->kv;
  2154. if (*pos != 0)
  2155. return fib_route_get_idx(iter, *pos);
  2156. iter->pos = 0;
  2157. iter->key = KEY_MAX;
  2158. return SEQ_START_TOKEN;
  2159. }
  2160. static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2161. {
  2162. struct fib_route_iter *iter = seq->private;
  2163. struct key_vector *l = NULL;
  2164. t_key key = iter->key + 1;
  2165. ++*pos;
  2166. /* only allow key of 0 for start of sequence */
  2167. if ((v == SEQ_START_TOKEN) || key)
  2168. l = leaf_walk_rcu(&iter->tnode, key);
  2169. if (l) {
  2170. iter->key = l->key;
  2171. iter->pos++;
  2172. } else {
  2173. iter->pos = 0;
  2174. }
  2175. return l;
  2176. }
  2177. static void fib_route_seq_stop(struct seq_file *seq, void *v)
  2178. __releases(RCU)
  2179. {
  2180. rcu_read_unlock();
  2181. }
  2182. static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
  2183. {
  2184. unsigned int flags = 0;
  2185. if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
  2186. flags = RTF_REJECT;
  2187. if (fi && fi->fib_nh->nh_gw)
  2188. flags |= RTF_GATEWAY;
  2189. if (mask == htonl(0xFFFFFFFF))
  2190. flags |= RTF_HOST;
  2191. flags |= RTF_UP;
  2192. return flags;
  2193. }
  2194. /*
  2195. * This outputs /proc/net/route.
  2196. * The format of the file is not supposed to be changed
  2197. * and needs to be same as fib_hash output to avoid breaking
  2198. * legacy utilities
  2199. */
  2200. static int fib_route_seq_show(struct seq_file *seq, void *v)
  2201. {
  2202. struct fib_route_iter *iter = seq->private;
  2203. struct fib_table *tb = iter->main_tb;
  2204. struct fib_alias *fa;
  2205. struct key_vector *l = v;
  2206. __be32 prefix;
  2207. if (v == SEQ_START_TOKEN) {
  2208. seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
  2209. "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
  2210. "\tWindow\tIRTT");
  2211. return 0;
  2212. }
  2213. prefix = htonl(l->key);
  2214. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  2215. const struct fib_info *fi = fa->fa_info;
  2216. __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
  2217. unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
  2218. if ((fa->fa_type == RTN_BROADCAST) ||
  2219. (fa->fa_type == RTN_MULTICAST))
  2220. continue;
  2221. if (fa->tb_id != tb->tb_id)
  2222. continue;
  2223. seq_setwidth(seq, 127);
  2224. if (fi)
  2225. seq_printf(seq,
  2226. "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
  2227. "%d\t%08X\t%d\t%u\t%u",
  2228. fi->fib_dev ? fi->fib_dev->name : "*",
  2229. prefix,
  2230. fi->fib_nh->nh_gw, flags, 0, 0,
  2231. fi->fib_priority,
  2232. mask,
  2233. (fi->fib_advmss ?
  2234. fi->fib_advmss + 40 : 0),
  2235. fi->fib_window,
  2236. fi->fib_rtt >> 3);
  2237. else
  2238. seq_printf(seq,
  2239. "*\t%08X\t%08X\t%04X\t%d\t%u\t"
  2240. "%d\t%08X\t%d\t%u\t%u",
  2241. prefix, 0, flags, 0, 0, 0,
  2242. mask, 0, 0, 0);
  2243. seq_pad(seq, '\n');
  2244. }
  2245. return 0;
  2246. }
  2247. static const struct seq_operations fib_route_seq_ops = {
  2248. .start = fib_route_seq_start,
  2249. .next = fib_route_seq_next,
  2250. .stop = fib_route_seq_stop,
  2251. .show = fib_route_seq_show,
  2252. };
  2253. static int fib_route_seq_open(struct inode *inode, struct file *file)
  2254. {
  2255. return seq_open_net(inode, file, &fib_route_seq_ops,
  2256. sizeof(struct fib_route_iter));
  2257. }
  2258. static const struct file_operations fib_route_fops = {
  2259. .owner = THIS_MODULE,
  2260. .open = fib_route_seq_open,
  2261. .read = seq_read,
  2262. .llseek = seq_lseek,
  2263. .release = seq_release_net,
  2264. };
  2265. int __net_init fib_proc_init(struct net *net)
  2266. {
  2267. if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
  2268. goto out1;
  2269. if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
  2270. &fib_triestat_fops))
  2271. goto out2;
  2272. if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
  2273. goto out3;
  2274. return 0;
  2275. out3:
  2276. remove_proc_entry("fib_triestat", net->proc_net);
  2277. out2:
  2278. remove_proc_entry("fib_trie", net->proc_net);
  2279. out1:
  2280. return -ENOMEM;
  2281. }
  2282. void __net_exit fib_proc_exit(struct net *net)
  2283. {
  2284. remove_proc_entry("fib_trie", net->proc_net);
  2285. remove_proc_entry("fib_triestat", net->proc_net);
  2286. remove_proc_entry("route", net->proc_net);
  2287. }
  2288. #endif /* CONFIG_PROC_FS */