core.c 202 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <linux/compiler.h>
  76. #include <asm/switch_to.h>
  77. #include <asm/tlb.h>
  78. #include <asm/irq_regs.h>
  79. #include <asm/mutex.h>
  80. #ifdef CONFIG_PARAVIRT
  81. #include <asm/paravirt.h>
  82. #endif
  83. #include "sched.h"
  84. #include "../workqueue_internal.h"
  85. #include "../smpboot.h"
  86. #define CREATE_TRACE_POINTS
  87. #include <trace/events/sched.h>
  88. DEFINE_MUTEX(sched_domains_mutex);
  89. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  90. static void update_rq_clock_task(struct rq *rq, s64 delta);
  91. void update_rq_clock(struct rq *rq)
  92. {
  93. s64 delta;
  94. lockdep_assert_held(&rq->lock);
  95. if (rq->clock_skip_update & RQCF_ACT_SKIP)
  96. return;
  97. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  98. if (delta < 0)
  99. return;
  100. rq->clock += delta;
  101. update_rq_clock_task(rq, delta);
  102. }
  103. /*
  104. * Debugging: various feature bits
  105. */
  106. #define SCHED_FEAT(name, enabled) \
  107. (1UL << __SCHED_FEAT_##name) * enabled |
  108. const_debug unsigned int sysctl_sched_features =
  109. #include "features.h"
  110. 0;
  111. #undef SCHED_FEAT
  112. #ifdef CONFIG_SCHED_DEBUG
  113. #define SCHED_FEAT(name, enabled) \
  114. #name ,
  115. static const char * const sched_feat_names[] = {
  116. #include "features.h"
  117. };
  118. #undef SCHED_FEAT
  119. static int sched_feat_show(struct seq_file *m, void *v)
  120. {
  121. int i;
  122. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  123. if (!(sysctl_sched_features & (1UL << i)))
  124. seq_puts(m, "NO_");
  125. seq_printf(m, "%s ", sched_feat_names[i]);
  126. }
  127. seq_puts(m, "\n");
  128. return 0;
  129. }
  130. #ifdef HAVE_JUMP_LABEL
  131. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  132. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  133. #define SCHED_FEAT(name, enabled) \
  134. jump_label_key__##enabled ,
  135. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  136. #include "features.h"
  137. };
  138. #undef SCHED_FEAT
  139. static void sched_feat_disable(int i)
  140. {
  141. if (static_key_enabled(&sched_feat_keys[i]))
  142. static_key_slow_dec(&sched_feat_keys[i]);
  143. }
  144. static void sched_feat_enable(int i)
  145. {
  146. if (!static_key_enabled(&sched_feat_keys[i]))
  147. static_key_slow_inc(&sched_feat_keys[i]);
  148. }
  149. #else
  150. static void sched_feat_disable(int i) { };
  151. static void sched_feat_enable(int i) { };
  152. #endif /* HAVE_JUMP_LABEL */
  153. static int sched_feat_set(char *cmp)
  154. {
  155. int i;
  156. int neg = 0;
  157. if (strncmp(cmp, "NO_", 3) == 0) {
  158. neg = 1;
  159. cmp += 3;
  160. }
  161. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  162. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  163. if (neg) {
  164. sysctl_sched_features &= ~(1UL << i);
  165. sched_feat_disable(i);
  166. } else {
  167. sysctl_sched_features |= (1UL << i);
  168. sched_feat_enable(i);
  169. }
  170. break;
  171. }
  172. }
  173. return i;
  174. }
  175. static ssize_t
  176. sched_feat_write(struct file *filp, const char __user *ubuf,
  177. size_t cnt, loff_t *ppos)
  178. {
  179. char buf[64];
  180. char *cmp;
  181. int i;
  182. struct inode *inode;
  183. if (cnt > 63)
  184. cnt = 63;
  185. if (copy_from_user(&buf, ubuf, cnt))
  186. return -EFAULT;
  187. buf[cnt] = 0;
  188. cmp = strstrip(buf);
  189. /* Ensure the static_key remains in a consistent state */
  190. inode = file_inode(filp);
  191. mutex_lock(&inode->i_mutex);
  192. i = sched_feat_set(cmp);
  193. mutex_unlock(&inode->i_mutex);
  194. if (i == __SCHED_FEAT_NR)
  195. return -EINVAL;
  196. *ppos += cnt;
  197. return cnt;
  198. }
  199. static int sched_feat_open(struct inode *inode, struct file *filp)
  200. {
  201. return single_open(filp, sched_feat_show, NULL);
  202. }
  203. static const struct file_operations sched_feat_fops = {
  204. .open = sched_feat_open,
  205. .write = sched_feat_write,
  206. .read = seq_read,
  207. .llseek = seq_lseek,
  208. .release = single_release,
  209. };
  210. static __init int sched_init_debug(void)
  211. {
  212. debugfs_create_file("sched_features", 0644, NULL, NULL,
  213. &sched_feat_fops);
  214. return 0;
  215. }
  216. late_initcall(sched_init_debug);
  217. #endif /* CONFIG_SCHED_DEBUG */
  218. /*
  219. * Number of tasks to iterate in a single balance run.
  220. * Limited because this is done with IRQs disabled.
  221. */
  222. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  223. /*
  224. * period over which we average the RT time consumption, measured
  225. * in ms.
  226. *
  227. * default: 1s
  228. */
  229. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  230. /*
  231. * period over which we measure -rt task cpu usage in us.
  232. * default: 1s
  233. */
  234. unsigned int sysctl_sched_rt_period = 1000000;
  235. __read_mostly int scheduler_running;
  236. /*
  237. * part of the period that we allow rt tasks to run in us.
  238. * default: 0.95s
  239. */
  240. int sysctl_sched_rt_runtime = 950000;
  241. /* cpus with isolated domains */
  242. cpumask_var_t cpu_isolated_map;
  243. /*
  244. * this_rq_lock - lock this runqueue and disable interrupts.
  245. */
  246. static struct rq *this_rq_lock(void)
  247. __acquires(rq->lock)
  248. {
  249. struct rq *rq;
  250. local_irq_disable();
  251. rq = this_rq();
  252. raw_spin_lock(&rq->lock);
  253. return rq;
  254. }
  255. #ifdef CONFIG_SCHED_HRTICK
  256. /*
  257. * Use HR-timers to deliver accurate preemption points.
  258. */
  259. static void hrtick_clear(struct rq *rq)
  260. {
  261. if (hrtimer_active(&rq->hrtick_timer))
  262. hrtimer_cancel(&rq->hrtick_timer);
  263. }
  264. /*
  265. * High-resolution timer tick.
  266. * Runs from hardirq context with interrupts disabled.
  267. */
  268. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  269. {
  270. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  271. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  272. raw_spin_lock(&rq->lock);
  273. update_rq_clock(rq);
  274. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  275. raw_spin_unlock(&rq->lock);
  276. return HRTIMER_NORESTART;
  277. }
  278. #ifdef CONFIG_SMP
  279. static void __hrtick_restart(struct rq *rq)
  280. {
  281. struct hrtimer *timer = &rq->hrtick_timer;
  282. hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
  283. }
  284. /*
  285. * called from hardirq (IPI) context
  286. */
  287. static void __hrtick_start(void *arg)
  288. {
  289. struct rq *rq = arg;
  290. raw_spin_lock(&rq->lock);
  291. __hrtick_restart(rq);
  292. rq->hrtick_csd_pending = 0;
  293. raw_spin_unlock(&rq->lock);
  294. }
  295. /*
  296. * Called to set the hrtick timer state.
  297. *
  298. * called with rq->lock held and irqs disabled
  299. */
  300. void hrtick_start(struct rq *rq, u64 delay)
  301. {
  302. struct hrtimer *timer = &rq->hrtick_timer;
  303. ktime_t time;
  304. s64 delta;
  305. /*
  306. * Don't schedule slices shorter than 10000ns, that just
  307. * doesn't make sense and can cause timer DoS.
  308. */
  309. delta = max_t(s64, delay, 10000LL);
  310. time = ktime_add_ns(timer->base->get_time(), delta);
  311. hrtimer_set_expires(timer, time);
  312. if (rq == this_rq()) {
  313. __hrtick_restart(rq);
  314. } else if (!rq->hrtick_csd_pending) {
  315. smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  316. rq->hrtick_csd_pending = 1;
  317. }
  318. }
  319. static int
  320. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  321. {
  322. int cpu = (int)(long)hcpu;
  323. switch (action) {
  324. case CPU_UP_CANCELED:
  325. case CPU_UP_CANCELED_FROZEN:
  326. case CPU_DOWN_PREPARE:
  327. case CPU_DOWN_PREPARE_FROZEN:
  328. case CPU_DEAD:
  329. case CPU_DEAD_FROZEN:
  330. hrtick_clear(cpu_rq(cpu));
  331. return NOTIFY_OK;
  332. }
  333. return NOTIFY_DONE;
  334. }
  335. static __init void init_hrtick(void)
  336. {
  337. hotcpu_notifier(hotplug_hrtick, 0);
  338. }
  339. #else
  340. /*
  341. * Called to set the hrtick timer state.
  342. *
  343. * called with rq->lock held and irqs disabled
  344. */
  345. void hrtick_start(struct rq *rq, u64 delay)
  346. {
  347. /*
  348. * Don't schedule slices shorter than 10000ns, that just
  349. * doesn't make sense. Rely on vruntime for fairness.
  350. */
  351. delay = max_t(u64, delay, 10000LL);
  352. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
  353. HRTIMER_MODE_REL_PINNED);
  354. }
  355. static inline void init_hrtick(void)
  356. {
  357. }
  358. #endif /* CONFIG_SMP */
  359. static void init_rq_hrtick(struct rq *rq)
  360. {
  361. #ifdef CONFIG_SMP
  362. rq->hrtick_csd_pending = 0;
  363. rq->hrtick_csd.flags = 0;
  364. rq->hrtick_csd.func = __hrtick_start;
  365. rq->hrtick_csd.info = rq;
  366. #endif
  367. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  368. rq->hrtick_timer.function = hrtick;
  369. }
  370. #else /* CONFIG_SCHED_HRTICK */
  371. static inline void hrtick_clear(struct rq *rq)
  372. {
  373. }
  374. static inline void init_rq_hrtick(struct rq *rq)
  375. {
  376. }
  377. static inline void init_hrtick(void)
  378. {
  379. }
  380. #endif /* CONFIG_SCHED_HRTICK */
  381. /*
  382. * cmpxchg based fetch_or, macro so it works for different integer types
  383. */
  384. #define fetch_or(ptr, val) \
  385. ({ typeof(*(ptr)) __old, __val = *(ptr); \
  386. for (;;) { \
  387. __old = cmpxchg((ptr), __val, __val | (val)); \
  388. if (__old == __val) \
  389. break; \
  390. __val = __old; \
  391. } \
  392. __old; \
  393. })
  394. #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  395. /*
  396. * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  397. * this avoids any races wrt polling state changes and thereby avoids
  398. * spurious IPIs.
  399. */
  400. static bool set_nr_and_not_polling(struct task_struct *p)
  401. {
  402. struct thread_info *ti = task_thread_info(p);
  403. return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
  404. }
  405. /*
  406. * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  407. *
  408. * If this returns true, then the idle task promises to call
  409. * sched_ttwu_pending() and reschedule soon.
  410. */
  411. static bool set_nr_if_polling(struct task_struct *p)
  412. {
  413. struct thread_info *ti = task_thread_info(p);
  414. typeof(ti->flags) old, val = READ_ONCE(ti->flags);
  415. for (;;) {
  416. if (!(val & _TIF_POLLING_NRFLAG))
  417. return false;
  418. if (val & _TIF_NEED_RESCHED)
  419. return true;
  420. old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
  421. if (old == val)
  422. break;
  423. val = old;
  424. }
  425. return true;
  426. }
  427. #else
  428. static bool set_nr_and_not_polling(struct task_struct *p)
  429. {
  430. set_tsk_need_resched(p);
  431. return true;
  432. }
  433. #ifdef CONFIG_SMP
  434. static bool set_nr_if_polling(struct task_struct *p)
  435. {
  436. return false;
  437. }
  438. #endif
  439. #endif
  440. void wake_q_add(struct wake_q_head *head, struct task_struct *task)
  441. {
  442. struct wake_q_node *node = &task->wake_q;
  443. /*
  444. * Atomically grab the task, if ->wake_q is !nil already it means
  445. * its already queued (either by us or someone else) and will get the
  446. * wakeup due to that.
  447. *
  448. * This cmpxchg() implies a full barrier, which pairs with the write
  449. * barrier implied by the wakeup in wake_up_list().
  450. */
  451. if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
  452. return;
  453. get_task_struct(task);
  454. /*
  455. * The head is context local, there can be no concurrency.
  456. */
  457. *head->lastp = node;
  458. head->lastp = &node->next;
  459. }
  460. void wake_up_q(struct wake_q_head *head)
  461. {
  462. struct wake_q_node *node = head->first;
  463. while (node != WAKE_Q_TAIL) {
  464. struct task_struct *task;
  465. task = container_of(node, struct task_struct, wake_q);
  466. BUG_ON(!task);
  467. /* task can safely be re-inserted now */
  468. node = node->next;
  469. task->wake_q.next = NULL;
  470. /*
  471. * wake_up_process() implies a wmb() to pair with the queueing
  472. * in wake_q_add() so as not to miss wakeups.
  473. */
  474. wake_up_process(task);
  475. put_task_struct(task);
  476. }
  477. }
  478. /*
  479. * resched_curr - mark rq's current task 'to be rescheduled now'.
  480. *
  481. * On UP this means the setting of the need_resched flag, on SMP it
  482. * might also involve a cross-CPU call to trigger the scheduler on
  483. * the target CPU.
  484. */
  485. void resched_curr(struct rq *rq)
  486. {
  487. struct task_struct *curr = rq->curr;
  488. int cpu;
  489. lockdep_assert_held(&rq->lock);
  490. if (test_tsk_need_resched(curr))
  491. return;
  492. cpu = cpu_of(rq);
  493. if (cpu == smp_processor_id()) {
  494. set_tsk_need_resched(curr);
  495. set_preempt_need_resched();
  496. return;
  497. }
  498. if (set_nr_and_not_polling(curr))
  499. smp_send_reschedule(cpu);
  500. else
  501. trace_sched_wake_idle_without_ipi(cpu);
  502. }
  503. void resched_cpu(int cpu)
  504. {
  505. struct rq *rq = cpu_rq(cpu);
  506. unsigned long flags;
  507. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  508. return;
  509. resched_curr(rq);
  510. raw_spin_unlock_irqrestore(&rq->lock, flags);
  511. }
  512. #ifdef CONFIG_SMP
  513. #ifdef CONFIG_NO_HZ_COMMON
  514. /*
  515. * In the semi idle case, use the nearest busy cpu for migrating timers
  516. * from an idle cpu. This is good for power-savings.
  517. *
  518. * We don't do similar optimization for completely idle system, as
  519. * selecting an idle cpu will add more delays to the timers than intended
  520. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  521. */
  522. int get_nohz_timer_target(void)
  523. {
  524. int i, cpu = smp_processor_id();
  525. struct sched_domain *sd;
  526. if (!idle_cpu(cpu))
  527. return cpu;
  528. rcu_read_lock();
  529. for_each_domain(cpu, sd) {
  530. for_each_cpu(i, sched_domain_span(sd)) {
  531. if (!idle_cpu(i)) {
  532. cpu = i;
  533. goto unlock;
  534. }
  535. }
  536. }
  537. unlock:
  538. rcu_read_unlock();
  539. return cpu;
  540. }
  541. /*
  542. * When add_timer_on() enqueues a timer into the timer wheel of an
  543. * idle CPU then this timer might expire before the next timer event
  544. * which is scheduled to wake up that CPU. In case of a completely
  545. * idle system the next event might even be infinite time into the
  546. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  547. * leaves the inner idle loop so the newly added timer is taken into
  548. * account when the CPU goes back to idle and evaluates the timer
  549. * wheel for the next timer event.
  550. */
  551. static void wake_up_idle_cpu(int cpu)
  552. {
  553. struct rq *rq = cpu_rq(cpu);
  554. if (cpu == smp_processor_id())
  555. return;
  556. if (set_nr_and_not_polling(rq->idle))
  557. smp_send_reschedule(cpu);
  558. else
  559. trace_sched_wake_idle_without_ipi(cpu);
  560. }
  561. static bool wake_up_full_nohz_cpu(int cpu)
  562. {
  563. /*
  564. * We just need the target to call irq_exit() and re-evaluate
  565. * the next tick. The nohz full kick at least implies that.
  566. * If needed we can still optimize that later with an
  567. * empty IRQ.
  568. */
  569. if (tick_nohz_full_cpu(cpu)) {
  570. if (cpu != smp_processor_id() ||
  571. tick_nohz_tick_stopped())
  572. tick_nohz_full_kick_cpu(cpu);
  573. return true;
  574. }
  575. return false;
  576. }
  577. void wake_up_nohz_cpu(int cpu)
  578. {
  579. if (!wake_up_full_nohz_cpu(cpu))
  580. wake_up_idle_cpu(cpu);
  581. }
  582. static inline bool got_nohz_idle_kick(void)
  583. {
  584. int cpu = smp_processor_id();
  585. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  586. return false;
  587. if (idle_cpu(cpu) && !need_resched())
  588. return true;
  589. /*
  590. * We can't run Idle Load Balance on this CPU for this time so we
  591. * cancel it and clear NOHZ_BALANCE_KICK
  592. */
  593. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  594. return false;
  595. }
  596. #else /* CONFIG_NO_HZ_COMMON */
  597. static inline bool got_nohz_idle_kick(void)
  598. {
  599. return false;
  600. }
  601. #endif /* CONFIG_NO_HZ_COMMON */
  602. #ifdef CONFIG_NO_HZ_FULL
  603. bool sched_can_stop_tick(void)
  604. {
  605. /*
  606. * FIFO realtime policy runs the highest priority task. Other runnable
  607. * tasks are of a lower priority. The scheduler tick does nothing.
  608. */
  609. if (current->policy == SCHED_FIFO)
  610. return true;
  611. /*
  612. * Round-robin realtime tasks time slice with other tasks at the same
  613. * realtime priority. Is this task the only one at this priority?
  614. */
  615. if (current->policy == SCHED_RR) {
  616. struct sched_rt_entity *rt_se = &current->rt;
  617. return rt_se->run_list.prev == rt_se->run_list.next;
  618. }
  619. /*
  620. * More than one running task need preemption.
  621. * nr_running update is assumed to be visible
  622. * after IPI is sent from wakers.
  623. */
  624. if (this_rq()->nr_running > 1)
  625. return false;
  626. return true;
  627. }
  628. #endif /* CONFIG_NO_HZ_FULL */
  629. void sched_avg_update(struct rq *rq)
  630. {
  631. s64 period = sched_avg_period();
  632. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  633. /*
  634. * Inline assembly required to prevent the compiler
  635. * optimising this loop into a divmod call.
  636. * See __iter_div_u64_rem() for another example of this.
  637. */
  638. asm("" : "+rm" (rq->age_stamp));
  639. rq->age_stamp += period;
  640. rq->rt_avg /= 2;
  641. }
  642. }
  643. #endif /* CONFIG_SMP */
  644. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  645. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  646. /*
  647. * Iterate task_group tree rooted at *from, calling @down when first entering a
  648. * node and @up when leaving it for the final time.
  649. *
  650. * Caller must hold rcu_lock or sufficient equivalent.
  651. */
  652. int walk_tg_tree_from(struct task_group *from,
  653. tg_visitor down, tg_visitor up, void *data)
  654. {
  655. struct task_group *parent, *child;
  656. int ret;
  657. parent = from;
  658. down:
  659. ret = (*down)(parent, data);
  660. if (ret)
  661. goto out;
  662. list_for_each_entry_rcu(child, &parent->children, siblings) {
  663. parent = child;
  664. goto down;
  665. up:
  666. continue;
  667. }
  668. ret = (*up)(parent, data);
  669. if (ret || parent == from)
  670. goto out;
  671. child = parent;
  672. parent = parent->parent;
  673. if (parent)
  674. goto up;
  675. out:
  676. return ret;
  677. }
  678. int tg_nop(struct task_group *tg, void *data)
  679. {
  680. return 0;
  681. }
  682. #endif
  683. static void set_load_weight(struct task_struct *p)
  684. {
  685. int prio = p->static_prio - MAX_RT_PRIO;
  686. struct load_weight *load = &p->se.load;
  687. /*
  688. * SCHED_IDLE tasks get minimal weight:
  689. */
  690. if (p->policy == SCHED_IDLE) {
  691. load->weight = scale_load(WEIGHT_IDLEPRIO);
  692. load->inv_weight = WMULT_IDLEPRIO;
  693. return;
  694. }
  695. load->weight = scale_load(prio_to_weight[prio]);
  696. load->inv_weight = prio_to_wmult[prio];
  697. }
  698. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  699. {
  700. update_rq_clock(rq);
  701. sched_info_queued(rq, p);
  702. p->sched_class->enqueue_task(rq, p, flags);
  703. }
  704. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  705. {
  706. update_rq_clock(rq);
  707. sched_info_dequeued(rq, p);
  708. p->sched_class->dequeue_task(rq, p, flags);
  709. }
  710. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  711. {
  712. if (task_contributes_to_load(p))
  713. rq->nr_uninterruptible--;
  714. enqueue_task(rq, p, flags);
  715. }
  716. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  717. {
  718. if (task_contributes_to_load(p))
  719. rq->nr_uninterruptible++;
  720. dequeue_task(rq, p, flags);
  721. }
  722. static void update_rq_clock_task(struct rq *rq, s64 delta)
  723. {
  724. /*
  725. * In theory, the compile should just see 0 here, and optimize out the call
  726. * to sched_rt_avg_update. But I don't trust it...
  727. */
  728. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  729. s64 steal = 0, irq_delta = 0;
  730. #endif
  731. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  732. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  733. /*
  734. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  735. * this case when a previous update_rq_clock() happened inside a
  736. * {soft,}irq region.
  737. *
  738. * When this happens, we stop ->clock_task and only update the
  739. * prev_irq_time stamp to account for the part that fit, so that a next
  740. * update will consume the rest. This ensures ->clock_task is
  741. * monotonic.
  742. *
  743. * It does however cause some slight miss-attribution of {soft,}irq
  744. * time, a more accurate solution would be to update the irq_time using
  745. * the current rq->clock timestamp, except that would require using
  746. * atomic ops.
  747. */
  748. if (irq_delta > delta)
  749. irq_delta = delta;
  750. rq->prev_irq_time += irq_delta;
  751. delta -= irq_delta;
  752. #endif
  753. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  754. if (static_key_false((&paravirt_steal_rq_enabled))) {
  755. steal = paravirt_steal_clock(cpu_of(rq));
  756. steal -= rq->prev_steal_time_rq;
  757. if (unlikely(steal > delta))
  758. steal = delta;
  759. rq->prev_steal_time_rq += steal;
  760. delta -= steal;
  761. }
  762. #endif
  763. rq->clock_task += delta;
  764. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  765. if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  766. sched_rt_avg_update(rq, irq_delta + steal);
  767. #endif
  768. }
  769. void sched_set_stop_task(int cpu, struct task_struct *stop)
  770. {
  771. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  772. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  773. if (stop) {
  774. /*
  775. * Make it appear like a SCHED_FIFO task, its something
  776. * userspace knows about and won't get confused about.
  777. *
  778. * Also, it will make PI more or less work without too
  779. * much confusion -- but then, stop work should not
  780. * rely on PI working anyway.
  781. */
  782. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  783. stop->sched_class = &stop_sched_class;
  784. }
  785. cpu_rq(cpu)->stop = stop;
  786. if (old_stop) {
  787. /*
  788. * Reset it back to a normal scheduling class so that
  789. * it can die in pieces.
  790. */
  791. old_stop->sched_class = &rt_sched_class;
  792. }
  793. }
  794. /*
  795. * __normal_prio - return the priority that is based on the static prio
  796. */
  797. static inline int __normal_prio(struct task_struct *p)
  798. {
  799. return p->static_prio;
  800. }
  801. /*
  802. * Calculate the expected normal priority: i.e. priority
  803. * without taking RT-inheritance into account. Might be
  804. * boosted by interactivity modifiers. Changes upon fork,
  805. * setprio syscalls, and whenever the interactivity
  806. * estimator recalculates.
  807. */
  808. static inline int normal_prio(struct task_struct *p)
  809. {
  810. int prio;
  811. if (task_has_dl_policy(p))
  812. prio = MAX_DL_PRIO-1;
  813. else if (task_has_rt_policy(p))
  814. prio = MAX_RT_PRIO-1 - p->rt_priority;
  815. else
  816. prio = __normal_prio(p);
  817. return prio;
  818. }
  819. /*
  820. * Calculate the current priority, i.e. the priority
  821. * taken into account by the scheduler. This value might
  822. * be boosted by RT tasks, or might be boosted by
  823. * interactivity modifiers. Will be RT if the task got
  824. * RT-boosted. If not then it returns p->normal_prio.
  825. */
  826. static int effective_prio(struct task_struct *p)
  827. {
  828. p->normal_prio = normal_prio(p);
  829. /*
  830. * If we are RT tasks or we were boosted to RT priority,
  831. * keep the priority unchanged. Otherwise, update priority
  832. * to the normal priority:
  833. */
  834. if (!rt_prio(p->prio))
  835. return p->normal_prio;
  836. return p->prio;
  837. }
  838. /**
  839. * task_curr - is this task currently executing on a CPU?
  840. * @p: the task in question.
  841. *
  842. * Return: 1 if the task is currently executing. 0 otherwise.
  843. */
  844. inline int task_curr(const struct task_struct *p)
  845. {
  846. return cpu_curr(task_cpu(p)) == p;
  847. }
  848. /*
  849. * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
  850. * use the balance_callback list if you want balancing.
  851. *
  852. * this means any call to check_class_changed() must be followed by a call to
  853. * balance_callback().
  854. */
  855. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  856. const struct sched_class *prev_class,
  857. int oldprio)
  858. {
  859. if (prev_class != p->sched_class) {
  860. if (prev_class->switched_from)
  861. prev_class->switched_from(rq, p);
  862. p->sched_class->switched_to(rq, p);
  863. } else if (oldprio != p->prio || dl_task(p))
  864. p->sched_class->prio_changed(rq, p, oldprio);
  865. }
  866. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  867. {
  868. const struct sched_class *class;
  869. if (p->sched_class == rq->curr->sched_class) {
  870. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  871. } else {
  872. for_each_class(class) {
  873. if (class == rq->curr->sched_class)
  874. break;
  875. if (class == p->sched_class) {
  876. resched_curr(rq);
  877. break;
  878. }
  879. }
  880. }
  881. /*
  882. * A queue event has occurred, and we're going to schedule. In
  883. * this case, we can save a useless back to back clock update.
  884. */
  885. if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
  886. rq_clock_skip_update(rq, true);
  887. }
  888. #ifdef CONFIG_SMP
  889. /*
  890. * This is how migration works:
  891. *
  892. * 1) we invoke migration_cpu_stop() on the target CPU using
  893. * stop_one_cpu().
  894. * 2) stopper starts to run (implicitly forcing the migrated thread
  895. * off the CPU)
  896. * 3) it checks whether the migrated task is still in the wrong runqueue.
  897. * 4) if it's in the wrong runqueue then the migration thread removes
  898. * it and puts it into the right queue.
  899. * 5) stopper completes and stop_one_cpu() returns and the migration
  900. * is done.
  901. */
  902. /*
  903. * move_queued_task - move a queued task to new rq.
  904. *
  905. * Returns (locked) new rq. Old rq's lock is released.
  906. */
  907. static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
  908. {
  909. lockdep_assert_held(&rq->lock);
  910. dequeue_task(rq, p, 0);
  911. p->on_rq = TASK_ON_RQ_MIGRATING;
  912. set_task_cpu(p, new_cpu);
  913. raw_spin_unlock(&rq->lock);
  914. rq = cpu_rq(new_cpu);
  915. raw_spin_lock(&rq->lock);
  916. BUG_ON(task_cpu(p) != new_cpu);
  917. p->on_rq = TASK_ON_RQ_QUEUED;
  918. enqueue_task(rq, p, 0);
  919. check_preempt_curr(rq, p, 0);
  920. return rq;
  921. }
  922. struct migration_arg {
  923. struct task_struct *task;
  924. int dest_cpu;
  925. };
  926. /*
  927. * Move (not current) task off this cpu, onto dest cpu. We're doing
  928. * this because either it can't run here any more (set_cpus_allowed()
  929. * away from this CPU, or CPU going down), or because we're
  930. * attempting to rebalance this task on exec (sched_exec).
  931. *
  932. * So we race with normal scheduler movements, but that's OK, as long
  933. * as the task is no longer on this CPU.
  934. */
  935. static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
  936. {
  937. if (unlikely(!cpu_active(dest_cpu)))
  938. return rq;
  939. /* Affinity changed (again). */
  940. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  941. return rq;
  942. rq = move_queued_task(rq, p, dest_cpu);
  943. return rq;
  944. }
  945. /*
  946. * migration_cpu_stop - this will be executed by a highprio stopper thread
  947. * and performs thread migration by bumping thread off CPU then
  948. * 'pushing' onto another runqueue.
  949. */
  950. static int migration_cpu_stop(void *data)
  951. {
  952. struct migration_arg *arg = data;
  953. struct task_struct *p = arg->task;
  954. struct rq *rq = this_rq();
  955. /*
  956. * The original target cpu might have gone down and we might
  957. * be on another cpu but it doesn't matter.
  958. */
  959. local_irq_disable();
  960. /*
  961. * We need to explicitly wake pending tasks before running
  962. * __migrate_task() such that we will not miss enforcing cpus_allowed
  963. * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
  964. */
  965. sched_ttwu_pending();
  966. raw_spin_lock(&p->pi_lock);
  967. raw_spin_lock(&rq->lock);
  968. /*
  969. * If task_rq(p) != rq, it cannot be migrated here, because we're
  970. * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
  971. * we're holding p->pi_lock.
  972. */
  973. if (task_rq(p) == rq && task_on_rq_queued(p))
  974. rq = __migrate_task(rq, p, arg->dest_cpu);
  975. raw_spin_unlock(&rq->lock);
  976. raw_spin_unlock(&p->pi_lock);
  977. local_irq_enable();
  978. return 0;
  979. }
  980. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  981. {
  982. if (p->sched_class->set_cpus_allowed)
  983. p->sched_class->set_cpus_allowed(p, new_mask);
  984. cpumask_copy(&p->cpus_allowed, new_mask);
  985. p->nr_cpus_allowed = cpumask_weight(new_mask);
  986. }
  987. /*
  988. * Change a given task's CPU affinity. Migrate the thread to a
  989. * proper CPU and schedule it away if the CPU it's executing on
  990. * is removed from the allowed bitmask.
  991. *
  992. * NOTE: the caller must have a valid reference to the task, the
  993. * task must not exit() & deallocate itself prematurely. The
  994. * call is not atomic; no spinlocks may be held.
  995. */
  996. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  997. {
  998. unsigned long flags;
  999. struct rq *rq;
  1000. unsigned int dest_cpu;
  1001. int ret = 0;
  1002. rq = task_rq_lock(p, &flags);
  1003. if (cpumask_equal(&p->cpus_allowed, new_mask))
  1004. goto out;
  1005. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  1006. ret = -EINVAL;
  1007. goto out;
  1008. }
  1009. do_set_cpus_allowed(p, new_mask);
  1010. /* Can the task run on the task's current CPU? If so, we're done */
  1011. if (cpumask_test_cpu(task_cpu(p), new_mask))
  1012. goto out;
  1013. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  1014. if (task_running(rq, p) || p->state == TASK_WAKING) {
  1015. struct migration_arg arg = { p, dest_cpu };
  1016. /* Need help from migration thread: drop lock and wait. */
  1017. task_rq_unlock(rq, p, &flags);
  1018. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  1019. tlb_migrate_finish(p->mm);
  1020. return 0;
  1021. } else if (task_on_rq_queued(p)) {
  1022. /*
  1023. * OK, since we're going to drop the lock immediately
  1024. * afterwards anyway.
  1025. */
  1026. lockdep_unpin_lock(&rq->lock);
  1027. rq = move_queued_task(rq, p, dest_cpu);
  1028. lockdep_pin_lock(&rq->lock);
  1029. }
  1030. out:
  1031. task_rq_unlock(rq, p, &flags);
  1032. return ret;
  1033. }
  1034. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  1035. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1036. {
  1037. #ifdef CONFIG_SCHED_DEBUG
  1038. /*
  1039. * We should never call set_task_cpu() on a blocked task,
  1040. * ttwu() will sort out the placement.
  1041. */
  1042. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1043. !p->on_rq);
  1044. #ifdef CONFIG_LOCKDEP
  1045. /*
  1046. * The caller should hold either p->pi_lock or rq->lock, when changing
  1047. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  1048. *
  1049. * sched_move_task() holds both and thus holding either pins the cgroup,
  1050. * see task_group().
  1051. *
  1052. * Furthermore, all task_rq users should acquire both locks, see
  1053. * task_rq_lock().
  1054. */
  1055. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  1056. lockdep_is_held(&task_rq(p)->lock)));
  1057. #endif
  1058. #endif
  1059. trace_sched_migrate_task(p, new_cpu);
  1060. if (task_cpu(p) != new_cpu) {
  1061. if (p->sched_class->migrate_task_rq)
  1062. p->sched_class->migrate_task_rq(p, new_cpu);
  1063. p->se.nr_migrations++;
  1064. perf_event_task_migrate(p);
  1065. }
  1066. __set_task_cpu(p, new_cpu);
  1067. }
  1068. static void __migrate_swap_task(struct task_struct *p, int cpu)
  1069. {
  1070. if (task_on_rq_queued(p)) {
  1071. struct rq *src_rq, *dst_rq;
  1072. src_rq = task_rq(p);
  1073. dst_rq = cpu_rq(cpu);
  1074. deactivate_task(src_rq, p, 0);
  1075. set_task_cpu(p, cpu);
  1076. activate_task(dst_rq, p, 0);
  1077. check_preempt_curr(dst_rq, p, 0);
  1078. } else {
  1079. /*
  1080. * Task isn't running anymore; make it appear like we migrated
  1081. * it before it went to sleep. This means on wakeup we make the
  1082. * previous cpu our targer instead of where it really is.
  1083. */
  1084. p->wake_cpu = cpu;
  1085. }
  1086. }
  1087. struct migration_swap_arg {
  1088. struct task_struct *src_task, *dst_task;
  1089. int src_cpu, dst_cpu;
  1090. };
  1091. static int migrate_swap_stop(void *data)
  1092. {
  1093. struct migration_swap_arg *arg = data;
  1094. struct rq *src_rq, *dst_rq;
  1095. int ret = -EAGAIN;
  1096. src_rq = cpu_rq(arg->src_cpu);
  1097. dst_rq = cpu_rq(arg->dst_cpu);
  1098. double_raw_lock(&arg->src_task->pi_lock,
  1099. &arg->dst_task->pi_lock);
  1100. double_rq_lock(src_rq, dst_rq);
  1101. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  1102. goto unlock;
  1103. if (task_cpu(arg->src_task) != arg->src_cpu)
  1104. goto unlock;
  1105. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  1106. goto unlock;
  1107. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  1108. goto unlock;
  1109. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  1110. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  1111. ret = 0;
  1112. unlock:
  1113. double_rq_unlock(src_rq, dst_rq);
  1114. raw_spin_unlock(&arg->dst_task->pi_lock);
  1115. raw_spin_unlock(&arg->src_task->pi_lock);
  1116. return ret;
  1117. }
  1118. /*
  1119. * Cross migrate two tasks
  1120. */
  1121. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  1122. {
  1123. struct migration_swap_arg arg;
  1124. int ret = -EINVAL;
  1125. arg = (struct migration_swap_arg){
  1126. .src_task = cur,
  1127. .src_cpu = task_cpu(cur),
  1128. .dst_task = p,
  1129. .dst_cpu = task_cpu(p),
  1130. };
  1131. if (arg.src_cpu == arg.dst_cpu)
  1132. goto out;
  1133. /*
  1134. * These three tests are all lockless; this is OK since all of them
  1135. * will be re-checked with proper locks held further down the line.
  1136. */
  1137. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  1138. goto out;
  1139. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  1140. goto out;
  1141. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  1142. goto out;
  1143. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  1144. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  1145. out:
  1146. return ret;
  1147. }
  1148. /*
  1149. * wait_task_inactive - wait for a thread to unschedule.
  1150. *
  1151. * If @match_state is nonzero, it's the @p->state value just checked and
  1152. * not expected to change. If it changes, i.e. @p might have woken up,
  1153. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1154. * we return a positive number (its total switch count). If a second call
  1155. * a short while later returns the same number, the caller can be sure that
  1156. * @p has remained unscheduled the whole time.
  1157. *
  1158. * The caller must ensure that the task *will* unschedule sometime soon,
  1159. * else this function might spin for a *long* time. This function can't
  1160. * be called with interrupts off, or it may introduce deadlock with
  1161. * smp_call_function() if an IPI is sent by the same process we are
  1162. * waiting to become inactive.
  1163. */
  1164. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1165. {
  1166. unsigned long flags;
  1167. int running, queued;
  1168. unsigned long ncsw;
  1169. struct rq *rq;
  1170. for (;;) {
  1171. /*
  1172. * We do the initial early heuristics without holding
  1173. * any task-queue locks at all. We'll only try to get
  1174. * the runqueue lock when things look like they will
  1175. * work out!
  1176. */
  1177. rq = task_rq(p);
  1178. /*
  1179. * If the task is actively running on another CPU
  1180. * still, just relax and busy-wait without holding
  1181. * any locks.
  1182. *
  1183. * NOTE! Since we don't hold any locks, it's not
  1184. * even sure that "rq" stays as the right runqueue!
  1185. * But we don't care, since "task_running()" will
  1186. * return false if the runqueue has changed and p
  1187. * is actually now running somewhere else!
  1188. */
  1189. while (task_running(rq, p)) {
  1190. if (match_state && unlikely(p->state != match_state))
  1191. return 0;
  1192. cpu_relax();
  1193. }
  1194. /*
  1195. * Ok, time to look more closely! We need the rq
  1196. * lock now, to be *sure*. If we're wrong, we'll
  1197. * just go back and repeat.
  1198. */
  1199. rq = task_rq_lock(p, &flags);
  1200. trace_sched_wait_task(p);
  1201. running = task_running(rq, p);
  1202. queued = task_on_rq_queued(p);
  1203. ncsw = 0;
  1204. if (!match_state || p->state == match_state)
  1205. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1206. task_rq_unlock(rq, p, &flags);
  1207. /*
  1208. * If it changed from the expected state, bail out now.
  1209. */
  1210. if (unlikely(!ncsw))
  1211. break;
  1212. /*
  1213. * Was it really running after all now that we
  1214. * checked with the proper locks actually held?
  1215. *
  1216. * Oops. Go back and try again..
  1217. */
  1218. if (unlikely(running)) {
  1219. cpu_relax();
  1220. continue;
  1221. }
  1222. /*
  1223. * It's not enough that it's not actively running,
  1224. * it must be off the runqueue _entirely_, and not
  1225. * preempted!
  1226. *
  1227. * So if it was still runnable (but just not actively
  1228. * running right now), it's preempted, and we should
  1229. * yield - it could be a while.
  1230. */
  1231. if (unlikely(queued)) {
  1232. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1233. set_current_state(TASK_UNINTERRUPTIBLE);
  1234. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1235. continue;
  1236. }
  1237. /*
  1238. * Ahh, all good. It wasn't running, and it wasn't
  1239. * runnable, which means that it will never become
  1240. * running in the future either. We're all done!
  1241. */
  1242. break;
  1243. }
  1244. return ncsw;
  1245. }
  1246. /***
  1247. * kick_process - kick a running thread to enter/exit the kernel
  1248. * @p: the to-be-kicked thread
  1249. *
  1250. * Cause a process which is running on another CPU to enter
  1251. * kernel-mode, without any delay. (to get signals handled.)
  1252. *
  1253. * NOTE: this function doesn't have to take the runqueue lock,
  1254. * because all it wants to ensure is that the remote task enters
  1255. * the kernel. If the IPI races and the task has been migrated
  1256. * to another CPU then no harm is done and the purpose has been
  1257. * achieved as well.
  1258. */
  1259. void kick_process(struct task_struct *p)
  1260. {
  1261. int cpu;
  1262. preempt_disable();
  1263. cpu = task_cpu(p);
  1264. if ((cpu != smp_processor_id()) && task_curr(p))
  1265. smp_send_reschedule(cpu);
  1266. preempt_enable();
  1267. }
  1268. EXPORT_SYMBOL_GPL(kick_process);
  1269. /*
  1270. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1271. */
  1272. static int select_fallback_rq(int cpu, struct task_struct *p)
  1273. {
  1274. int nid = cpu_to_node(cpu);
  1275. const struct cpumask *nodemask = NULL;
  1276. enum { cpuset, possible, fail } state = cpuset;
  1277. int dest_cpu;
  1278. /*
  1279. * If the node that the cpu is on has been offlined, cpu_to_node()
  1280. * will return -1. There is no cpu on the node, and we should
  1281. * select the cpu on the other node.
  1282. */
  1283. if (nid != -1) {
  1284. nodemask = cpumask_of_node(nid);
  1285. /* Look for allowed, online CPU in same node. */
  1286. for_each_cpu(dest_cpu, nodemask) {
  1287. if (!cpu_online(dest_cpu))
  1288. continue;
  1289. if (!cpu_active(dest_cpu))
  1290. continue;
  1291. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1292. return dest_cpu;
  1293. }
  1294. }
  1295. for (;;) {
  1296. /* Any allowed, online CPU? */
  1297. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1298. if (!cpu_online(dest_cpu))
  1299. continue;
  1300. if (!cpu_active(dest_cpu))
  1301. continue;
  1302. goto out;
  1303. }
  1304. switch (state) {
  1305. case cpuset:
  1306. /* No more Mr. Nice Guy. */
  1307. cpuset_cpus_allowed_fallback(p);
  1308. state = possible;
  1309. break;
  1310. case possible:
  1311. do_set_cpus_allowed(p, cpu_possible_mask);
  1312. state = fail;
  1313. break;
  1314. case fail:
  1315. BUG();
  1316. break;
  1317. }
  1318. }
  1319. out:
  1320. if (state != cpuset) {
  1321. /*
  1322. * Don't tell them about moving exiting tasks or
  1323. * kernel threads (both mm NULL), since they never
  1324. * leave kernel.
  1325. */
  1326. if (p->mm && printk_ratelimit()) {
  1327. printk_deferred("process %d (%s) no longer affine to cpu%d\n",
  1328. task_pid_nr(p), p->comm, cpu);
  1329. }
  1330. }
  1331. return dest_cpu;
  1332. }
  1333. /*
  1334. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1335. */
  1336. static inline
  1337. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1338. {
  1339. lockdep_assert_held(&p->pi_lock);
  1340. if (p->nr_cpus_allowed > 1)
  1341. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1342. /*
  1343. * In order not to call set_task_cpu() on a blocking task we need
  1344. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1345. * cpu.
  1346. *
  1347. * Since this is common to all placement strategies, this lives here.
  1348. *
  1349. * [ this allows ->select_task() to simply return task_cpu(p) and
  1350. * not worry about this generic constraint ]
  1351. */
  1352. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1353. !cpu_online(cpu)))
  1354. cpu = select_fallback_rq(task_cpu(p), p);
  1355. return cpu;
  1356. }
  1357. static void update_avg(u64 *avg, u64 sample)
  1358. {
  1359. s64 diff = sample - *avg;
  1360. *avg += diff >> 3;
  1361. }
  1362. #endif /* CONFIG_SMP */
  1363. static void
  1364. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1365. {
  1366. #ifdef CONFIG_SCHEDSTATS
  1367. struct rq *rq = this_rq();
  1368. #ifdef CONFIG_SMP
  1369. int this_cpu = smp_processor_id();
  1370. if (cpu == this_cpu) {
  1371. schedstat_inc(rq, ttwu_local);
  1372. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1373. } else {
  1374. struct sched_domain *sd;
  1375. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1376. rcu_read_lock();
  1377. for_each_domain(this_cpu, sd) {
  1378. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1379. schedstat_inc(sd, ttwu_wake_remote);
  1380. break;
  1381. }
  1382. }
  1383. rcu_read_unlock();
  1384. }
  1385. if (wake_flags & WF_MIGRATED)
  1386. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1387. #endif /* CONFIG_SMP */
  1388. schedstat_inc(rq, ttwu_count);
  1389. schedstat_inc(p, se.statistics.nr_wakeups);
  1390. if (wake_flags & WF_SYNC)
  1391. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1392. #endif /* CONFIG_SCHEDSTATS */
  1393. }
  1394. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1395. {
  1396. activate_task(rq, p, en_flags);
  1397. p->on_rq = TASK_ON_RQ_QUEUED;
  1398. /* if a worker is waking up, notify workqueue */
  1399. if (p->flags & PF_WQ_WORKER)
  1400. wq_worker_waking_up(p, cpu_of(rq));
  1401. }
  1402. /*
  1403. * Mark the task runnable and perform wakeup-preemption.
  1404. */
  1405. static void
  1406. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1407. {
  1408. check_preempt_curr(rq, p, wake_flags);
  1409. trace_sched_wakeup(p, true);
  1410. p->state = TASK_RUNNING;
  1411. #ifdef CONFIG_SMP
  1412. if (p->sched_class->task_woken) {
  1413. /*
  1414. * Our task @p is fully woken up and running; so its safe to
  1415. * drop the rq->lock, hereafter rq is only used for statistics.
  1416. */
  1417. lockdep_unpin_lock(&rq->lock);
  1418. p->sched_class->task_woken(rq, p);
  1419. lockdep_pin_lock(&rq->lock);
  1420. }
  1421. if (rq->idle_stamp) {
  1422. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1423. u64 max = 2*rq->max_idle_balance_cost;
  1424. update_avg(&rq->avg_idle, delta);
  1425. if (rq->avg_idle > max)
  1426. rq->avg_idle = max;
  1427. rq->idle_stamp = 0;
  1428. }
  1429. #endif
  1430. }
  1431. static void
  1432. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1433. {
  1434. lockdep_assert_held(&rq->lock);
  1435. #ifdef CONFIG_SMP
  1436. if (p->sched_contributes_to_load)
  1437. rq->nr_uninterruptible--;
  1438. #endif
  1439. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1440. ttwu_do_wakeup(rq, p, wake_flags);
  1441. }
  1442. /*
  1443. * Called in case the task @p isn't fully descheduled from its runqueue,
  1444. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1445. * since all we need to do is flip p->state to TASK_RUNNING, since
  1446. * the task is still ->on_rq.
  1447. */
  1448. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1449. {
  1450. struct rq *rq;
  1451. int ret = 0;
  1452. rq = __task_rq_lock(p);
  1453. if (task_on_rq_queued(p)) {
  1454. /* check_preempt_curr() may use rq clock */
  1455. update_rq_clock(rq);
  1456. ttwu_do_wakeup(rq, p, wake_flags);
  1457. ret = 1;
  1458. }
  1459. __task_rq_unlock(rq);
  1460. return ret;
  1461. }
  1462. #ifdef CONFIG_SMP
  1463. void sched_ttwu_pending(void)
  1464. {
  1465. struct rq *rq = this_rq();
  1466. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1467. struct task_struct *p;
  1468. unsigned long flags;
  1469. if (!llist)
  1470. return;
  1471. raw_spin_lock_irqsave(&rq->lock, flags);
  1472. lockdep_pin_lock(&rq->lock);
  1473. while (llist) {
  1474. p = llist_entry(llist, struct task_struct, wake_entry);
  1475. llist = llist_next(llist);
  1476. ttwu_do_activate(rq, p, 0);
  1477. }
  1478. lockdep_unpin_lock(&rq->lock);
  1479. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1480. }
  1481. void scheduler_ipi(void)
  1482. {
  1483. /*
  1484. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1485. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1486. * this IPI.
  1487. */
  1488. preempt_fold_need_resched();
  1489. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1490. return;
  1491. /*
  1492. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1493. * traditionally all their work was done from the interrupt return
  1494. * path. Now that we actually do some work, we need to make sure
  1495. * we do call them.
  1496. *
  1497. * Some archs already do call them, luckily irq_enter/exit nest
  1498. * properly.
  1499. *
  1500. * Arguably we should visit all archs and update all handlers,
  1501. * however a fair share of IPIs are still resched only so this would
  1502. * somewhat pessimize the simple resched case.
  1503. */
  1504. irq_enter();
  1505. sched_ttwu_pending();
  1506. /*
  1507. * Check if someone kicked us for doing the nohz idle load balance.
  1508. */
  1509. if (unlikely(got_nohz_idle_kick())) {
  1510. this_rq()->idle_balance = 1;
  1511. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1512. }
  1513. irq_exit();
  1514. }
  1515. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1516. {
  1517. struct rq *rq = cpu_rq(cpu);
  1518. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
  1519. if (!set_nr_if_polling(rq->idle))
  1520. smp_send_reschedule(cpu);
  1521. else
  1522. trace_sched_wake_idle_without_ipi(cpu);
  1523. }
  1524. }
  1525. void wake_up_if_idle(int cpu)
  1526. {
  1527. struct rq *rq = cpu_rq(cpu);
  1528. unsigned long flags;
  1529. rcu_read_lock();
  1530. if (!is_idle_task(rcu_dereference(rq->curr)))
  1531. goto out;
  1532. if (set_nr_if_polling(rq->idle)) {
  1533. trace_sched_wake_idle_without_ipi(cpu);
  1534. } else {
  1535. raw_spin_lock_irqsave(&rq->lock, flags);
  1536. if (is_idle_task(rq->curr))
  1537. smp_send_reschedule(cpu);
  1538. /* Else cpu is not in idle, do nothing here */
  1539. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1540. }
  1541. out:
  1542. rcu_read_unlock();
  1543. }
  1544. bool cpus_share_cache(int this_cpu, int that_cpu)
  1545. {
  1546. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1547. }
  1548. #endif /* CONFIG_SMP */
  1549. static void ttwu_queue(struct task_struct *p, int cpu)
  1550. {
  1551. struct rq *rq = cpu_rq(cpu);
  1552. #if defined(CONFIG_SMP)
  1553. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1554. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1555. ttwu_queue_remote(p, cpu);
  1556. return;
  1557. }
  1558. #endif
  1559. raw_spin_lock(&rq->lock);
  1560. lockdep_pin_lock(&rq->lock);
  1561. ttwu_do_activate(rq, p, 0);
  1562. lockdep_unpin_lock(&rq->lock);
  1563. raw_spin_unlock(&rq->lock);
  1564. }
  1565. /**
  1566. * try_to_wake_up - wake up a thread
  1567. * @p: the thread to be awakened
  1568. * @state: the mask of task states that can be woken
  1569. * @wake_flags: wake modifier flags (WF_*)
  1570. *
  1571. * Put it on the run-queue if it's not already there. The "current"
  1572. * thread is always on the run-queue (except when the actual
  1573. * re-schedule is in progress), and as such you're allowed to do
  1574. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1575. * runnable without the overhead of this.
  1576. *
  1577. * Return: %true if @p was woken up, %false if it was already running.
  1578. * or @state didn't match @p's state.
  1579. */
  1580. static int
  1581. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1582. {
  1583. unsigned long flags;
  1584. int cpu, success = 0;
  1585. /*
  1586. * If we are going to wake up a thread waiting for CONDITION we
  1587. * need to ensure that CONDITION=1 done by the caller can not be
  1588. * reordered with p->state check below. This pairs with mb() in
  1589. * set_current_state() the waiting thread does.
  1590. */
  1591. smp_mb__before_spinlock();
  1592. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1593. if (!(p->state & state))
  1594. goto out;
  1595. success = 1; /* we're going to change ->state */
  1596. cpu = task_cpu(p);
  1597. if (p->on_rq && ttwu_remote(p, wake_flags))
  1598. goto stat;
  1599. #ifdef CONFIG_SMP
  1600. /*
  1601. * If the owning (remote) cpu is still in the middle of schedule() with
  1602. * this task as prev, wait until its done referencing the task.
  1603. */
  1604. while (p->on_cpu)
  1605. cpu_relax();
  1606. /*
  1607. * Pairs with the smp_wmb() in finish_lock_switch().
  1608. */
  1609. smp_rmb();
  1610. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1611. p->state = TASK_WAKING;
  1612. if (p->sched_class->task_waking)
  1613. p->sched_class->task_waking(p);
  1614. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1615. if (task_cpu(p) != cpu) {
  1616. wake_flags |= WF_MIGRATED;
  1617. set_task_cpu(p, cpu);
  1618. }
  1619. #endif /* CONFIG_SMP */
  1620. ttwu_queue(p, cpu);
  1621. stat:
  1622. ttwu_stat(p, cpu, wake_flags);
  1623. out:
  1624. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1625. return success;
  1626. }
  1627. /**
  1628. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1629. * @p: the thread to be awakened
  1630. *
  1631. * Put @p on the run-queue if it's not already there. The caller must
  1632. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1633. * the current task.
  1634. */
  1635. static void try_to_wake_up_local(struct task_struct *p)
  1636. {
  1637. struct rq *rq = task_rq(p);
  1638. if (WARN_ON_ONCE(rq != this_rq()) ||
  1639. WARN_ON_ONCE(p == current))
  1640. return;
  1641. lockdep_assert_held(&rq->lock);
  1642. if (!raw_spin_trylock(&p->pi_lock)) {
  1643. /*
  1644. * This is OK, because current is on_cpu, which avoids it being
  1645. * picked for load-balance and preemption/IRQs are still
  1646. * disabled avoiding further scheduler activity on it and we've
  1647. * not yet picked a replacement task.
  1648. */
  1649. lockdep_unpin_lock(&rq->lock);
  1650. raw_spin_unlock(&rq->lock);
  1651. raw_spin_lock(&p->pi_lock);
  1652. raw_spin_lock(&rq->lock);
  1653. lockdep_pin_lock(&rq->lock);
  1654. }
  1655. if (!(p->state & TASK_NORMAL))
  1656. goto out;
  1657. if (!task_on_rq_queued(p))
  1658. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1659. ttwu_do_wakeup(rq, p, 0);
  1660. ttwu_stat(p, smp_processor_id(), 0);
  1661. out:
  1662. raw_spin_unlock(&p->pi_lock);
  1663. }
  1664. /**
  1665. * wake_up_process - Wake up a specific process
  1666. * @p: The process to be woken up.
  1667. *
  1668. * Attempt to wake up the nominated process and move it to the set of runnable
  1669. * processes.
  1670. *
  1671. * Return: 1 if the process was woken up, 0 if it was already running.
  1672. *
  1673. * It may be assumed that this function implies a write memory barrier before
  1674. * changing the task state if and only if any tasks are woken up.
  1675. */
  1676. int wake_up_process(struct task_struct *p)
  1677. {
  1678. WARN_ON(task_is_stopped_or_traced(p));
  1679. return try_to_wake_up(p, TASK_NORMAL, 0);
  1680. }
  1681. EXPORT_SYMBOL(wake_up_process);
  1682. int wake_up_state(struct task_struct *p, unsigned int state)
  1683. {
  1684. return try_to_wake_up(p, state, 0);
  1685. }
  1686. /*
  1687. * This function clears the sched_dl_entity static params.
  1688. */
  1689. void __dl_clear_params(struct task_struct *p)
  1690. {
  1691. struct sched_dl_entity *dl_se = &p->dl;
  1692. dl_se->dl_runtime = 0;
  1693. dl_se->dl_deadline = 0;
  1694. dl_se->dl_period = 0;
  1695. dl_se->flags = 0;
  1696. dl_se->dl_bw = 0;
  1697. dl_se->dl_throttled = 0;
  1698. dl_se->dl_new = 1;
  1699. dl_se->dl_yielded = 0;
  1700. }
  1701. /*
  1702. * Perform scheduler related setup for a newly forked process p.
  1703. * p is forked by current.
  1704. *
  1705. * __sched_fork() is basic setup used by init_idle() too:
  1706. */
  1707. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1708. {
  1709. p->on_rq = 0;
  1710. p->se.on_rq = 0;
  1711. p->se.exec_start = 0;
  1712. p->se.sum_exec_runtime = 0;
  1713. p->se.prev_sum_exec_runtime = 0;
  1714. p->se.nr_migrations = 0;
  1715. p->se.vruntime = 0;
  1716. #ifdef CONFIG_SMP
  1717. p->se.avg.decay_count = 0;
  1718. #endif
  1719. INIT_LIST_HEAD(&p->se.group_node);
  1720. #ifdef CONFIG_SCHEDSTATS
  1721. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1722. #endif
  1723. RB_CLEAR_NODE(&p->dl.rb_node);
  1724. init_dl_task_timer(&p->dl);
  1725. __dl_clear_params(p);
  1726. INIT_LIST_HEAD(&p->rt.run_list);
  1727. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1728. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1729. #endif
  1730. #ifdef CONFIG_NUMA_BALANCING
  1731. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1732. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1733. p->mm->numa_scan_seq = 0;
  1734. }
  1735. if (clone_flags & CLONE_VM)
  1736. p->numa_preferred_nid = current->numa_preferred_nid;
  1737. else
  1738. p->numa_preferred_nid = -1;
  1739. p->node_stamp = 0ULL;
  1740. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1741. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1742. p->numa_work.next = &p->numa_work;
  1743. p->numa_faults = NULL;
  1744. p->last_task_numa_placement = 0;
  1745. p->last_sum_exec_runtime = 0;
  1746. p->numa_group = NULL;
  1747. #endif /* CONFIG_NUMA_BALANCING */
  1748. }
  1749. #ifdef CONFIG_NUMA_BALANCING
  1750. #ifdef CONFIG_SCHED_DEBUG
  1751. void set_numabalancing_state(bool enabled)
  1752. {
  1753. if (enabled)
  1754. sched_feat_set("NUMA");
  1755. else
  1756. sched_feat_set("NO_NUMA");
  1757. }
  1758. #else
  1759. __read_mostly bool numabalancing_enabled;
  1760. void set_numabalancing_state(bool enabled)
  1761. {
  1762. numabalancing_enabled = enabled;
  1763. }
  1764. #endif /* CONFIG_SCHED_DEBUG */
  1765. #ifdef CONFIG_PROC_SYSCTL
  1766. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1767. void __user *buffer, size_t *lenp, loff_t *ppos)
  1768. {
  1769. struct ctl_table t;
  1770. int err;
  1771. int state = numabalancing_enabled;
  1772. if (write && !capable(CAP_SYS_ADMIN))
  1773. return -EPERM;
  1774. t = *table;
  1775. t.data = &state;
  1776. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1777. if (err < 0)
  1778. return err;
  1779. if (write)
  1780. set_numabalancing_state(state);
  1781. return err;
  1782. }
  1783. #endif
  1784. #endif
  1785. /*
  1786. * fork()/clone()-time setup:
  1787. */
  1788. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  1789. {
  1790. unsigned long flags;
  1791. int cpu = get_cpu();
  1792. __sched_fork(clone_flags, p);
  1793. /*
  1794. * We mark the process as running here. This guarantees that
  1795. * nobody will actually run it, and a signal or other external
  1796. * event cannot wake it up and insert it on the runqueue either.
  1797. */
  1798. p->state = TASK_RUNNING;
  1799. /*
  1800. * Make sure we do not leak PI boosting priority to the child.
  1801. */
  1802. p->prio = current->normal_prio;
  1803. /*
  1804. * Revert to default priority/policy on fork if requested.
  1805. */
  1806. if (unlikely(p->sched_reset_on_fork)) {
  1807. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  1808. p->policy = SCHED_NORMAL;
  1809. p->static_prio = NICE_TO_PRIO(0);
  1810. p->rt_priority = 0;
  1811. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1812. p->static_prio = NICE_TO_PRIO(0);
  1813. p->prio = p->normal_prio = __normal_prio(p);
  1814. set_load_weight(p);
  1815. /*
  1816. * We don't need the reset flag anymore after the fork. It has
  1817. * fulfilled its duty:
  1818. */
  1819. p->sched_reset_on_fork = 0;
  1820. }
  1821. if (dl_prio(p->prio)) {
  1822. put_cpu();
  1823. return -EAGAIN;
  1824. } else if (rt_prio(p->prio)) {
  1825. p->sched_class = &rt_sched_class;
  1826. } else {
  1827. p->sched_class = &fair_sched_class;
  1828. }
  1829. if (p->sched_class->task_fork)
  1830. p->sched_class->task_fork(p);
  1831. /*
  1832. * The child is not yet in the pid-hash so no cgroup attach races,
  1833. * and the cgroup is pinned to this child due to cgroup_fork()
  1834. * is ran before sched_fork().
  1835. *
  1836. * Silence PROVE_RCU.
  1837. */
  1838. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1839. set_task_cpu(p, cpu);
  1840. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1841. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1842. if (likely(sched_info_on()))
  1843. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1844. #endif
  1845. #if defined(CONFIG_SMP)
  1846. p->on_cpu = 0;
  1847. #endif
  1848. init_task_preempt_count(p);
  1849. #ifdef CONFIG_SMP
  1850. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1851. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  1852. #endif
  1853. put_cpu();
  1854. return 0;
  1855. }
  1856. unsigned long to_ratio(u64 period, u64 runtime)
  1857. {
  1858. if (runtime == RUNTIME_INF)
  1859. return 1ULL << 20;
  1860. /*
  1861. * Doing this here saves a lot of checks in all
  1862. * the calling paths, and returning zero seems
  1863. * safe for them anyway.
  1864. */
  1865. if (period == 0)
  1866. return 0;
  1867. return div64_u64(runtime << 20, period);
  1868. }
  1869. #ifdef CONFIG_SMP
  1870. inline struct dl_bw *dl_bw_of(int i)
  1871. {
  1872. rcu_lockdep_assert(rcu_read_lock_sched_held(),
  1873. "sched RCU must be held");
  1874. return &cpu_rq(i)->rd->dl_bw;
  1875. }
  1876. static inline int dl_bw_cpus(int i)
  1877. {
  1878. struct root_domain *rd = cpu_rq(i)->rd;
  1879. int cpus = 0;
  1880. rcu_lockdep_assert(rcu_read_lock_sched_held(),
  1881. "sched RCU must be held");
  1882. for_each_cpu_and(i, rd->span, cpu_active_mask)
  1883. cpus++;
  1884. return cpus;
  1885. }
  1886. #else
  1887. inline struct dl_bw *dl_bw_of(int i)
  1888. {
  1889. return &cpu_rq(i)->dl.dl_bw;
  1890. }
  1891. static inline int dl_bw_cpus(int i)
  1892. {
  1893. return 1;
  1894. }
  1895. #endif
  1896. /*
  1897. * We must be sure that accepting a new task (or allowing changing the
  1898. * parameters of an existing one) is consistent with the bandwidth
  1899. * constraints. If yes, this function also accordingly updates the currently
  1900. * allocated bandwidth to reflect the new situation.
  1901. *
  1902. * This function is called while holding p's rq->lock.
  1903. *
  1904. * XXX we should delay bw change until the task's 0-lag point, see
  1905. * __setparam_dl().
  1906. */
  1907. static int dl_overflow(struct task_struct *p, int policy,
  1908. const struct sched_attr *attr)
  1909. {
  1910. struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
  1911. u64 period = attr->sched_period ?: attr->sched_deadline;
  1912. u64 runtime = attr->sched_runtime;
  1913. u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
  1914. int cpus, err = -1;
  1915. if (new_bw == p->dl.dl_bw)
  1916. return 0;
  1917. /*
  1918. * Either if a task, enters, leave, or stays -deadline but changes
  1919. * its parameters, we may need to update accordingly the total
  1920. * allocated bandwidth of the container.
  1921. */
  1922. raw_spin_lock(&dl_b->lock);
  1923. cpus = dl_bw_cpus(task_cpu(p));
  1924. if (dl_policy(policy) && !task_has_dl_policy(p) &&
  1925. !__dl_overflow(dl_b, cpus, 0, new_bw)) {
  1926. __dl_add(dl_b, new_bw);
  1927. err = 0;
  1928. } else if (dl_policy(policy) && task_has_dl_policy(p) &&
  1929. !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
  1930. __dl_clear(dl_b, p->dl.dl_bw);
  1931. __dl_add(dl_b, new_bw);
  1932. err = 0;
  1933. } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
  1934. __dl_clear(dl_b, p->dl.dl_bw);
  1935. err = 0;
  1936. }
  1937. raw_spin_unlock(&dl_b->lock);
  1938. return err;
  1939. }
  1940. extern void init_dl_bw(struct dl_bw *dl_b);
  1941. /*
  1942. * wake_up_new_task - wake up a newly created task for the first time.
  1943. *
  1944. * This function will do some initial scheduler statistics housekeeping
  1945. * that must be done for every newly created context, then puts the task
  1946. * on the runqueue and wakes it.
  1947. */
  1948. void wake_up_new_task(struct task_struct *p)
  1949. {
  1950. unsigned long flags;
  1951. struct rq *rq;
  1952. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1953. #ifdef CONFIG_SMP
  1954. /*
  1955. * Fork balancing, do it here and not earlier because:
  1956. * - cpus_allowed can change in the fork path
  1957. * - any previously selected cpu might disappear through hotplug
  1958. */
  1959. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  1960. #endif
  1961. /* Initialize new task's runnable average */
  1962. init_task_runnable_average(p);
  1963. rq = __task_rq_lock(p);
  1964. activate_task(rq, p, 0);
  1965. p->on_rq = TASK_ON_RQ_QUEUED;
  1966. trace_sched_wakeup_new(p, true);
  1967. check_preempt_curr(rq, p, WF_FORK);
  1968. #ifdef CONFIG_SMP
  1969. if (p->sched_class->task_woken)
  1970. p->sched_class->task_woken(rq, p);
  1971. #endif
  1972. task_rq_unlock(rq, p, &flags);
  1973. }
  1974. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1975. static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
  1976. /**
  1977. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1978. * @notifier: notifier struct to register
  1979. */
  1980. void preempt_notifier_register(struct preempt_notifier *notifier)
  1981. {
  1982. static_key_slow_inc(&preempt_notifier_key);
  1983. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1984. }
  1985. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1986. /**
  1987. * preempt_notifier_unregister - no longer interested in preemption notifications
  1988. * @notifier: notifier struct to unregister
  1989. *
  1990. * This is *not* safe to call from within a preemption notifier.
  1991. */
  1992. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1993. {
  1994. hlist_del(&notifier->link);
  1995. static_key_slow_dec(&preempt_notifier_key);
  1996. }
  1997. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1998. static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1999. {
  2000. struct preempt_notifier *notifier;
  2001. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  2002. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2003. }
  2004. static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2005. {
  2006. if (static_key_false(&preempt_notifier_key))
  2007. __fire_sched_in_preempt_notifiers(curr);
  2008. }
  2009. static void
  2010. __fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2011. struct task_struct *next)
  2012. {
  2013. struct preempt_notifier *notifier;
  2014. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  2015. notifier->ops->sched_out(notifier, next);
  2016. }
  2017. static __always_inline void
  2018. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2019. struct task_struct *next)
  2020. {
  2021. if (static_key_false(&preempt_notifier_key))
  2022. __fire_sched_out_preempt_notifiers(curr, next);
  2023. }
  2024. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2025. static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2026. {
  2027. }
  2028. static inline void
  2029. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2030. struct task_struct *next)
  2031. {
  2032. }
  2033. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2034. /**
  2035. * prepare_task_switch - prepare to switch tasks
  2036. * @rq: the runqueue preparing to switch
  2037. * @prev: the current task that is being switched out
  2038. * @next: the task we are going to switch to.
  2039. *
  2040. * This is called with the rq lock held and interrupts off. It must
  2041. * be paired with a subsequent finish_task_switch after the context
  2042. * switch.
  2043. *
  2044. * prepare_task_switch sets up locking and calls architecture specific
  2045. * hooks.
  2046. */
  2047. static inline void
  2048. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2049. struct task_struct *next)
  2050. {
  2051. trace_sched_switch(prev, next);
  2052. sched_info_switch(rq, prev, next);
  2053. perf_event_task_sched_out(prev, next);
  2054. fire_sched_out_preempt_notifiers(prev, next);
  2055. prepare_lock_switch(rq, next);
  2056. prepare_arch_switch(next);
  2057. }
  2058. /**
  2059. * finish_task_switch - clean up after a task-switch
  2060. * @prev: the thread we just switched away from.
  2061. *
  2062. * finish_task_switch must be called after the context switch, paired
  2063. * with a prepare_task_switch call before the context switch.
  2064. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2065. * and do any other architecture-specific cleanup actions.
  2066. *
  2067. * Note that we may have delayed dropping an mm in context_switch(). If
  2068. * so, we finish that here outside of the runqueue lock. (Doing it
  2069. * with the lock held can cause deadlocks; see schedule() for
  2070. * details.)
  2071. *
  2072. * The context switch have flipped the stack from under us and restored the
  2073. * local variables which were saved when this task called schedule() in the
  2074. * past. prev == current is still correct but we need to recalculate this_rq
  2075. * because prev may have moved to another CPU.
  2076. */
  2077. static struct rq *finish_task_switch(struct task_struct *prev)
  2078. __releases(rq->lock)
  2079. {
  2080. struct rq *rq = this_rq();
  2081. struct mm_struct *mm = rq->prev_mm;
  2082. long prev_state;
  2083. rq->prev_mm = NULL;
  2084. /*
  2085. * A task struct has one reference for the use as "current".
  2086. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2087. * schedule one last time. The schedule call will never return, and
  2088. * the scheduled task must drop that reference.
  2089. * The test for TASK_DEAD must occur while the runqueue locks are
  2090. * still held, otherwise prev could be scheduled on another cpu, die
  2091. * there before we look at prev->state, and then the reference would
  2092. * be dropped twice.
  2093. * Manfred Spraul <manfred@colorfullife.com>
  2094. */
  2095. prev_state = prev->state;
  2096. vtime_task_switch(prev);
  2097. finish_arch_switch(prev);
  2098. perf_event_task_sched_in(prev, current);
  2099. finish_lock_switch(rq, prev);
  2100. finish_arch_post_lock_switch();
  2101. fire_sched_in_preempt_notifiers(current);
  2102. if (mm)
  2103. mmdrop(mm);
  2104. if (unlikely(prev_state == TASK_DEAD)) {
  2105. if (prev->sched_class->task_dead)
  2106. prev->sched_class->task_dead(prev);
  2107. /*
  2108. * Remove function-return probe instances associated with this
  2109. * task and put them back on the free list.
  2110. */
  2111. kprobe_flush_task(prev);
  2112. put_task_struct(prev);
  2113. }
  2114. tick_nohz_task_switch(current);
  2115. return rq;
  2116. }
  2117. #ifdef CONFIG_SMP
  2118. /* rq->lock is NOT held, but preemption is disabled */
  2119. static void __balance_callback(struct rq *rq)
  2120. {
  2121. struct callback_head *head, *next;
  2122. void (*func)(struct rq *rq);
  2123. unsigned long flags;
  2124. raw_spin_lock_irqsave(&rq->lock, flags);
  2125. head = rq->balance_callback;
  2126. rq->balance_callback = NULL;
  2127. while (head) {
  2128. func = (void (*)(struct rq *))head->func;
  2129. next = head->next;
  2130. head->next = NULL;
  2131. head = next;
  2132. func(rq);
  2133. }
  2134. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2135. }
  2136. static inline void balance_callback(struct rq *rq)
  2137. {
  2138. if (unlikely(rq->balance_callback))
  2139. __balance_callback(rq);
  2140. }
  2141. #else
  2142. static inline void balance_callback(struct rq *rq)
  2143. {
  2144. }
  2145. #endif
  2146. /**
  2147. * schedule_tail - first thing a freshly forked thread must call.
  2148. * @prev: the thread we just switched away from.
  2149. */
  2150. asmlinkage __visible void schedule_tail(struct task_struct *prev)
  2151. __releases(rq->lock)
  2152. {
  2153. struct rq *rq;
  2154. /* finish_task_switch() drops rq->lock and enables preemtion */
  2155. preempt_disable();
  2156. rq = finish_task_switch(prev);
  2157. balance_callback(rq);
  2158. preempt_enable();
  2159. if (current->set_child_tid)
  2160. put_user(task_pid_vnr(current), current->set_child_tid);
  2161. }
  2162. /*
  2163. * context_switch - switch to the new MM and the new thread's register state.
  2164. */
  2165. static inline struct rq *
  2166. context_switch(struct rq *rq, struct task_struct *prev,
  2167. struct task_struct *next)
  2168. {
  2169. struct mm_struct *mm, *oldmm;
  2170. prepare_task_switch(rq, prev, next);
  2171. mm = next->mm;
  2172. oldmm = prev->active_mm;
  2173. /*
  2174. * For paravirt, this is coupled with an exit in switch_to to
  2175. * combine the page table reload and the switch backend into
  2176. * one hypercall.
  2177. */
  2178. arch_start_context_switch(prev);
  2179. if (!mm) {
  2180. next->active_mm = oldmm;
  2181. atomic_inc(&oldmm->mm_count);
  2182. enter_lazy_tlb(oldmm, next);
  2183. } else
  2184. switch_mm(oldmm, mm, next);
  2185. if (!prev->mm) {
  2186. prev->active_mm = NULL;
  2187. rq->prev_mm = oldmm;
  2188. }
  2189. /*
  2190. * Since the runqueue lock will be released by the next
  2191. * task (which is an invalid locking op but in the case
  2192. * of the scheduler it's an obvious special-case), so we
  2193. * do an early lockdep release here:
  2194. */
  2195. lockdep_unpin_lock(&rq->lock);
  2196. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2197. /* Here we just switch the register state and the stack. */
  2198. switch_to(prev, next, prev);
  2199. barrier();
  2200. return finish_task_switch(prev);
  2201. }
  2202. /*
  2203. * nr_running and nr_context_switches:
  2204. *
  2205. * externally visible scheduler statistics: current number of runnable
  2206. * threads, total number of context switches performed since bootup.
  2207. */
  2208. unsigned long nr_running(void)
  2209. {
  2210. unsigned long i, sum = 0;
  2211. for_each_online_cpu(i)
  2212. sum += cpu_rq(i)->nr_running;
  2213. return sum;
  2214. }
  2215. /*
  2216. * Check if only the current task is running on the cpu.
  2217. */
  2218. bool single_task_running(void)
  2219. {
  2220. if (cpu_rq(smp_processor_id())->nr_running == 1)
  2221. return true;
  2222. else
  2223. return false;
  2224. }
  2225. EXPORT_SYMBOL(single_task_running);
  2226. unsigned long long nr_context_switches(void)
  2227. {
  2228. int i;
  2229. unsigned long long sum = 0;
  2230. for_each_possible_cpu(i)
  2231. sum += cpu_rq(i)->nr_switches;
  2232. return sum;
  2233. }
  2234. unsigned long nr_iowait(void)
  2235. {
  2236. unsigned long i, sum = 0;
  2237. for_each_possible_cpu(i)
  2238. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2239. return sum;
  2240. }
  2241. unsigned long nr_iowait_cpu(int cpu)
  2242. {
  2243. struct rq *this = cpu_rq(cpu);
  2244. return atomic_read(&this->nr_iowait);
  2245. }
  2246. void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
  2247. {
  2248. struct rq *rq = this_rq();
  2249. *nr_waiters = atomic_read(&rq->nr_iowait);
  2250. *load = rq->load.weight;
  2251. }
  2252. #ifdef CONFIG_SMP
  2253. /*
  2254. * sched_exec - execve() is a valuable balancing opportunity, because at
  2255. * this point the task has the smallest effective memory and cache footprint.
  2256. */
  2257. void sched_exec(void)
  2258. {
  2259. struct task_struct *p = current;
  2260. unsigned long flags;
  2261. int dest_cpu;
  2262. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2263. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  2264. if (dest_cpu == smp_processor_id())
  2265. goto unlock;
  2266. if (likely(cpu_active(dest_cpu))) {
  2267. struct migration_arg arg = { p, dest_cpu };
  2268. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2269. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2270. return;
  2271. }
  2272. unlock:
  2273. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2274. }
  2275. #endif
  2276. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2277. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2278. EXPORT_PER_CPU_SYMBOL(kstat);
  2279. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2280. /*
  2281. * Return accounted runtime for the task.
  2282. * In case the task is currently running, return the runtime plus current's
  2283. * pending runtime that have not been accounted yet.
  2284. */
  2285. unsigned long long task_sched_runtime(struct task_struct *p)
  2286. {
  2287. unsigned long flags;
  2288. struct rq *rq;
  2289. u64 ns;
  2290. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2291. /*
  2292. * 64-bit doesn't need locks to atomically read a 64bit value.
  2293. * So we have a optimization chance when the task's delta_exec is 0.
  2294. * Reading ->on_cpu is racy, but this is ok.
  2295. *
  2296. * If we race with it leaving cpu, we'll take a lock. So we're correct.
  2297. * If we race with it entering cpu, unaccounted time is 0. This is
  2298. * indistinguishable from the read occurring a few cycles earlier.
  2299. * If we see ->on_cpu without ->on_rq, the task is leaving, and has
  2300. * been accounted, so we're correct here as well.
  2301. */
  2302. if (!p->on_cpu || !task_on_rq_queued(p))
  2303. return p->se.sum_exec_runtime;
  2304. #endif
  2305. rq = task_rq_lock(p, &flags);
  2306. /*
  2307. * Must be ->curr _and_ ->on_rq. If dequeued, we would
  2308. * project cycles that may never be accounted to this
  2309. * thread, breaking clock_gettime().
  2310. */
  2311. if (task_current(rq, p) && task_on_rq_queued(p)) {
  2312. update_rq_clock(rq);
  2313. p->sched_class->update_curr(rq);
  2314. }
  2315. ns = p->se.sum_exec_runtime;
  2316. task_rq_unlock(rq, p, &flags);
  2317. return ns;
  2318. }
  2319. /*
  2320. * This function gets called by the timer code, with HZ frequency.
  2321. * We call it with interrupts disabled.
  2322. */
  2323. void scheduler_tick(void)
  2324. {
  2325. int cpu = smp_processor_id();
  2326. struct rq *rq = cpu_rq(cpu);
  2327. struct task_struct *curr = rq->curr;
  2328. sched_clock_tick();
  2329. raw_spin_lock(&rq->lock);
  2330. update_rq_clock(rq);
  2331. curr->sched_class->task_tick(rq, curr, 0);
  2332. update_cpu_load_active(rq);
  2333. calc_global_load_tick(rq);
  2334. raw_spin_unlock(&rq->lock);
  2335. perf_event_task_tick();
  2336. #ifdef CONFIG_SMP
  2337. rq->idle_balance = idle_cpu(cpu);
  2338. trigger_load_balance(rq);
  2339. #endif
  2340. rq_last_tick_reset(rq);
  2341. }
  2342. #ifdef CONFIG_NO_HZ_FULL
  2343. /**
  2344. * scheduler_tick_max_deferment
  2345. *
  2346. * Keep at least one tick per second when a single
  2347. * active task is running because the scheduler doesn't
  2348. * yet completely support full dynticks environment.
  2349. *
  2350. * This makes sure that uptime, CFS vruntime, load
  2351. * balancing, etc... continue to move forward, even
  2352. * with a very low granularity.
  2353. *
  2354. * Return: Maximum deferment in nanoseconds.
  2355. */
  2356. u64 scheduler_tick_max_deferment(void)
  2357. {
  2358. struct rq *rq = this_rq();
  2359. unsigned long next, now = READ_ONCE(jiffies);
  2360. next = rq->last_sched_tick + HZ;
  2361. if (time_before_eq(next, now))
  2362. return 0;
  2363. return jiffies_to_nsecs(next - now);
  2364. }
  2365. #endif
  2366. notrace unsigned long get_parent_ip(unsigned long addr)
  2367. {
  2368. if (in_lock_functions(addr)) {
  2369. addr = CALLER_ADDR2;
  2370. if (in_lock_functions(addr))
  2371. addr = CALLER_ADDR3;
  2372. }
  2373. return addr;
  2374. }
  2375. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2376. defined(CONFIG_PREEMPT_TRACER))
  2377. void preempt_count_add(int val)
  2378. {
  2379. #ifdef CONFIG_DEBUG_PREEMPT
  2380. /*
  2381. * Underflow?
  2382. */
  2383. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2384. return;
  2385. #endif
  2386. __preempt_count_add(val);
  2387. #ifdef CONFIG_DEBUG_PREEMPT
  2388. /*
  2389. * Spinlock count overflowing soon?
  2390. */
  2391. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2392. PREEMPT_MASK - 10);
  2393. #endif
  2394. if (preempt_count() == val) {
  2395. unsigned long ip = get_parent_ip(CALLER_ADDR1);
  2396. #ifdef CONFIG_DEBUG_PREEMPT
  2397. current->preempt_disable_ip = ip;
  2398. #endif
  2399. trace_preempt_off(CALLER_ADDR0, ip);
  2400. }
  2401. }
  2402. EXPORT_SYMBOL(preempt_count_add);
  2403. NOKPROBE_SYMBOL(preempt_count_add);
  2404. void preempt_count_sub(int val)
  2405. {
  2406. #ifdef CONFIG_DEBUG_PREEMPT
  2407. /*
  2408. * Underflow?
  2409. */
  2410. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2411. return;
  2412. /*
  2413. * Is the spinlock portion underflowing?
  2414. */
  2415. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2416. !(preempt_count() & PREEMPT_MASK)))
  2417. return;
  2418. #endif
  2419. if (preempt_count() == val)
  2420. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2421. __preempt_count_sub(val);
  2422. }
  2423. EXPORT_SYMBOL(preempt_count_sub);
  2424. NOKPROBE_SYMBOL(preempt_count_sub);
  2425. #endif
  2426. /*
  2427. * Print scheduling while atomic bug:
  2428. */
  2429. static noinline void __schedule_bug(struct task_struct *prev)
  2430. {
  2431. if (oops_in_progress)
  2432. return;
  2433. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2434. prev->comm, prev->pid, preempt_count());
  2435. debug_show_held_locks(prev);
  2436. print_modules();
  2437. if (irqs_disabled())
  2438. print_irqtrace_events(prev);
  2439. #ifdef CONFIG_DEBUG_PREEMPT
  2440. if (in_atomic_preempt_off()) {
  2441. pr_err("Preemption disabled at:");
  2442. print_ip_sym(current->preempt_disable_ip);
  2443. pr_cont("\n");
  2444. }
  2445. #endif
  2446. dump_stack();
  2447. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2448. }
  2449. /*
  2450. * Various schedule()-time debugging checks and statistics:
  2451. */
  2452. static inline void schedule_debug(struct task_struct *prev)
  2453. {
  2454. #ifdef CONFIG_SCHED_STACK_END_CHECK
  2455. BUG_ON(unlikely(task_stack_end_corrupted(prev)));
  2456. #endif
  2457. /*
  2458. * Test if we are atomic. Since do_exit() needs to call into
  2459. * schedule() atomically, we ignore that path. Otherwise whine
  2460. * if we are scheduling when we should not.
  2461. */
  2462. if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
  2463. __schedule_bug(prev);
  2464. rcu_sleep_check();
  2465. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2466. schedstat_inc(this_rq(), sched_count);
  2467. }
  2468. /*
  2469. * Pick up the highest-prio task:
  2470. */
  2471. static inline struct task_struct *
  2472. pick_next_task(struct rq *rq, struct task_struct *prev)
  2473. {
  2474. const struct sched_class *class = &fair_sched_class;
  2475. struct task_struct *p;
  2476. /*
  2477. * Optimization: we know that if all tasks are in
  2478. * the fair class we can call that function directly:
  2479. */
  2480. if (likely(prev->sched_class == class &&
  2481. rq->nr_running == rq->cfs.h_nr_running)) {
  2482. p = fair_sched_class.pick_next_task(rq, prev);
  2483. if (unlikely(p == RETRY_TASK))
  2484. goto again;
  2485. /* assumes fair_sched_class->next == idle_sched_class */
  2486. if (unlikely(!p))
  2487. p = idle_sched_class.pick_next_task(rq, prev);
  2488. return p;
  2489. }
  2490. again:
  2491. for_each_class(class) {
  2492. p = class->pick_next_task(rq, prev);
  2493. if (p) {
  2494. if (unlikely(p == RETRY_TASK))
  2495. goto again;
  2496. return p;
  2497. }
  2498. }
  2499. BUG(); /* the idle class will always have a runnable task */
  2500. }
  2501. /*
  2502. * __schedule() is the main scheduler function.
  2503. *
  2504. * The main means of driving the scheduler and thus entering this function are:
  2505. *
  2506. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2507. *
  2508. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2509. * paths. For example, see arch/x86/entry_64.S.
  2510. *
  2511. * To drive preemption between tasks, the scheduler sets the flag in timer
  2512. * interrupt handler scheduler_tick().
  2513. *
  2514. * 3. Wakeups don't really cause entry into schedule(). They add a
  2515. * task to the run-queue and that's it.
  2516. *
  2517. * Now, if the new task added to the run-queue preempts the current
  2518. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2519. * called on the nearest possible occasion:
  2520. *
  2521. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2522. *
  2523. * - in syscall or exception context, at the next outmost
  2524. * preempt_enable(). (this might be as soon as the wake_up()'s
  2525. * spin_unlock()!)
  2526. *
  2527. * - in IRQ context, return from interrupt-handler to
  2528. * preemptible context
  2529. *
  2530. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2531. * then at the next:
  2532. *
  2533. * - cond_resched() call
  2534. * - explicit schedule() call
  2535. * - return from syscall or exception to user-space
  2536. * - return from interrupt-handler to user-space
  2537. *
  2538. * WARNING: must be called with preemption disabled!
  2539. */
  2540. static void __sched __schedule(void)
  2541. {
  2542. struct task_struct *prev, *next;
  2543. unsigned long *switch_count;
  2544. struct rq *rq;
  2545. int cpu;
  2546. cpu = smp_processor_id();
  2547. rq = cpu_rq(cpu);
  2548. rcu_note_context_switch();
  2549. prev = rq->curr;
  2550. schedule_debug(prev);
  2551. if (sched_feat(HRTICK))
  2552. hrtick_clear(rq);
  2553. /*
  2554. * Make sure that signal_pending_state()->signal_pending() below
  2555. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2556. * done by the caller to avoid the race with signal_wake_up().
  2557. */
  2558. smp_mb__before_spinlock();
  2559. raw_spin_lock_irq(&rq->lock);
  2560. lockdep_pin_lock(&rq->lock);
  2561. rq->clock_skip_update <<= 1; /* promote REQ to ACT */
  2562. switch_count = &prev->nivcsw;
  2563. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2564. if (unlikely(signal_pending_state(prev->state, prev))) {
  2565. prev->state = TASK_RUNNING;
  2566. } else {
  2567. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2568. prev->on_rq = 0;
  2569. /*
  2570. * If a worker went to sleep, notify and ask workqueue
  2571. * whether it wants to wake up a task to maintain
  2572. * concurrency.
  2573. */
  2574. if (prev->flags & PF_WQ_WORKER) {
  2575. struct task_struct *to_wakeup;
  2576. to_wakeup = wq_worker_sleeping(prev, cpu);
  2577. if (to_wakeup)
  2578. try_to_wake_up_local(to_wakeup);
  2579. }
  2580. }
  2581. switch_count = &prev->nvcsw;
  2582. }
  2583. if (task_on_rq_queued(prev))
  2584. update_rq_clock(rq);
  2585. next = pick_next_task(rq, prev);
  2586. clear_tsk_need_resched(prev);
  2587. clear_preempt_need_resched();
  2588. rq->clock_skip_update = 0;
  2589. if (likely(prev != next)) {
  2590. rq->nr_switches++;
  2591. rq->curr = next;
  2592. ++*switch_count;
  2593. rq = context_switch(rq, prev, next); /* unlocks the rq */
  2594. cpu = cpu_of(rq);
  2595. } else {
  2596. lockdep_unpin_lock(&rq->lock);
  2597. raw_spin_unlock_irq(&rq->lock);
  2598. }
  2599. balance_callback(rq);
  2600. }
  2601. static inline void sched_submit_work(struct task_struct *tsk)
  2602. {
  2603. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2604. return;
  2605. /*
  2606. * If we are going to sleep and we have plugged IO queued,
  2607. * make sure to submit it to avoid deadlocks.
  2608. */
  2609. if (blk_needs_flush_plug(tsk))
  2610. blk_schedule_flush_plug(tsk);
  2611. }
  2612. asmlinkage __visible void __sched schedule(void)
  2613. {
  2614. struct task_struct *tsk = current;
  2615. sched_submit_work(tsk);
  2616. do {
  2617. preempt_disable();
  2618. __schedule();
  2619. sched_preempt_enable_no_resched();
  2620. } while (need_resched());
  2621. }
  2622. EXPORT_SYMBOL(schedule);
  2623. #ifdef CONFIG_CONTEXT_TRACKING
  2624. asmlinkage __visible void __sched schedule_user(void)
  2625. {
  2626. /*
  2627. * If we come here after a random call to set_need_resched(),
  2628. * or we have been woken up remotely but the IPI has not yet arrived,
  2629. * we haven't yet exited the RCU idle mode. Do it here manually until
  2630. * we find a better solution.
  2631. *
  2632. * NB: There are buggy callers of this function. Ideally we
  2633. * should warn if prev_state != CONTEXT_USER, but that will trigger
  2634. * too frequently to make sense yet.
  2635. */
  2636. enum ctx_state prev_state = exception_enter();
  2637. schedule();
  2638. exception_exit(prev_state);
  2639. }
  2640. #endif
  2641. /**
  2642. * schedule_preempt_disabled - called with preemption disabled
  2643. *
  2644. * Returns with preemption disabled. Note: preempt_count must be 1
  2645. */
  2646. void __sched schedule_preempt_disabled(void)
  2647. {
  2648. sched_preempt_enable_no_resched();
  2649. schedule();
  2650. preempt_disable();
  2651. }
  2652. static void __sched notrace preempt_schedule_common(void)
  2653. {
  2654. do {
  2655. preempt_active_enter();
  2656. __schedule();
  2657. preempt_active_exit();
  2658. /*
  2659. * Check again in case we missed a preemption opportunity
  2660. * between schedule and now.
  2661. */
  2662. } while (need_resched());
  2663. }
  2664. #ifdef CONFIG_PREEMPT
  2665. /*
  2666. * this is the entry point to schedule() from in-kernel preemption
  2667. * off of preempt_enable. Kernel preemptions off return from interrupt
  2668. * occur there and call schedule directly.
  2669. */
  2670. asmlinkage __visible void __sched notrace preempt_schedule(void)
  2671. {
  2672. /*
  2673. * If there is a non-zero preempt_count or interrupts are disabled,
  2674. * we do not want to preempt the current task. Just return..
  2675. */
  2676. if (likely(!preemptible()))
  2677. return;
  2678. preempt_schedule_common();
  2679. }
  2680. NOKPROBE_SYMBOL(preempt_schedule);
  2681. EXPORT_SYMBOL(preempt_schedule);
  2682. /**
  2683. * preempt_schedule_notrace - preempt_schedule called by tracing
  2684. *
  2685. * The tracing infrastructure uses preempt_enable_notrace to prevent
  2686. * recursion and tracing preempt enabling caused by the tracing
  2687. * infrastructure itself. But as tracing can happen in areas coming
  2688. * from userspace or just about to enter userspace, a preempt enable
  2689. * can occur before user_exit() is called. This will cause the scheduler
  2690. * to be called when the system is still in usermode.
  2691. *
  2692. * To prevent this, the preempt_enable_notrace will use this function
  2693. * instead of preempt_schedule() to exit user context if needed before
  2694. * calling the scheduler.
  2695. */
  2696. asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
  2697. {
  2698. enum ctx_state prev_ctx;
  2699. if (likely(!preemptible()))
  2700. return;
  2701. do {
  2702. /*
  2703. * Use raw __prempt_count() ops that don't call function.
  2704. * We can't call functions before disabling preemption which
  2705. * disarm preemption tracing recursions.
  2706. */
  2707. __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
  2708. barrier();
  2709. /*
  2710. * Needs preempt disabled in case user_exit() is traced
  2711. * and the tracer calls preempt_enable_notrace() causing
  2712. * an infinite recursion.
  2713. */
  2714. prev_ctx = exception_enter();
  2715. __schedule();
  2716. exception_exit(prev_ctx);
  2717. barrier();
  2718. __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
  2719. } while (need_resched());
  2720. }
  2721. EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
  2722. #endif /* CONFIG_PREEMPT */
  2723. /*
  2724. * this is the entry point to schedule() from kernel preemption
  2725. * off of irq context.
  2726. * Note, that this is called and return with irqs disabled. This will
  2727. * protect us against recursive calling from irq.
  2728. */
  2729. asmlinkage __visible void __sched preempt_schedule_irq(void)
  2730. {
  2731. enum ctx_state prev_state;
  2732. /* Catch callers which need to be fixed */
  2733. BUG_ON(preempt_count() || !irqs_disabled());
  2734. prev_state = exception_enter();
  2735. do {
  2736. preempt_active_enter();
  2737. local_irq_enable();
  2738. __schedule();
  2739. local_irq_disable();
  2740. preempt_active_exit();
  2741. } while (need_resched());
  2742. exception_exit(prev_state);
  2743. }
  2744. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2745. void *key)
  2746. {
  2747. return try_to_wake_up(curr->private, mode, wake_flags);
  2748. }
  2749. EXPORT_SYMBOL(default_wake_function);
  2750. #ifdef CONFIG_RT_MUTEXES
  2751. /*
  2752. * rt_mutex_setprio - set the current priority of a task
  2753. * @p: task
  2754. * @prio: prio value (kernel-internal form)
  2755. *
  2756. * This function changes the 'effective' priority of a task. It does
  2757. * not touch ->normal_prio like __setscheduler().
  2758. *
  2759. * Used by the rt_mutex code to implement priority inheritance
  2760. * logic. Call site only calls if the priority of the task changed.
  2761. */
  2762. void rt_mutex_setprio(struct task_struct *p, int prio)
  2763. {
  2764. int oldprio, queued, running, enqueue_flag = 0;
  2765. struct rq *rq;
  2766. const struct sched_class *prev_class;
  2767. BUG_ON(prio > MAX_PRIO);
  2768. rq = __task_rq_lock(p);
  2769. /*
  2770. * Idle task boosting is a nono in general. There is one
  2771. * exception, when PREEMPT_RT and NOHZ is active:
  2772. *
  2773. * The idle task calls get_next_timer_interrupt() and holds
  2774. * the timer wheel base->lock on the CPU and another CPU wants
  2775. * to access the timer (probably to cancel it). We can safely
  2776. * ignore the boosting request, as the idle CPU runs this code
  2777. * with interrupts disabled and will complete the lock
  2778. * protected section without being interrupted. So there is no
  2779. * real need to boost.
  2780. */
  2781. if (unlikely(p == rq->idle)) {
  2782. WARN_ON(p != rq->curr);
  2783. WARN_ON(p->pi_blocked_on);
  2784. goto out_unlock;
  2785. }
  2786. trace_sched_pi_setprio(p, prio);
  2787. oldprio = p->prio;
  2788. prev_class = p->sched_class;
  2789. queued = task_on_rq_queued(p);
  2790. running = task_current(rq, p);
  2791. if (queued)
  2792. dequeue_task(rq, p, 0);
  2793. if (running)
  2794. put_prev_task(rq, p);
  2795. /*
  2796. * Boosting condition are:
  2797. * 1. -rt task is running and holds mutex A
  2798. * --> -dl task blocks on mutex A
  2799. *
  2800. * 2. -dl task is running and holds mutex A
  2801. * --> -dl task blocks on mutex A and could preempt the
  2802. * running task
  2803. */
  2804. if (dl_prio(prio)) {
  2805. struct task_struct *pi_task = rt_mutex_get_top_task(p);
  2806. if (!dl_prio(p->normal_prio) ||
  2807. (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
  2808. p->dl.dl_boosted = 1;
  2809. enqueue_flag = ENQUEUE_REPLENISH;
  2810. } else
  2811. p->dl.dl_boosted = 0;
  2812. p->sched_class = &dl_sched_class;
  2813. } else if (rt_prio(prio)) {
  2814. if (dl_prio(oldprio))
  2815. p->dl.dl_boosted = 0;
  2816. if (oldprio < prio)
  2817. enqueue_flag = ENQUEUE_HEAD;
  2818. p->sched_class = &rt_sched_class;
  2819. } else {
  2820. if (dl_prio(oldprio))
  2821. p->dl.dl_boosted = 0;
  2822. if (rt_prio(oldprio))
  2823. p->rt.timeout = 0;
  2824. p->sched_class = &fair_sched_class;
  2825. }
  2826. p->prio = prio;
  2827. if (running)
  2828. p->sched_class->set_curr_task(rq);
  2829. if (queued)
  2830. enqueue_task(rq, p, enqueue_flag);
  2831. check_class_changed(rq, p, prev_class, oldprio);
  2832. out_unlock:
  2833. preempt_disable(); /* avoid rq from going away on us */
  2834. __task_rq_unlock(rq);
  2835. balance_callback(rq);
  2836. preempt_enable();
  2837. }
  2838. #endif
  2839. void set_user_nice(struct task_struct *p, long nice)
  2840. {
  2841. int old_prio, delta, queued;
  2842. unsigned long flags;
  2843. struct rq *rq;
  2844. if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
  2845. return;
  2846. /*
  2847. * We have to be careful, if called from sys_setpriority(),
  2848. * the task might be in the middle of scheduling on another CPU.
  2849. */
  2850. rq = task_rq_lock(p, &flags);
  2851. /*
  2852. * The RT priorities are set via sched_setscheduler(), but we still
  2853. * allow the 'normal' nice value to be set - but as expected
  2854. * it wont have any effect on scheduling until the task is
  2855. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  2856. */
  2857. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  2858. p->static_prio = NICE_TO_PRIO(nice);
  2859. goto out_unlock;
  2860. }
  2861. queued = task_on_rq_queued(p);
  2862. if (queued)
  2863. dequeue_task(rq, p, 0);
  2864. p->static_prio = NICE_TO_PRIO(nice);
  2865. set_load_weight(p);
  2866. old_prio = p->prio;
  2867. p->prio = effective_prio(p);
  2868. delta = p->prio - old_prio;
  2869. if (queued) {
  2870. enqueue_task(rq, p, 0);
  2871. /*
  2872. * If the task increased its priority or is running and
  2873. * lowered its priority, then reschedule its CPU:
  2874. */
  2875. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2876. resched_curr(rq);
  2877. }
  2878. out_unlock:
  2879. task_rq_unlock(rq, p, &flags);
  2880. }
  2881. EXPORT_SYMBOL(set_user_nice);
  2882. /*
  2883. * can_nice - check if a task can reduce its nice value
  2884. * @p: task
  2885. * @nice: nice value
  2886. */
  2887. int can_nice(const struct task_struct *p, const int nice)
  2888. {
  2889. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2890. int nice_rlim = nice_to_rlimit(nice);
  2891. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2892. capable(CAP_SYS_NICE));
  2893. }
  2894. #ifdef __ARCH_WANT_SYS_NICE
  2895. /*
  2896. * sys_nice - change the priority of the current process.
  2897. * @increment: priority increment
  2898. *
  2899. * sys_setpriority is a more generic, but much slower function that
  2900. * does similar things.
  2901. */
  2902. SYSCALL_DEFINE1(nice, int, increment)
  2903. {
  2904. long nice, retval;
  2905. /*
  2906. * Setpriority might change our priority at the same moment.
  2907. * We don't have to worry. Conceptually one call occurs first
  2908. * and we have a single winner.
  2909. */
  2910. increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
  2911. nice = task_nice(current) + increment;
  2912. nice = clamp_val(nice, MIN_NICE, MAX_NICE);
  2913. if (increment < 0 && !can_nice(current, nice))
  2914. return -EPERM;
  2915. retval = security_task_setnice(current, nice);
  2916. if (retval)
  2917. return retval;
  2918. set_user_nice(current, nice);
  2919. return 0;
  2920. }
  2921. #endif
  2922. /**
  2923. * task_prio - return the priority value of a given task.
  2924. * @p: the task in question.
  2925. *
  2926. * Return: The priority value as seen by users in /proc.
  2927. * RT tasks are offset by -200. Normal tasks are centered
  2928. * around 0, value goes from -16 to +15.
  2929. */
  2930. int task_prio(const struct task_struct *p)
  2931. {
  2932. return p->prio - MAX_RT_PRIO;
  2933. }
  2934. /**
  2935. * idle_cpu - is a given cpu idle currently?
  2936. * @cpu: the processor in question.
  2937. *
  2938. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2939. */
  2940. int idle_cpu(int cpu)
  2941. {
  2942. struct rq *rq = cpu_rq(cpu);
  2943. if (rq->curr != rq->idle)
  2944. return 0;
  2945. if (rq->nr_running)
  2946. return 0;
  2947. #ifdef CONFIG_SMP
  2948. if (!llist_empty(&rq->wake_list))
  2949. return 0;
  2950. #endif
  2951. return 1;
  2952. }
  2953. /**
  2954. * idle_task - return the idle task for a given cpu.
  2955. * @cpu: the processor in question.
  2956. *
  2957. * Return: The idle task for the cpu @cpu.
  2958. */
  2959. struct task_struct *idle_task(int cpu)
  2960. {
  2961. return cpu_rq(cpu)->idle;
  2962. }
  2963. /**
  2964. * find_process_by_pid - find a process with a matching PID value.
  2965. * @pid: the pid in question.
  2966. *
  2967. * The task of @pid, if found. %NULL otherwise.
  2968. */
  2969. static struct task_struct *find_process_by_pid(pid_t pid)
  2970. {
  2971. return pid ? find_task_by_vpid(pid) : current;
  2972. }
  2973. /*
  2974. * This function initializes the sched_dl_entity of a newly becoming
  2975. * SCHED_DEADLINE task.
  2976. *
  2977. * Only the static values are considered here, the actual runtime and the
  2978. * absolute deadline will be properly calculated when the task is enqueued
  2979. * for the first time with its new policy.
  2980. */
  2981. static void
  2982. __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
  2983. {
  2984. struct sched_dl_entity *dl_se = &p->dl;
  2985. dl_se->dl_runtime = attr->sched_runtime;
  2986. dl_se->dl_deadline = attr->sched_deadline;
  2987. dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
  2988. dl_se->flags = attr->sched_flags;
  2989. dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
  2990. /*
  2991. * Changing the parameters of a task is 'tricky' and we're not doing
  2992. * the correct thing -- also see task_dead_dl() and switched_from_dl().
  2993. *
  2994. * What we SHOULD do is delay the bandwidth release until the 0-lag
  2995. * point. This would include retaining the task_struct until that time
  2996. * and change dl_overflow() to not immediately decrement the current
  2997. * amount.
  2998. *
  2999. * Instead we retain the current runtime/deadline and let the new
  3000. * parameters take effect after the current reservation period lapses.
  3001. * This is safe (albeit pessimistic) because the 0-lag point is always
  3002. * before the current scheduling deadline.
  3003. *
  3004. * We can still have temporary overloads because we do not delay the
  3005. * change in bandwidth until that time; so admission control is
  3006. * not on the safe side. It does however guarantee tasks will never
  3007. * consume more than promised.
  3008. */
  3009. }
  3010. /*
  3011. * sched_setparam() passes in -1 for its policy, to let the functions
  3012. * it calls know not to change it.
  3013. */
  3014. #define SETPARAM_POLICY -1
  3015. static void __setscheduler_params(struct task_struct *p,
  3016. const struct sched_attr *attr)
  3017. {
  3018. int policy = attr->sched_policy;
  3019. if (policy == SETPARAM_POLICY)
  3020. policy = p->policy;
  3021. p->policy = policy;
  3022. if (dl_policy(policy))
  3023. __setparam_dl(p, attr);
  3024. else if (fair_policy(policy))
  3025. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  3026. /*
  3027. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  3028. * !rt_policy. Always setting this ensures that things like
  3029. * getparam()/getattr() don't report silly values for !rt tasks.
  3030. */
  3031. p->rt_priority = attr->sched_priority;
  3032. p->normal_prio = normal_prio(p);
  3033. set_load_weight(p);
  3034. }
  3035. /* Actually do priority change: must hold pi & rq lock. */
  3036. static void __setscheduler(struct rq *rq, struct task_struct *p,
  3037. const struct sched_attr *attr, bool keep_boost)
  3038. {
  3039. __setscheduler_params(p, attr);
  3040. /*
  3041. * Keep a potential priority boosting if called from
  3042. * sched_setscheduler().
  3043. */
  3044. if (keep_boost)
  3045. p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
  3046. else
  3047. p->prio = normal_prio(p);
  3048. if (dl_prio(p->prio))
  3049. p->sched_class = &dl_sched_class;
  3050. else if (rt_prio(p->prio))
  3051. p->sched_class = &rt_sched_class;
  3052. else
  3053. p->sched_class = &fair_sched_class;
  3054. }
  3055. static void
  3056. __getparam_dl(struct task_struct *p, struct sched_attr *attr)
  3057. {
  3058. struct sched_dl_entity *dl_se = &p->dl;
  3059. attr->sched_priority = p->rt_priority;
  3060. attr->sched_runtime = dl_se->dl_runtime;
  3061. attr->sched_deadline = dl_se->dl_deadline;
  3062. attr->sched_period = dl_se->dl_period;
  3063. attr->sched_flags = dl_se->flags;
  3064. }
  3065. /*
  3066. * This function validates the new parameters of a -deadline task.
  3067. * We ask for the deadline not being zero, and greater or equal
  3068. * than the runtime, as well as the period of being zero or
  3069. * greater than deadline. Furthermore, we have to be sure that
  3070. * user parameters are above the internal resolution of 1us (we
  3071. * check sched_runtime only since it is always the smaller one) and
  3072. * below 2^63 ns (we have to check both sched_deadline and
  3073. * sched_period, as the latter can be zero).
  3074. */
  3075. static bool
  3076. __checkparam_dl(const struct sched_attr *attr)
  3077. {
  3078. /* deadline != 0 */
  3079. if (attr->sched_deadline == 0)
  3080. return false;
  3081. /*
  3082. * Since we truncate DL_SCALE bits, make sure we're at least
  3083. * that big.
  3084. */
  3085. if (attr->sched_runtime < (1ULL << DL_SCALE))
  3086. return false;
  3087. /*
  3088. * Since we use the MSB for wrap-around and sign issues, make
  3089. * sure it's not set (mind that period can be equal to zero).
  3090. */
  3091. if (attr->sched_deadline & (1ULL << 63) ||
  3092. attr->sched_period & (1ULL << 63))
  3093. return false;
  3094. /* runtime <= deadline <= period (if period != 0) */
  3095. if ((attr->sched_period != 0 &&
  3096. attr->sched_period < attr->sched_deadline) ||
  3097. attr->sched_deadline < attr->sched_runtime)
  3098. return false;
  3099. return true;
  3100. }
  3101. /*
  3102. * check the target process has a UID that matches the current process's
  3103. */
  3104. static bool check_same_owner(struct task_struct *p)
  3105. {
  3106. const struct cred *cred = current_cred(), *pcred;
  3107. bool match;
  3108. rcu_read_lock();
  3109. pcred = __task_cred(p);
  3110. match = (uid_eq(cred->euid, pcred->euid) ||
  3111. uid_eq(cred->euid, pcred->uid));
  3112. rcu_read_unlock();
  3113. return match;
  3114. }
  3115. static bool dl_param_changed(struct task_struct *p,
  3116. const struct sched_attr *attr)
  3117. {
  3118. struct sched_dl_entity *dl_se = &p->dl;
  3119. if (dl_se->dl_runtime != attr->sched_runtime ||
  3120. dl_se->dl_deadline != attr->sched_deadline ||
  3121. dl_se->dl_period != attr->sched_period ||
  3122. dl_se->flags != attr->sched_flags)
  3123. return true;
  3124. return false;
  3125. }
  3126. static int __sched_setscheduler(struct task_struct *p,
  3127. const struct sched_attr *attr,
  3128. bool user, bool pi)
  3129. {
  3130. int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
  3131. MAX_RT_PRIO - 1 - attr->sched_priority;
  3132. int retval, oldprio, oldpolicy = -1, queued, running;
  3133. int new_effective_prio, policy = attr->sched_policy;
  3134. unsigned long flags;
  3135. const struct sched_class *prev_class;
  3136. struct rq *rq;
  3137. int reset_on_fork;
  3138. /* may grab non-irq protected spin_locks */
  3139. BUG_ON(in_interrupt());
  3140. recheck:
  3141. /* double check policy once rq lock held */
  3142. if (policy < 0) {
  3143. reset_on_fork = p->sched_reset_on_fork;
  3144. policy = oldpolicy = p->policy;
  3145. } else {
  3146. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  3147. if (policy != SCHED_DEADLINE &&
  3148. policy != SCHED_FIFO && policy != SCHED_RR &&
  3149. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3150. policy != SCHED_IDLE)
  3151. return -EINVAL;
  3152. }
  3153. if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
  3154. return -EINVAL;
  3155. /*
  3156. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3157. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3158. * SCHED_BATCH and SCHED_IDLE is 0.
  3159. */
  3160. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  3161. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
  3162. return -EINVAL;
  3163. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  3164. (rt_policy(policy) != (attr->sched_priority != 0)))
  3165. return -EINVAL;
  3166. /*
  3167. * Allow unprivileged RT tasks to decrease priority:
  3168. */
  3169. if (user && !capable(CAP_SYS_NICE)) {
  3170. if (fair_policy(policy)) {
  3171. if (attr->sched_nice < task_nice(p) &&
  3172. !can_nice(p, attr->sched_nice))
  3173. return -EPERM;
  3174. }
  3175. if (rt_policy(policy)) {
  3176. unsigned long rlim_rtprio =
  3177. task_rlimit(p, RLIMIT_RTPRIO);
  3178. /* can't set/change the rt policy */
  3179. if (policy != p->policy && !rlim_rtprio)
  3180. return -EPERM;
  3181. /* can't increase priority */
  3182. if (attr->sched_priority > p->rt_priority &&
  3183. attr->sched_priority > rlim_rtprio)
  3184. return -EPERM;
  3185. }
  3186. /*
  3187. * Can't set/change SCHED_DEADLINE policy at all for now
  3188. * (safest behavior); in the future we would like to allow
  3189. * unprivileged DL tasks to increase their relative deadline
  3190. * or reduce their runtime (both ways reducing utilization)
  3191. */
  3192. if (dl_policy(policy))
  3193. return -EPERM;
  3194. /*
  3195. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3196. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3197. */
  3198. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3199. if (!can_nice(p, task_nice(p)))
  3200. return -EPERM;
  3201. }
  3202. /* can't change other user's priorities */
  3203. if (!check_same_owner(p))
  3204. return -EPERM;
  3205. /* Normal users shall not reset the sched_reset_on_fork flag */
  3206. if (p->sched_reset_on_fork && !reset_on_fork)
  3207. return -EPERM;
  3208. }
  3209. if (user) {
  3210. retval = security_task_setscheduler(p);
  3211. if (retval)
  3212. return retval;
  3213. }
  3214. /*
  3215. * make sure no PI-waiters arrive (or leave) while we are
  3216. * changing the priority of the task:
  3217. *
  3218. * To be able to change p->policy safely, the appropriate
  3219. * runqueue lock must be held.
  3220. */
  3221. rq = task_rq_lock(p, &flags);
  3222. /*
  3223. * Changing the policy of the stop threads its a very bad idea
  3224. */
  3225. if (p == rq->stop) {
  3226. task_rq_unlock(rq, p, &flags);
  3227. return -EINVAL;
  3228. }
  3229. /*
  3230. * If not changing anything there's no need to proceed further,
  3231. * but store a possible modification of reset_on_fork.
  3232. */
  3233. if (unlikely(policy == p->policy)) {
  3234. if (fair_policy(policy) && attr->sched_nice != task_nice(p))
  3235. goto change;
  3236. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  3237. goto change;
  3238. if (dl_policy(policy) && dl_param_changed(p, attr))
  3239. goto change;
  3240. p->sched_reset_on_fork = reset_on_fork;
  3241. task_rq_unlock(rq, p, &flags);
  3242. return 0;
  3243. }
  3244. change:
  3245. if (user) {
  3246. #ifdef CONFIG_RT_GROUP_SCHED
  3247. /*
  3248. * Do not allow realtime tasks into groups that have no runtime
  3249. * assigned.
  3250. */
  3251. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3252. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3253. !task_group_is_autogroup(task_group(p))) {
  3254. task_rq_unlock(rq, p, &flags);
  3255. return -EPERM;
  3256. }
  3257. #endif
  3258. #ifdef CONFIG_SMP
  3259. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  3260. cpumask_t *span = rq->rd->span;
  3261. /*
  3262. * Don't allow tasks with an affinity mask smaller than
  3263. * the entire root_domain to become SCHED_DEADLINE. We
  3264. * will also fail if there's no bandwidth available.
  3265. */
  3266. if (!cpumask_subset(span, &p->cpus_allowed) ||
  3267. rq->rd->dl_bw.bw == 0) {
  3268. task_rq_unlock(rq, p, &flags);
  3269. return -EPERM;
  3270. }
  3271. }
  3272. #endif
  3273. }
  3274. /* recheck policy now with rq lock held */
  3275. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3276. policy = oldpolicy = -1;
  3277. task_rq_unlock(rq, p, &flags);
  3278. goto recheck;
  3279. }
  3280. /*
  3281. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  3282. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  3283. * is available.
  3284. */
  3285. if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
  3286. task_rq_unlock(rq, p, &flags);
  3287. return -EBUSY;
  3288. }
  3289. p->sched_reset_on_fork = reset_on_fork;
  3290. oldprio = p->prio;
  3291. if (pi) {
  3292. /*
  3293. * Take priority boosted tasks into account. If the new
  3294. * effective priority is unchanged, we just store the new
  3295. * normal parameters and do not touch the scheduler class and
  3296. * the runqueue. This will be done when the task deboost
  3297. * itself.
  3298. */
  3299. new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
  3300. if (new_effective_prio == oldprio) {
  3301. __setscheduler_params(p, attr);
  3302. task_rq_unlock(rq, p, &flags);
  3303. return 0;
  3304. }
  3305. }
  3306. queued = task_on_rq_queued(p);
  3307. running = task_current(rq, p);
  3308. if (queued)
  3309. dequeue_task(rq, p, 0);
  3310. if (running)
  3311. put_prev_task(rq, p);
  3312. prev_class = p->sched_class;
  3313. __setscheduler(rq, p, attr, pi);
  3314. if (running)
  3315. p->sched_class->set_curr_task(rq);
  3316. if (queued) {
  3317. /*
  3318. * We enqueue to tail when the priority of a task is
  3319. * increased (user space view).
  3320. */
  3321. enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
  3322. }
  3323. check_class_changed(rq, p, prev_class, oldprio);
  3324. preempt_disable(); /* avoid rq from going away on us */
  3325. task_rq_unlock(rq, p, &flags);
  3326. if (pi)
  3327. rt_mutex_adjust_pi(p);
  3328. /*
  3329. * Run balance callbacks after we've adjusted the PI chain.
  3330. */
  3331. balance_callback(rq);
  3332. preempt_enable();
  3333. return 0;
  3334. }
  3335. static int _sched_setscheduler(struct task_struct *p, int policy,
  3336. const struct sched_param *param, bool check)
  3337. {
  3338. struct sched_attr attr = {
  3339. .sched_policy = policy,
  3340. .sched_priority = param->sched_priority,
  3341. .sched_nice = PRIO_TO_NICE(p->static_prio),
  3342. };
  3343. /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
  3344. if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
  3345. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3346. policy &= ~SCHED_RESET_ON_FORK;
  3347. attr.sched_policy = policy;
  3348. }
  3349. return __sched_setscheduler(p, &attr, check, true);
  3350. }
  3351. /**
  3352. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3353. * @p: the task in question.
  3354. * @policy: new policy.
  3355. * @param: structure containing the new RT priority.
  3356. *
  3357. * Return: 0 on success. An error code otherwise.
  3358. *
  3359. * NOTE that the task may be already dead.
  3360. */
  3361. int sched_setscheduler(struct task_struct *p, int policy,
  3362. const struct sched_param *param)
  3363. {
  3364. return _sched_setscheduler(p, policy, param, true);
  3365. }
  3366. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3367. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  3368. {
  3369. return __sched_setscheduler(p, attr, true, true);
  3370. }
  3371. EXPORT_SYMBOL_GPL(sched_setattr);
  3372. /**
  3373. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3374. * @p: the task in question.
  3375. * @policy: new policy.
  3376. * @param: structure containing the new RT priority.
  3377. *
  3378. * Just like sched_setscheduler, only don't bother checking if the
  3379. * current context has permission. For example, this is needed in
  3380. * stop_machine(): we create temporary high priority worker threads,
  3381. * but our caller might not have that capability.
  3382. *
  3383. * Return: 0 on success. An error code otherwise.
  3384. */
  3385. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3386. const struct sched_param *param)
  3387. {
  3388. return _sched_setscheduler(p, policy, param, false);
  3389. }
  3390. static int
  3391. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3392. {
  3393. struct sched_param lparam;
  3394. struct task_struct *p;
  3395. int retval;
  3396. if (!param || pid < 0)
  3397. return -EINVAL;
  3398. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3399. return -EFAULT;
  3400. rcu_read_lock();
  3401. retval = -ESRCH;
  3402. p = find_process_by_pid(pid);
  3403. if (p != NULL)
  3404. retval = sched_setscheduler(p, policy, &lparam);
  3405. rcu_read_unlock();
  3406. return retval;
  3407. }
  3408. /*
  3409. * Mimics kernel/events/core.c perf_copy_attr().
  3410. */
  3411. static int sched_copy_attr(struct sched_attr __user *uattr,
  3412. struct sched_attr *attr)
  3413. {
  3414. u32 size;
  3415. int ret;
  3416. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3417. return -EFAULT;
  3418. /*
  3419. * zero the full structure, so that a short copy will be nice.
  3420. */
  3421. memset(attr, 0, sizeof(*attr));
  3422. ret = get_user(size, &uattr->size);
  3423. if (ret)
  3424. return ret;
  3425. if (size > PAGE_SIZE) /* silly large */
  3426. goto err_size;
  3427. if (!size) /* abi compat */
  3428. size = SCHED_ATTR_SIZE_VER0;
  3429. if (size < SCHED_ATTR_SIZE_VER0)
  3430. goto err_size;
  3431. /*
  3432. * If we're handed a bigger struct than we know of,
  3433. * ensure all the unknown bits are 0 - i.e. new
  3434. * user-space does not rely on any kernel feature
  3435. * extensions we dont know about yet.
  3436. */
  3437. if (size > sizeof(*attr)) {
  3438. unsigned char __user *addr;
  3439. unsigned char __user *end;
  3440. unsigned char val;
  3441. addr = (void __user *)uattr + sizeof(*attr);
  3442. end = (void __user *)uattr + size;
  3443. for (; addr < end; addr++) {
  3444. ret = get_user(val, addr);
  3445. if (ret)
  3446. return ret;
  3447. if (val)
  3448. goto err_size;
  3449. }
  3450. size = sizeof(*attr);
  3451. }
  3452. ret = copy_from_user(attr, uattr, size);
  3453. if (ret)
  3454. return -EFAULT;
  3455. /*
  3456. * XXX: do we want to be lenient like existing syscalls; or do we want
  3457. * to be strict and return an error on out-of-bounds values?
  3458. */
  3459. attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
  3460. return 0;
  3461. err_size:
  3462. put_user(sizeof(*attr), &uattr->size);
  3463. return -E2BIG;
  3464. }
  3465. /**
  3466. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3467. * @pid: the pid in question.
  3468. * @policy: new policy.
  3469. * @param: structure containing the new RT priority.
  3470. *
  3471. * Return: 0 on success. An error code otherwise.
  3472. */
  3473. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3474. struct sched_param __user *, param)
  3475. {
  3476. /* negative values for policy are not valid */
  3477. if (policy < 0)
  3478. return -EINVAL;
  3479. return do_sched_setscheduler(pid, policy, param);
  3480. }
  3481. /**
  3482. * sys_sched_setparam - set/change the RT priority of a thread
  3483. * @pid: the pid in question.
  3484. * @param: structure containing the new RT priority.
  3485. *
  3486. * Return: 0 on success. An error code otherwise.
  3487. */
  3488. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3489. {
  3490. return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
  3491. }
  3492. /**
  3493. * sys_sched_setattr - same as above, but with extended sched_attr
  3494. * @pid: the pid in question.
  3495. * @uattr: structure containing the extended parameters.
  3496. * @flags: for future extension.
  3497. */
  3498. SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
  3499. unsigned int, flags)
  3500. {
  3501. struct sched_attr attr;
  3502. struct task_struct *p;
  3503. int retval;
  3504. if (!uattr || pid < 0 || flags)
  3505. return -EINVAL;
  3506. retval = sched_copy_attr(uattr, &attr);
  3507. if (retval)
  3508. return retval;
  3509. if ((int)attr.sched_policy < 0)
  3510. return -EINVAL;
  3511. rcu_read_lock();
  3512. retval = -ESRCH;
  3513. p = find_process_by_pid(pid);
  3514. if (p != NULL)
  3515. retval = sched_setattr(p, &attr);
  3516. rcu_read_unlock();
  3517. return retval;
  3518. }
  3519. /**
  3520. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3521. * @pid: the pid in question.
  3522. *
  3523. * Return: On success, the policy of the thread. Otherwise, a negative error
  3524. * code.
  3525. */
  3526. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3527. {
  3528. struct task_struct *p;
  3529. int retval;
  3530. if (pid < 0)
  3531. return -EINVAL;
  3532. retval = -ESRCH;
  3533. rcu_read_lock();
  3534. p = find_process_by_pid(pid);
  3535. if (p) {
  3536. retval = security_task_getscheduler(p);
  3537. if (!retval)
  3538. retval = p->policy
  3539. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3540. }
  3541. rcu_read_unlock();
  3542. return retval;
  3543. }
  3544. /**
  3545. * sys_sched_getparam - get the RT priority of a thread
  3546. * @pid: the pid in question.
  3547. * @param: structure containing the RT priority.
  3548. *
  3549. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3550. * code.
  3551. */
  3552. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3553. {
  3554. struct sched_param lp = { .sched_priority = 0 };
  3555. struct task_struct *p;
  3556. int retval;
  3557. if (!param || pid < 0)
  3558. return -EINVAL;
  3559. rcu_read_lock();
  3560. p = find_process_by_pid(pid);
  3561. retval = -ESRCH;
  3562. if (!p)
  3563. goto out_unlock;
  3564. retval = security_task_getscheduler(p);
  3565. if (retval)
  3566. goto out_unlock;
  3567. if (task_has_rt_policy(p))
  3568. lp.sched_priority = p->rt_priority;
  3569. rcu_read_unlock();
  3570. /*
  3571. * This one might sleep, we cannot do it with a spinlock held ...
  3572. */
  3573. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3574. return retval;
  3575. out_unlock:
  3576. rcu_read_unlock();
  3577. return retval;
  3578. }
  3579. static int sched_read_attr(struct sched_attr __user *uattr,
  3580. struct sched_attr *attr,
  3581. unsigned int usize)
  3582. {
  3583. int ret;
  3584. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3585. return -EFAULT;
  3586. /*
  3587. * If we're handed a smaller struct than we know of,
  3588. * ensure all the unknown bits are 0 - i.e. old
  3589. * user-space does not get uncomplete information.
  3590. */
  3591. if (usize < sizeof(*attr)) {
  3592. unsigned char *addr;
  3593. unsigned char *end;
  3594. addr = (void *)attr + usize;
  3595. end = (void *)attr + sizeof(*attr);
  3596. for (; addr < end; addr++) {
  3597. if (*addr)
  3598. return -EFBIG;
  3599. }
  3600. attr->size = usize;
  3601. }
  3602. ret = copy_to_user(uattr, attr, attr->size);
  3603. if (ret)
  3604. return -EFAULT;
  3605. return 0;
  3606. }
  3607. /**
  3608. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3609. * @pid: the pid in question.
  3610. * @uattr: structure containing the extended parameters.
  3611. * @size: sizeof(attr) for fwd/bwd comp.
  3612. * @flags: for future extension.
  3613. */
  3614. SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3615. unsigned int, size, unsigned int, flags)
  3616. {
  3617. struct sched_attr attr = {
  3618. .size = sizeof(struct sched_attr),
  3619. };
  3620. struct task_struct *p;
  3621. int retval;
  3622. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3623. size < SCHED_ATTR_SIZE_VER0 || flags)
  3624. return -EINVAL;
  3625. rcu_read_lock();
  3626. p = find_process_by_pid(pid);
  3627. retval = -ESRCH;
  3628. if (!p)
  3629. goto out_unlock;
  3630. retval = security_task_getscheduler(p);
  3631. if (retval)
  3632. goto out_unlock;
  3633. attr.sched_policy = p->policy;
  3634. if (p->sched_reset_on_fork)
  3635. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3636. if (task_has_dl_policy(p))
  3637. __getparam_dl(p, &attr);
  3638. else if (task_has_rt_policy(p))
  3639. attr.sched_priority = p->rt_priority;
  3640. else
  3641. attr.sched_nice = task_nice(p);
  3642. rcu_read_unlock();
  3643. retval = sched_read_attr(uattr, &attr, size);
  3644. return retval;
  3645. out_unlock:
  3646. rcu_read_unlock();
  3647. return retval;
  3648. }
  3649. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3650. {
  3651. cpumask_var_t cpus_allowed, new_mask;
  3652. struct task_struct *p;
  3653. int retval;
  3654. rcu_read_lock();
  3655. p = find_process_by_pid(pid);
  3656. if (!p) {
  3657. rcu_read_unlock();
  3658. return -ESRCH;
  3659. }
  3660. /* Prevent p going away */
  3661. get_task_struct(p);
  3662. rcu_read_unlock();
  3663. if (p->flags & PF_NO_SETAFFINITY) {
  3664. retval = -EINVAL;
  3665. goto out_put_task;
  3666. }
  3667. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3668. retval = -ENOMEM;
  3669. goto out_put_task;
  3670. }
  3671. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3672. retval = -ENOMEM;
  3673. goto out_free_cpus_allowed;
  3674. }
  3675. retval = -EPERM;
  3676. if (!check_same_owner(p)) {
  3677. rcu_read_lock();
  3678. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3679. rcu_read_unlock();
  3680. goto out_free_new_mask;
  3681. }
  3682. rcu_read_unlock();
  3683. }
  3684. retval = security_task_setscheduler(p);
  3685. if (retval)
  3686. goto out_free_new_mask;
  3687. cpuset_cpus_allowed(p, cpus_allowed);
  3688. cpumask_and(new_mask, in_mask, cpus_allowed);
  3689. /*
  3690. * Since bandwidth control happens on root_domain basis,
  3691. * if admission test is enabled, we only admit -deadline
  3692. * tasks allowed to run on all the CPUs in the task's
  3693. * root_domain.
  3694. */
  3695. #ifdef CONFIG_SMP
  3696. if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
  3697. rcu_read_lock();
  3698. if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
  3699. retval = -EBUSY;
  3700. rcu_read_unlock();
  3701. goto out_free_new_mask;
  3702. }
  3703. rcu_read_unlock();
  3704. }
  3705. #endif
  3706. again:
  3707. retval = set_cpus_allowed_ptr(p, new_mask);
  3708. if (!retval) {
  3709. cpuset_cpus_allowed(p, cpus_allowed);
  3710. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3711. /*
  3712. * We must have raced with a concurrent cpuset
  3713. * update. Just reset the cpus_allowed to the
  3714. * cpuset's cpus_allowed
  3715. */
  3716. cpumask_copy(new_mask, cpus_allowed);
  3717. goto again;
  3718. }
  3719. }
  3720. out_free_new_mask:
  3721. free_cpumask_var(new_mask);
  3722. out_free_cpus_allowed:
  3723. free_cpumask_var(cpus_allowed);
  3724. out_put_task:
  3725. put_task_struct(p);
  3726. return retval;
  3727. }
  3728. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3729. struct cpumask *new_mask)
  3730. {
  3731. if (len < cpumask_size())
  3732. cpumask_clear(new_mask);
  3733. else if (len > cpumask_size())
  3734. len = cpumask_size();
  3735. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3736. }
  3737. /**
  3738. * sys_sched_setaffinity - set the cpu affinity of a process
  3739. * @pid: pid of the process
  3740. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3741. * @user_mask_ptr: user-space pointer to the new cpu mask
  3742. *
  3743. * Return: 0 on success. An error code otherwise.
  3744. */
  3745. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3746. unsigned long __user *, user_mask_ptr)
  3747. {
  3748. cpumask_var_t new_mask;
  3749. int retval;
  3750. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3751. return -ENOMEM;
  3752. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3753. if (retval == 0)
  3754. retval = sched_setaffinity(pid, new_mask);
  3755. free_cpumask_var(new_mask);
  3756. return retval;
  3757. }
  3758. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3759. {
  3760. struct task_struct *p;
  3761. unsigned long flags;
  3762. int retval;
  3763. rcu_read_lock();
  3764. retval = -ESRCH;
  3765. p = find_process_by_pid(pid);
  3766. if (!p)
  3767. goto out_unlock;
  3768. retval = security_task_getscheduler(p);
  3769. if (retval)
  3770. goto out_unlock;
  3771. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3772. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  3773. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3774. out_unlock:
  3775. rcu_read_unlock();
  3776. return retval;
  3777. }
  3778. /**
  3779. * sys_sched_getaffinity - get the cpu affinity of a process
  3780. * @pid: pid of the process
  3781. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3782. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3783. *
  3784. * Return: 0 on success. An error code otherwise.
  3785. */
  3786. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3787. unsigned long __user *, user_mask_ptr)
  3788. {
  3789. int ret;
  3790. cpumask_var_t mask;
  3791. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3792. return -EINVAL;
  3793. if (len & (sizeof(unsigned long)-1))
  3794. return -EINVAL;
  3795. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3796. return -ENOMEM;
  3797. ret = sched_getaffinity(pid, mask);
  3798. if (ret == 0) {
  3799. size_t retlen = min_t(size_t, len, cpumask_size());
  3800. if (copy_to_user(user_mask_ptr, mask, retlen))
  3801. ret = -EFAULT;
  3802. else
  3803. ret = retlen;
  3804. }
  3805. free_cpumask_var(mask);
  3806. return ret;
  3807. }
  3808. /**
  3809. * sys_sched_yield - yield the current processor to other threads.
  3810. *
  3811. * This function yields the current CPU to other tasks. If there are no
  3812. * other threads running on this CPU then this function will return.
  3813. *
  3814. * Return: 0.
  3815. */
  3816. SYSCALL_DEFINE0(sched_yield)
  3817. {
  3818. struct rq *rq = this_rq_lock();
  3819. schedstat_inc(rq, yld_count);
  3820. current->sched_class->yield_task(rq);
  3821. /*
  3822. * Since we are going to call schedule() anyway, there's
  3823. * no need to preempt or enable interrupts:
  3824. */
  3825. __release(rq->lock);
  3826. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3827. do_raw_spin_unlock(&rq->lock);
  3828. sched_preempt_enable_no_resched();
  3829. schedule();
  3830. return 0;
  3831. }
  3832. int __sched _cond_resched(void)
  3833. {
  3834. if (should_resched()) {
  3835. preempt_schedule_common();
  3836. return 1;
  3837. }
  3838. return 0;
  3839. }
  3840. EXPORT_SYMBOL(_cond_resched);
  3841. /*
  3842. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3843. * call schedule, and on return reacquire the lock.
  3844. *
  3845. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3846. * operations here to prevent schedule() from being called twice (once via
  3847. * spin_unlock(), once by hand).
  3848. */
  3849. int __cond_resched_lock(spinlock_t *lock)
  3850. {
  3851. int resched = should_resched();
  3852. int ret = 0;
  3853. lockdep_assert_held(lock);
  3854. if (spin_needbreak(lock) || resched) {
  3855. spin_unlock(lock);
  3856. if (resched)
  3857. preempt_schedule_common();
  3858. else
  3859. cpu_relax();
  3860. ret = 1;
  3861. spin_lock(lock);
  3862. }
  3863. return ret;
  3864. }
  3865. EXPORT_SYMBOL(__cond_resched_lock);
  3866. int __sched __cond_resched_softirq(void)
  3867. {
  3868. BUG_ON(!in_softirq());
  3869. if (should_resched()) {
  3870. local_bh_enable();
  3871. preempt_schedule_common();
  3872. local_bh_disable();
  3873. return 1;
  3874. }
  3875. return 0;
  3876. }
  3877. EXPORT_SYMBOL(__cond_resched_softirq);
  3878. /**
  3879. * yield - yield the current processor to other threads.
  3880. *
  3881. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3882. *
  3883. * The scheduler is at all times free to pick the calling task as the most
  3884. * eligible task to run, if removing the yield() call from your code breaks
  3885. * it, its already broken.
  3886. *
  3887. * Typical broken usage is:
  3888. *
  3889. * while (!event)
  3890. * yield();
  3891. *
  3892. * where one assumes that yield() will let 'the other' process run that will
  3893. * make event true. If the current task is a SCHED_FIFO task that will never
  3894. * happen. Never use yield() as a progress guarantee!!
  3895. *
  3896. * If you want to use yield() to wait for something, use wait_event().
  3897. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3898. * If you still want to use yield(), do not!
  3899. */
  3900. void __sched yield(void)
  3901. {
  3902. set_current_state(TASK_RUNNING);
  3903. sys_sched_yield();
  3904. }
  3905. EXPORT_SYMBOL(yield);
  3906. /**
  3907. * yield_to - yield the current processor to another thread in
  3908. * your thread group, or accelerate that thread toward the
  3909. * processor it's on.
  3910. * @p: target task
  3911. * @preempt: whether task preemption is allowed or not
  3912. *
  3913. * It's the caller's job to ensure that the target task struct
  3914. * can't go away on us before we can do any checks.
  3915. *
  3916. * Return:
  3917. * true (>0) if we indeed boosted the target task.
  3918. * false (0) if we failed to boost the target.
  3919. * -ESRCH if there's no task to yield to.
  3920. */
  3921. int __sched yield_to(struct task_struct *p, bool preempt)
  3922. {
  3923. struct task_struct *curr = current;
  3924. struct rq *rq, *p_rq;
  3925. unsigned long flags;
  3926. int yielded = 0;
  3927. local_irq_save(flags);
  3928. rq = this_rq();
  3929. again:
  3930. p_rq = task_rq(p);
  3931. /*
  3932. * If we're the only runnable task on the rq and target rq also
  3933. * has only one task, there's absolutely no point in yielding.
  3934. */
  3935. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3936. yielded = -ESRCH;
  3937. goto out_irq;
  3938. }
  3939. double_rq_lock(rq, p_rq);
  3940. if (task_rq(p) != p_rq) {
  3941. double_rq_unlock(rq, p_rq);
  3942. goto again;
  3943. }
  3944. if (!curr->sched_class->yield_to_task)
  3945. goto out_unlock;
  3946. if (curr->sched_class != p->sched_class)
  3947. goto out_unlock;
  3948. if (task_running(p_rq, p) || p->state)
  3949. goto out_unlock;
  3950. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3951. if (yielded) {
  3952. schedstat_inc(rq, yld_count);
  3953. /*
  3954. * Make p's CPU reschedule; pick_next_entity takes care of
  3955. * fairness.
  3956. */
  3957. if (preempt && rq != p_rq)
  3958. resched_curr(p_rq);
  3959. }
  3960. out_unlock:
  3961. double_rq_unlock(rq, p_rq);
  3962. out_irq:
  3963. local_irq_restore(flags);
  3964. if (yielded > 0)
  3965. schedule();
  3966. return yielded;
  3967. }
  3968. EXPORT_SYMBOL_GPL(yield_to);
  3969. /*
  3970. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3971. * that process accounting knows that this is a task in IO wait state.
  3972. */
  3973. long __sched io_schedule_timeout(long timeout)
  3974. {
  3975. int old_iowait = current->in_iowait;
  3976. struct rq *rq;
  3977. long ret;
  3978. current->in_iowait = 1;
  3979. blk_schedule_flush_plug(current);
  3980. delayacct_blkio_start();
  3981. rq = raw_rq();
  3982. atomic_inc(&rq->nr_iowait);
  3983. ret = schedule_timeout(timeout);
  3984. current->in_iowait = old_iowait;
  3985. atomic_dec(&rq->nr_iowait);
  3986. delayacct_blkio_end();
  3987. return ret;
  3988. }
  3989. EXPORT_SYMBOL(io_schedule_timeout);
  3990. /**
  3991. * sys_sched_get_priority_max - return maximum RT priority.
  3992. * @policy: scheduling class.
  3993. *
  3994. * Return: On success, this syscall returns the maximum
  3995. * rt_priority that can be used by a given scheduling class.
  3996. * On failure, a negative error code is returned.
  3997. */
  3998. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3999. {
  4000. int ret = -EINVAL;
  4001. switch (policy) {
  4002. case SCHED_FIFO:
  4003. case SCHED_RR:
  4004. ret = MAX_USER_RT_PRIO-1;
  4005. break;
  4006. case SCHED_DEADLINE:
  4007. case SCHED_NORMAL:
  4008. case SCHED_BATCH:
  4009. case SCHED_IDLE:
  4010. ret = 0;
  4011. break;
  4012. }
  4013. return ret;
  4014. }
  4015. /**
  4016. * sys_sched_get_priority_min - return minimum RT priority.
  4017. * @policy: scheduling class.
  4018. *
  4019. * Return: On success, this syscall returns the minimum
  4020. * rt_priority that can be used by a given scheduling class.
  4021. * On failure, a negative error code is returned.
  4022. */
  4023. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4024. {
  4025. int ret = -EINVAL;
  4026. switch (policy) {
  4027. case SCHED_FIFO:
  4028. case SCHED_RR:
  4029. ret = 1;
  4030. break;
  4031. case SCHED_DEADLINE:
  4032. case SCHED_NORMAL:
  4033. case SCHED_BATCH:
  4034. case SCHED_IDLE:
  4035. ret = 0;
  4036. }
  4037. return ret;
  4038. }
  4039. /**
  4040. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4041. * @pid: pid of the process.
  4042. * @interval: userspace pointer to the timeslice value.
  4043. *
  4044. * this syscall writes the default timeslice value of a given process
  4045. * into the user-space timespec buffer. A value of '0' means infinity.
  4046. *
  4047. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  4048. * an error code.
  4049. */
  4050. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4051. struct timespec __user *, interval)
  4052. {
  4053. struct task_struct *p;
  4054. unsigned int time_slice;
  4055. unsigned long flags;
  4056. struct rq *rq;
  4057. int retval;
  4058. struct timespec t;
  4059. if (pid < 0)
  4060. return -EINVAL;
  4061. retval = -ESRCH;
  4062. rcu_read_lock();
  4063. p = find_process_by_pid(pid);
  4064. if (!p)
  4065. goto out_unlock;
  4066. retval = security_task_getscheduler(p);
  4067. if (retval)
  4068. goto out_unlock;
  4069. rq = task_rq_lock(p, &flags);
  4070. time_slice = 0;
  4071. if (p->sched_class->get_rr_interval)
  4072. time_slice = p->sched_class->get_rr_interval(rq, p);
  4073. task_rq_unlock(rq, p, &flags);
  4074. rcu_read_unlock();
  4075. jiffies_to_timespec(time_slice, &t);
  4076. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4077. return retval;
  4078. out_unlock:
  4079. rcu_read_unlock();
  4080. return retval;
  4081. }
  4082. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4083. void sched_show_task(struct task_struct *p)
  4084. {
  4085. unsigned long free = 0;
  4086. int ppid;
  4087. unsigned long state = p->state;
  4088. if (state)
  4089. state = __ffs(state) + 1;
  4090. printk(KERN_INFO "%-15.15s %c", p->comm,
  4091. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4092. #if BITS_PER_LONG == 32
  4093. if (state == TASK_RUNNING)
  4094. printk(KERN_CONT " running ");
  4095. else
  4096. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4097. #else
  4098. if (state == TASK_RUNNING)
  4099. printk(KERN_CONT " running task ");
  4100. else
  4101. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4102. #endif
  4103. #ifdef CONFIG_DEBUG_STACK_USAGE
  4104. free = stack_not_used(p);
  4105. #endif
  4106. ppid = 0;
  4107. rcu_read_lock();
  4108. if (pid_alive(p))
  4109. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  4110. rcu_read_unlock();
  4111. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4112. task_pid_nr(p), ppid,
  4113. (unsigned long)task_thread_info(p)->flags);
  4114. print_worker_info(KERN_INFO, p);
  4115. show_stack(p, NULL);
  4116. }
  4117. void show_state_filter(unsigned long state_filter)
  4118. {
  4119. struct task_struct *g, *p;
  4120. #if BITS_PER_LONG == 32
  4121. printk(KERN_INFO
  4122. " task PC stack pid father\n");
  4123. #else
  4124. printk(KERN_INFO
  4125. " task PC stack pid father\n");
  4126. #endif
  4127. rcu_read_lock();
  4128. for_each_process_thread(g, p) {
  4129. /*
  4130. * reset the NMI-timeout, listing all files on a slow
  4131. * console might take a lot of time:
  4132. */
  4133. touch_nmi_watchdog();
  4134. if (!state_filter || (p->state & state_filter))
  4135. sched_show_task(p);
  4136. }
  4137. touch_all_softlockup_watchdogs();
  4138. #ifdef CONFIG_SCHED_DEBUG
  4139. sysrq_sched_debug_show();
  4140. #endif
  4141. rcu_read_unlock();
  4142. /*
  4143. * Only show locks if all tasks are dumped:
  4144. */
  4145. if (!state_filter)
  4146. debug_show_all_locks();
  4147. }
  4148. void init_idle_bootup_task(struct task_struct *idle)
  4149. {
  4150. idle->sched_class = &idle_sched_class;
  4151. }
  4152. /**
  4153. * init_idle - set up an idle thread for a given CPU
  4154. * @idle: task in question
  4155. * @cpu: cpu the idle task belongs to
  4156. *
  4157. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4158. * flag, to make booting more robust.
  4159. */
  4160. void init_idle(struct task_struct *idle, int cpu)
  4161. {
  4162. struct rq *rq = cpu_rq(cpu);
  4163. unsigned long flags;
  4164. raw_spin_lock_irqsave(&rq->lock, flags);
  4165. __sched_fork(0, idle);
  4166. idle->state = TASK_RUNNING;
  4167. idle->se.exec_start = sched_clock();
  4168. do_set_cpus_allowed(idle, cpumask_of(cpu));
  4169. /*
  4170. * We're having a chicken and egg problem, even though we are
  4171. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4172. * lockdep check in task_group() will fail.
  4173. *
  4174. * Similar case to sched_fork(). / Alternatively we could
  4175. * use task_rq_lock() here and obtain the other rq->lock.
  4176. *
  4177. * Silence PROVE_RCU
  4178. */
  4179. rcu_read_lock();
  4180. __set_task_cpu(idle, cpu);
  4181. rcu_read_unlock();
  4182. rq->curr = rq->idle = idle;
  4183. idle->on_rq = TASK_ON_RQ_QUEUED;
  4184. #if defined(CONFIG_SMP)
  4185. idle->on_cpu = 1;
  4186. #endif
  4187. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4188. /* Set the preempt count _outside_ the spinlocks! */
  4189. init_idle_preempt_count(idle, cpu);
  4190. /*
  4191. * The idle tasks have their own, simple scheduling class:
  4192. */
  4193. idle->sched_class = &idle_sched_class;
  4194. ftrace_graph_init_idle_task(idle, cpu);
  4195. vtime_init_idle(idle, cpu);
  4196. #if defined(CONFIG_SMP)
  4197. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4198. #endif
  4199. }
  4200. int cpuset_cpumask_can_shrink(const struct cpumask *cur,
  4201. const struct cpumask *trial)
  4202. {
  4203. int ret = 1, trial_cpus;
  4204. struct dl_bw *cur_dl_b;
  4205. unsigned long flags;
  4206. if (!cpumask_weight(cur))
  4207. return ret;
  4208. rcu_read_lock_sched();
  4209. cur_dl_b = dl_bw_of(cpumask_any(cur));
  4210. trial_cpus = cpumask_weight(trial);
  4211. raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
  4212. if (cur_dl_b->bw != -1 &&
  4213. cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
  4214. ret = 0;
  4215. raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
  4216. rcu_read_unlock_sched();
  4217. return ret;
  4218. }
  4219. int task_can_attach(struct task_struct *p,
  4220. const struct cpumask *cs_cpus_allowed)
  4221. {
  4222. int ret = 0;
  4223. /*
  4224. * Kthreads which disallow setaffinity shouldn't be moved
  4225. * to a new cpuset; we don't want to change their cpu
  4226. * affinity and isolating such threads by their set of
  4227. * allowed nodes is unnecessary. Thus, cpusets are not
  4228. * applicable for such threads. This prevents checking for
  4229. * success of set_cpus_allowed_ptr() on all attached tasks
  4230. * before cpus_allowed may be changed.
  4231. */
  4232. if (p->flags & PF_NO_SETAFFINITY) {
  4233. ret = -EINVAL;
  4234. goto out;
  4235. }
  4236. #ifdef CONFIG_SMP
  4237. if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
  4238. cs_cpus_allowed)) {
  4239. unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
  4240. cs_cpus_allowed);
  4241. struct dl_bw *dl_b;
  4242. bool overflow;
  4243. int cpus;
  4244. unsigned long flags;
  4245. rcu_read_lock_sched();
  4246. dl_b = dl_bw_of(dest_cpu);
  4247. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4248. cpus = dl_bw_cpus(dest_cpu);
  4249. overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
  4250. if (overflow)
  4251. ret = -EBUSY;
  4252. else {
  4253. /*
  4254. * We reserve space for this task in the destination
  4255. * root_domain, as we can't fail after this point.
  4256. * We will free resources in the source root_domain
  4257. * later on (see set_cpus_allowed_dl()).
  4258. */
  4259. __dl_add(dl_b, p->dl.dl_bw);
  4260. }
  4261. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4262. rcu_read_unlock_sched();
  4263. }
  4264. #endif
  4265. out:
  4266. return ret;
  4267. }
  4268. #ifdef CONFIG_SMP
  4269. #ifdef CONFIG_NUMA_BALANCING
  4270. /* Migrate current task p to target_cpu */
  4271. int migrate_task_to(struct task_struct *p, int target_cpu)
  4272. {
  4273. struct migration_arg arg = { p, target_cpu };
  4274. int curr_cpu = task_cpu(p);
  4275. if (curr_cpu == target_cpu)
  4276. return 0;
  4277. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  4278. return -EINVAL;
  4279. /* TODO: This is not properly updating schedstats */
  4280. trace_sched_move_numa(p, curr_cpu, target_cpu);
  4281. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  4282. }
  4283. /*
  4284. * Requeue a task on a given node and accurately track the number of NUMA
  4285. * tasks on the runqueues
  4286. */
  4287. void sched_setnuma(struct task_struct *p, int nid)
  4288. {
  4289. struct rq *rq;
  4290. unsigned long flags;
  4291. bool queued, running;
  4292. rq = task_rq_lock(p, &flags);
  4293. queued = task_on_rq_queued(p);
  4294. running = task_current(rq, p);
  4295. if (queued)
  4296. dequeue_task(rq, p, 0);
  4297. if (running)
  4298. put_prev_task(rq, p);
  4299. p->numa_preferred_nid = nid;
  4300. if (running)
  4301. p->sched_class->set_curr_task(rq);
  4302. if (queued)
  4303. enqueue_task(rq, p, 0);
  4304. task_rq_unlock(rq, p, &flags);
  4305. }
  4306. #endif /* CONFIG_NUMA_BALANCING */
  4307. #ifdef CONFIG_HOTPLUG_CPU
  4308. /*
  4309. * Ensures that the idle task is using init_mm right before its cpu goes
  4310. * offline.
  4311. */
  4312. void idle_task_exit(void)
  4313. {
  4314. struct mm_struct *mm = current->active_mm;
  4315. BUG_ON(cpu_online(smp_processor_id()));
  4316. if (mm != &init_mm) {
  4317. switch_mm(mm, &init_mm, current);
  4318. finish_arch_post_lock_switch();
  4319. }
  4320. mmdrop(mm);
  4321. }
  4322. /*
  4323. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4324. * we might have. Assumes we're called after migrate_tasks() so that the
  4325. * nr_active count is stable.
  4326. *
  4327. * Also see the comment "Global load-average calculations".
  4328. */
  4329. static void calc_load_migrate(struct rq *rq)
  4330. {
  4331. long delta = calc_load_fold_active(rq);
  4332. if (delta)
  4333. atomic_long_add(delta, &calc_load_tasks);
  4334. }
  4335. static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
  4336. {
  4337. }
  4338. static const struct sched_class fake_sched_class = {
  4339. .put_prev_task = put_prev_task_fake,
  4340. };
  4341. static struct task_struct fake_task = {
  4342. /*
  4343. * Avoid pull_{rt,dl}_task()
  4344. */
  4345. .prio = MAX_PRIO + 1,
  4346. .sched_class = &fake_sched_class,
  4347. };
  4348. /*
  4349. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4350. * try_to_wake_up()->select_task_rq().
  4351. *
  4352. * Called with rq->lock held even though we'er in stop_machine() and
  4353. * there's no concurrency possible, we hold the required locks anyway
  4354. * because of lock validation efforts.
  4355. */
  4356. static void migrate_tasks(struct rq *dead_rq)
  4357. {
  4358. struct rq *rq = dead_rq;
  4359. struct task_struct *next, *stop = rq->stop;
  4360. int dest_cpu;
  4361. /*
  4362. * Fudge the rq selection such that the below task selection loop
  4363. * doesn't get stuck on the currently eligible stop task.
  4364. *
  4365. * We're currently inside stop_machine() and the rq is either stuck
  4366. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4367. * either way we should never end up calling schedule() until we're
  4368. * done here.
  4369. */
  4370. rq->stop = NULL;
  4371. /*
  4372. * put_prev_task() and pick_next_task() sched
  4373. * class method both need to have an up-to-date
  4374. * value of rq->clock[_task]
  4375. */
  4376. update_rq_clock(rq);
  4377. for (;;) {
  4378. /*
  4379. * There's this thread running, bail when that's the only
  4380. * remaining thread.
  4381. */
  4382. if (rq->nr_running == 1)
  4383. break;
  4384. /*
  4385. * Ensure rq->lock covers the entire task selection
  4386. * until the migration.
  4387. */
  4388. lockdep_pin_lock(&rq->lock);
  4389. next = pick_next_task(rq, &fake_task);
  4390. BUG_ON(!next);
  4391. next->sched_class->put_prev_task(rq, next);
  4392. /* Find suitable destination for @next, with force if needed. */
  4393. dest_cpu = select_fallback_rq(dead_rq->cpu, next);
  4394. lockdep_unpin_lock(&rq->lock);
  4395. rq = __migrate_task(rq, next, dest_cpu);
  4396. if (rq != dead_rq) {
  4397. raw_spin_unlock(&rq->lock);
  4398. rq = dead_rq;
  4399. raw_spin_lock(&rq->lock);
  4400. }
  4401. }
  4402. rq->stop = stop;
  4403. }
  4404. #endif /* CONFIG_HOTPLUG_CPU */
  4405. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4406. static struct ctl_table sd_ctl_dir[] = {
  4407. {
  4408. .procname = "sched_domain",
  4409. .mode = 0555,
  4410. },
  4411. {}
  4412. };
  4413. static struct ctl_table sd_ctl_root[] = {
  4414. {
  4415. .procname = "kernel",
  4416. .mode = 0555,
  4417. .child = sd_ctl_dir,
  4418. },
  4419. {}
  4420. };
  4421. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4422. {
  4423. struct ctl_table *entry =
  4424. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4425. return entry;
  4426. }
  4427. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4428. {
  4429. struct ctl_table *entry;
  4430. /*
  4431. * In the intermediate directories, both the child directory and
  4432. * procname are dynamically allocated and could fail but the mode
  4433. * will always be set. In the lowest directory the names are
  4434. * static strings and all have proc handlers.
  4435. */
  4436. for (entry = *tablep; entry->mode; entry++) {
  4437. if (entry->child)
  4438. sd_free_ctl_entry(&entry->child);
  4439. if (entry->proc_handler == NULL)
  4440. kfree(entry->procname);
  4441. }
  4442. kfree(*tablep);
  4443. *tablep = NULL;
  4444. }
  4445. static int min_load_idx = 0;
  4446. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  4447. static void
  4448. set_table_entry(struct ctl_table *entry,
  4449. const char *procname, void *data, int maxlen,
  4450. umode_t mode, proc_handler *proc_handler,
  4451. bool load_idx)
  4452. {
  4453. entry->procname = procname;
  4454. entry->data = data;
  4455. entry->maxlen = maxlen;
  4456. entry->mode = mode;
  4457. entry->proc_handler = proc_handler;
  4458. if (load_idx) {
  4459. entry->extra1 = &min_load_idx;
  4460. entry->extra2 = &max_load_idx;
  4461. }
  4462. }
  4463. static struct ctl_table *
  4464. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4465. {
  4466. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4467. if (table == NULL)
  4468. return NULL;
  4469. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4470. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4471. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4472. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4473. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4474. sizeof(int), 0644, proc_dointvec_minmax, true);
  4475. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4476. sizeof(int), 0644, proc_dointvec_minmax, true);
  4477. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4478. sizeof(int), 0644, proc_dointvec_minmax, true);
  4479. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4480. sizeof(int), 0644, proc_dointvec_minmax, true);
  4481. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4482. sizeof(int), 0644, proc_dointvec_minmax, true);
  4483. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4484. sizeof(int), 0644, proc_dointvec_minmax, false);
  4485. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4486. sizeof(int), 0644, proc_dointvec_minmax, false);
  4487. set_table_entry(&table[9], "cache_nice_tries",
  4488. &sd->cache_nice_tries,
  4489. sizeof(int), 0644, proc_dointvec_minmax, false);
  4490. set_table_entry(&table[10], "flags", &sd->flags,
  4491. sizeof(int), 0644, proc_dointvec_minmax, false);
  4492. set_table_entry(&table[11], "max_newidle_lb_cost",
  4493. &sd->max_newidle_lb_cost,
  4494. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4495. set_table_entry(&table[12], "name", sd->name,
  4496. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4497. /* &table[13] is terminator */
  4498. return table;
  4499. }
  4500. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4501. {
  4502. struct ctl_table *entry, *table;
  4503. struct sched_domain *sd;
  4504. int domain_num = 0, i;
  4505. char buf[32];
  4506. for_each_domain(cpu, sd)
  4507. domain_num++;
  4508. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4509. if (table == NULL)
  4510. return NULL;
  4511. i = 0;
  4512. for_each_domain(cpu, sd) {
  4513. snprintf(buf, 32, "domain%d", i);
  4514. entry->procname = kstrdup(buf, GFP_KERNEL);
  4515. entry->mode = 0555;
  4516. entry->child = sd_alloc_ctl_domain_table(sd);
  4517. entry++;
  4518. i++;
  4519. }
  4520. return table;
  4521. }
  4522. static struct ctl_table_header *sd_sysctl_header;
  4523. static void register_sched_domain_sysctl(void)
  4524. {
  4525. int i, cpu_num = num_possible_cpus();
  4526. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4527. char buf[32];
  4528. WARN_ON(sd_ctl_dir[0].child);
  4529. sd_ctl_dir[0].child = entry;
  4530. if (entry == NULL)
  4531. return;
  4532. for_each_possible_cpu(i) {
  4533. snprintf(buf, 32, "cpu%d", i);
  4534. entry->procname = kstrdup(buf, GFP_KERNEL);
  4535. entry->mode = 0555;
  4536. entry->child = sd_alloc_ctl_cpu_table(i);
  4537. entry++;
  4538. }
  4539. WARN_ON(sd_sysctl_header);
  4540. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4541. }
  4542. /* may be called multiple times per register */
  4543. static void unregister_sched_domain_sysctl(void)
  4544. {
  4545. if (sd_sysctl_header)
  4546. unregister_sysctl_table(sd_sysctl_header);
  4547. sd_sysctl_header = NULL;
  4548. if (sd_ctl_dir[0].child)
  4549. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4550. }
  4551. #else
  4552. static void register_sched_domain_sysctl(void)
  4553. {
  4554. }
  4555. static void unregister_sched_domain_sysctl(void)
  4556. {
  4557. }
  4558. #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
  4559. static void set_rq_online(struct rq *rq)
  4560. {
  4561. if (!rq->online) {
  4562. const struct sched_class *class;
  4563. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4564. rq->online = 1;
  4565. for_each_class(class) {
  4566. if (class->rq_online)
  4567. class->rq_online(rq);
  4568. }
  4569. }
  4570. }
  4571. static void set_rq_offline(struct rq *rq)
  4572. {
  4573. if (rq->online) {
  4574. const struct sched_class *class;
  4575. for_each_class(class) {
  4576. if (class->rq_offline)
  4577. class->rq_offline(rq);
  4578. }
  4579. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4580. rq->online = 0;
  4581. }
  4582. }
  4583. /*
  4584. * migration_call - callback that gets triggered when a CPU is added.
  4585. * Here we can start up the necessary migration thread for the new CPU.
  4586. */
  4587. static int
  4588. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4589. {
  4590. int cpu = (long)hcpu;
  4591. unsigned long flags;
  4592. struct rq *rq = cpu_rq(cpu);
  4593. switch (action & ~CPU_TASKS_FROZEN) {
  4594. case CPU_UP_PREPARE:
  4595. rq->calc_load_update = calc_load_update;
  4596. break;
  4597. case CPU_ONLINE:
  4598. /* Update our root-domain */
  4599. raw_spin_lock_irqsave(&rq->lock, flags);
  4600. if (rq->rd) {
  4601. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4602. set_rq_online(rq);
  4603. }
  4604. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4605. break;
  4606. #ifdef CONFIG_HOTPLUG_CPU
  4607. case CPU_DYING:
  4608. sched_ttwu_pending();
  4609. /* Update our root-domain */
  4610. raw_spin_lock_irqsave(&rq->lock, flags);
  4611. if (rq->rd) {
  4612. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4613. set_rq_offline(rq);
  4614. }
  4615. migrate_tasks(rq);
  4616. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4617. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4618. break;
  4619. case CPU_DEAD:
  4620. calc_load_migrate(rq);
  4621. break;
  4622. #endif
  4623. }
  4624. update_max_interval();
  4625. return NOTIFY_OK;
  4626. }
  4627. /*
  4628. * Register at high priority so that task migration (migrate_all_tasks)
  4629. * happens before everything else. This has to be lower priority than
  4630. * the notifier in the perf_event subsystem, though.
  4631. */
  4632. static struct notifier_block migration_notifier = {
  4633. .notifier_call = migration_call,
  4634. .priority = CPU_PRI_MIGRATION,
  4635. };
  4636. static void set_cpu_rq_start_time(void)
  4637. {
  4638. int cpu = smp_processor_id();
  4639. struct rq *rq = cpu_rq(cpu);
  4640. rq->age_stamp = sched_clock_cpu(cpu);
  4641. }
  4642. static int sched_cpu_active(struct notifier_block *nfb,
  4643. unsigned long action, void *hcpu)
  4644. {
  4645. switch (action & ~CPU_TASKS_FROZEN) {
  4646. case CPU_STARTING:
  4647. set_cpu_rq_start_time();
  4648. return NOTIFY_OK;
  4649. case CPU_DOWN_FAILED:
  4650. set_cpu_active((long)hcpu, true);
  4651. return NOTIFY_OK;
  4652. default:
  4653. return NOTIFY_DONE;
  4654. }
  4655. }
  4656. static int sched_cpu_inactive(struct notifier_block *nfb,
  4657. unsigned long action, void *hcpu)
  4658. {
  4659. switch (action & ~CPU_TASKS_FROZEN) {
  4660. case CPU_DOWN_PREPARE:
  4661. set_cpu_active((long)hcpu, false);
  4662. return NOTIFY_OK;
  4663. default:
  4664. return NOTIFY_DONE;
  4665. }
  4666. }
  4667. static int __init migration_init(void)
  4668. {
  4669. void *cpu = (void *)(long)smp_processor_id();
  4670. int err;
  4671. /* Initialize migration for the boot CPU */
  4672. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4673. BUG_ON(err == NOTIFY_BAD);
  4674. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4675. register_cpu_notifier(&migration_notifier);
  4676. /* Register cpu active notifiers */
  4677. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4678. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4679. return 0;
  4680. }
  4681. early_initcall(migration_init);
  4682. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4683. #ifdef CONFIG_SCHED_DEBUG
  4684. static __read_mostly int sched_debug_enabled;
  4685. static int __init sched_debug_setup(char *str)
  4686. {
  4687. sched_debug_enabled = 1;
  4688. return 0;
  4689. }
  4690. early_param("sched_debug", sched_debug_setup);
  4691. static inline bool sched_debug(void)
  4692. {
  4693. return sched_debug_enabled;
  4694. }
  4695. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4696. struct cpumask *groupmask)
  4697. {
  4698. struct sched_group *group = sd->groups;
  4699. cpumask_clear(groupmask);
  4700. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4701. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4702. printk("does not load-balance\n");
  4703. if (sd->parent)
  4704. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4705. " has parent");
  4706. return -1;
  4707. }
  4708. printk(KERN_CONT "span %*pbl level %s\n",
  4709. cpumask_pr_args(sched_domain_span(sd)), sd->name);
  4710. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4711. printk(KERN_ERR "ERROR: domain->span does not contain "
  4712. "CPU%d\n", cpu);
  4713. }
  4714. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4715. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4716. " CPU%d\n", cpu);
  4717. }
  4718. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4719. do {
  4720. if (!group) {
  4721. printk("\n");
  4722. printk(KERN_ERR "ERROR: group is NULL\n");
  4723. break;
  4724. }
  4725. if (!cpumask_weight(sched_group_cpus(group))) {
  4726. printk(KERN_CONT "\n");
  4727. printk(KERN_ERR "ERROR: empty group\n");
  4728. break;
  4729. }
  4730. if (!(sd->flags & SD_OVERLAP) &&
  4731. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4732. printk(KERN_CONT "\n");
  4733. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4734. break;
  4735. }
  4736. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4737. printk(KERN_CONT " %*pbl",
  4738. cpumask_pr_args(sched_group_cpus(group)));
  4739. if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
  4740. printk(KERN_CONT " (cpu_capacity = %d)",
  4741. group->sgc->capacity);
  4742. }
  4743. group = group->next;
  4744. } while (group != sd->groups);
  4745. printk(KERN_CONT "\n");
  4746. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4747. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4748. if (sd->parent &&
  4749. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4750. printk(KERN_ERR "ERROR: parent span is not a superset "
  4751. "of domain->span\n");
  4752. return 0;
  4753. }
  4754. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4755. {
  4756. int level = 0;
  4757. if (!sched_debug_enabled)
  4758. return;
  4759. if (!sd) {
  4760. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4761. return;
  4762. }
  4763. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4764. for (;;) {
  4765. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4766. break;
  4767. level++;
  4768. sd = sd->parent;
  4769. if (!sd)
  4770. break;
  4771. }
  4772. }
  4773. #else /* !CONFIG_SCHED_DEBUG */
  4774. # define sched_domain_debug(sd, cpu) do { } while (0)
  4775. static inline bool sched_debug(void)
  4776. {
  4777. return false;
  4778. }
  4779. #endif /* CONFIG_SCHED_DEBUG */
  4780. static int sd_degenerate(struct sched_domain *sd)
  4781. {
  4782. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4783. return 1;
  4784. /* Following flags need at least 2 groups */
  4785. if (sd->flags & (SD_LOAD_BALANCE |
  4786. SD_BALANCE_NEWIDLE |
  4787. SD_BALANCE_FORK |
  4788. SD_BALANCE_EXEC |
  4789. SD_SHARE_CPUCAPACITY |
  4790. SD_SHARE_PKG_RESOURCES |
  4791. SD_SHARE_POWERDOMAIN)) {
  4792. if (sd->groups != sd->groups->next)
  4793. return 0;
  4794. }
  4795. /* Following flags don't use groups */
  4796. if (sd->flags & (SD_WAKE_AFFINE))
  4797. return 0;
  4798. return 1;
  4799. }
  4800. static int
  4801. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4802. {
  4803. unsigned long cflags = sd->flags, pflags = parent->flags;
  4804. if (sd_degenerate(parent))
  4805. return 1;
  4806. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4807. return 0;
  4808. /* Flags needing groups don't count if only 1 group in parent */
  4809. if (parent->groups == parent->groups->next) {
  4810. pflags &= ~(SD_LOAD_BALANCE |
  4811. SD_BALANCE_NEWIDLE |
  4812. SD_BALANCE_FORK |
  4813. SD_BALANCE_EXEC |
  4814. SD_SHARE_CPUCAPACITY |
  4815. SD_SHARE_PKG_RESOURCES |
  4816. SD_PREFER_SIBLING |
  4817. SD_SHARE_POWERDOMAIN);
  4818. if (nr_node_ids == 1)
  4819. pflags &= ~SD_SERIALIZE;
  4820. }
  4821. if (~cflags & pflags)
  4822. return 0;
  4823. return 1;
  4824. }
  4825. static void free_rootdomain(struct rcu_head *rcu)
  4826. {
  4827. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4828. cpupri_cleanup(&rd->cpupri);
  4829. cpudl_cleanup(&rd->cpudl);
  4830. free_cpumask_var(rd->dlo_mask);
  4831. free_cpumask_var(rd->rto_mask);
  4832. free_cpumask_var(rd->online);
  4833. free_cpumask_var(rd->span);
  4834. kfree(rd);
  4835. }
  4836. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4837. {
  4838. struct root_domain *old_rd = NULL;
  4839. unsigned long flags;
  4840. raw_spin_lock_irqsave(&rq->lock, flags);
  4841. if (rq->rd) {
  4842. old_rd = rq->rd;
  4843. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4844. set_rq_offline(rq);
  4845. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4846. /*
  4847. * If we dont want to free the old_rd yet then
  4848. * set old_rd to NULL to skip the freeing later
  4849. * in this function:
  4850. */
  4851. if (!atomic_dec_and_test(&old_rd->refcount))
  4852. old_rd = NULL;
  4853. }
  4854. atomic_inc(&rd->refcount);
  4855. rq->rd = rd;
  4856. cpumask_set_cpu(rq->cpu, rd->span);
  4857. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4858. set_rq_online(rq);
  4859. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4860. if (old_rd)
  4861. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4862. }
  4863. static int init_rootdomain(struct root_domain *rd)
  4864. {
  4865. memset(rd, 0, sizeof(*rd));
  4866. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4867. goto out;
  4868. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4869. goto free_span;
  4870. if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
  4871. goto free_online;
  4872. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4873. goto free_dlo_mask;
  4874. init_dl_bw(&rd->dl_bw);
  4875. if (cpudl_init(&rd->cpudl) != 0)
  4876. goto free_dlo_mask;
  4877. if (cpupri_init(&rd->cpupri) != 0)
  4878. goto free_rto_mask;
  4879. return 0;
  4880. free_rto_mask:
  4881. free_cpumask_var(rd->rto_mask);
  4882. free_dlo_mask:
  4883. free_cpumask_var(rd->dlo_mask);
  4884. free_online:
  4885. free_cpumask_var(rd->online);
  4886. free_span:
  4887. free_cpumask_var(rd->span);
  4888. out:
  4889. return -ENOMEM;
  4890. }
  4891. /*
  4892. * By default the system creates a single root-domain with all cpus as
  4893. * members (mimicking the global state we have today).
  4894. */
  4895. struct root_domain def_root_domain;
  4896. static void init_defrootdomain(void)
  4897. {
  4898. init_rootdomain(&def_root_domain);
  4899. atomic_set(&def_root_domain.refcount, 1);
  4900. }
  4901. static struct root_domain *alloc_rootdomain(void)
  4902. {
  4903. struct root_domain *rd;
  4904. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4905. if (!rd)
  4906. return NULL;
  4907. if (init_rootdomain(rd) != 0) {
  4908. kfree(rd);
  4909. return NULL;
  4910. }
  4911. return rd;
  4912. }
  4913. static void free_sched_groups(struct sched_group *sg, int free_sgc)
  4914. {
  4915. struct sched_group *tmp, *first;
  4916. if (!sg)
  4917. return;
  4918. first = sg;
  4919. do {
  4920. tmp = sg->next;
  4921. if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
  4922. kfree(sg->sgc);
  4923. kfree(sg);
  4924. sg = tmp;
  4925. } while (sg != first);
  4926. }
  4927. static void free_sched_domain(struct rcu_head *rcu)
  4928. {
  4929. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4930. /*
  4931. * If its an overlapping domain it has private groups, iterate and
  4932. * nuke them all.
  4933. */
  4934. if (sd->flags & SD_OVERLAP) {
  4935. free_sched_groups(sd->groups, 1);
  4936. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4937. kfree(sd->groups->sgc);
  4938. kfree(sd->groups);
  4939. }
  4940. kfree(sd);
  4941. }
  4942. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4943. {
  4944. call_rcu(&sd->rcu, free_sched_domain);
  4945. }
  4946. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4947. {
  4948. for (; sd; sd = sd->parent)
  4949. destroy_sched_domain(sd, cpu);
  4950. }
  4951. /*
  4952. * Keep a special pointer to the highest sched_domain that has
  4953. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4954. * allows us to avoid some pointer chasing select_idle_sibling().
  4955. *
  4956. * Also keep a unique ID per domain (we use the first cpu number in
  4957. * the cpumask of the domain), this allows us to quickly tell if
  4958. * two cpus are in the same cache domain, see cpus_share_cache().
  4959. */
  4960. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4961. DEFINE_PER_CPU(int, sd_llc_size);
  4962. DEFINE_PER_CPU(int, sd_llc_id);
  4963. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  4964. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  4965. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  4966. static void update_top_cache_domain(int cpu)
  4967. {
  4968. struct sched_domain *sd;
  4969. struct sched_domain *busy_sd = NULL;
  4970. int id = cpu;
  4971. int size = 1;
  4972. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4973. if (sd) {
  4974. id = cpumask_first(sched_domain_span(sd));
  4975. size = cpumask_weight(sched_domain_span(sd));
  4976. busy_sd = sd->parent; /* sd_busy */
  4977. }
  4978. rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
  4979. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4980. per_cpu(sd_llc_size, cpu) = size;
  4981. per_cpu(sd_llc_id, cpu) = id;
  4982. sd = lowest_flag_domain(cpu, SD_NUMA);
  4983. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  4984. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  4985. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  4986. }
  4987. /*
  4988. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4989. * hold the hotplug lock.
  4990. */
  4991. static void
  4992. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4993. {
  4994. struct rq *rq = cpu_rq(cpu);
  4995. struct sched_domain *tmp;
  4996. /* Remove the sched domains which do not contribute to scheduling. */
  4997. for (tmp = sd; tmp; ) {
  4998. struct sched_domain *parent = tmp->parent;
  4999. if (!parent)
  5000. break;
  5001. if (sd_parent_degenerate(tmp, parent)) {
  5002. tmp->parent = parent->parent;
  5003. if (parent->parent)
  5004. parent->parent->child = tmp;
  5005. /*
  5006. * Transfer SD_PREFER_SIBLING down in case of a
  5007. * degenerate parent; the spans match for this
  5008. * so the property transfers.
  5009. */
  5010. if (parent->flags & SD_PREFER_SIBLING)
  5011. tmp->flags |= SD_PREFER_SIBLING;
  5012. destroy_sched_domain(parent, cpu);
  5013. } else
  5014. tmp = tmp->parent;
  5015. }
  5016. if (sd && sd_degenerate(sd)) {
  5017. tmp = sd;
  5018. sd = sd->parent;
  5019. destroy_sched_domain(tmp, cpu);
  5020. if (sd)
  5021. sd->child = NULL;
  5022. }
  5023. sched_domain_debug(sd, cpu);
  5024. rq_attach_root(rq, rd);
  5025. tmp = rq->sd;
  5026. rcu_assign_pointer(rq->sd, sd);
  5027. destroy_sched_domains(tmp, cpu);
  5028. update_top_cache_domain(cpu);
  5029. }
  5030. /* Setup the mask of cpus configured for isolated domains */
  5031. static int __init isolated_cpu_setup(char *str)
  5032. {
  5033. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5034. cpulist_parse(str, cpu_isolated_map);
  5035. return 1;
  5036. }
  5037. __setup("isolcpus=", isolated_cpu_setup);
  5038. struct s_data {
  5039. struct sched_domain ** __percpu sd;
  5040. struct root_domain *rd;
  5041. };
  5042. enum s_alloc {
  5043. sa_rootdomain,
  5044. sa_sd,
  5045. sa_sd_storage,
  5046. sa_none,
  5047. };
  5048. /*
  5049. * Build an iteration mask that can exclude certain CPUs from the upwards
  5050. * domain traversal.
  5051. *
  5052. * Asymmetric node setups can result in situations where the domain tree is of
  5053. * unequal depth, make sure to skip domains that already cover the entire
  5054. * range.
  5055. *
  5056. * In that case build_sched_domains() will have terminated the iteration early
  5057. * and our sibling sd spans will be empty. Domains should always include the
  5058. * cpu they're built on, so check that.
  5059. *
  5060. */
  5061. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  5062. {
  5063. const struct cpumask *span = sched_domain_span(sd);
  5064. struct sd_data *sdd = sd->private;
  5065. struct sched_domain *sibling;
  5066. int i;
  5067. for_each_cpu(i, span) {
  5068. sibling = *per_cpu_ptr(sdd->sd, i);
  5069. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5070. continue;
  5071. cpumask_set_cpu(i, sched_group_mask(sg));
  5072. }
  5073. }
  5074. /*
  5075. * Return the canonical balance cpu for this group, this is the first cpu
  5076. * of this group that's also in the iteration mask.
  5077. */
  5078. int group_balance_cpu(struct sched_group *sg)
  5079. {
  5080. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  5081. }
  5082. static int
  5083. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5084. {
  5085. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5086. const struct cpumask *span = sched_domain_span(sd);
  5087. struct cpumask *covered = sched_domains_tmpmask;
  5088. struct sd_data *sdd = sd->private;
  5089. struct sched_domain *sibling;
  5090. int i;
  5091. cpumask_clear(covered);
  5092. for_each_cpu(i, span) {
  5093. struct cpumask *sg_span;
  5094. if (cpumask_test_cpu(i, covered))
  5095. continue;
  5096. sibling = *per_cpu_ptr(sdd->sd, i);
  5097. /* See the comment near build_group_mask(). */
  5098. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5099. continue;
  5100. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5101. GFP_KERNEL, cpu_to_node(cpu));
  5102. if (!sg)
  5103. goto fail;
  5104. sg_span = sched_group_cpus(sg);
  5105. if (sibling->child)
  5106. cpumask_copy(sg_span, sched_domain_span(sibling->child));
  5107. else
  5108. cpumask_set_cpu(i, sg_span);
  5109. cpumask_or(covered, covered, sg_span);
  5110. sg->sgc = *per_cpu_ptr(sdd->sgc, i);
  5111. if (atomic_inc_return(&sg->sgc->ref) == 1)
  5112. build_group_mask(sd, sg);
  5113. /*
  5114. * Initialize sgc->capacity such that even if we mess up the
  5115. * domains and no possible iteration will get us here, we won't
  5116. * die on a /0 trap.
  5117. */
  5118. sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
  5119. /*
  5120. * Make sure the first group of this domain contains the
  5121. * canonical balance cpu. Otherwise the sched_domain iteration
  5122. * breaks. See update_sg_lb_stats().
  5123. */
  5124. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  5125. group_balance_cpu(sg) == cpu)
  5126. groups = sg;
  5127. if (!first)
  5128. first = sg;
  5129. if (last)
  5130. last->next = sg;
  5131. last = sg;
  5132. last->next = first;
  5133. }
  5134. sd->groups = groups;
  5135. return 0;
  5136. fail:
  5137. free_sched_groups(first, 0);
  5138. return -ENOMEM;
  5139. }
  5140. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5141. {
  5142. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5143. struct sched_domain *child = sd->child;
  5144. if (child)
  5145. cpu = cpumask_first(sched_domain_span(child));
  5146. if (sg) {
  5147. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5148. (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
  5149. atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
  5150. }
  5151. return cpu;
  5152. }
  5153. /*
  5154. * build_sched_groups will build a circular linked list of the groups
  5155. * covered by the given span, and will set each group's ->cpumask correctly,
  5156. * and ->cpu_capacity to 0.
  5157. *
  5158. * Assumes the sched_domain tree is fully constructed
  5159. */
  5160. static int
  5161. build_sched_groups(struct sched_domain *sd, int cpu)
  5162. {
  5163. struct sched_group *first = NULL, *last = NULL;
  5164. struct sd_data *sdd = sd->private;
  5165. const struct cpumask *span = sched_domain_span(sd);
  5166. struct cpumask *covered;
  5167. int i;
  5168. get_group(cpu, sdd, &sd->groups);
  5169. atomic_inc(&sd->groups->ref);
  5170. if (cpu != cpumask_first(span))
  5171. return 0;
  5172. lockdep_assert_held(&sched_domains_mutex);
  5173. covered = sched_domains_tmpmask;
  5174. cpumask_clear(covered);
  5175. for_each_cpu(i, span) {
  5176. struct sched_group *sg;
  5177. int group, j;
  5178. if (cpumask_test_cpu(i, covered))
  5179. continue;
  5180. group = get_group(i, sdd, &sg);
  5181. cpumask_setall(sched_group_mask(sg));
  5182. for_each_cpu(j, span) {
  5183. if (get_group(j, sdd, NULL) != group)
  5184. continue;
  5185. cpumask_set_cpu(j, covered);
  5186. cpumask_set_cpu(j, sched_group_cpus(sg));
  5187. }
  5188. if (!first)
  5189. first = sg;
  5190. if (last)
  5191. last->next = sg;
  5192. last = sg;
  5193. }
  5194. last->next = first;
  5195. return 0;
  5196. }
  5197. /*
  5198. * Initialize sched groups cpu_capacity.
  5199. *
  5200. * cpu_capacity indicates the capacity of sched group, which is used while
  5201. * distributing the load between different sched groups in a sched domain.
  5202. * Typically cpu_capacity for all the groups in a sched domain will be same
  5203. * unless there are asymmetries in the topology. If there are asymmetries,
  5204. * group having more cpu_capacity will pickup more load compared to the
  5205. * group having less cpu_capacity.
  5206. */
  5207. static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
  5208. {
  5209. struct sched_group *sg = sd->groups;
  5210. WARN_ON(!sg);
  5211. do {
  5212. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5213. sg = sg->next;
  5214. } while (sg != sd->groups);
  5215. if (cpu != group_balance_cpu(sg))
  5216. return;
  5217. update_group_capacity(sd, cpu);
  5218. atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
  5219. }
  5220. /*
  5221. * Initializers for schedule domains
  5222. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5223. */
  5224. static int default_relax_domain_level = -1;
  5225. int sched_domain_level_max;
  5226. static int __init setup_relax_domain_level(char *str)
  5227. {
  5228. if (kstrtoint(str, 0, &default_relax_domain_level))
  5229. pr_warn("Unable to set relax_domain_level\n");
  5230. return 1;
  5231. }
  5232. __setup("relax_domain_level=", setup_relax_domain_level);
  5233. static void set_domain_attribute(struct sched_domain *sd,
  5234. struct sched_domain_attr *attr)
  5235. {
  5236. int request;
  5237. if (!attr || attr->relax_domain_level < 0) {
  5238. if (default_relax_domain_level < 0)
  5239. return;
  5240. else
  5241. request = default_relax_domain_level;
  5242. } else
  5243. request = attr->relax_domain_level;
  5244. if (request < sd->level) {
  5245. /* turn off idle balance on this domain */
  5246. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5247. } else {
  5248. /* turn on idle balance on this domain */
  5249. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5250. }
  5251. }
  5252. static void __sdt_free(const struct cpumask *cpu_map);
  5253. static int __sdt_alloc(const struct cpumask *cpu_map);
  5254. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5255. const struct cpumask *cpu_map)
  5256. {
  5257. switch (what) {
  5258. case sa_rootdomain:
  5259. if (!atomic_read(&d->rd->refcount))
  5260. free_rootdomain(&d->rd->rcu); /* fall through */
  5261. case sa_sd:
  5262. free_percpu(d->sd); /* fall through */
  5263. case sa_sd_storage:
  5264. __sdt_free(cpu_map); /* fall through */
  5265. case sa_none:
  5266. break;
  5267. }
  5268. }
  5269. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5270. const struct cpumask *cpu_map)
  5271. {
  5272. memset(d, 0, sizeof(*d));
  5273. if (__sdt_alloc(cpu_map))
  5274. return sa_sd_storage;
  5275. d->sd = alloc_percpu(struct sched_domain *);
  5276. if (!d->sd)
  5277. return sa_sd_storage;
  5278. d->rd = alloc_rootdomain();
  5279. if (!d->rd)
  5280. return sa_sd;
  5281. return sa_rootdomain;
  5282. }
  5283. /*
  5284. * NULL the sd_data elements we've used to build the sched_domain and
  5285. * sched_group structure so that the subsequent __free_domain_allocs()
  5286. * will not free the data we're using.
  5287. */
  5288. static void claim_allocations(int cpu, struct sched_domain *sd)
  5289. {
  5290. struct sd_data *sdd = sd->private;
  5291. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5292. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5293. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5294. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5295. if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
  5296. *per_cpu_ptr(sdd->sgc, cpu) = NULL;
  5297. }
  5298. #ifdef CONFIG_NUMA
  5299. static int sched_domains_numa_levels;
  5300. enum numa_topology_type sched_numa_topology_type;
  5301. static int *sched_domains_numa_distance;
  5302. int sched_max_numa_distance;
  5303. static struct cpumask ***sched_domains_numa_masks;
  5304. static int sched_domains_curr_level;
  5305. #endif
  5306. /*
  5307. * SD_flags allowed in topology descriptions.
  5308. *
  5309. * SD_SHARE_CPUCAPACITY - describes SMT topologies
  5310. * SD_SHARE_PKG_RESOURCES - describes shared caches
  5311. * SD_NUMA - describes NUMA topologies
  5312. * SD_SHARE_POWERDOMAIN - describes shared power domain
  5313. *
  5314. * Odd one out:
  5315. * SD_ASYM_PACKING - describes SMT quirks
  5316. */
  5317. #define TOPOLOGY_SD_FLAGS \
  5318. (SD_SHARE_CPUCAPACITY | \
  5319. SD_SHARE_PKG_RESOURCES | \
  5320. SD_NUMA | \
  5321. SD_ASYM_PACKING | \
  5322. SD_SHARE_POWERDOMAIN)
  5323. static struct sched_domain *
  5324. sd_init(struct sched_domain_topology_level *tl, int cpu)
  5325. {
  5326. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5327. int sd_weight, sd_flags = 0;
  5328. #ifdef CONFIG_NUMA
  5329. /*
  5330. * Ugly hack to pass state to sd_numa_mask()...
  5331. */
  5332. sched_domains_curr_level = tl->numa_level;
  5333. #endif
  5334. sd_weight = cpumask_weight(tl->mask(cpu));
  5335. if (tl->sd_flags)
  5336. sd_flags = (*tl->sd_flags)();
  5337. if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
  5338. "wrong sd_flags in topology description\n"))
  5339. sd_flags &= ~TOPOLOGY_SD_FLAGS;
  5340. *sd = (struct sched_domain){
  5341. .min_interval = sd_weight,
  5342. .max_interval = 2*sd_weight,
  5343. .busy_factor = 32,
  5344. .imbalance_pct = 125,
  5345. .cache_nice_tries = 0,
  5346. .busy_idx = 0,
  5347. .idle_idx = 0,
  5348. .newidle_idx = 0,
  5349. .wake_idx = 0,
  5350. .forkexec_idx = 0,
  5351. .flags = 1*SD_LOAD_BALANCE
  5352. | 1*SD_BALANCE_NEWIDLE
  5353. | 1*SD_BALANCE_EXEC
  5354. | 1*SD_BALANCE_FORK
  5355. | 0*SD_BALANCE_WAKE
  5356. | 1*SD_WAKE_AFFINE
  5357. | 0*SD_SHARE_CPUCAPACITY
  5358. | 0*SD_SHARE_PKG_RESOURCES
  5359. | 0*SD_SERIALIZE
  5360. | 0*SD_PREFER_SIBLING
  5361. | 0*SD_NUMA
  5362. | sd_flags
  5363. ,
  5364. .last_balance = jiffies,
  5365. .balance_interval = sd_weight,
  5366. .smt_gain = 0,
  5367. .max_newidle_lb_cost = 0,
  5368. .next_decay_max_lb_cost = jiffies,
  5369. #ifdef CONFIG_SCHED_DEBUG
  5370. .name = tl->name,
  5371. #endif
  5372. };
  5373. /*
  5374. * Convert topological properties into behaviour.
  5375. */
  5376. if (sd->flags & SD_SHARE_CPUCAPACITY) {
  5377. sd->flags |= SD_PREFER_SIBLING;
  5378. sd->imbalance_pct = 110;
  5379. sd->smt_gain = 1178; /* ~15% */
  5380. } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
  5381. sd->imbalance_pct = 117;
  5382. sd->cache_nice_tries = 1;
  5383. sd->busy_idx = 2;
  5384. #ifdef CONFIG_NUMA
  5385. } else if (sd->flags & SD_NUMA) {
  5386. sd->cache_nice_tries = 2;
  5387. sd->busy_idx = 3;
  5388. sd->idle_idx = 2;
  5389. sd->flags |= SD_SERIALIZE;
  5390. if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
  5391. sd->flags &= ~(SD_BALANCE_EXEC |
  5392. SD_BALANCE_FORK |
  5393. SD_WAKE_AFFINE);
  5394. }
  5395. #endif
  5396. } else {
  5397. sd->flags |= SD_PREFER_SIBLING;
  5398. sd->cache_nice_tries = 1;
  5399. sd->busy_idx = 2;
  5400. sd->idle_idx = 1;
  5401. }
  5402. sd->private = &tl->data;
  5403. return sd;
  5404. }
  5405. /*
  5406. * Topology list, bottom-up.
  5407. */
  5408. static struct sched_domain_topology_level default_topology[] = {
  5409. #ifdef CONFIG_SCHED_SMT
  5410. { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
  5411. #endif
  5412. #ifdef CONFIG_SCHED_MC
  5413. { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
  5414. #endif
  5415. { cpu_cpu_mask, SD_INIT_NAME(DIE) },
  5416. { NULL, },
  5417. };
  5418. struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5419. #define for_each_sd_topology(tl) \
  5420. for (tl = sched_domain_topology; tl->mask; tl++)
  5421. void set_sched_topology(struct sched_domain_topology_level *tl)
  5422. {
  5423. sched_domain_topology = tl;
  5424. }
  5425. #ifdef CONFIG_NUMA
  5426. static const struct cpumask *sd_numa_mask(int cpu)
  5427. {
  5428. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5429. }
  5430. static void sched_numa_warn(const char *str)
  5431. {
  5432. static int done = false;
  5433. int i,j;
  5434. if (done)
  5435. return;
  5436. done = true;
  5437. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5438. for (i = 0; i < nr_node_ids; i++) {
  5439. printk(KERN_WARNING " ");
  5440. for (j = 0; j < nr_node_ids; j++)
  5441. printk(KERN_CONT "%02d ", node_distance(i,j));
  5442. printk(KERN_CONT "\n");
  5443. }
  5444. printk(KERN_WARNING "\n");
  5445. }
  5446. bool find_numa_distance(int distance)
  5447. {
  5448. int i;
  5449. if (distance == node_distance(0, 0))
  5450. return true;
  5451. for (i = 0; i < sched_domains_numa_levels; i++) {
  5452. if (sched_domains_numa_distance[i] == distance)
  5453. return true;
  5454. }
  5455. return false;
  5456. }
  5457. /*
  5458. * A system can have three types of NUMA topology:
  5459. * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
  5460. * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
  5461. * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
  5462. *
  5463. * The difference between a glueless mesh topology and a backplane
  5464. * topology lies in whether communication between not directly
  5465. * connected nodes goes through intermediary nodes (where programs
  5466. * could run), or through backplane controllers. This affects
  5467. * placement of programs.
  5468. *
  5469. * The type of topology can be discerned with the following tests:
  5470. * - If the maximum distance between any nodes is 1 hop, the system
  5471. * is directly connected.
  5472. * - If for two nodes A and B, located N > 1 hops away from each other,
  5473. * there is an intermediary node C, which is < N hops away from both
  5474. * nodes A and B, the system is a glueless mesh.
  5475. */
  5476. static void init_numa_topology_type(void)
  5477. {
  5478. int a, b, c, n;
  5479. n = sched_max_numa_distance;
  5480. if (n <= 1)
  5481. sched_numa_topology_type = NUMA_DIRECT;
  5482. for_each_online_node(a) {
  5483. for_each_online_node(b) {
  5484. /* Find two nodes furthest removed from each other. */
  5485. if (node_distance(a, b) < n)
  5486. continue;
  5487. /* Is there an intermediary node between a and b? */
  5488. for_each_online_node(c) {
  5489. if (node_distance(a, c) < n &&
  5490. node_distance(b, c) < n) {
  5491. sched_numa_topology_type =
  5492. NUMA_GLUELESS_MESH;
  5493. return;
  5494. }
  5495. }
  5496. sched_numa_topology_type = NUMA_BACKPLANE;
  5497. return;
  5498. }
  5499. }
  5500. }
  5501. static void sched_init_numa(void)
  5502. {
  5503. int next_distance, curr_distance = node_distance(0, 0);
  5504. struct sched_domain_topology_level *tl;
  5505. int level = 0;
  5506. int i, j, k;
  5507. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5508. if (!sched_domains_numa_distance)
  5509. return;
  5510. /*
  5511. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5512. * unique distances in the node_distance() table.
  5513. *
  5514. * Assumes node_distance(0,j) includes all distances in
  5515. * node_distance(i,j) in order to avoid cubic time.
  5516. */
  5517. next_distance = curr_distance;
  5518. for (i = 0; i < nr_node_ids; i++) {
  5519. for (j = 0; j < nr_node_ids; j++) {
  5520. for (k = 0; k < nr_node_ids; k++) {
  5521. int distance = node_distance(i, k);
  5522. if (distance > curr_distance &&
  5523. (distance < next_distance ||
  5524. next_distance == curr_distance))
  5525. next_distance = distance;
  5526. /*
  5527. * While not a strong assumption it would be nice to know
  5528. * about cases where if node A is connected to B, B is not
  5529. * equally connected to A.
  5530. */
  5531. if (sched_debug() && node_distance(k, i) != distance)
  5532. sched_numa_warn("Node-distance not symmetric");
  5533. if (sched_debug() && i && !find_numa_distance(distance))
  5534. sched_numa_warn("Node-0 not representative");
  5535. }
  5536. if (next_distance != curr_distance) {
  5537. sched_domains_numa_distance[level++] = next_distance;
  5538. sched_domains_numa_levels = level;
  5539. curr_distance = next_distance;
  5540. } else break;
  5541. }
  5542. /*
  5543. * In case of sched_debug() we verify the above assumption.
  5544. */
  5545. if (!sched_debug())
  5546. break;
  5547. }
  5548. if (!level)
  5549. return;
  5550. /*
  5551. * 'level' contains the number of unique distances, excluding the
  5552. * identity distance node_distance(i,i).
  5553. *
  5554. * The sched_domains_numa_distance[] array includes the actual distance
  5555. * numbers.
  5556. */
  5557. /*
  5558. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5559. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5560. * the array will contain less then 'level' members. This could be
  5561. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5562. * in other functions.
  5563. *
  5564. * We reset it to 'level' at the end of this function.
  5565. */
  5566. sched_domains_numa_levels = 0;
  5567. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5568. if (!sched_domains_numa_masks)
  5569. return;
  5570. /*
  5571. * Now for each level, construct a mask per node which contains all
  5572. * cpus of nodes that are that many hops away from us.
  5573. */
  5574. for (i = 0; i < level; i++) {
  5575. sched_domains_numa_masks[i] =
  5576. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5577. if (!sched_domains_numa_masks[i])
  5578. return;
  5579. for (j = 0; j < nr_node_ids; j++) {
  5580. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5581. if (!mask)
  5582. return;
  5583. sched_domains_numa_masks[i][j] = mask;
  5584. for (k = 0; k < nr_node_ids; k++) {
  5585. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5586. continue;
  5587. cpumask_or(mask, mask, cpumask_of_node(k));
  5588. }
  5589. }
  5590. }
  5591. /* Compute default topology size */
  5592. for (i = 0; sched_domain_topology[i].mask; i++);
  5593. tl = kzalloc((i + level + 1) *
  5594. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5595. if (!tl)
  5596. return;
  5597. /*
  5598. * Copy the default topology bits..
  5599. */
  5600. for (i = 0; sched_domain_topology[i].mask; i++)
  5601. tl[i] = sched_domain_topology[i];
  5602. /*
  5603. * .. and append 'j' levels of NUMA goodness.
  5604. */
  5605. for (j = 0; j < level; i++, j++) {
  5606. tl[i] = (struct sched_domain_topology_level){
  5607. .mask = sd_numa_mask,
  5608. .sd_flags = cpu_numa_flags,
  5609. .flags = SDTL_OVERLAP,
  5610. .numa_level = j,
  5611. SD_INIT_NAME(NUMA)
  5612. };
  5613. }
  5614. sched_domain_topology = tl;
  5615. sched_domains_numa_levels = level;
  5616. sched_max_numa_distance = sched_domains_numa_distance[level - 1];
  5617. init_numa_topology_type();
  5618. }
  5619. static void sched_domains_numa_masks_set(int cpu)
  5620. {
  5621. int i, j;
  5622. int node = cpu_to_node(cpu);
  5623. for (i = 0; i < sched_domains_numa_levels; i++) {
  5624. for (j = 0; j < nr_node_ids; j++) {
  5625. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5626. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5627. }
  5628. }
  5629. }
  5630. static void sched_domains_numa_masks_clear(int cpu)
  5631. {
  5632. int i, j;
  5633. for (i = 0; i < sched_domains_numa_levels; i++) {
  5634. for (j = 0; j < nr_node_ids; j++)
  5635. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5636. }
  5637. }
  5638. /*
  5639. * Update sched_domains_numa_masks[level][node] array when new cpus
  5640. * are onlined.
  5641. */
  5642. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5643. unsigned long action,
  5644. void *hcpu)
  5645. {
  5646. int cpu = (long)hcpu;
  5647. switch (action & ~CPU_TASKS_FROZEN) {
  5648. case CPU_ONLINE:
  5649. sched_domains_numa_masks_set(cpu);
  5650. break;
  5651. case CPU_DEAD:
  5652. sched_domains_numa_masks_clear(cpu);
  5653. break;
  5654. default:
  5655. return NOTIFY_DONE;
  5656. }
  5657. return NOTIFY_OK;
  5658. }
  5659. #else
  5660. static inline void sched_init_numa(void)
  5661. {
  5662. }
  5663. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5664. unsigned long action,
  5665. void *hcpu)
  5666. {
  5667. return 0;
  5668. }
  5669. #endif /* CONFIG_NUMA */
  5670. static int __sdt_alloc(const struct cpumask *cpu_map)
  5671. {
  5672. struct sched_domain_topology_level *tl;
  5673. int j;
  5674. for_each_sd_topology(tl) {
  5675. struct sd_data *sdd = &tl->data;
  5676. sdd->sd = alloc_percpu(struct sched_domain *);
  5677. if (!sdd->sd)
  5678. return -ENOMEM;
  5679. sdd->sg = alloc_percpu(struct sched_group *);
  5680. if (!sdd->sg)
  5681. return -ENOMEM;
  5682. sdd->sgc = alloc_percpu(struct sched_group_capacity *);
  5683. if (!sdd->sgc)
  5684. return -ENOMEM;
  5685. for_each_cpu(j, cpu_map) {
  5686. struct sched_domain *sd;
  5687. struct sched_group *sg;
  5688. struct sched_group_capacity *sgc;
  5689. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5690. GFP_KERNEL, cpu_to_node(j));
  5691. if (!sd)
  5692. return -ENOMEM;
  5693. *per_cpu_ptr(sdd->sd, j) = sd;
  5694. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5695. GFP_KERNEL, cpu_to_node(j));
  5696. if (!sg)
  5697. return -ENOMEM;
  5698. sg->next = sg;
  5699. *per_cpu_ptr(sdd->sg, j) = sg;
  5700. sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
  5701. GFP_KERNEL, cpu_to_node(j));
  5702. if (!sgc)
  5703. return -ENOMEM;
  5704. *per_cpu_ptr(sdd->sgc, j) = sgc;
  5705. }
  5706. }
  5707. return 0;
  5708. }
  5709. static void __sdt_free(const struct cpumask *cpu_map)
  5710. {
  5711. struct sched_domain_topology_level *tl;
  5712. int j;
  5713. for_each_sd_topology(tl) {
  5714. struct sd_data *sdd = &tl->data;
  5715. for_each_cpu(j, cpu_map) {
  5716. struct sched_domain *sd;
  5717. if (sdd->sd) {
  5718. sd = *per_cpu_ptr(sdd->sd, j);
  5719. if (sd && (sd->flags & SD_OVERLAP))
  5720. free_sched_groups(sd->groups, 0);
  5721. kfree(*per_cpu_ptr(sdd->sd, j));
  5722. }
  5723. if (sdd->sg)
  5724. kfree(*per_cpu_ptr(sdd->sg, j));
  5725. if (sdd->sgc)
  5726. kfree(*per_cpu_ptr(sdd->sgc, j));
  5727. }
  5728. free_percpu(sdd->sd);
  5729. sdd->sd = NULL;
  5730. free_percpu(sdd->sg);
  5731. sdd->sg = NULL;
  5732. free_percpu(sdd->sgc);
  5733. sdd->sgc = NULL;
  5734. }
  5735. }
  5736. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5737. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5738. struct sched_domain *child, int cpu)
  5739. {
  5740. struct sched_domain *sd = sd_init(tl, cpu);
  5741. if (!sd)
  5742. return child;
  5743. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5744. if (child) {
  5745. sd->level = child->level + 1;
  5746. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5747. child->parent = sd;
  5748. sd->child = child;
  5749. if (!cpumask_subset(sched_domain_span(child),
  5750. sched_domain_span(sd))) {
  5751. pr_err("BUG: arch topology borken\n");
  5752. #ifdef CONFIG_SCHED_DEBUG
  5753. pr_err(" the %s domain not a subset of the %s domain\n",
  5754. child->name, sd->name);
  5755. #endif
  5756. /* Fixup, ensure @sd has at least @child cpus. */
  5757. cpumask_or(sched_domain_span(sd),
  5758. sched_domain_span(sd),
  5759. sched_domain_span(child));
  5760. }
  5761. }
  5762. set_domain_attribute(sd, attr);
  5763. return sd;
  5764. }
  5765. /*
  5766. * Build sched domains for a given set of cpus and attach the sched domains
  5767. * to the individual cpus
  5768. */
  5769. static int build_sched_domains(const struct cpumask *cpu_map,
  5770. struct sched_domain_attr *attr)
  5771. {
  5772. enum s_alloc alloc_state;
  5773. struct sched_domain *sd;
  5774. struct s_data d;
  5775. int i, ret = -ENOMEM;
  5776. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5777. if (alloc_state != sa_rootdomain)
  5778. goto error;
  5779. /* Set up domains for cpus specified by the cpu_map. */
  5780. for_each_cpu(i, cpu_map) {
  5781. struct sched_domain_topology_level *tl;
  5782. sd = NULL;
  5783. for_each_sd_topology(tl) {
  5784. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5785. if (tl == sched_domain_topology)
  5786. *per_cpu_ptr(d.sd, i) = sd;
  5787. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5788. sd->flags |= SD_OVERLAP;
  5789. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5790. break;
  5791. }
  5792. }
  5793. /* Build the groups for the domains */
  5794. for_each_cpu(i, cpu_map) {
  5795. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5796. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5797. if (sd->flags & SD_OVERLAP) {
  5798. if (build_overlap_sched_groups(sd, i))
  5799. goto error;
  5800. } else {
  5801. if (build_sched_groups(sd, i))
  5802. goto error;
  5803. }
  5804. }
  5805. }
  5806. /* Calculate CPU capacity for physical packages and nodes */
  5807. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5808. if (!cpumask_test_cpu(i, cpu_map))
  5809. continue;
  5810. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5811. claim_allocations(i, sd);
  5812. init_sched_groups_capacity(i, sd);
  5813. }
  5814. }
  5815. /* Attach the domains */
  5816. rcu_read_lock();
  5817. for_each_cpu(i, cpu_map) {
  5818. sd = *per_cpu_ptr(d.sd, i);
  5819. cpu_attach_domain(sd, d.rd, i);
  5820. }
  5821. rcu_read_unlock();
  5822. ret = 0;
  5823. error:
  5824. __free_domain_allocs(&d, alloc_state, cpu_map);
  5825. return ret;
  5826. }
  5827. static cpumask_var_t *doms_cur; /* current sched domains */
  5828. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5829. static struct sched_domain_attr *dattr_cur;
  5830. /* attribues of custom domains in 'doms_cur' */
  5831. /*
  5832. * Special case: If a kmalloc of a doms_cur partition (array of
  5833. * cpumask) fails, then fallback to a single sched domain,
  5834. * as determined by the single cpumask fallback_doms.
  5835. */
  5836. static cpumask_var_t fallback_doms;
  5837. /*
  5838. * arch_update_cpu_topology lets virtualized architectures update the
  5839. * cpu core maps. It is supposed to return 1 if the topology changed
  5840. * or 0 if it stayed the same.
  5841. */
  5842. int __weak arch_update_cpu_topology(void)
  5843. {
  5844. return 0;
  5845. }
  5846. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5847. {
  5848. int i;
  5849. cpumask_var_t *doms;
  5850. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5851. if (!doms)
  5852. return NULL;
  5853. for (i = 0; i < ndoms; i++) {
  5854. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5855. free_sched_domains(doms, i);
  5856. return NULL;
  5857. }
  5858. }
  5859. return doms;
  5860. }
  5861. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5862. {
  5863. unsigned int i;
  5864. for (i = 0; i < ndoms; i++)
  5865. free_cpumask_var(doms[i]);
  5866. kfree(doms);
  5867. }
  5868. /*
  5869. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5870. * For now this just excludes isolated cpus, but could be used to
  5871. * exclude other special cases in the future.
  5872. */
  5873. static int init_sched_domains(const struct cpumask *cpu_map)
  5874. {
  5875. int err;
  5876. arch_update_cpu_topology();
  5877. ndoms_cur = 1;
  5878. doms_cur = alloc_sched_domains(ndoms_cur);
  5879. if (!doms_cur)
  5880. doms_cur = &fallback_doms;
  5881. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5882. err = build_sched_domains(doms_cur[0], NULL);
  5883. register_sched_domain_sysctl();
  5884. return err;
  5885. }
  5886. /*
  5887. * Detach sched domains from a group of cpus specified in cpu_map
  5888. * These cpus will now be attached to the NULL domain
  5889. */
  5890. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5891. {
  5892. int i;
  5893. rcu_read_lock();
  5894. for_each_cpu(i, cpu_map)
  5895. cpu_attach_domain(NULL, &def_root_domain, i);
  5896. rcu_read_unlock();
  5897. }
  5898. /* handle null as "default" */
  5899. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5900. struct sched_domain_attr *new, int idx_new)
  5901. {
  5902. struct sched_domain_attr tmp;
  5903. /* fast path */
  5904. if (!new && !cur)
  5905. return 1;
  5906. tmp = SD_ATTR_INIT;
  5907. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5908. new ? (new + idx_new) : &tmp,
  5909. sizeof(struct sched_domain_attr));
  5910. }
  5911. /*
  5912. * Partition sched domains as specified by the 'ndoms_new'
  5913. * cpumasks in the array doms_new[] of cpumasks. This compares
  5914. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5915. * It destroys each deleted domain and builds each new domain.
  5916. *
  5917. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5918. * The masks don't intersect (don't overlap.) We should setup one
  5919. * sched domain for each mask. CPUs not in any of the cpumasks will
  5920. * not be load balanced. If the same cpumask appears both in the
  5921. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5922. * it as it is.
  5923. *
  5924. * The passed in 'doms_new' should be allocated using
  5925. * alloc_sched_domains. This routine takes ownership of it and will
  5926. * free_sched_domains it when done with it. If the caller failed the
  5927. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5928. * and partition_sched_domains() will fallback to the single partition
  5929. * 'fallback_doms', it also forces the domains to be rebuilt.
  5930. *
  5931. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5932. * ndoms_new == 0 is a special case for destroying existing domains,
  5933. * and it will not create the default domain.
  5934. *
  5935. * Call with hotplug lock held
  5936. */
  5937. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5938. struct sched_domain_attr *dattr_new)
  5939. {
  5940. int i, j, n;
  5941. int new_topology;
  5942. mutex_lock(&sched_domains_mutex);
  5943. /* always unregister in case we don't destroy any domains */
  5944. unregister_sched_domain_sysctl();
  5945. /* Let architecture update cpu core mappings. */
  5946. new_topology = arch_update_cpu_topology();
  5947. n = doms_new ? ndoms_new : 0;
  5948. /* Destroy deleted domains */
  5949. for (i = 0; i < ndoms_cur; i++) {
  5950. for (j = 0; j < n && !new_topology; j++) {
  5951. if (cpumask_equal(doms_cur[i], doms_new[j])
  5952. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5953. goto match1;
  5954. }
  5955. /* no match - a current sched domain not in new doms_new[] */
  5956. detach_destroy_domains(doms_cur[i]);
  5957. match1:
  5958. ;
  5959. }
  5960. n = ndoms_cur;
  5961. if (doms_new == NULL) {
  5962. n = 0;
  5963. doms_new = &fallback_doms;
  5964. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5965. WARN_ON_ONCE(dattr_new);
  5966. }
  5967. /* Build new domains */
  5968. for (i = 0; i < ndoms_new; i++) {
  5969. for (j = 0; j < n && !new_topology; j++) {
  5970. if (cpumask_equal(doms_new[i], doms_cur[j])
  5971. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5972. goto match2;
  5973. }
  5974. /* no match - add a new doms_new */
  5975. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5976. match2:
  5977. ;
  5978. }
  5979. /* Remember the new sched domains */
  5980. if (doms_cur != &fallback_doms)
  5981. free_sched_domains(doms_cur, ndoms_cur);
  5982. kfree(dattr_cur); /* kfree(NULL) is safe */
  5983. doms_cur = doms_new;
  5984. dattr_cur = dattr_new;
  5985. ndoms_cur = ndoms_new;
  5986. register_sched_domain_sysctl();
  5987. mutex_unlock(&sched_domains_mutex);
  5988. }
  5989. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5990. /*
  5991. * Update cpusets according to cpu_active mask. If cpusets are
  5992. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5993. * around partition_sched_domains().
  5994. *
  5995. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5996. * want to restore it back to its original state upon resume anyway.
  5997. */
  5998. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5999. void *hcpu)
  6000. {
  6001. switch (action) {
  6002. case CPU_ONLINE_FROZEN:
  6003. case CPU_DOWN_FAILED_FROZEN:
  6004. /*
  6005. * num_cpus_frozen tracks how many CPUs are involved in suspend
  6006. * resume sequence. As long as this is not the last online
  6007. * operation in the resume sequence, just build a single sched
  6008. * domain, ignoring cpusets.
  6009. */
  6010. num_cpus_frozen--;
  6011. if (likely(num_cpus_frozen)) {
  6012. partition_sched_domains(1, NULL, NULL);
  6013. break;
  6014. }
  6015. /*
  6016. * This is the last CPU online operation. So fall through and
  6017. * restore the original sched domains by considering the
  6018. * cpuset configurations.
  6019. */
  6020. case CPU_ONLINE:
  6021. cpuset_update_active_cpus(true);
  6022. break;
  6023. default:
  6024. return NOTIFY_DONE;
  6025. }
  6026. return NOTIFY_OK;
  6027. }
  6028. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6029. void *hcpu)
  6030. {
  6031. unsigned long flags;
  6032. long cpu = (long)hcpu;
  6033. struct dl_bw *dl_b;
  6034. bool overflow;
  6035. int cpus;
  6036. switch (action) {
  6037. case CPU_DOWN_PREPARE:
  6038. rcu_read_lock_sched();
  6039. dl_b = dl_bw_of(cpu);
  6040. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6041. cpus = dl_bw_cpus(cpu);
  6042. overflow = __dl_overflow(dl_b, cpus, 0, 0);
  6043. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6044. rcu_read_unlock_sched();
  6045. if (overflow)
  6046. return notifier_from_errno(-EBUSY);
  6047. cpuset_update_active_cpus(false);
  6048. break;
  6049. case CPU_DOWN_PREPARE_FROZEN:
  6050. num_cpus_frozen++;
  6051. partition_sched_domains(1, NULL, NULL);
  6052. break;
  6053. default:
  6054. return NOTIFY_DONE;
  6055. }
  6056. return NOTIFY_OK;
  6057. }
  6058. void __init sched_init_smp(void)
  6059. {
  6060. cpumask_var_t non_isolated_cpus;
  6061. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6062. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6063. /* nohz_full won't take effect without isolating the cpus. */
  6064. tick_nohz_full_add_cpus_to(cpu_isolated_map);
  6065. sched_init_numa();
  6066. /*
  6067. * There's no userspace yet to cause hotplug operations; hence all the
  6068. * cpu masks are stable and all blatant races in the below code cannot
  6069. * happen.
  6070. */
  6071. mutex_lock(&sched_domains_mutex);
  6072. init_sched_domains(cpu_active_mask);
  6073. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6074. if (cpumask_empty(non_isolated_cpus))
  6075. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6076. mutex_unlock(&sched_domains_mutex);
  6077. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  6078. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6079. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6080. init_hrtick();
  6081. /* Move init over to a non-isolated CPU */
  6082. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6083. BUG();
  6084. sched_init_granularity();
  6085. free_cpumask_var(non_isolated_cpus);
  6086. init_sched_rt_class();
  6087. init_sched_dl_class();
  6088. }
  6089. #else
  6090. void __init sched_init_smp(void)
  6091. {
  6092. sched_init_granularity();
  6093. }
  6094. #endif /* CONFIG_SMP */
  6095. int in_sched_functions(unsigned long addr)
  6096. {
  6097. return in_lock_functions(addr) ||
  6098. (addr >= (unsigned long)__sched_text_start
  6099. && addr < (unsigned long)__sched_text_end);
  6100. }
  6101. #ifdef CONFIG_CGROUP_SCHED
  6102. /*
  6103. * Default task group.
  6104. * Every task in system belongs to this group at bootup.
  6105. */
  6106. struct task_group root_task_group;
  6107. LIST_HEAD(task_groups);
  6108. #endif
  6109. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  6110. void __init sched_init(void)
  6111. {
  6112. int i, j;
  6113. unsigned long alloc_size = 0, ptr;
  6114. #ifdef CONFIG_FAIR_GROUP_SCHED
  6115. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6116. #endif
  6117. #ifdef CONFIG_RT_GROUP_SCHED
  6118. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6119. #endif
  6120. if (alloc_size) {
  6121. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6122. #ifdef CONFIG_FAIR_GROUP_SCHED
  6123. root_task_group.se = (struct sched_entity **)ptr;
  6124. ptr += nr_cpu_ids * sizeof(void **);
  6125. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6126. ptr += nr_cpu_ids * sizeof(void **);
  6127. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6128. #ifdef CONFIG_RT_GROUP_SCHED
  6129. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6130. ptr += nr_cpu_ids * sizeof(void **);
  6131. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6132. ptr += nr_cpu_ids * sizeof(void **);
  6133. #endif /* CONFIG_RT_GROUP_SCHED */
  6134. }
  6135. #ifdef CONFIG_CPUMASK_OFFSTACK
  6136. for_each_possible_cpu(i) {
  6137. per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
  6138. cpumask_size(), GFP_KERNEL, cpu_to_node(i));
  6139. }
  6140. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6141. init_rt_bandwidth(&def_rt_bandwidth,
  6142. global_rt_period(), global_rt_runtime());
  6143. init_dl_bandwidth(&def_dl_bandwidth,
  6144. global_rt_period(), global_rt_runtime());
  6145. #ifdef CONFIG_SMP
  6146. init_defrootdomain();
  6147. #endif
  6148. #ifdef CONFIG_RT_GROUP_SCHED
  6149. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6150. global_rt_period(), global_rt_runtime());
  6151. #endif /* CONFIG_RT_GROUP_SCHED */
  6152. #ifdef CONFIG_CGROUP_SCHED
  6153. list_add(&root_task_group.list, &task_groups);
  6154. INIT_LIST_HEAD(&root_task_group.children);
  6155. INIT_LIST_HEAD(&root_task_group.siblings);
  6156. autogroup_init(&init_task);
  6157. #endif /* CONFIG_CGROUP_SCHED */
  6158. for_each_possible_cpu(i) {
  6159. struct rq *rq;
  6160. rq = cpu_rq(i);
  6161. raw_spin_lock_init(&rq->lock);
  6162. rq->nr_running = 0;
  6163. rq->calc_load_active = 0;
  6164. rq->calc_load_update = jiffies + LOAD_FREQ;
  6165. init_cfs_rq(&rq->cfs);
  6166. init_rt_rq(&rq->rt);
  6167. init_dl_rq(&rq->dl);
  6168. #ifdef CONFIG_FAIR_GROUP_SCHED
  6169. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  6170. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6171. /*
  6172. * How much cpu bandwidth does root_task_group get?
  6173. *
  6174. * In case of task-groups formed thr' the cgroup filesystem, it
  6175. * gets 100% of the cpu resources in the system. This overall
  6176. * system cpu resource is divided among the tasks of
  6177. * root_task_group and its child task-groups in a fair manner,
  6178. * based on each entity's (task or task-group's) weight
  6179. * (se->load.weight).
  6180. *
  6181. * In other words, if root_task_group has 10 tasks of weight
  6182. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6183. * then A0's share of the cpu resource is:
  6184. *
  6185. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6186. *
  6187. * We achieve this by letting root_task_group's tasks sit
  6188. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6189. */
  6190. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  6191. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6192. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6193. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6194. #ifdef CONFIG_RT_GROUP_SCHED
  6195. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6196. #endif
  6197. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6198. rq->cpu_load[j] = 0;
  6199. rq->last_load_update_tick = jiffies;
  6200. #ifdef CONFIG_SMP
  6201. rq->sd = NULL;
  6202. rq->rd = NULL;
  6203. rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
  6204. rq->balance_callback = NULL;
  6205. rq->active_balance = 0;
  6206. rq->next_balance = jiffies;
  6207. rq->push_cpu = 0;
  6208. rq->cpu = i;
  6209. rq->online = 0;
  6210. rq->idle_stamp = 0;
  6211. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6212. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  6213. INIT_LIST_HEAD(&rq->cfs_tasks);
  6214. rq_attach_root(rq, &def_root_domain);
  6215. #ifdef CONFIG_NO_HZ_COMMON
  6216. rq->nohz_flags = 0;
  6217. #endif
  6218. #ifdef CONFIG_NO_HZ_FULL
  6219. rq->last_sched_tick = 0;
  6220. #endif
  6221. #endif
  6222. init_rq_hrtick(rq);
  6223. atomic_set(&rq->nr_iowait, 0);
  6224. }
  6225. set_load_weight(&init_task);
  6226. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6227. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6228. #endif
  6229. /*
  6230. * The boot idle thread does lazy MMU switching as well:
  6231. */
  6232. atomic_inc(&init_mm.mm_count);
  6233. enter_lazy_tlb(&init_mm, current);
  6234. /*
  6235. * During early bootup we pretend to be a normal task:
  6236. */
  6237. current->sched_class = &fair_sched_class;
  6238. /*
  6239. * Make us the idle thread. Technically, schedule() should not be
  6240. * called from this thread, however somewhere below it might be,
  6241. * but because we are the idle thread, we just pick up running again
  6242. * when this runqueue becomes "idle".
  6243. */
  6244. init_idle(current, smp_processor_id());
  6245. calc_load_update = jiffies + LOAD_FREQ;
  6246. #ifdef CONFIG_SMP
  6247. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6248. /* May be allocated at isolcpus cmdline parse time */
  6249. if (cpu_isolated_map == NULL)
  6250. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6251. idle_thread_set_boot_cpu();
  6252. set_cpu_rq_start_time();
  6253. #endif
  6254. init_sched_fair_class();
  6255. scheduler_running = 1;
  6256. }
  6257. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  6258. static inline int preempt_count_equals(int preempt_offset)
  6259. {
  6260. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6261. return (nested == preempt_offset);
  6262. }
  6263. void __might_sleep(const char *file, int line, int preempt_offset)
  6264. {
  6265. /*
  6266. * Blocking primitives will set (and therefore destroy) current->state,
  6267. * since we will exit with TASK_RUNNING make sure we enter with it,
  6268. * otherwise we will destroy state.
  6269. */
  6270. WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
  6271. "do not call blocking ops when !TASK_RUNNING; "
  6272. "state=%lx set at [<%p>] %pS\n",
  6273. current->state,
  6274. (void *)current->task_state_change,
  6275. (void *)current->task_state_change);
  6276. ___might_sleep(file, line, preempt_offset);
  6277. }
  6278. EXPORT_SYMBOL(__might_sleep);
  6279. void ___might_sleep(const char *file, int line, int preempt_offset)
  6280. {
  6281. static unsigned long prev_jiffy; /* ratelimiting */
  6282. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  6283. if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
  6284. !is_idle_task(current)) ||
  6285. system_state != SYSTEM_RUNNING || oops_in_progress)
  6286. return;
  6287. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6288. return;
  6289. prev_jiffy = jiffies;
  6290. printk(KERN_ERR
  6291. "BUG: sleeping function called from invalid context at %s:%d\n",
  6292. file, line);
  6293. printk(KERN_ERR
  6294. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6295. in_atomic(), irqs_disabled(),
  6296. current->pid, current->comm);
  6297. if (task_stack_end_corrupted(current))
  6298. printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
  6299. debug_show_held_locks(current);
  6300. if (irqs_disabled())
  6301. print_irqtrace_events(current);
  6302. #ifdef CONFIG_DEBUG_PREEMPT
  6303. if (!preempt_count_equals(preempt_offset)) {
  6304. pr_err("Preemption disabled at:");
  6305. print_ip_sym(current->preempt_disable_ip);
  6306. pr_cont("\n");
  6307. }
  6308. #endif
  6309. dump_stack();
  6310. }
  6311. EXPORT_SYMBOL(___might_sleep);
  6312. #endif
  6313. #ifdef CONFIG_MAGIC_SYSRQ
  6314. void normalize_rt_tasks(void)
  6315. {
  6316. struct task_struct *g, *p;
  6317. struct sched_attr attr = {
  6318. .sched_policy = SCHED_NORMAL,
  6319. };
  6320. read_lock(&tasklist_lock);
  6321. for_each_process_thread(g, p) {
  6322. /*
  6323. * Only normalize user tasks:
  6324. */
  6325. if (p->flags & PF_KTHREAD)
  6326. continue;
  6327. p->se.exec_start = 0;
  6328. #ifdef CONFIG_SCHEDSTATS
  6329. p->se.statistics.wait_start = 0;
  6330. p->se.statistics.sleep_start = 0;
  6331. p->se.statistics.block_start = 0;
  6332. #endif
  6333. if (!dl_task(p) && !rt_task(p)) {
  6334. /*
  6335. * Renice negative nice level userspace
  6336. * tasks back to 0:
  6337. */
  6338. if (task_nice(p) < 0)
  6339. set_user_nice(p, 0);
  6340. continue;
  6341. }
  6342. __sched_setscheduler(p, &attr, false, false);
  6343. }
  6344. read_unlock(&tasklist_lock);
  6345. }
  6346. #endif /* CONFIG_MAGIC_SYSRQ */
  6347. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6348. /*
  6349. * These functions are only useful for the IA64 MCA handling, or kdb.
  6350. *
  6351. * They can only be called when the whole system has been
  6352. * stopped - every CPU needs to be quiescent, and no scheduling
  6353. * activity can take place. Using them for anything else would
  6354. * be a serious bug, and as a result, they aren't even visible
  6355. * under any other configuration.
  6356. */
  6357. /**
  6358. * curr_task - return the current task for a given cpu.
  6359. * @cpu: the processor in question.
  6360. *
  6361. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6362. *
  6363. * Return: The current task for @cpu.
  6364. */
  6365. struct task_struct *curr_task(int cpu)
  6366. {
  6367. return cpu_curr(cpu);
  6368. }
  6369. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6370. #ifdef CONFIG_IA64
  6371. /**
  6372. * set_curr_task - set the current task for a given cpu.
  6373. * @cpu: the processor in question.
  6374. * @p: the task pointer to set.
  6375. *
  6376. * Description: This function must only be used when non-maskable interrupts
  6377. * are serviced on a separate stack. It allows the architecture to switch the
  6378. * notion of the current task on a cpu in a non-blocking manner. This function
  6379. * must be called with all CPU's synchronized, and interrupts disabled, the
  6380. * and caller must save the original value of the current task (see
  6381. * curr_task() above) and restore that value before reenabling interrupts and
  6382. * re-starting the system.
  6383. *
  6384. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6385. */
  6386. void set_curr_task(int cpu, struct task_struct *p)
  6387. {
  6388. cpu_curr(cpu) = p;
  6389. }
  6390. #endif
  6391. #ifdef CONFIG_CGROUP_SCHED
  6392. /* task_group_lock serializes the addition/removal of task groups */
  6393. static DEFINE_SPINLOCK(task_group_lock);
  6394. static void free_sched_group(struct task_group *tg)
  6395. {
  6396. free_fair_sched_group(tg);
  6397. free_rt_sched_group(tg);
  6398. autogroup_free(tg);
  6399. kfree(tg);
  6400. }
  6401. /* allocate runqueue etc for a new task group */
  6402. struct task_group *sched_create_group(struct task_group *parent)
  6403. {
  6404. struct task_group *tg;
  6405. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6406. if (!tg)
  6407. return ERR_PTR(-ENOMEM);
  6408. if (!alloc_fair_sched_group(tg, parent))
  6409. goto err;
  6410. if (!alloc_rt_sched_group(tg, parent))
  6411. goto err;
  6412. return tg;
  6413. err:
  6414. free_sched_group(tg);
  6415. return ERR_PTR(-ENOMEM);
  6416. }
  6417. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6418. {
  6419. unsigned long flags;
  6420. spin_lock_irqsave(&task_group_lock, flags);
  6421. list_add_rcu(&tg->list, &task_groups);
  6422. WARN_ON(!parent); /* root should already exist */
  6423. tg->parent = parent;
  6424. INIT_LIST_HEAD(&tg->children);
  6425. list_add_rcu(&tg->siblings, &parent->children);
  6426. spin_unlock_irqrestore(&task_group_lock, flags);
  6427. }
  6428. /* rcu callback to free various structures associated with a task group */
  6429. static void free_sched_group_rcu(struct rcu_head *rhp)
  6430. {
  6431. /* now it should be safe to free those cfs_rqs */
  6432. free_sched_group(container_of(rhp, struct task_group, rcu));
  6433. }
  6434. /* Destroy runqueue etc associated with a task group */
  6435. void sched_destroy_group(struct task_group *tg)
  6436. {
  6437. /* wait for possible concurrent references to cfs_rqs complete */
  6438. call_rcu(&tg->rcu, free_sched_group_rcu);
  6439. }
  6440. void sched_offline_group(struct task_group *tg)
  6441. {
  6442. unsigned long flags;
  6443. int i;
  6444. /* end participation in shares distribution */
  6445. for_each_possible_cpu(i)
  6446. unregister_fair_sched_group(tg, i);
  6447. spin_lock_irqsave(&task_group_lock, flags);
  6448. list_del_rcu(&tg->list);
  6449. list_del_rcu(&tg->siblings);
  6450. spin_unlock_irqrestore(&task_group_lock, flags);
  6451. }
  6452. /* change task's runqueue when it moves between groups.
  6453. * The caller of this function should have put the task in its new group
  6454. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6455. * reflect its new group.
  6456. */
  6457. void sched_move_task(struct task_struct *tsk)
  6458. {
  6459. struct task_group *tg;
  6460. int queued, running;
  6461. unsigned long flags;
  6462. struct rq *rq;
  6463. rq = task_rq_lock(tsk, &flags);
  6464. running = task_current(rq, tsk);
  6465. queued = task_on_rq_queued(tsk);
  6466. if (queued)
  6467. dequeue_task(rq, tsk, 0);
  6468. if (unlikely(running))
  6469. put_prev_task(rq, tsk);
  6470. /*
  6471. * All callers are synchronized by task_rq_lock(); we do not use RCU
  6472. * which is pointless here. Thus, we pass "true" to task_css_check()
  6473. * to prevent lockdep warnings.
  6474. */
  6475. tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
  6476. struct task_group, css);
  6477. tg = autogroup_task_group(tsk, tg);
  6478. tsk->sched_task_group = tg;
  6479. #ifdef CONFIG_FAIR_GROUP_SCHED
  6480. if (tsk->sched_class->task_move_group)
  6481. tsk->sched_class->task_move_group(tsk, queued);
  6482. else
  6483. #endif
  6484. set_task_rq(tsk, task_cpu(tsk));
  6485. if (unlikely(running))
  6486. tsk->sched_class->set_curr_task(rq);
  6487. if (queued)
  6488. enqueue_task(rq, tsk, 0);
  6489. task_rq_unlock(rq, tsk, &flags);
  6490. }
  6491. #endif /* CONFIG_CGROUP_SCHED */
  6492. #ifdef CONFIG_RT_GROUP_SCHED
  6493. /*
  6494. * Ensure that the real time constraints are schedulable.
  6495. */
  6496. static DEFINE_MUTEX(rt_constraints_mutex);
  6497. /* Must be called with tasklist_lock held */
  6498. static inline int tg_has_rt_tasks(struct task_group *tg)
  6499. {
  6500. struct task_struct *g, *p;
  6501. /*
  6502. * Autogroups do not have RT tasks; see autogroup_create().
  6503. */
  6504. if (task_group_is_autogroup(tg))
  6505. return 0;
  6506. for_each_process_thread(g, p) {
  6507. if (rt_task(p) && task_group(p) == tg)
  6508. return 1;
  6509. }
  6510. return 0;
  6511. }
  6512. struct rt_schedulable_data {
  6513. struct task_group *tg;
  6514. u64 rt_period;
  6515. u64 rt_runtime;
  6516. };
  6517. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6518. {
  6519. struct rt_schedulable_data *d = data;
  6520. struct task_group *child;
  6521. unsigned long total, sum = 0;
  6522. u64 period, runtime;
  6523. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6524. runtime = tg->rt_bandwidth.rt_runtime;
  6525. if (tg == d->tg) {
  6526. period = d->rt_period;
  6527. runtime = d->rt_runtime;
  6528. }
  6529. /*
  6530. * Cannot have more runtime than the period.
  6531. */
  6532. if (runtime > period && runtime != RUNTIME_INF)
  6533. return -EINVAL;
  6534. /*
  6535. * Ensure we don't starve existing RT tasks.
  6536. */
  6537. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6538. return -EBUSY;
  6539. total = to_ratio(period, runtime);
  6540. /*
  6541. * Nobody can have more than the global setting allows.
  6542. */
  6543. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6544. return -EINVAL;
  6545. /*
  6546. * The sum of our children's runtime should not exceed our own.
  6547. */
  6548. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6549. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6550. runtime = child->rt_bandwidth.rt_runtime;
  6551. if (child == d->tg) {
  6552. period = d->rt_period;
  6553. runtime = d->rt_runtime;
  6554. }
  6555. sum += to_ratio(period, runtime);
  6556. }
  6557. if (sum > total)
  6558. return -EINVAL;
  6559. return 0;
  6560. }
  6561. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6562. {
  6563. int ret;
  6564. struct rt_schedulable_data data = {
  6565. .tg = tg,
  6566. .rt_period = period,
  6567. .rt_runtime = runtime,
  6568. };
  6569. rcu_read_lock();
  6570. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6571. rcu_read_unlock();
  6572. return ret;
  6573. }
  6574. static int tg_set_rt_bandwidth(struct task_group *tg,
  6575. u64 rt_period, u64 rt_runtime)
  6576. {
  6577. int i, err = 0;
  6578. /*
  6579. * Disallowing the root group RT runtime is BAD, it would disallow the
  6580. * kernel creating (and or operating) RT threads.
  6581. */
  6582. if (tg == &root_task_group && rt_runtime == 0)
  6583. return -EINVAL;
  6584. /* No period doesn't make any sense. */
  6585. if (rt_period == 0)
  6586. return -EINVAL;
  6587. mutex_lock(&rt_constraints_mutex);
  6588. read_lock(&tasklist_lock);
  6589. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6590. if (err)
  6591. goto unlock;
  6592. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6593. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6594. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6595. for_each_possible_cpu(i) {
  6596. struct rt_rq *rt_rq = tg->rt_rq[i];
  6597. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6598. rt_rq->rt_runtime = rt_runtime;
  6599. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6600. }
  6601. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6602. unlock:
  6603. read_unlock(&tasklist_lock);
  6604. mutex_unlock(&rt_constraints_mutex);
  6605. return err;
  6606. }
  6607. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6608. {
  6609. u64 rt_runtime, rt_period;
  6610. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6611. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6612. if (rt_runtime_us < 0)
  6613. rt_runtime = RUNTIME_INF;
  6614. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6615. }
  6616. static long sched_group_rt_runtime(struct task_group *tg)
  6617. {
  6618. u64 rt_runtime_us;
  6619. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6620. return -1;
  6621. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6622. do_div(rt_runtime_us, NSEC_PER_USEC);
  6623. return rt_runtime_us;
  6624. }
  6625. static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
  6626. {
  6627. u64 rt_runtime, rt_period;
  6628. rt_period = rt_period_us * NSEC_PER_USEC;
  6629. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6630. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6631. }
  6632. static long sched_group_rt_period(struct task_group *tg)
  6633. {
  6634. u64 rt_period_us;
  6635. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6636. do_div(rt_period_us, NSEC_PER_USEC);
  6637. return rt_period_us;
  6638. }
  6639. #endif /* CONFIG_RT_GROUP_SCHED */
  6640. #ifdef CONFIG_RT_GROUP_SCHED
  6641. static int sched_rt_global_constraints(void)
  6642. {
  6643. int ret = 0;
  6644. mutex_lock(&rt_constraints_mutex);
  6645. read_lock(&tasklist_lock);
  6646. ret = __rt_schedulable(NULL, 0, 0);
  6647. read_unlock(&tasklist_lock);
  6648. mutex_unlock(&rt_constraints_mutex);
  6649. return ret;
  6650. }
  6651. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6652. {
  6653. /* Don't accept realtime tasks when there is no way for them to run */
  6654. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6655. return 0;
  6656. return 1;
  6657. }
  6658. #else /* !CONFIG_RT_GROUP_SCHED */
  6659. static int sched_rt_global_constraints(void)
  6660. {
  6661. unsigned long flags;
  6662. int i, ret = 0;
  6663. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6664. for_each_possible_cpu(i) {
  6665. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6666. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6667. rt_rq->rt_runtime = global_rt_runtime();
  6668. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6669. }
  6670. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6671. return ret;
  6672. }
  6673. #endif /* CONFIG_RT_GROUP_SCHED */
  6674. static int sched_dl_global_validate(void)
  6675. {
  6676. u64 runtime = global_rt_runtime();
  6677. u64 period = global_rt_period();
  6678. u64 new_bw = to_ratio(period, runtime);
  6679. struct dl_bw *dl_b;
  6680. int cpu, ret = 0;
  6681. unsigned long flags;
  6682. /*
  6683. * Here we want to check the bandwidth not being set to some
  6684. * value smaller than the currently allocated bandwidth in
  6685. * any of the root_domains.
  6686. *
  6687. * FIXME: Cycling on all the CPUs is overdoing, but simpler than
  6688. * cycling on root_domains... Discussion on different/better
  6689. * solutions is welcome!
  6690. */
  6691. for_each_possible_cpu(cpu) {
  6692. rcu_read_lock_sched();
  6693. dl_b = dl_bw_of(cpu);
  6694. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6695. if (new_bw < dl_b->total_bw)
  6696. ret = -EBUSY;
  6697. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6698. rcu_read_unlock_sched();
  6699. if (ret)
  6700. break;
  6701. }
  6702. return ret;
  6703. }
  6704. static void sched_dl_do_global(void)
  6705. {
  6706. u64 new_bw = -1;
  6707. struct dl_bw *dl_b;
  6708. int cpu;
  6709. unsigned long flags;
  6710. def_dl_bandwidth.dl_period = global_rt_period();
  6711. def_dl_bandwidth.dl_runtime = global_rt_runtime();
  6712. if (global_rt_runtime() != RUNTIME_INF)
  6713. new_bw = to_ratio(global_rt_period(), global_rt_runtime());
  6714. /*
  6715. * FIXME: As above...
  6716. */
  6717. for_each_possible_cpu(cpu) {
  6718. rcu_read_lock_sched();
  6719. dl_b = dl_bw_of(cpu);
  6720. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6721. dl_b->bw = new_bw;
  6722. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6723. rcu_read_unlock_sched();
  6724. }
  6725. }
  6726. static int sched_rt_global_validate(void)
  6727. {
  6728. if (sysctl_sched_rt_period <= 0)
  6729. return -EINVAL;
  6730. if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
  6731. (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
  6732. return -EINVAL;
  6733. return 0;
  6734. }
  6735. static void sched_rt_do_global(void)
  6736. {
  6737. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6738. def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
  6739. }
  6740. int sched_rt_handler(struct ctl_table *table, int write,
  6741. void __user *buffer, size_t *lenp,
  6742. loff_t *ppos)
  6743. {
  6744. int old_period, old_runtime;
  6745. static DEFINE_MUTEX(mutex);
  6746. int ret;
  6747. mutex_lock(&mutex);
  6748. old_period = sysctl_sched_rt_period;
  6749. old_runtime = sysctl_sched_rt_runtime;
  6750. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6751. if (!ret && write) {
  6752. ret = sched_rt_global_validate();
  6753. if (ret)
  6754. goto undo;
  6755. ret = sched_dl_global_validate();
  6756. if (ret)
  6757. goto undo;
  6758. ret = sched_rt_global_constraints();
  6759. if (ret)
  6760. goto undo;
  6761. sched_rt_do_global();
  6762. sched_dl_do_global();
  6763. }
  6764. if (0) {
  6765. undo:
  6766. sysctl_sched_rt_period = old_period;
  6767. sysctl_sched_rt_runtime = old_runtime;
  6768. }
  6769. mutex_unlock(&mutex);
  6770. return ret;
  6771. }
  6772. int sched_rr_handler(struct ctl_table *table, int write,
  6773. void __user *buffer, size_t *lenp,
  6774. loff_t *ppos)
  6775. {
  6776. int ret;
  6777. static DEFINE_MUTEX(mutex);
  6778. mutex_lock(&mutex);
  6779. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6780. /* make sure that internally we keep jiffies */
  6781. /* also, writing zero resets timeslice to default */
  6782. if (!ret && write) {
  6783. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6784. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6785. }
  6786. mutex_unlock(&mutex);
  6787. return ret;
  6788. }
  6789. #ifdef CONFIG_CGROUP_SCHED
  6790. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6791. {
  6792. return css ? container_of(css, struct task_group, css) : NULL;
  6793. }
  6794. static struct cgroup_subsys_state *
  6795. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6796. {
  6797. struct task_group *parent = css_tg(parent_css);
  6798. struct task_group *tg;
  6799. if (!parent) {
  6800. /* This is early initialization for the top cgroup */
  6801. return &root_task_group.css;
  6802. }
  6803. tg = sched_create_group(parent);
  6804. if (IS_ERR(tg))
  6805. return ERR_PTR(-ENOMEM);
  6806. return &tg->css;
  6807. }
  6808. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  6809. {
  6810. struct task_group *tg = css_tg(css);
  6811. struct task_group *parent = css_tg(css->parent);
  6812. if (parent)
  6813. sched_online_group(tg, parent);
  6814. return 0;
  6815. }
  6816. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6817. {
  6818. struct task_group *tg = css_tg(css);
  6819. sched_destroy_group(tg);
  6820. }
  6821. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  6822. {
  6823. struct task_group *tg = css_tg(css);
  6824. sched_offline_group(tg);
  6825. }
  6826. static void cpu_cgroup_fork(struct task_struct *task)
  6827. {
  6828. sched_move_task(task);
  6829. }
  6830. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  6831. struct cgroup_taskset *tset)
  6832. {
  6833. struct task_struct *task;
  6834. cgroup_taskset_for_each(task, tset) {
  6835. #ifdef CONFIG_RT_GROUP_SCHED
  6836. if (!sched_rt_can_attach(css_tg(css), task))
  6837. return -EINVAL;
  6838. #else
  6839. /* We don't support RT-tasks being in separate groups */
  6840. if (task->sched_class != &fair_sched_class)
  6841. return -EINVAL;
  6842. #endif
  6843. }
  6844. return 0;
  6845. }
  6846. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  6847. struct cgroup_taskset *tset)
  6848. {
  6849. struct task_struct *task;
  6850. cgroup_taskset_for_each(task, tset)
  6851. sched_move_task(task);
  6852. }
  6853. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  6854. struct cgroup_subsys_state *old_css,
  6855. struct task_struct *task)
  6856. {
  6857. /*
  6858. * cgroup_exit() is called in the copy_process() failure path.
  6859. * Ignore this case since the task hasn't ran yet, this avoids
  6860. * trying to poke a half freed task state from generic code.
  6861. */
  6862. if (!(task->flags & PF_EXITING))
  6863. return;
  6864. sched_move_task(task);
  6865. }
  6866. #ifdef CONFIG_FAIR_GROUP_SCHED
  6867. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  6868. struct cftype *cftype, u64 shareval)
  6869. {
  6870. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  6871. }
  6872. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  6873. struct cftype *cft)
  6874. {
  6875. struct task_group *tg = css_tg(css);
  6876. return (u64) scale_load_down(tg->shares);
  6877. }
  6878. #ifdef CONFIG_CFS_BANDWIDTH
  6879. static DEFINE_MUTEX(cfs_constraints_mutex);
  6880. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6881. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6882. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6883. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6884. {
  6885. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6886. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6887. if (tg == &root_task_group)
  6888. return -EINVAL;
  6889. /*
  6890. * Ensure we have at some amount of bandwidth every period. This is
  6891. * to prevent reaching a state of large arrears when throttled via
  6892. * entity_tick() resulting in prolonged exit starvation.
  6893. */
  6894. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6895. return -EINVAL;
  6896. /*
  6897. * Likewise, bound things on the otherside by preventing insane quota
  6898. * periods. This also allows us to normalize in computing quota
  6899. * feasibility.
  6900. */
  6901. if (period > max_cfs_quota_period)
  6902. return -EINVAL;
  6903. /*
  6904. * Prevent race between setting of cfs_rq->runtime_enabled and
  6905. * unthrottle_offline_cfs_rqs().
  6906. */
  6907. get_online_cpus();
  6908. mutex_lock(&cfs_constraints_mutex);
  6909. ret = __cfs_schedulable(tg, period, quota);
  6910. if (ret)
  6911. goto out_unlock;
  6912. runtime_enabled = quota != RUNTIME_INF;
  6913. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6914. /*
  6915. * If we need to toggle cfs_bandwidth_used, off->on must occur
  6916. * before making related changes, and on->off must occur afterwards
  6917. */
  6918. if (runtime_enabled && !runtime_was_enabled)
  6919. cfs_bandwidth_usage_inc();
  6920. raw_spin_lock_irq(&cfs_b->lock);
  6921. cfs_b->period = ns_to_ktime(period);
  6922. cfs_b->quota = quota;
  6923. __refill_cfs_bandwidth_runtime(cfs_b);
  6924. /* restart the period timer (if active) to handle new period expiry */
  6925. if (runtime_enabled)
  6926. start_cfs_bandwidth(cfs_b);
  6927. raw_spin_unlock_irq(&cfs_b->lock);
  6928. for_each_online_cpu(i) {
  6929. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6930. struct rq *rq = cfs_rq->rq;
  6931. raw_spin_lock_irq(&rq->lock);
  6932. cfs_rq->runtime_enabled = runtime_enabled;
  6933. cfs_rq->runtime_remaining = 0;
  6934. if (cfs_rq->throttled)
  6935. unthrottle_cfs_rq(cfs_rq);
  6936. raw_spin_unlock_irq(&rq->lock);
  6937. }
  6938. if (runtime_was_enabled && !runtime_enabled)
  6939. cfs_bandwidth_usage_dec();
  6940. out_unlock:
  6941. mutex_unlock(&cfs_constraints_mutex);
  6942. put_online_cpus();
  6943. return ret;
  6944. }
  6945. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6946. {
  6947. u64 quota, period;
  6948. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6949. if (cfs_quota_us < 0)
  6950. quota = RUNTIME_INF;
  6951. else
  6952. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6953. return tg_set_cfs_bandwidth(tg, period, quota);
  6954. }
  6955. long tg_get_cfs_quota(struct task_group *tg)
  6956. {
  6957. u64 quota_us;
  6958. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6959. return -1;
  6960. quota_us = tg->cfs_bandwidth.quota;
  6961. do_div(quota_us, NSEC_PER_USEC);
  6962. return quota_us;
  6963. }
  6964. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6965. {
  6966. u64 quota, period;
  6967. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6968. quota = tg->cfs_bandwidth.quota;
  6969. return tg_set_cfs_bandwidth(tg, period, quota);
  6970. }
  6971. long tg_get_cfs_period(struct task_group *tg)
  6972. {
  6973. u64 cfs_period_us;
  6974. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6975. do_div(cfs_period_us, NSEC_PER_USEC);
  6976. return cfs_period_us;
  6977. }
  6978. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  6979. struct cftype *cft)
  6980. {
  6981. return tg_get_cfs_quota(css_tg(css));
  6982. }
  6983. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  6984. struct cftype *cftype, s64 cfs_quota_us)
  6985. {
  6986. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  6987. }
  6988. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  6989. struct cftype *cft)
  6990. {
  6991. return tg_get_cfs_period(css_tg(css));
  6992. }
  6993. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  6994. struct cftype *cftype, u64 cfs_period_us)
  6995. {
  6996. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  6997. }
  6998. struct cfs_schedulable_data {
  6999. struct task_group *tg;
  7000. u64 period, quota;
  7001. };
  7002. /*
  7003. * normalize group quota/period to be quota/max_period
  7004. * note: units are usecs
  7005. */
  7006. static u64 normalize_cfs_quota(struct task_group *tg,
  7007. struct cfs_schedulable_data *d)
  7008. {
  7009. u64 quota, period;
  7010. if (tg == d->tg) {
  7011. period = d->period;
  7012. quota = d->quota;
  7013. } else {
  7014. period = tg_get_cfs_period(tg);
  7015. quota = tg_get_cfs_quota(tg);
  7016. }
  7017. /* note: these should typically be equivalent */
  7018. if (quota == RUNTIME_INF || quota == -1)
  7019. return RUNTIME_INF;
  7020. return to_ratio(period, quota);
  7021. }
  7022. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  7023. {
  7024. struct cfs_schedulable_data *d = data;
  7025. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7026. s64 quota = 0, parent_quota = -1;
  7027. if (!tg->parent) {
  7028. quota = RUNTIME_INF;
  7029. } else {
  7030. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  7031. quota = normalize_cfs_quota(tg, d);
  7032. parent_quota = parent_b->hierarchical_quota;
  7033. /*
  7034. * ensure max(child_quota) <= parent_quota, inherit when no
  7035. * limit is set
  7036. */
  7037. if (quota == RUNTIME_INF)
  7038. quota = parent_quota;
  7039. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  7040. return -EINVAL;
  7041. }
  7042. cfs_b->hierarchical_quota = quota;
  7043. return 0;
  7044. }
  7045. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  7046. {
  7047. int ret;
  7048. struct cfs_schedulable_data data = {
  7049. .tg = tg,
  7050. .period = period,
  7051. .quota = quota,
  7052. };
  7053. if (quota != RUNTIME_INF) {
  7054. do_div(data.period, NSEC_PER_USEC);
  7055. do_div(data.quota, NSEC_PER_USEC);
  7056. }
  7057. rcu_read_lock();
  7058. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  7059. rcu_read_unlock();
  7060. return ret;
  7061. }
  7062. static int cpu_stats_show(struct seq_file *sf, void *v)
  7063. {
  7064. struct task_group *tg = css_tg(seq_css(sf));
  7065. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7066. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  7067. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  7068. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  7069. return 0;
  7070. }
  7071. #endif /* CONFIG_CFS_BANDWIDTH */
  7072. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7073. #ifdef CONFIG_RT_GROUP_SCHED
  7074. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  7075. struct cftype *cft, s64 val)
  7076. {
  7077. return sched_group_set_rt_runtime(css_tg(css), val);
  7078. }
  7079. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  7080. struct cftype *cft)
  7081. {
  7082. return sched_group_rt_runtime(css_tg(css));
  7083. }
  7084. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  7085. struct cftype *cftype, u64 rt_period_us)
  7086. {
  7087. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  7088. }
  7089. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  7090. struct cftype *cft)
  7091. {
  7092. return sched_group_rt_period(css_tg(css));
  7093. }
  7094. #endif /* CONFIG_RT_GROUP_SCHED */
  7095. static struct cftype cpu_files[] = {
  7096. #ifdef CONFIG_FAIR_GROUP_SCHED
  7097. {
  7098. .name = "shares",
  7099. .read_u64 = cpu_shares_read_u64,
  7100. .write_u64 = cpu_shares_write_u64,
  7101. },
  7102. #endif
  7103. #ifdef CONFIG_CFS_BANDWIDTH
  7104. {
  7105. .name = "cfs_quota_us",
  7106. .read_s64 = cpu_cfs_quota_read_s64,
  7107. .write_s64 = cpu_cfs_quota_write_s64,
  7108. },
  7109. {
  7110. .name = "cfs_period_us",
  7111. .read_u64 = cpu_cfs_period_read_u64,
  7112. .write_u64 = cpu_cfs_period_write_u64,
  7113. },
  7114. {
  7115. .name = "stat",
  7116. .seq_show = cpu_stats_show,
  7117. },
  7118. #endif
  7119. #ifdef CONFIG_RT_GROUP_SCHED
  7120. {
  7121. .name = "rt_runtime_us",
  7122. .read_s64 = cpu_rt_runtime_read,
  7123. .write_s64 = cpu_rt_runtime_write,
  7124. },
  7125. {
  7126. .name = "rt_period_us",
  7127. .read_u64 = cpu_rt_period_read_uint,
  7128. .write_u64 = cpu_rt_period_write_uint,
  7129. },
  7130. #endif
  7131. { } /* terminate */
  7132. };
  7133. struct cgroup_subsys cpu_cgrp_subsys = {
  7134. .css_alloc = cpu_cgroup_css_alloc,
  7135. .css_free = cpu_cgroup_css_free,
  7136. .css_online = cpu_cgroup_css_online,
  7137. .css_offline = cpu_cgroup_css_offline,
  7138. .fork = cpu_cgroup_fork,
  7139. .can_attach = cpu_cgroup_can_attach,
  7140. .attach = cpu_cgroup_attach,
  7141. .exit = cpu_cgroup_exit,
  7142. .legacy_cftypes = cpu_files,
  7143. .early_init = 1,
  7144. };
  7145. #endif /* CONFIG_CGROUP_SCHED */
  7146. void dump_cpu_task(int cpu)
  7147. {
  7148. pr_info("Task dump for CPU %d:\n", cpu);
  7149. sched_show_task(cpu_curr(cpu));
  7150. }