esp4.c 23 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016
  1. #define pr_fmt(fmt) "IPsec: " fmt
  2. #include <crypto/aead.h>
  3. #include <crypto/authenc.h>
  4. #include <linux/err.h>
  5. #include <linux/module.h>
  6. #include <net/ip.h>
  7. #include <net/xfrm.h>
  8. #include <net/esp.h>
  9. #include <linux/scatterlist.h>
  10. #include <linux/kernel.h>
  11. #include <linux/pfkeyv2.h>
  12. #include <linux/rtnetlink.h>
  13. #include <linux/slab.h>
  14. #include <linux/spinlock.h>
  15. #include <linux/in6.h>
  16. #include <net/icmp.h>
  17. #include <net/protocol.h>
  18. #include <net/udp.h>
  19. #include <linux/highmem.h>
  20. struct esp_skb_cb {
  21. struct xfrm_skb_cb xfrm;
  22. void *tmp;
  23. };
  24. struct esp_output_extra {
  25. __be32 seqhi;
  26. u32 esphoff;
  27. };
  28. #define ESP_SKB_CB(__skb) ((struct esp_skb_cb *)&((__skb)->cb[0]))
  29. static u32 esp4_get_mtu(struct xfrm_state *x, int mtu);
  30. /*
  31. * Allocate an AEAD request structure with extra space for SG and IV.
  32. *
  33. * For alignment considerations the IV is placed at the front, followed
  34. * by the request and finally the SG list.
  35. *
  36. * TODO: Use spare space in skb for this where possible.
  37. */
  38. static void *esp_alloc_tmp(struct crypto_aead *aead, int nfrags, int extralen)
  39. {
  40. unsigned int len;
  41. len = extralen;
  42. len += crypto_aead_ivsize(aead);
  43. if (len) {
  44. len += crypto_aead_alignmask(aead) &
  45. ~(crypto_tfm_ctx_alignment() - 1);
  46. len = ALIGN(len, crypto_tfm_ctx_alignment());
  47. }
  48. len += sizeof(struct aead_request) + crypto_aead_reqsize(aead);
  49. len = ALIGN(len, __alignof__(struct scatterlist));
  50. len += sizeof(struct scatterlist) * nfrags;
  51. return kmalloc(len, GFP_ATOMIC);
  52. }
  53. static inline void *esp_tmp_extra(void *tmp)
  54. {
  55. return PTR_ALIGN(tmp, __alignof__(struct esp_output_extra));
  56. }
  57. static inline u8 *esp_tmp_iv(struct crypto_aead *aead, void *tmp, int extralen)
  58. {
  59. return crypto_aead_ivsize(aead) ?
  60. PTR_ALIGN((u8 *)tmp + extralen,
  61. crypto_aead_alignmask(aead) + 1) : tmp + extralen;
  62. }
  63. static inline struct aead_request *esp_tmp_req(struct crypto_aead *aead, u8 *iv)
  64. {
  65. struct aead_request *req;
  66. req = (void *)PTR_ALIGN(iv + crypto_aead_ivsize(aead),
  67. crypto_tfm_ctx_alignment());
  68. aead_request_set_tfm(req, aead);
  69. return req;
  70. }
  71. static inline struct scatterlist *esp_req_sg(struct crypto_aead *aead,
  72. struct aead_request *req)
  73. {
  74. return (void *)ALIGN((unsigned long)(req + 1) +
  75. crypto_aead_reqsize(aead),
  76. __alignof__(struct scatterlist));
  77. }
  78. static void esp_ssg_unref(struct xfrm_state *x, void *tmp)
  79. {
  80. struct esp_output_extra *extra = esp_tmp_extra(tmp);
  81. struct crypto_aead *aead = x->data;
  82. int extralen = 0;
  83. u8 *iv;
  84. struct aead_request *req;
  85. struct scatterlist *sg;
  86. if (x->props.flags & XFRM_STATE_ESN)
  87. extralen += sizeof(*extra);
  88. extra = esp_tmp_extra(tmp);
  89. iv = esp_tmp_iv(aead, tmp, extralen);
  90. req = esp_tmp_req(aead, iv);
  91. /* Unref skb_frag_pages in the src scatterlist if necessary.
  92. * Skip the first sg which comes from skb->data.
  93. */
  94. if (req->src != req->dst)
  95. for (sg = sg_next(req->src); sg; sg = sg_next(sg))
  96. put_page(sg_page(sg));
  97. }
  98. static void esp_output_done(struct crypto_async_request *base, int err)
  99. {
  100. struct sk_buff *skb = base->data;
  101. void *tmp;
  102. struct dst_entry *dst = skb_dst(skb);
  103. struct xfrm_state *x = dst->xfrm;
  104. tmp = ESP_SKB_CB(skb)->tmp;
  105. esp_ssg_unref(x, tmp);
  106. kfree(tmp);
  107. xfrm_output_resume(skb, err);
  108. }
  109. /* Move ESP header back into place. */
  110. static void esp_restore_header(struct sk_buff *skb, unsigned int offset)
  111. {
  112. struct ip_esp_hdr *esph = (void *)(skb->data + offset);
  113. void *tmp = ESP_SKB_CB(skb)->tmp;
  114. __be32 *seqhi = esp_tmp_extra(tmp);
  115. esph->seq_no = esph->spi;
  116. esph->spi = *seqhi;
  117. }
  118. static void esp_output_restore_header(struct sk_buff *skb)
  119. {
  120. void *tmp = ESP_SKB_CB(skb)->tmp;
  121. struct esp_output_extra *extra = esp_tmp_extra(tmp);
  122. esp_restore_header(skb, skb_transport_offset(skb) + extra->esphoff -
  123. sizeof(__be32));
  124. }
  125. static struct ip_esp_hdr *esp_output_set_extra(struct sk_buff *skb,
  126. struct xfrm_state *x,
  127. struct ip_esp_hdr *esph,
  128. struct esp_output_extra *extra)
  129. {
  130. /* For ESN we move the header forward by 4 bytes to
  131. * accomodate the high bits. We will move it back after
  132. * encryption.
  133. */
  134. if ((x->props.flags & XFRM_STATE_ESN)) {
  135. __u32 seqhi;
  136. struct xfrm_offload *xo = xfrm_offload(skb);
  137. if (xo)
  138. seqhi = xo->seq.hi;
  139. else
  140. seqhi = XFRM_SKB_CB(skb)->seq.output.hi;
  141. extra->esphoff = (unsigned char *)esph -
  142. skb_transport_header(skb);
  143. esph = (struct ip_esp_hdr *)((unsigned char *)esph - 4);
  144. extra->seqhi = esph->spi;
  145. esph->seq_no = htonl(seqhi);
  146. }
  147. esph->spi = x->id.spi;
  148. return esph;
  149. }
  150. static void esp_output_done_esn(struct crypto_async_request *base, int err)
  151. {
  152. struct sk_buff *skb = base->data;
  153. esp_output_restore_header(skb);
  154. esp_output_done(base, err);
  155. }
  156. static void esp_output_fill_trailer(u8 *tail, int tfclen, int plen, __u8 proto)
  157. {
  158. /* Fill padding... */
  159. if (tfclen) {
  160. memset(tail, 0, tfclen);
  161. tail += tfclen;
  162. }
  163. do {
  164. int i;
  165. for (i = 0; i < plen - 2; i++)
  166. tail[i] = i + 1;
  167. } while (0);
  168. tail[plen - 2] = plen - 2;
  169. tail[plen - 1] = proto;
  170. }
  171. static void esp_output_udp_encap(struct xfrm_state *x, struct sk_buff *skb, struct esp_info *esp)
  172. {
  173. int encap_type;
  174. struct udphdr *uh;
  175. __be32 *udpdata32;
  176. __be16 sport, dport;
  177. struct xfrm_encap_tmpl *encap = x->encap;
  178. struct ip_esp_hdr *esph = esp->esph;
  179. spin_lock_bh(&x->lock);
  180. sport = encap->encap_sport;
  181. dport = encap->encap_dport;
  182. encap_type = encap->encap_type;
  183. spin_unlock_bh(&x->lock);
  184. uh = (struct udphdr *)esph;
  185. uh->source = sport;
  186. uh->dest = dport;
  187. uh->len = htons(skb->len + esp->tailen
  188. - skb_transport_offset(skb));
  189. uh->check = 0;
  190. switch (encap_type) {
  191. default:
  192. case UDP_ENCAP_ESPINUDP:
  193. esph = (struct ip_esp_hdr *)(uh + 1);
  194. break;
  195. case UDP_ENCAP_ESPINUDP_NON_IKE:
  196. udpdata32 = (__be32 *)(uh + 1);
  197. udpdata32[0] = udpdata32[1] = 0;
  198. esph = (struct ip_esp_hdr *)(udpdata32 + 2);
  199. break;
  200. }
  201. *skb_mac_header(skb) = IPPROTO_UDP;
  202. esp->esph = esph;
  203. }
  204. int esp_output_head(struct xfrm_state *x, struct sk_buff *skb, struct esp_info *esp)
  205. {
  206. u8 *tail;
  207. u8 *vaddr;
  208. int nfrags;
  209. int esph_offset;
  210. struct page *page;
  211. struct sk_buff *trailer;
  212. int tailen = esp->tailen;
  213. /* this is non-NULL only with UDP Encapsulation */
  214. if (x->encap)
  215. esp_output_udp_encap(x, skb, esp);
  216. if (!skb_cloned(skb)) {
  217. if (tailen <= skb_availroom(skb)) {
  218. nfrags = 1;
  219. trailer = skb;
  220. tail = skb_tail_pointer(trailer);
  221. goto skip_cow;
  222. } else if ((skb_shinfo(skb)->nr_frags < MAX_SKB_FRAGS)
  223. && !skb_has_frag_list(skb)) {
  224. int allocsize;
  225. struct sock *sk = skb->sk;
  226. struct page_frag *pfrag = &x->xfrag;
  227. esp->inplace = false;
  228. allocsize = ALIGN(tailen, L1_CACHE_BYTES);
  229. spin_lock_bh(&x->lock);
  230. if (unlikely(!skb_page_frag_refill(allocsize, pfrag, GFP_ATOMIC))) {
  231. spin_unlock_bh(&x->lock);
  232. goto cow;
  233. }
  234. page = pfrag->page;
  235. get_page(page);
  236. vaddr = kmap_atomic(page);
  237. tail = vaddr + pfrag->offset;
  238. esp_output_fill_trailer(tail, esp->tfclen, esp->plen, esp->proto);
  239. kunmap_atomic(vaddr);
  240. spin_unlock_bh(&x->lock);
  241. nfrags = skb_shinfo(skb)->nr_frags;
  242. __skb_fill_page_desc(skb, nfrags, page, pfrag->offset,
  243. tailen);
  244. skb_shinfo(skb)->nr_frags = ++nfrags;
  245. pfrag->offset = pfrag->offset + allocsize;
  246. nfrags++;
  247. skb->len += tailen;
  248. skb->data_len += tailen;
  249. skb->truesize += tailen;
  250. if (sk)
  251. refcount_add(tailen, &sk->sk_wmem_alloc);
  252. goto out;
  253. }
  254. }
  255. cow:
  256. esph_offset = (unsigned char *)esp->esph - skb_transport_header(skb);
  257. nfrags = skb_cow_data(skb, tailen, &trailer);
  258. if (nfrags < 0)
  259. goto out;
  260. tail = skb_tail_pointer(trailer);
  261. esp->esph = (struct ip_esp_hdr *)(skb_transport_header(skb) + esph_offset);
  262. skip_cow:
  263. esp_output_fill_trailer(tail, esp->tfclen, esp->plen, esp->proto);
  264. pskb_put(skb, trailer, tailen);
  265. out:
  266. return nfrags;
  267. }
  268. EXPORT_SYMBOL_GPL(esp_output_head);
  269. int esp_output_tail(struct xfrm_state *x, struct sk_buff *skb, struct esp_info *esp)
  270. {
  271. u8 *iv;
  272. int alen;
  273. void *tmp;
  274. int ivlen;
  275. int assoclen;
  276. int extralen;
  277. struct page *page;
  278. struct ip_esp_hdr *esph;
  279. struct crypto_aead *aead;
  280. struct aead_request *req;
  281. struct scatterlist *sg, *dsg;
  282. struct esp_output_extra *extra;
  283. int err = -ENOMEM;
  284. assoclen = sizeof(struct ip_esp_hdr);
  285. extralen = 0;
  286. if (x->props.flags & XFRM_STATE_ESN) {
  287. extralen += sizeof(*extra);
  288. assoclen += sizeof(__be32);
  289. }
  290. aead = x->data;
  291. alen = crypto_aead_authsize(aead);
  292. ivlen = crypto_aead_ivsize(aead);
  293. tmp = esp_alloc_tmp(aead, esp->nfrags + 2, extralen);
  294. if (!tmp)
  295. goto error;
  296. extra = esp_tmp_extra(tmp);
  297. iv = esp_tmp_iv(aead, tmp, extralen);
  298. req = esp_tmp_req(aead, iv);
  299. sg = esp_req_sg(aead, req);
  300. if (esp->inplace)
  301. dsg = sg;
  302. else
  303. dsg = &sg[esp->nfrags];
  304. esph = esp_output_set_extra(skb, x, esp->esph, extra);
  305. esp->esph = esph;
  306. sg_init_table(sg, esp->nfrags);
  307. err = skb_to_sgvec(skb, sg,
  308. (unsigned char *)esph - skb->data,
  309. assoclen + ivlen + esp->clen + alen);
  310. if (unlikely(err < 0))
  311. goto error;
  312. if (!esp->inplace) {
  313. int allocsize;
  314. struct page_frag *pfrag = &x->xfrag;
  315. allocsize = ALIGN(skb->data_len, L1_CACHE_BYTES);
  316. spin_lock_bh(&x->lock);
  317. if (unlikely(!skb_page_frag_refill(allocsize, pfrag, GFP_ATOMIC))) {
  318. spin_unlock_bh(&x->lock);
  319. goto error;
  320. }
  321. skb_shinfo(skb)->nr_frags = 1;
  322. page = pfrag->page;
  323. get_page(page);
  324. /* replace page frags in skb with new page */
  325. __skb_fill_page_desc(skb, 0, page, pfrag->offset, skb->data_len);
  326. pfrag->offset = pfrag->offset + allocsize;
  327. spin_unlock_bh(&x->lock);
  328. sg_init_table(dsg, skb_shinfo(skb)->nr_frags + 1);
  329. err = skb_to_sgvec(skb, dsg,
  330. (unsigned char *)esph - skb->data,
  331. assoclen + ivlen + esp->clen + alen);
  332. if (unlikely(err < 0))
  333. goto error;
  334. }
  335. if ((x->props.flags & XFRM_STATE_ESN))
  336. aead_request_set_callback(req, 0, esp_output_done_esn, skb);
  337. else
  338. aead_request_set_callback(req, 0, esp_output_done, skb);
  339. aead_request_set_crypt(req, sg, dsg, ivlen + esp->clen, iv);
  340. aead_request_set_ad(req, assoclen);
  341. memset(iv, 0, ivlen);
  342. memcpy(iv + ivlen - min(ivlen, 8), (u8 *)&esp->seqno + 8 - min(ivlen, 8),
  343. min(ivlen, 8));
  344. ESP_SKB_CB(skb)->tmp = tmp;
  345. err = crypto_aead_encrypt(req);
  346. switch (err) {
  347. case -EINPROGRESS:
  348. goto error;
  349. case -EBUSY:
  350. err = NET_XMIT_DROP;
  351. break;
  352. case 0:
  353. if ((x->props.flags & XFRM_STATE_ESN))
  354. esp_output_restore_header(skb);
  355. }
  356. if (sg != dsg)
  357. esp_ssg_unref(x, tmp);
  358. kfree(tmp);
  359. error:
  360. return err;
  361. }
  362. EXPORT_SYMBOL_GPL(esp_output_tail);
  363. static int esp_output(struct xfrm_state *x, struct sk_buff *skb)
  364. {
  365. int alen;
  366. int blksize;
  367. struct ip_esp_hdr *esph;
  368. struct crypto_aead *aead;
  369. struct esp_info esp;
  370. esp.inplace = true;
  371. esp.proto = *skb_mac_header(skb);
  372. *skb_mac_header(skb) = IPPROTO_ESP;
  373. /* skb is pure payload to encrypt */
  374. aead = x->data;
  375. alen = crypto_aead_authsize(aead);
  376. esp.tfclen = 0;
  377. if (x->tfcpad) {
  378. struct xfrm_dst *dst = (struct xfrm_dst *)skb_dst(skb);
  379. u32 padto;
  380. padto = min(x->tfcpad, esp4_get_mtu(x, dst->child_mtu_cached));
  381. if (skb->len < padto)
  382. esp.tfclen = padto - skb->len;
  383. }
  384. blksize = ALIGN(crypto_aead_blocksize(aead), 4);
  385. esp.clen = ALIGN(skb->len + 2 + esp.tfclen, blksize);
  386. esp.plen = esp.clen - skb->len - esp.tfclen;
  387. esp.tailen = esp.tfclen + esp.plen + alen;
  388. esp.esph = ip_esp_hdr(skb);
  389. esp.nfrags = esp_output_head(x, skb, &esp);
  390. if (esp.nfrags < 0)
  391. return esp.nfrags;
  392. esph = esp.esph;
  393. esph->spi = x->id.spi;
  394. esph->seq_no = htonl(XFRM_SKB_CB(skb)->seq.output.low);
  395. esp.seqno = cpu_to_be64(XFRM_SKB_CB(skb)->seq.output.low +
  396. ((u64)XFRM_SKB_CB(skb)->seq.output.hi << 32));
  397. skb_push(skb, -skb_network_offset(skb));
  398. return esp_output_tail(x, skb, &esp);
  399. }
  400. int esp_input_done2(struct sk_buff *skb, int err)
  401. {
  402. const struct iphdr *iph;
  403. struct xfrm_state *x = xfrm_input_state(skb);
  404. struct xfrm_offload *xo = xfrm_offload(skb);
  405. struct crypto_aead *aead = x->data;
  406. int alen = crypto_aead_authsize(aead);
  407. int hlen = sizeof(struct ip_esp_hdr) + crypto_aead_ivsize(aead);
  408. int elen = skb->len - hlen;
  409. int ihl;
  410. u8 nexthdr[2];
  411. int padlen;
  412. if (!xo || (xo && !(xo->flags & CRYPTO_DONE)))
  413. kfree(ESP_SKB_CB(skb)->tmp);
  414. if (unlikely(err))
  415. goto out;
  416. if (skb_copy_bits(skb, skb->len-alen-2, nexthdr, 2))
  417. BUG();
  418. err = -EINVAL;
  419. padlen = nexthdr[0];
  420. if (padlen + 2 + alen >= elen)
  421. goto out;
  422. /* ... check padding bits here. Silly. :-) */
  423. iph = ip_hdr(skb);
  424. ihl = iph->ihl * 4;
  425. if (x->encap) {
  426. struct xfrm_encap_tmpl *encap = x->encap;
  427. struct udphdr *uh = (void *)(skb_network_header(skb) + ihl);
  428. /*
  429. * 1) if the NAT-T peer's IP or port changed then
  430. * advertize the change to the keying daemon.
  431. * This is an inbound SA, so just compare
  432. * SRC ports.
  433. */
  434. if (iph->saddr != x->props.saddr.a4 ||
  435. uh->source != encap->encap_sport) {
  436. xfrm_address_t ipaddr;
  437. ipaddr.a4 = iph->saddr;
  438. km_new_mapping(x, &ipaddr, uh->source);
  439. /* XXX: perhaps add an extra
  440. * policy check here, to see
  441. * if we should allow or
  442. * reject a packet from a
  443. * different source
  444. * address/port.
  445. */
  446. }
  447. /*
  448. * 2) ignore UDP/TCP checksums in case
  449. * of NAT-T in Transport Mode, or
  450. * perform other post-processing fixes
  451. * as per draft-ietf-ipsec-udp-encaps-06,
  452. * section 3.1.2
  453. */
  454. if (x->props.mode == XFRM_MODE_TRANSPORT)
  455. skb->ip_summed = CHECKSUM_UNNECESSARY;
  456. }
  457. pskb_trim(skb, skb->len - alen - padlen - 2);
  458. __skb_pull(skb, hlen);
  459. if (x->props.mode == XFRM_MODE_TUNNEL)
  460. skb_reset_transport_header(skb);
  461. else
  462. skb_set_transport_header(skb, -ihl);
  463. err = nexthdr[1];
  464. /* RFC4303: Drop dummy packets without any error */
  465. if (err == IPPROTO_NONE)
  466. err = -EINVAL;
  467. out:
  468. return err;
  469. }
  470. EXPORT_SYMBOL_GPL(esp_input_done2);
  471. static void esp_input_done(struct crypto_async_request *base, int err)
  472. {
  473. struct sk_buff *skb = base->data;
  474. xfrm_input_resume(skb, esp_input_done2(skb, err));
  475. }
  476. static void esp_input_restore_header(struct sk_buff *skb)
  477. {
  478. esp_restore_header(skb, 0);
  479. __skb_pull(skb, 4);
  480. }
  481. static void esp_input_set_header(struct sk_buff *skb, __be32 *seqhi)
  482. {
  483. struct xfrm_state *x = xfrm_input_state(skb);
  484. struct ip_esp_hdr *esph = (struct ip_esp_hdr *)skb->data;
  485. /* For ESN we move the header forward by 4 bytes to
  486. * accomodate the high bits. We will move it back after
  487. * decryption.
  488. */
  489. if ((x->props.flags & XFRM_STATE_ESN)) {
  490. esph = skb_push(skb, 4);
  491. *seqhi = esph->spi;
  492. esph->spi = esph->seq_no;
  493. esph->seq_no = XFRM_SKB_CB(skb)->seq.input.hi;
  494. }
  495. }
  496. static void esp_input_done_esn(struct crypto_async_request *base, int err)
  497. {
  498. struct sk_buff *skb = base->data;
  499. esp_input_restore_header(skb);
  500. esp_input_done(base, err);
  501. }
  502. /*
  503. * Note: detecting truncated vs. non-truncated authentication data is very
  504. * expensive, so we only support truncated data, which is the recommended
  505. * and common case.
  506. */
  507. static int esp_input(struct xfrm_state *x, struct sk_buff *skb)
  508. {
  509. struct ip_esp_hdr *esph;
  510. struct crypto_aead *aead = x->data;
  511. struct aead_request *req;
  512. struct sk_buff *trailer;
  513. int ivlen = crypto_aead_ivsize(aead);
  514. int elen = skb->len - sizeof(*esph) - ivlen;
  515. int nfrags;
  516. int assoclen;
  517. int seqhilen;
  518. __be32 *seqhi;
  519. void *tmp;
  520. u8 *iv;
  521. struct scatterlist *sg;
  522. int err = -EINVAL;
  523. if (!pskb_may_pull(skb, sizeof(*esph) + ivlen))
  524. goto out;
  525. if (elen <= 0)
  526. goto out;
  527. assoclen = sizeof(*esph);
  528. seqhilen = 0;
  529. if (x->props.flags & XFRM_STATE_ESN) {
  530. seqhilen += sizeof(__be32);
  531. assoclen += seqhilen;
  532. }
  533. if (!skb_cloned(skb)) {
  534. if (!skb_is_nonlinear(skb)) {
  535. nfrags = 1;
  536. goto skip_cow;
  537. } else if (!skb_has_frag_list(skb)) {
  538. nfrags = skb_shinfo(skb)->nr_frags;
  539. nfrags++;
  540. goto skip_cow;
  541. }
  542. }
  543. err = skb_cow_data(skb, 0, &trailer);
  544. if (err < 0)
  545. goto out;
  546. nfrags = err;
  547. skip_cow:
  548. err = -ENOMEM;
  549. tmp = esp_alloc_tmp(aead, nfrags, seqhilen);
  550. if (!tmp)
  551. goto out;
  552. ESP_SKB_CB(skb)->tmp = tmp;
  553. seqhi = esp_tmp_extra(tmp);
  554. iv = esp_tmp_iv(aead, tmp, seqhilen);
  555. req = esp_tmp_req(aead, iv);
  556. sg = esp_req_sg(aead, req);
  557. esp_input_set_header(skb, seqhi);
  558. sg_init_table(sg, nfrags);
  559. err = skb_to_sgvec(skb, sg, 0, skb->len);
  560. if (unlikely(err < 0))
  561. goto out;
  562. skb->ip_summed = CHECKSUM_NONE;
  563. if ((x->props.flags & XFRM_STATE_ESN))
  564. aead_request_set_callback(req, 0, esp_input_done_esn, skb);
  565. else
  566. aead_request_set_callback(req, 0, esp_input_done, skb);
  567. aead_request_set_crypt(req, sg, sg, elen + ivlen, iv);
  568. aead_request_set_ad(req, assoclen);
  569. err = crypto_aead_decrypt(req);
  570. if (err == -EINPROGRESS)
  571. goto out;
  572. if ((x->props.flags & XFRM_STATE_ESN))
  573. esp_input_restore_header(skb);
  574. err = esp_input_done2(skb, err);
  575. out:
  576. return err;
  577. }
  578. static u32 esp4_get_mtu(struct xfrm_state *x, int mtu)
  579. {
  580. struct crypto_aead *aead = x->data;
  581. u32 blksize = ALIGN(crypto_aead_blocksize(aead), 4);
  582. unsigned int net_adj;
  583. switch (x->props.mode) {
  584. case XFRM_MODE_TRANSPORT:
  585. case XFRM_MODE_BEET:
  586. net_adj = sizeof(struct iphdr);
  587. break;
  588. case XFRM_MODE_TUNNEL:
  589. net_adj = 0;
  590. break;
  591. default:
  592. BUG();
  593. }
  594. return ((mtu - x->props.header_len - crypto_aead_authsize(aead) -
  595. net_adj) & ~(blksize - 1)) + net_adj - 2;
  596. }
  597. static int esp4_err(struct sk_buff *skb, u32 info)
  598. {
  599. struct net *net = dev_net(skb->dev);
  600. const struct iphdr *iph = (const struct iphdr *)skb->data;
  601. struct ip_esp_hdr *esph = (struct ip_esp_hdr *)(skb->data+(iph->ihl<<2));
  602. struct xfrm_state *x;
  603. switch (icmp_hdr(skb)->type) {
  604. case ICMP_DEST_UNREACH:
  605. if (icmp_hdr(skb)->code != ICMP_FRAG_NEEDED)
  606. return 0;
  607. case ICMP_REDIRECT:
  608. break;
  609. default:
  610. return 0;
  611. }
  612. x = xfrm_state_lookup(net, skb->mark, (const xfrm_address_t *)&iph->daddr,
  613. esph->spi, IPPROTO_ESP, AF_INET);
  614. if (!x)
  615. return 0;
  616. if (icmp_hdr(skb)->type == ICMP_DEST_UNREACH)
  617. ipv4_update_pmtu(skb, net, info, 0, 0, IPPROTO_ESP, 0);
  618. else
  619. ipv4_redirect(skb, net, 0, 0, IPPROTO_ESP, 0);
  620. xfrm_state_put(x);
  621. return 0;
  622. }
  623. static void esp_destroy(struct xfrm_state *x)
  624. {
  625. struct crypto_aead *aead = x->data;
  626. if (!aead)
  627. return;
  628. crypto_free_aead(aead);
  629. }
  630. static int esp_init_aead(struct xfrm_state *x)
  631. {
  632. char aead_name[CRYPTO_MAX_ALG_NAME];
  633. struct crypto_aead *aead;
  634. int err;
  635. u32 mask = 0;
  636. err = -ENAMETOOLONG;
  637. if (snprintf(aead_name, CRYPTO_MAX_ALG_NAME, "%s(%s)",
  638. x->geniv, x->aead->alg_name) >= CRYPTO_MAX_ALG_NAME)
  639. goto error;
  640. if (x->xso.offload_handle)
  641. mask |= CRYPTO_ALG_ASYNC;
  642. aead = crypto_alloc_aead(aead_name, 0, mask);
  643. err = PTR_ERR(aead);
  644. if (IS_ERR(aead))
  645. goto error;
  646. x->data = aead;
  647. err = crypto_aead_setkey(aead, x->aead->alg_key,
  648. (x->aead->alg_key_len + 7) / 8);
  649. if (err)
  650. goto error;
  651. err = crypto_aead_setauthsize(aead, x->aead->alg_icv_len / 8);
  652. if (err)
  653. goto error;
  654. error:
  655. return err;
  656. }
  657. static int esp_init_authenc(struct xfrm_state *x)
  658. {
  659. struct crypto_aead *aead;
  660. struct crypto_authenc_key_param *param;
  661. struct rtattr *rta;
  662. char *key;
  663. char *p;
  664. char authenc_name[CRYPTO_MAX_ALG_NAME];
  665. unsigned int keylen;
  666. int err;
  667. u32 mask = 0;
  668. err = -EINVAL;
  669. if (!x->ealg)
  670. goto error;
  671. err = -ENAMETOOLONG;
  672. if ((x->props.flags & XFRM_STATE_ESN)) {
  673. if (snprintf(authenc_name, CRYPTO_MAX_ALG_NAME,
  674. "%s%sauthencesn(%s,%s)%s",
  675. x->geniv ?: "", x->geniv ? "(" : "",
  676. x->aalg ? x->aalg->alg_name : "digest_null",
  677. x->ealg->alg_name,
  678. x->geniv ? ")" : "") >= CRYPTO_MAX_ALG_NAME)
  679. goto error;
  680. } else {
  681. if (snprintf(authenc_name, CRYPTO_MAX_ALG_NAME,
  682. "%s%sauthenc(%s,%s)%s",
  683. x->geniv ?: "", x->geniv ? "(" : "",
  684. x->aalg ? x->aalg->alg_name : "digest_null",
  685. x->ealg->alg_name,
  686. x->geniv ? ")" : "") >= CRYPTO_MAX_ALG_NAME)
  687. goto error;
  688. }
  689. if (x->xso.offload_handle)
  690. mask |= CRYPTO_ALG_ASYNC;
  691. aead = crypto_alloc_aead(authenc_name, 0, mask);
  692. err = PTR_ERR(aead);
  693. if (IS_ERR(aead))
  694. goto error;
  695. x->data = aead;
  696. keylen = (x->aalg ? (x->aalg->alg_key_len + 7) / 8 : 0) +
  697. (x->ealg->alg_key_len + 7) / 8 + RTA_SPACE(sizeof(*param));
  698. err = -ENOMEM;
  699. key = kmalloc(keylen, GFP_KERNEL);
  700. if (!key)
  701. goto error;
  702. p = key;
  703. rta = (void *)p;
  704. rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
  705. rta->rta_len = RTA_LENGTH(sizeof(*param));
  706. param = RTA_DATA(rta);
  707. p += RTA_SPACE(sizeof(*param));
  708. if (x->aalg) {
  709. struct xfrm_algo_desc *aalg_desc;
  710. memcpy(p, x->aalg->alg_key, (x->aalg->alg_key_len + 7) / 8);
  711. p += (x->aalg->alg_key_len + 7) / 8;
  712. aalg_desc = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  713. BUG_ON(!aalg_desc);
  714. err = -EINVAL;
  715. if (aalg_desc->uinfo.auth.icv_fullbits / 8 !=
  716. crypto_aead_authsize(aead)) {
  717. pr_info("ESP: %s digestsize %u != %hu\n",
  718. x->aalg->alg_name,
  719. crypto_aead_authsize(aead),
  720. aalg_desc->uinfo.auth.icv_fullbits / 8);
  721. goto free_key;
  722. }
  723. err = crypto_aead_setauthsize(
  724. aead, x->aalg->alg_trunc_len / 8);
  725. if (err)
  726. goto free_key;
  727. }
  728. param->enckeylen = cpu_to_be32((x->ealg->alg_key_len + 7) / 8);
  729. memcpy(p, x->ealg->alg_key, (x->ealg->alg_key_len + 7) / 8);
  730. err = crypto_aead_setkey(aead, key, keylen);
  731. free_key:
  732. kfree(key);
  733. error:
  734. return err;
  735. }
  736. static int esp_init_state(struct xfrm_state *x)
  737. {
  738. struct crypto_aead *aead;
  739. u32 align;
  740. int err;
  741. x->data = NULL;
  742. if (x->aead)
  743. err = esp_init_aead(x);
  744. else
  745. err = esp_init_authenc(x);
  746. if (err)
  747. goto error;
  748. aead = x->data;
  749. x->props.header_len = sizeof(struct ip_esp_hdr) +
  750. crypto_aead_ivsize(aead);
  751. if (x->props.mode == XFRM_MODE_TUNNEL)
  752. x->props.header_len += sizeof(struct iphdr);
  753. else if (x->props.mode == XFRM_MODE_BEET && x->sel.family != AF_INET6)
  754. x->props.header_len += IPV4_BEET_PHMAXLEN;
  755. if (x->encap) {
  756. struct xfrm_encap_tmpl *encap = x->encap;
  757. switch (encap->encap_type) {
  758. default:
  759. goto error;
  760. case UDP_ENCAP_ESPINUDP:
  761. x->props.header_len += sizeof(struct udphdr);
  762. break;
  763. case UDP_ENCAP_ESPINUDP_NON_IKE:
  764. x->props.header_len += sizeof(struct udphdr) + 2 * sizeof(u32);
  765. break;
  766. }
  767. }
  768. align = ALIGN(crypto_aead_blocksize(aead), 4);
  769. x->props.trailer_len = align + 1 + crypto_aead_authsize(aead);
  770. error:
  771. return err;
  772. }
  773. static int esp4_rcv_cb(struct sk_buff *skb, int err)
  774. {
  775. return 0;
  776. }
  777. static const struct xfrm_type esp_type =
  778. {
  779. .description = "ESP4",
  780. .owner = THIS_MODULE,
  781. .proto = IPPROTO_ESP,
  782. .flags = XFRM_TYPE_REPLAY_PROT,
  783. .init_state = esp_init_state,
  784. .destructor = esp_destroy,
  785. .get_mtu = esp4_get_mtu,
  786. .input = esp_input,
  787. .output = esp_output,
  788. };
  789. static struct xfrm4_protocol esp4_protocol = {
  790. .handler = xfrm4_rcv,
  791. .input_handler = xfrm_input,
  792. .cb_handler = esp4_rcv_cb,
  793. .err_handler = esp4_err,
  794. .priority = 0,
  795. };
  796. static int __init esp4_init(void)
  797. {
  798. if (xfrm_register_type(&esp_type, AF_INET) < 0) {
  799. pr_info("%s: can't add xfrm type\n", __func__);
  800. return -EAGAIN;
  801. }
  802. if (xfrm4_protocol_register(&esp4_protocol, IPPROTO_ESP) < 0) {
  803. pr_info("%s: can't add protocol\n", __func__);
  804. xfrm_unregister_type(&esp_type, AF_INET);
  805. return -EAGAIN;
  806. }
  807. return 0;
  808. }
  809. static void __exit esp4_fini(void)
  810. {
  811. if (xfrm4_protocol_deregister(&esp4_protocol, IPPROTO_ESP) < 0)
  812. pr_info("%s: can't remove protocol\n", __func__);
  813. if (xfrm_unregister_type(&esp_type, AF_INET) < 0)
  814. pr_info("%s: can't remove xfrm type\n", __func__);
  815. }
  816. module_init(esp4_init);
  817. module_exit(esp4_fini);
  818. MODULE_LICENSE("GPL");
  819. MODULE_ALIAS_XFRM_TYPE(AF_INET, XFRM_PROTO_ESP);