ravb_main.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395
  1. /* Renesas Ethernet AVB device driver
  2. *
  3. * Copyright (C) 2014-2015 Renesas Electronics Corporation
  4. * Copyright (C) 2015 Renesas Solutions Corp.
  5. * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
  6. *
  7. * Based on the SuperH Ethernet driver
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms and conditions of the GNU General Public License version 2,
  11. * as published by the Free Software Foundation.
  12. */
  13. #include <linux/cache.h>
  14. #include <linux/clk.h>
  15. #include <linux/delay.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/err.h>
  18. #include <linux/etherdevice.h>
  19. #include <linux/ethtool.h>
  20. #include <linux/if_vlan.h>
  21. #include <linux/kernel.h>
  22. #include <linux/list.h>
  23. #include <linux/module.h>
  24. #include <linux/net_tstamp.h>
  25. #include <linux/of.h>
  26. #include <linux/of_device.h>
  27. #include <linux/of_irq.h>
  28. #include <linux/of_mdio.h>
  29. #include <linux/of_net.h>
  30. #include <linux/pm_runtime.h>
  31. #include <linux/slab.h>
  32. #include <linux/spinlock.h>
  33. #include <linux/sys_soc.h>
  34. #include <asm/div64.h>
  35. #include "ravb.h"
  36. #define RAVB_DEF_MSG_ENABLE \
  37. (NETIF_MSG_LINK | \
  38. NETIF_MSG_TIMER | \
  39. NETIF_MSG_RX_ERR | \
  40. NETIF_MSG_TX_ERR)
  41. static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
  42. "ch0", /* RAVB_BE */
  43. "ch1", /* RAVB_NC */
  44. };
  45. static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
  46. "ch18", /* RAVB_BE */
  47. "ch19", /* RAVB_NC */
  48. };
  49. void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
  50. u32 set)
  51. {
  52. ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
  53. }
  54. int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
  55. {
  56. int i;
  57. for (i = 0; i < 10000; i++) {
  58. if ((ravb_read(ndev, reg) & mask) == value)
  59. return 0;
  60. udelay(10);
  61. }
  62. return -ETIMEDOUT;
  63. }
  64. static int ravb_config(struct net_device *ndev)
  65. {
  66. int error;
  67. /* Set config mode */
  68. ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
  69. /* Check if the operating mode is changed to the config mode */
  70. error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
  71. if (error)
  72. netdev_err(ndev, "failed to switch device to config mode\n");
  73. return error;
  74. }
  75. static void ravb_set_duplex(struct net_device *ndev)
  76. {
  77. struct ravb_private *priv = netdev_priv(ndev);
  78. ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex ? ECMR_DM : 0);
  79. }
  80. static void ravb_set_rate(struct net_device *ndev)
  81. {
  82. struct ravb_private *priv = netdev_priv(ndev);
  83. switch (priv->speed) {
  84. case 100: /* 100BASE */
  85. ravb_write(ndev, GECMR_SPEED_100, GECMR);
  86. break;
  87. case 1000: /* 1000BASE */
  88. ravb_write(ndev, GECMR_SPEED_1000, GECMR);
  89. break;
  90. }
  91. }
  92. static void ravb_set_buffer_align(struct sk_buff *skb)
  93. {
  94. u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
  95. if (reserve)
  96. skb_reserve(skb, RAVB_ALIGN - reserve);
  97. }
  98. /* Get MAC address from the MAC address registers
  99. *
  100. * Ethernet AVB device doesn't have ROM for MAC address.
  101. * This function gets the MAC address that was used by a bootloader.
  102. */
  103. static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
  104. {
  105. if (mac) {
  106. ether_addr_copy(ndev->dev_addr, mac);
  107. } else {
  108. u32 mahr = ravb_read(ndev, MAHR);
  109. u32 malr = ravb_read(ndev, MALR);
  110. ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
  111. ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
  112. ndev->dev_addr[2] = (mahr >> 8) & 0xFF;
  113. ndev->dev_addr[3] = (mahr >> 0) & 0xFF;
  114. ndev->dev_addr[4] = (malr >> 8) & 0xFF;
  115. ndev->dev_addr[5] = (malr >> 0) & 0xFF;
  116. }
  117. }
  118. static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
  119. {
  120. struct ravb_private *priv = container_of(ctrl, struct ravb_private,
  121. mdiobb);
  122. ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
  123. }
  124. /* MDC pin control */
  125. static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
  126. {
  127. ravb_mdio_ctrl(ctrl, PIR_MDC, level);
  128. }
  129. /* Data I/O pin control */
  130. static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
  131. {
  132. ravb_mdio_ctrl(ctrl, PIR_MMD, output);
  133. }
  134. /* Set data bit */
  135. static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
  136. {
  137. ravb_mdio_ctrl(ctrl, PIR_MDO, value);
  138. }
  139. /* Get data bit */
  140. static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
  141. {
  142. struct ravb_private *priv = container_of(ctrl, struct ravb_private,
  143. mdiobb);
  144. return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
  145. }
  146. /* MDIO bus control struct */
  147. static struct mdiobb_ops bb_ops = {
  148. .owner = THIS_MODULE,
  149. .set_mdc = ravb_set_mdc,
  150. .set_mdio_dir = ravb_set_mdio_dir,
  151. .set_mdio_data = ravb_set_mdio_data,
  152. .get_mdio_data = ravb_get_mdio_data,
  153. };
  154. /* Free TX skb function for AVB-IP */
  155. static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
  156. {
  157. struct ravb_private *priv = netdev_priv(ndev);
  158. struct net_device_stats *stats = &priv->stats[q];
  159. struct ravb_tx_desc *desc;
  160. int free_num = 0;
  161. int entry;
  162. u32 size;
  163. for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
  164. bool txed;
  165. entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
  166. NUM_TX_DESC);
  167. desc = &priv->tx_ring[q][entry];
  168. txed = desc->die_dt == DT_FEMPTY;
  169. if (free_txed_only && !txed)
  170. break;
  171. /* Descriptor type must be checked before all other reads */
  172. dma_rmb();
  173. size = le16_to_cpu(desc->ds_tagl) & TX_DS;
  174. /* Free the original skb. */
  175. if (priv->tx_skb[q][entry / NUM_TX_DESC]) {
  176. dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
  177. size, DMA_TO_DEVICE);
  178. /* Last packet descriptor? */
  179. if (entry % NUM_TX_DESC == NUM_TX_DESC - 1) {
  180. entry /= NUM_TX_DESC;
  181. dev_kfree_skb_any(priv->tx_skb[q][entry]);
  182. priv->tx_skb[q][entry] = NULL;
  183. if (txed)
  184. stats->tx_packets++;
  185. }
  186. free_num++;
  187. }
  188. if (txed)
  189. stats->tx_bytes += size;
  190. desc->die_dt = DT_EEMPTY;
  191. }
  192. return free_num;
  193. }
  194. /* Free skb's and DMA buffers for Ethernet AVB */
  195. static void ravb_ring_free(struct net_device *ndev, int q)
  196. {
  197. struct ravb_private *priv = netdev_priv(ndev);
  198. int ring_size;
  199. int i;
  200. if (priv->rx_ring[q]) {
  201. for (i = 0; i < priv->num_rx_ring[q]; i++) {
  202. struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
  203. if (!dma_mapping_error(ndev->dev.parent,
  204. le32_to_cpu(desc->dptr)))
  205. dma_unmap_single(ndev->dev.parent,
  206. le32_to_cpu(desc->dptr),
  207. priv->rx_buf_sz,
  208. DMA_FROM_DEVICE);
  209. }
  210. ring_size = sizeof(struct ravb_ex_rx_desc) *
  211. (priv->num_rx_ring[q] + 1);
  212. dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
  213. priv->rx_desc_dma[q]);
  214. priv->rx_ring[q] = NULL;
  215. }
  216. if (priv->tx_ring[q]) {
  217. ravb_tx_free(ndev, q, false);
  218. ring_size = sizeof(struct ravb_tx_desc) *
  219. (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
  220. dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
  221. priv->tx_desc_dma[q]);
  222. priv->tx_ring[q] = NULL;
  223. }
  224. /* Free RX skb ringbuffer */
  225. if (priv->rx_skb[q]) {
  226. for (i = 0; i < priv->num_rx_ring[q]; i++)
  227. dev_kfree_skb(priv->rx_skb[q][i]);
  228. }
  229. kfree(priv->rx_skb[q]);
  230. priv->rx_skb[q] = NULL;
  231. /* Free aligned TX buffers */
  232. kfree(priv->tx_align[q]);
  233. priv->tx_align[q] = NULL;
  234. /* Free TX skb ringbuffer.
  235. * SKBs are freed by ravb_tx_free() call above.
  236. */
  237. kfree(priv->tx_skb[q]);
  238. priv->tx_skb[q] = NULL;
  239. }
  240. /* Format skb and descriptor buffer for Ethernet AVB */
  241. static void ravb_ring_format(struct net_device *ndev, int q)
  242. {
  243. struct ravb_private *priv = netdev_priv(ndev);
  244. struct ravb_ex_rx_desc *rx_desc;
  245. struct ravb_tx_desc *tx_desc;
  246. struct ravb_desc *desc;
  247. int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
  248. int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
  249. NUM_TX_DESC;
  250. dma_addr_t dma_addr;
  251. int i;
  252. priv->cur_rx[q] = 0;
  253. priv->cur_tx[q] = 0;
  254. priv->dirty_rx[q] = 0;
  255. priv->dirty_tx[q] = 0;
  256. memset(priv->rx_ring[q], 0, rx_ring_size);
  257. /* Build RX ring buffer */
  258. for (i = 0; i < priv->num_rx_ring[q]; i++) {
  259. /* RX descriptor */
  260. rx_desc = &priv->rx_ring[q][i];
  261. rx_desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
  262. dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
  263. priv->rx_buf_sz,
  264. DMA_FROM_DEVICE);
  265. /* We just set the data size to 0 for a failed mapping which
  266. * should prevent DMA from happening...
  267. */
  268. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  269. rx_desc->ds_cc = cpu_to_le16(0);
  270. rx_desc->dptr = cpu_to_le32(dma_addr);
  271. rx_desc->die_dt = DT_FEMPTY;
  272. }
  273. rx_desc = &priv->rx_ring[q][i];
  274. rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
  275. rx_desc->die_dt = DT_LINKFIX; /* type */
  276. memset(priv->tx_ring[q], 0, tx_ring_size);
  277. /* Build TX ring buffer */
  278. for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
  279. i++, tx_desc++) {
  280. tx_desc->die_dt = DT_EEMPTY;
  281. tx_desc++;
  282. tx_desc->die_dt = DT_EEMPTY;
  283. }
  284. tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
  285. tx_desc->die_dt = DT_LINKFIX; /* type */
  286. /* RX descriptor base address for best effort */
  287. desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
  288. desc->die_dt = DT_LINKFIX; /* type */
  289. desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
  290. /* TX descriptor base address for best effort */
  291. desc = &priv->desc_bat[q];
  292. desc->die_dt = DT_LINKFIX; /* type */
  293. desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
  294. }
  295. /* Init skb and descriptor buffer for Ethernet AVB */
  296. static int ravb_ring_init(struct net_device *ndev, int q)
  297. {
  298. struct ravb_private *priv = netdev_priv(ndev);
  299. struct sk_buff *skb;
  300. int ring_size;
  301. int i;
  302. priv->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ : ndev->mtu) +
  303. ETH_HLEN + VLAN_HLEN;
  304. /* Allocate RX and TX skb rings */
  305. priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
  306. sizeof(*priv->rx_skb[q]), GFP_KERNEL);
  307. priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
  308. sizeof(*priv->tx_skb[q]), GFP_KERNEL);
  309. if (!priv->rx_skb[q] || !priv->tx_skb[q])
  310. goto error;
  311. for (i = 0; i < priv->num_rx_ring[q]; i++) {
  312. skb = netdev_alloc_skb(ndev, priv->rx_buf_sz + RAVB_ALIGN - 1);
  313. if (!skb)
  314. goto error;
  315. ravb_set_buffer_align(skb);
  316. priv->rx_skb[q][i] = skb;
  317. }
  318. /* Allocate rings for the aligned buffers */
  319. priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
  320. DPTR_ALIGN - 1, GFP_KERNEL);
  321. if (!priv->tx_align[q])
  322. goto error;
  323. /* Allocate all RX descriptors. */
  324. ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
  325. priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
  326. &priv->rx_desc_dma[q],
  327. GFP_KERNEL);
  328. if (!priv->rx_ring[q])
  329. goto error;
  330. priv->dirty_rx[q] = 0;
  331. /* Allocate all TX descriptors. */
  332. ring_size = sizeof(struct ravb_tx_desc) *
  333. (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
  334. priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
  335. &priv->tx_desc_dma[q],
  336. GFP_KERNEL);
  337. if (!priv->tx_ring[q])
  338. goto error;
  339. return 0;
  340. error:
  341. ravb_ring_free(ndev, q);
  342. return -ENOMEM;
  343. }
  344. /* E-MAC init function */
  345. static void ravb_emac_init(struct net_device *ndev)
  346. {
  347. struct ravb_private *priv = netdev_priv(ndev);
  348. /* Receive frame limit set register */
  349. ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
  350. /* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
  351. ravb_write(ndev, ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) |
  352. (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
  353. ECMR_TE | ECMR_RE, ECMR);
  354. ravb_set_rate(ndev);
  355. /* Set MAC address */
  356. ravb_write(ndev,
  357. (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  358. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
  359. ravb_write(ndev,
  360. (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
  361. /* E-MAC status register clear */
  362. ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
  363. /* E-MAC interrupt enable register */
  364. ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
  365. }
  366. /* Device init function for Ethernet AVB */
  367. static int ravb_dmac_init(struct net_device *ndev)
  368. {
  369. struct ravb_private *priv = netdev_priv(ndev);
  370. int error;
  371. /* Set CONFIG mode */
  372. error = ravb_config(ndev);
  373. if (error)
  374. return error;
  375. error = ravb_ring_init(ndev, RAVB_BE);
  376. if (error)
  377. return error;
  378. error = ravb_ring_init(ndev, RAVB_NC);
  379. if (error) {
  380. ravb_ring_free(ndev, RAVB_BE);
  381. return error;
  382. }
  383. /* Descriptor format */
  384. ravb_ring_format(ndev, RAVB_BE);
  385. ravb_ring_format(ndev, RAVB_NC);
  386. #if defined(__LITTLE_ENDIAN)
  387. ravb_modify(ndev, CCC, CCC_BOC, 0);
  388. #else
  389. ravb_modify(ndev, CCC, CCC_BOC, CCC_BOC);
  390. #endif
  391. /* Set AVB RX */
  392. ravb_write(ndev,
  393. RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
  394. /* Set FIFO size */
  395. ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
  396. /* Timestamp enable */
  397. ravb_write(ndev, TCCR_TFEN, TCCR);
  398. /* Interrupt init: */
  399. if (priv->chip_id == RCAR_GEN3) {
  400. /* Clear DIL.DPLx */
  401. ravb_write(ndev, 0, DIL);
  402. /* Set queue specific interrupt */
  403. ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
  404. }
  405. /* Frame receive */
  406. ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
  407. /* Disable FIFO full warning */
  408. ravb_write(ndev, 0, RIC1);
  409. /* Receive FIFO full error, descriptor empty */
  410. ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
  411. /* Frame transmitted, timestamp FIFO updated */
  412. ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
  413. /* Setting the control will start the AVB-DMAC process. */
  414. ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
  415. return 0;
  416. }
  417. static void ravb_get_tx_tstamp(struct net_device *ndev)
  418. {
  419. struct ravb_private *priv = netdev_priv(ndev);
  420. struct ravb_tstamp_skb *ts_skb, *ts_skb2;
  421. struct skb_shared_hwtstamps shhwtstamps;
  422. struct sk_buff *skb;
  423. struct timespec64 ts;
  424. u16 tag, tfa_tag;
  425. int count;
  426. u32 tfa2;
  427. count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
  428. while (count--) {
  429. tfa2 = ravb_read(ndev, TFA2);
  430. tfa_tag = (tfa2 & TFA2_TST) >> 16;
  431. ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
  432. ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
  433. ravb_read(ndev, TFA1);
  434. memset(&shhwtstamps, 0, sizeof(shhwtstamps));
  435. shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
  436. list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
  437. list) {
  438. skb = ts_skb->skb;
  439. tag = ts_skb->tag;
  440. list_del(&ts_skb->list);
  441. kfree(ts_skb);
  442. if (tag == tfa_tag) {
  443. skb_tstamp_tx(skb, &shhwtstamps);
  444. break;
  445. }
  446. }
  447. ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
  448. }
  449. }
  450. static void ravb_rx_csum(struct sk_buff *skb)
  451. {
  452. u8 *hw_csum;
  453. /* The hardware checksum is 2 bytes appended to packet data */
  454. if (unlikely(skb->len < 2))
  455. return;
  456. hw_csum = skb_tail_pointer(skb) - 2;
  457. skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
  458. skb->ip_summed = CHECKSUM_COMPLETE;
  459. skb_trim(skb, skb->len - 2);
  460. }
  461. /* Packet receive function for Ethernet AVB */
  462. static bool ravb_rx(struct net_device *ndev, int *quota, int q)
  463. {
  464. struct ravb_private *priv = netdev_priv(ndev);
  465. int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
  466. int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
  467. priv->cur_rx[q];
  468. struct net_device_stats *stats = &priv->stats[q];
  469. struct ravb_ex_rx_desc *desc;
  470. struct sk_buff *skb;
  471. dma_addr_t dma_addr;
  472. struct timespec64 ts;
  473. u8 desc_status;
  474. u16 pkt_len;
  475. int limit;
  476. boguscnt = min(boguscnt, *quota);
  477. limit = boguscnt;
  478. desc = &priv->rx_ring[q][entry];
  479. while (desc->die_dt != DT_FEMPTY) {
  480. /* Descriptor type must be checked before all other reads */
  481. dma_rmb();
  482. desc_status = desc->msc;
  483. pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
  484. if (--boguscnt < 0)
  485. break;
  486. /* We use 0-byte descriptors to mark the DMA mapping errors */
  487. if (!pkt_len)
  488. continue;
  489. if (desc_status & MSC_MC)
  490. stats->multicast++;
  491. if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
  492. MSC_CEEF)) {
  493. stats->rx_errors++;
  494. if (desc_status & MSC_CRC)
  495. stats->rx_crc_errors++;
  496. if (desc_status & MSC_RFE)
  497. stats->rx_frame_errors++;
  498. if (desc_status & (MSC_RTLF | MSC_RTSF))
  499. stats->rx_length_errors++;
  500. if (desc_status & MSC_CEEF)
  501. stats->rx_missed_errors++;
  502. } else {
  503. u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
  504. skb = priv->rx_skb[q][entry];
  505. priv->rx_skb[q][entry] = NULL;
  506. dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
  507. priv->rx_buf_sz,
  508. DMA_FROM_DEVICE);
  509. get_ts &= (q == RAVB_NC) ?
  510. RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
  511. ~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
  512. if (get_ts) {
  513. struct skb_shared_hwtstamps *shhwtstamps;
  514. shhwtstamps = skb_hwtstamps(skb);
  515. memset(shhwtstamps, 0, sizeof(*shhwtstamps));
  516. ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
  517. 32) | le32_to_cpu(desc->ts_sl);
  518. ts.tv_nsec = le32_to_cpu(desc->ts_n);
  519. shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
  520. }
  521. skb_put(skb, pkt_len);
  522. skb->protocol = eth_type_trans(skb, ndev);
  523. if (ndev->features & NETIF_F_RXCSUM)
  524. ravb_rx_csum(skb);
  525. napi_gro_receive(&priv->napi[q], skb);
  526. stats->rx_packets++;
  527. stats->rx_bytes += pkt_len;
  528. }
  529. entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
  530. desc = &priv->rx_ring[q][entry];
  531. }
  532. /* Refill the RX ring buffers. */
  533. for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
  534. entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
  535. desc = &priv->rx_ring[q][entry];
  536. desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
  537. if (!priv->rx_skb[q][entry]) {
  538. skb = netdev_alloc_skb(ndev,
  539. priv->rx_buf_sz +
  540. RAVB_ALIGN - 1);
  541. if (!skb)
  542. break; /* Better luck next round. */
  543. ravb_set_buffer_align(skb);
  544. dma_addr = dma_map_single(ndev->dev.parent, skb->data,
  545. le16_to_cpu(desc->ds_cc),
  546. DMA_FROM_DEVICE);
  547. skb_checksum_none_assert(skb);
  548. /* We just set the data size to 0 for a failed mapping
  549. * which should prevent DMA from happening...
  550. */
  551. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  552. desc->ds_cc = cpu_to_le16(0);
  553. desc->dptr = cpu_to_le32(dma_addr);
  554. priv->rx_skb[q][entry] = skb;
  555. }
  556. /* Descriptor type must be set after all the above writes */
  557. dma_wmb();
  558. desc->die_dt = DT_FEMPTY;
  559. }
  560. *quota -= limit - (++boguscnt);
  561. return boguscnt <= 0;
  562. }
  563. static void ravb_rcv_snd_disable(struct net_device *ndev)
  564. {
  565. /* Disable TX and RX */
  566. ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
  567. }
  568. static void ravb_rcv_snd_enable(struct net_device *ndev)
  569. {
  570. /* Enable TX and RX */
  571. ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
  572. }
  573. /* function for waiting dma process finished */
  574. static int ravb_stop_dma(struct net_device *ndev)
  575. {
  576. int error;
  577. /* Wait for stopping the hardware TX process */
  578. error = ravb_wait(ndev, TCCR,
  579. TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
  580. if (error)
  581. return error;
  582. error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
  583. 0);
  584. if (error)
  585. return error;
  586. /* Stop the E-MAC's RX/TX processes. */
  587. ravb_rcv_snd_disable(ndev);
  588. /* Wait for stopping the RX DMA process */
  589. error = ravb_wait(ndev, CSR, CSR_RPO, 0);
  590. if (error)
  591. return error;
  592. /* Stop AVB-DMAC process */
  593. return ravb_config(ndev);
  594. }
  595. /* E-MAC interrupt handler */
  596. static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
  597. {
  598. struct ravb_private *priv = netdev_priv(ndev);
  599. u32 ecsr, psr;
  600. ecsr = ravb_read(ndev, ECSR);
  601. ravb_write(ndev, ecsr, ECSR); /* clear interrupt */
  602. if (ecsr & ECSR_MPD)
  603. pm_wakeup_event(&priv->pdev->dev, 0);
  604. if (ecsr & ECSR_ICD)
  605. ndev->stats.tx_carrier_errors++;
  606. if (ecsr & ECSR_LCHNG) {
  607. /* Link changed */
  608. if (priv->no_avb_link)
  609. return;
  610. psr = ravb_read(ndev, PSR);
  611. if (priv->avb_link_active_low)
  612. psr ^= PSR_LMON;
  613. if (!(psr & PSR_LMON)) {
  614. /* DIsable RX and TX */
  615. ravb_rcv_snd_disable(ndev);
  616. } else {
  617. /* Enable RX and TX */
  618. ravb_rcv_snd_enable(ndev);
  619. }
  620. }
  621. }
  622. static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
  623. {
  624. struct net_device *ndev = dev_id;
  625. struct ravb_private *priv = netdev_priv(ndev);
  626. spin_lock(&priv->lock);
  627. ravb_emac_interrupt_unlocked(ndev);
  628. mmiowb();
  629. spin_unlock(&priv->lock);
  630. return IRQ_HANDLED;
  631. }
  632. /* Error interrupt handler */
  633. static void ravb_error_interrupt(struct net_device *ndev)
  634. {
  635. struct ravb_private *priv = netdev_priv(ndev);
  636. u32 eis, ris2;
  637. eis = ravb_read(ndev, EIS);
  638. ravb_write(ndev, ~EIS_QFS, EIS);
  639. if (eis & EIS_QFS) {
  640. ris2 = ravb_read(ndev, RIS2);
  641. ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF), RIS2);
  642. /* Receive Descriptor Empty int */
  643. if (ris2 & RIS2_QFF0)
  644. priv->stats[RAVB_BE].rx_over_errors++;
  645. /* Receive Descriptor Empty int */
  646. if (ris2 & RIS2_QFF1)
  647. priv->stats[RAVB_NC].rx_over_errors++;
  648. /* Receive FIFO Overflow int */
  649. if (ris2 & RIS2_RFFF)
  650. priv->rx_fifo_errors++;
  651. }
  652. }
  653. static bool ravb_queue_interrupt(struct net_device *ndev, int q)
  654. {
  655. struct ravb_private *priv = netdev_priv(ndev);
  656. u32 ris0 = ravb_read(ndev, RIS0);
  657. u32 ric0 = ravb_read(ndev, RIC0);
  658. u32 tis = ravb_read(ndev, TIS);
  659. u32 tic = ravb_read(ndev, TIC);
  660. if (((ris0 & ric0) & BIT(q)) || ((tis & tic) & BIT(q))) {
  661. if (napi_schedule_prep(&priv->napi[q])) {
  662. /* Mask RX and TX interrupts */
  663. if (priv->chip_id == RCAR_GEN2) {
  664. ravb_write(ndev, ric0 & ~BIT(q), RIC0);
  665. ravb_write(ndev, tic & ~BIT(q), TIC);
  666. } else {
  667. ravb_write(ndev, BIT(q), RID0);
  668. ravb_write(ndev, BIT(q), TID);
  669. }
  670. __napi_schedule(&priv->napi[q]);
  671. } else {
  672. netdev_warn(ndev,
  673. "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
  674. ris0, ric0);
  675. netdev_warn(ndev,
  676. " tx status 0x%08x, tx mask 0x%08x.\n",
  677. tis, tic);
  678. }
  679. return true;
  680. }
  681. return false;
  682. }
  683. static bool ravb_timestamp_interrupt(struct net_device *ndev)
  684. {
  685. u32 tis = ravb_read(ndev, TIS);
  686. if (tis & TIS_TFUF) {
  687. ravb_write(ndev, ~TIS_TFUF, TIS);
  688. ravb_get_tx_tstamp(ndev);
  689. return true;
  690. }
  691. return false;
  692. }
  693. static irqreturn_t ravb_interrupt(int irq, void *dev_id)
  694. {
  695. struct net_device *ndev = dev_id;
  696. struct ravb_private *priv = netdev_priv(ndev);
  697. irqreturn_t result = IRQ_NONE;
  698. u32 iss;
  699. spin_lock(&priv->lock);
  700. /* Get interrupt status */
  701. iss = ravb_read(ndev, ISS);
  702. /* Received and transmitted interrupts */
  703. if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
  704. int q;
  705. /* Timestamp updated */
  706. if (ravb_timestamp_interrupt(ndev))
  707. result = IRQ_HANDLED;
  708. /* Network control and best effort queue RX/TX */
  709. for (q = RAVB_NC; q >= RAVB_BE; q--) {
  710. if (ravb_queue_interrupt(ndev, q))
  711. result = IRQ_HANDLED;
  712. }
  713. }
  714. /* E-MAC status summary */
  715. if (iss & ISS_MS) {
  716. ravb_emac_interrupt_unlocked(ndev);
  717. result = IRQ_HANDLED;
  718. }
  719. /* Error status summary */
  720. if (iss & ISS_ES) {
  721. ravb_error_interrupt(ndev);
  722. result = IRQ_HANDLED;
  723. }
  724. /* gPTP interrupt status summary */
  725. if (iss & ISS_CGIS) {
  726. ravb_ptp_interrupt(ndev);
  727. result = IRQ_HANDLED;
  728. }
  729. mmiowb();
  730. spin_unlock(&priv->lock);
  731. return result;
  732. }
  733. /* Timestamp/Error/gPTP interrupt handler */
  734. static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
  735. {
  736. struct net_device *ndev = dev_id;
  737. struct ravb_private *priv = netdev_priv(ndev);
  738. irqreturn_t result = IRQ_NONE;
  739. u32 iss;
  740. spin_lock(&priv->lock);
  741. /* Get interrupt status */
  742. iss = ravb_read(ndev, ISS);
  743. /* Timestamp updated */
  744. if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
  745. result = IRQ_HANDLED;
  746. /* Error status summary */
  747. if (iss & ISS_ES) {
  748. ravb_error_interrupt(ndev);
  749. result = IRQ_HANDLED;
  750. }
  751. /* gPTP interrupt status summary */
  752. if (iss & ISS_CGIS) {
  753. ravb_ptp_interrupt(ndev);
  754. result = IRQ_HANDLED;
  755. }
  756. mmiowb();
  757. spin_unlock(&priv->lock);
  758. return result;
  759. }
  760. static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
  761. {
  762. struct net_device *ndev = dev_id;
  763. struct ravb_private *priv = netdev_priv(ndev);
  764. irqreturn_t result = IRQ_NONE;
  765. spin_lock(&priv->lock);
  766. /* Network control/Best effort queue RX/TX */
  767. if (ravb_queue_interrupt(ndev, q))
  768. result = IRQ_HANDLED;
  769. mmiowb();
  770. spin_unlock(&priv->lock);
  771. return result;
  772. }
  773. static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
  774. {
  775. return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
  776. }
  777. static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
  778. {
  779. return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
  780. }
  781. static int ravb_poll(struct napi_struct *napi, int budget)
  782. {
  783. struct net_device *ndev = napi->dev;
  784. struct ravb_private *priv = netdev_priv(ndev);
  785. unsigned long flags;
  786. int q = napi - priv->napi;
  787. int mask = BIT(q);
  788. int quota = budget;
  789. u32 ris0, tis;
  790. for (;;) {
  791. tis = ravb_read(ndev, TIS);
  792. ris0 = ravb_read(ndev, RIS0);
  793. if (!((ris0 & mask) || (tis & mask)))
  794. break;
  795. /* Processing RX Descriptor Ring */
  796. if (ris0 & mask) {
  797. /* Clear RX interrupt */
  798. ravb_write(ndev, ~mask, RIS0);
  799. if (ravb_rx(ndev, &quota, q))
  800. goto out;
  801. }
  802. /* Processing TX Descriptor Ring */
  803. if (tis & mask) {
  804. spin_lock_irqsave(&priv->lock, flags);
  805. /* Clear TX interrupt */
  806. ravb_write(ndev, ~mask, TIS);
  807. ravb_tx_free(ndev, q, true);
  808. netif_wake_subqueue(ndev, q);
  809. mmiowb();
  810. spin_unlock_irqrestore(&priv->lock, flags);
  811. }
  812. }
  813. napi_complete(napi);
  814. /* Re-enable RX/TX interrupts */
  815. spin_lock_irqsave(&priv->lock, flags);
  816. if (priv->chip_id == RCAR_GEN2) {
  817. ravb_modify(ndev, RIC0, mask, mask);
  818. ravb_modify(ndev, TIC, mask, mask);
  819. } else {
  820. ravb_write(ndev, mask, RIE0);
  821. ravb_write(ndev, mask, TIE);
  822. }
  823. mmiowb();
  824. spin_unlock_irqrestore(&priv->lock, flags);
  825. /* Receive error message handling */
  826. priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
  827. priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
  828. if (priv->rx_over_errors != ndev->stats.rx_over_errors)
  829. ndev->stats.rx_over_errors = priv->rx_over_errors;
  830. if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
  831. ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
  832. out:
  833. return budget - quota;
  834. }
  835. /* PHY state control function */
  836. static void ravb_adjust_link(struct net_device *ndev)
  837. {
  838. struct ravb_private *priv = netdev_priv(ndev);
  839. struct phy_device *phydev = ndev->phydev;
  840. bool new_state = false;
  841. if (phydev->link) {
  842. if (phydev->duplex != priv->duplex) {
  843. new_state = true;
  844. priv->duplex = phydev->duplex;
  845. ravb_set_duplex(ndev);
  846. }
  847. if (phydev->speed != priv->speed) {
  848. new_state = true;
  849. priv->speed = phydev->speed;
  850. ravb_set_rate(ndev);
  851. }
  852. if (!priv->link) {
  853. ravb_modify(ndev, ECMR, ECMR_TXF, 0);
  854. new_state = true;
  855. priv->link = phydev->link;
  856. if (priv->no_avb_link)
  857. ravb_rcv_snd_enable(ndev);
  858. }
  859. } else if (priv->link) {
  860. new_state = true;
  861. priv->link = 0;
  862. priv->speed = 0;
  863. priv->duplex = -1;
  864. if (priv->no_avb_link)
  865. ravb_rcv_snd_disable(ndev);
  866. }
  867. if (new_state && netif_msg_link(priv))
  868. phy_print_status(phydev);
  869. }
  870. static const struct soc_device_attribute r8a7795es10[] = {
  871. { .soc_id = "r8a7795", .revision = "ES1.0", },
  872. { /* sentinel */ }
  873. };
  874. /* PHY init function */
  875. static int ravb_phy_init(struct net_device *ndev)
  876. {
  877. struct device_node *np = ndev->dev.parent->of_node;
  878. struct ravb_private *priv = netdev_priv(ndev);
  879. struct phy_device *phydev;
  880. struct device_node *pn;
  881. int err;
  882. priv->link = 0;
  883. priv->speed = 0;
  884. priv->duplex = -1;
  885. /* Try connecting to PHY */
  886. pn = of_parse_phandle(np, "phy-handle", 0);
  887. if (!pn) {
  888. /* In the case of a fixed PHY, the DT node associated
  889. * to the PHY is the Ethernet MAC DT node.
  890. */
  891. if (of_phy_is_fixed_link(np)) {
  892. err = of_phy_register_fixed_link(np);
  893. if (err)
  894. return err;
  895. }
  896. pn = of_node_get(np);
  897. }
  898. phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
  899. priv->phy_interface);
  900. of_node_put(pn);
  901. if (!phydev) {
  902. netdev_err(ndev, "failed to connect PHY\n");
  903. err = -ENOENT;
  904. goto err_deregister_fixed_link;
  905. }
  906. /* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
  907. * at this time.
  908. */
  909. if (soc_device_match(r8a7795es10)) {
  910. err = phy_set_max_speed(phydev, SPEED_100);
  911. if (err) {
  912. netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
  913. goto err_phy_disconnect;
  914. }
  915. netdev_info(ndev, "limited PHY to 100Mbit/s\n");
  916. }
  917. /* 10BASE is not supported */
  918. phydev->supported &= ~PHY_10BT_FEATURES;
  919. phy_attached_info(phydev);
  920. return 0;
  921. err_phy_disconnect:
  922. phy_disconnect(phydev);
  923. err_deregister_fixed_link:
  924. if (of_phy_is_fixed_link(np))
  925. of_phy_deregister_fixed_link(np);
  926. return err;
  927. }
  928. /* PHY control start function */
  929. static int ravb_phy_start(struct net_device *ndev)
  930. {
  931. int error;
  932. error = ravb_phy_init(ndev);
  933. if (error)
  934. return error;
  935. phy_start(ndev->phydev);
  936. return 0;
  937. }
  938. static int ravb_get_link_ksettings(struct net_device *ndev,
  939. struct ethtool_link_ksettings *cmd)
  940. {
  941. struct ravb_private *priv = netdev_priv(ndev);
  942. unsigned long flags;
  943. if (!ndev->phydev)
  944. return -ENODEV;
  945. spin_lock_irqsave(&priv->lock, flags);
  946. phy_ethtool_ksettings_get(ndev->phydev, cmd);
  947. spin_unlock_irqrestore(&priv->lock, flags);
  948. return 0;
  949. }
  950. static int ravb_set_link_ksettings(struct net_device *ndev,
  951. const struct ethtool_link_ksettings *cmd)
  952. {
  953. struct ravb_private *priv = netdev_priv(ndev);
  954. unsigned long flags;
  955. int error;
  956. if (!ndev->phydev)
  957. return -ENODEV;
  958. spin_lock_irqsave(&priv->lock, flags);
  959. /* Disable TX and RX */
  960. ravb_rcv_snd_disable(ndev);
  961. error = phy_ethtool_ksettings_set(ndev->phydev, cmd);
  962. if (error)
  963. goto error_exit;
  964. if (cmd->base.duplex == DUPLEX_FULL)
  965. priv->duplex = 1;
  966. else
  967. priv->duplex = 0;
  968. ravb_set_duplex(ndev);
  969. error_exit:
  970. mdelay(1);
  971. /* Enable TX and RX */
  972. ravb_rcv_snd_enable(ndev);
  973. mmiowb();
  974. spin_unlock_irqrestore(&priv->lock, flags);
  975. return error;
  976. }
  977. static int ravb_nway_reset(struct net_device *ndev)
  978. {
  979. struct ravb_private *priv = netdev_priv(ndev);
  980. int error = -ENODEV;
  981. unsigned long flags;
  982. if (ndev->phydev) {
  983. spin_lock_irqsave(&priv->lock, flags);
  984. error = phy_start_aneg(ndev->phydev);
  985. spin_unlock_irqrestore(&priv->lock, flags);
  986. }
  987. return error;
  988. }
  989. static u32 ravb_get_msglevel(struct net_device *ndev)
  990. {
  991. struct ravb_private *priv = netdev_priv(ndev);
  992. return priv->msg_enable;
  993. }
  994. static void ravb_set_msglevel(struct net_device *ndev, u32 value)
  995. {
  996. struct ravb_private *priv = netdev_priv(ndev);
  997. priv->msg_enable = value;
  998. }
  999. static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
  1000. "rx_queue_0_current",
  1001. "tx_queue_0_current",
  1002. "rx_queue_0_dirty",
  1003. "tx_queue_0_dirty",
  1004. "rx_queue_0_packets",
  1005. "tx_queue_0_packets",
  1006. "rx_queue_0_bytes",
  1007. "tx_queue_0_bytes",
  1008. "rx_queue_0_mcast_packets",
  1009. "rx_queue_0_errors",
  1010. "rx_queue_0_crc_errors",
  1011. "rx_queue_0_frame_errors",
  1012. "rx_queue_0_length_errors",
  1013. "rx_queue_0_missed_errors",
  1014. "rx_queue_0_over_errors",
  1015. "rx_queue_1_current",
  1016. "tx_queue_1_current",
  1017. "rx_queue_1_dirty",
  1018. "tx_queue_1_dirty",
  1019. "rx_queue_1_packets",
  1020. "tx_queue_1_packets",
  1021. "rx_queue_1_bytes",
  1022. "tx_queue_1_bytes",
  1023. "rx_queue_1_mcast_packets",
  1024. "rx_queue_1_errors",
  1025. "rx_queue_1_crc_errors",
  1026. "rx_queue_1_frame_errors",
  1027. "rx_queue_1_length_errors",
  1028. "rx_queue_1_missed_errors",
  1029. "rx_queue_1_over_errors",
  1030. };
  1031. #define RAVB_STATS_LEN ARRAY_SIZE(ravb_gstrings_stats)
  1032. static int ravb_get_sset_count(struct net_device *netdev, int sset)
  1033. {
  1034. switch (sset) {
  1035. case ETH_SS_STATS:
  1036. return RAVB_STATS_LEN;
  1037. default:
  1038. return -EOPNOTSUPP;
  1039. }
  1040. }
  1041. static void ravb_get_ethtool_stats(struct net_device *ndev,
  1042. struct ethtool_stats *stats, u64 *data)
  1043. {
  1044. struct ravb_private *priv = netdev_priv(ndev);
  1045. int i = 0;
  1046. int q;
  1047. /* Device-specific stats */
  1048. for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
  1049. struct net_device_stats *stats = &priv->stats[q];
  1050. data[i++] = priv->cur_rx[q];
  1051. data[i++] = priv->cur_tx[q];
  1052. data[i++] = priv->dirty_rx[q];
  1053. data[i++] = priv->dirty_tx[q];
  1054. data[i++] = stats->rx_packets;
  1055. data[i++] = stats->tx_packets;
  1056. data[i++] = stats->rx_bytes;
  1057. data[i++] = stats->tx_bytes;
  1058. data[i++] = stats->multicast;
  1059. data[i++] = stats->rx_errors;
  1060. data[i++] = stats->rx_crc_errors;
  1061. data[i++] = stats->rx_frame_errors;
  1062. data[i++] = stats->rx_length_errors;
  1063. data[i++] = stats->rx_missed_errors;
  1064. data[i++] = stats->rx_over_errors;
  1065. }
  1066. }
  1067. static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
  1068. {
  1069. switch (stringset) {
  1070. case ETH_SS_STATS:
  1071. memcpy(data, *ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
  1072. break;
  1073. }
  1074. }
  1075. static void ravb_get_ringparam(struct net_device *ndev,
  1076. struct ethtool_ringparam *ring)
  1077. {
  1078. struct ravb_private *priv = netdev_priv(ndev);
  1079. ring->rx_max_pending = BE_RX_RING_MAX;
  1080. ring->tx_max_pending = BE_TX_RING_MAX;
  1081. ring->rx_pending = priv->num_rx_ring[RAVB_BE];
  1082. ring->tx_pending = priv->num_tx_ring[RAVB_BE];
  1083. }
  1084. static int ravb_set_ringparam(struct net_device *ndev,
  1085. struct ethtool_ringparam *ring)
  1086. {
  1087. struct ravb_private *priv = netdev_priv(ndev);
  1088. int error;
  1089. if (ring->tx_pending > BE_TX_RING_MAX ||
  1090. ring->rx_pending > BE_RX_RING_MAX ||
  1091. ring->tx_pending < BE_TX_RING_MIN ||
  1092. ring->rx_pending < BE_RX_RING_MIN)
  1093. return -EINVAL;
  1094. if (ring->rx_mini_pending || ring->rx_jumbo_pending)
  1095. return -EINVAL;
  1096. if (netif_running(ndev)) {
  1097. netif_device_detach(ndev);
  1098. /* Stop PTP Clock driver */
  1099. if (priv->chip_id == RCAR_GEN2)
  1100. ravb_ptp_stop(ndev);
  1101. /* Wait for DMA stopping */
  1102. error = ravb_stop_dma(ndev);
  1103. if (error) {
  1104. netdev_err(ndev,
  1105. "cannot set ringparam! Any AVB processes are still running?\n");
  1106. return error;
  1107. }
  1108. synchronize_irq(ndev->irq);
  1109. /* Free all the skb's in the RX queue and the DMA buffers. */
  1110. ravb_ring_free(ndev, RAVB_BE);
  1111. ravb_ring_free(ndev, RAVB_NC);
  1112. }
  1113. /* Set new parameters */
  1114. priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
  1115. priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
  1116. if (netif_running(ndev)) {
  1117. error = ravb_dmac_init(ndev);
  1118. if (error) {
  1119. netdev_err(ndev,
  1120. "%s: ravb_dmac_init() failed, error %d\n",
  1121. __func__, error);
  1122. return error;
  1123. }
  1124. ravb_emac_init(ndev);
  1125. /* Initialise PTP Clock driver */
  1126. if (priv->chip_id == RCAR_GEN2)
  1127. ravb_ptp_init(ndev, priv->pdev);
  1128. netif_device_attach(ndev);
  1129. }
  1130. return 0;
  1131. }
  1132. static int ravb_get_ts_info(struct net_device *ndev,
  1133. struct ethtool_ts_info *info)
  1134. {
  1135. struct ravb_private *priv = netdev_priv(ndev);
  1136. info->so_timestamping =
  1137. SOF_TIMESTAMPING_TX_SOFTWARE |
  1138. SOF_TIMESTAMPING_RX_SOFTWARE |
  1139. SOF_TIMESTAMPING_SOFTWARE |
  1140. SOF_TIMESTAMPING_TX_HARDWARE |
  1141. SOF_TIMESTAMPING_RX_HARDWARE |
  1142. SOF_TIMESTAMPING_RAW_HARDWARE;
  1143. info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
  1144. info->rx_filters =
  1145. (1 << HWTSTAMP_FILTER_NONE) |
  1146. (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
  1147. (1 << HWTSTAMP_FILTER_ALL);
  1148. info->phc_index = ptp_clock_index(priv->ptp.clock);
  1149. return 0;
  1150. }
  1151. static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
  1152. {
  1153. struct ravb_private *priv = netdev_priv(ndev);
  1154. wol->supported = WAKE_MAGIC;
  1155. wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
  1156. }
  1157. static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
  1158. {
  1159. struct ravb_private *priv = netdev_priv(ndev);
  1160. if (wol->wolopts & ~WAKE_MAGIC)
  1161. return -EOPNOTSUPP;
  1162. priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
  1163. device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
  1164. return 0;
  1165. }
  1166. static const struct ethtool_ops ravb_ethtool_ops = {
  1167. .nway_reset = ravb_nway_reset,
  1168. .get_msglevel = ravb_get_msglevel,
  1169. .set_msglevel = ravb_set_msglevel,
  1170. .get_link = ethtool_op_get_link,
  1171. .get_strings = ravb_get_strings,
  1172. .get_ethtool_stats = ravb_get_ethtool_stats,
  1173. .get_sset_count = ravb_get_sset_count,
  1174. .get_ringparam = ravb_get_ringparam,
  1175. .set_ringparam = ravb_set_ringparam,
  1176. .get_ts_info = ravb_get_ts_info,
  1177. .get_link_ksettings = ravb_get_link_ksettings,
  1178. .set_link_ksettings = ravb_set_link_ksettings,
  1179. .get_wol = ravb_get_wol,
  1180. .set_wol = ravb_set_wol,
  1181. };
  1182. static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
  1183. struct net_device *ndev, struct device *dev,
  1184. const char *ch)
  1185. {
  1186. char *name;
  1187. int error;
  1188. name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
  1189. if (!name)
  1190. return -ENOMEM;
  1191. error = request_irq(irq, handler, 0, name, ndev);
  1192. if (error)
  1193. netdev_err(ndev, "cannot request IRQ %s\n", name);
  1194. return error;
  1195. }
  1196. /* Network device open function for Ethernet AVB */
  1197. static int ravb_open(struct net_device *ndev)
  1198. {
  1199. struct ravb_private *priv = netdev_priv(ndev);
  1200. struct platform_device *pdev = priv->pdev;
  1201. struct device *dev = &pdev->dev;
  1202. int error;
  1203. napi_enable(&priv->napi[RAVB_BE]);
  1204. napi_enable(&priv->napi[RAVB_NC]);
  1205. if (priv->chip_id == RCAR_GEN2) {
  1206. error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
  1207. ndev->name, ndev);
  1208. if (error) {
  1209. netdev_err(ndev, "cannot request IRQ\n");
  1210. goto out_napi_off;
  1211. }
  1212. } else {
  1213. error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
  1214. dev, "ch22:multi");
  1215. if (error)
  1216. goto out_napi_off;
  1217. error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
  1218. dev, "ch24:emac");
  1219. if (error)
  1220. goto out_free_irq;
  1221. error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
  1222. ndev, dev, "ch0:rx_be");
  1223. if (error)
  1224. goto out_free_irq_emac;
  1225. error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
  1226. ndev, dev, "ch18:tx_be");
  1227. if (error)
  1228. goto out_free_irq_be_rx;
  1229. error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
  1230. ndev, dev, "ch1:rx_nc");
  1231. if (error)
  1232. goto out_free_irq_be_tx;
  1233. error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
  1234. ndev, dev, "ch19:tx_nc");
  1235. if (error)
  1236. goto out_free_irq_nc_rx;
  1237. }
  1238. /* Device init */
  1239. error = ravb_dmac_init(ndev);
  1240. if (error)
  1241. goto out_free_irq_nc_tx;
  1242. ravb_emac_init(ndev);
  1243. /* Initialise PTP Clock driver */
  1244. if (priv->chip_id == RCAR_GEN2)
  1245. ravb_ptp_init(ndev, priv->pdev);
  1246. netif_tx_start_all_queues(ndev);
  1247. /* PHY control start */
  1248. error = ravb_phy_start(ndev);
  1249. if (error)
  1250. goto out_ptp_stop;
  1251. return 0;
  1252. out_ptp_stop:
  1253. /* Stop PTP Clock driver */
  1254. if (priv->chip_id == RCAR_GEN2)
  1255. ravb_ptp_stop(ndev);
  1256. out_free_irq_nc_tx:
  1257. if (priv->chip_id == RCAR_GEN2)
  1258. goto out_free_irq;
  1259. free_irq(priv->tx_irqs[RAVB_NC], ndev);
  1260. out_free_irq_nc_rx:
  1261. free_irq(priv->rx_irqs[RAVB_NC], ndev);
  1262. out_free_irq_be_tx:
  1263. free_irq(priv->tx_irqs[RAVB_BE], ndev);
  1264. out_free_irq_be_rx:
  1265. free_irq(priv->rx_irqs[RAVB_BE], ndev);
  1266. out_free_irq_emac:
  1267. free_irq(priv->emac_irq, ndev);
  1268. out_free_irq:
  1269. free_irq(ndev->irq, ndev);
  1270. out_napi_off:
  1271. napi_disable(&priv->napi[RAVB_NC]);
  1272. napi_disable(&priv->napi[RAVB_BE]);
  1273. return error;
  1274. }
  1275. /* Timeout function for Ethernet AVB */
  1276. static void ravb_tx_timeout(struct net_device *ndev)
  1277. {
  1278. struct ravb_private *priv = netdev_priv(ndev);
  1279. netif_err(priv, tx_err, ndev,
  1280. "transmit timed out, status %08x, resetting...\n",
  1281. ravb_read(ndev, ISS));
  1282. /* tx_errors count up */
  1283. ndev->stats.tx_errors++;
  1284. schedule_work(&priv->work);
  1285. }
  1286. static void ravb_tx_timeout_work(struct work_struct *work)
  1287. {
  1288. struct ravb_private *priv = container_of(work, struct ravb_private,
  1289. work);
  1290. struct net_device *ndev = priv->ndev;
  1291. netif_tx_stop_all_queues(ndev);
  1292. /* Stop PTP Clock driver */
  1293. if (priv->chip_id == RCAR_GEN2)
  1294. ravb_ptp_stop(ndev);
  1295. /* Wait for DMA stopping */
  1296. ravb_stop_dma(ndev);
  1297. ravb_ring_free(ndev, RAVB_BE);
  1298. ravb_ring_free(ndev, RAVB_NC);
  1299. /* Device init */
  1300. ravb_dmac_init(ndev);
  1301. ravb_emac_init(ndev);
  1302. /* Initialise PTP Clock driver */
  1303. if (priv->chip_id == RCAR_GEN2)
  1304. ravb_ptp_init(ndev, priv->pdev);
  1305. netif_tx_start_all_queues(ndev);
  1306. }
  1307. /* Packet transmit function for Ethernet AVB */
  1308. static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  1309. {
  1310. struct ravb_private *priv = netdev_priv(ndev);
  1311. u16 q = skb_get_queue_mapping(skb);
  1312. struct ravb_tstamp_skb *ts_skb;
  1313. struct ravb_tx_desc *desc;
  1314. unsigned long flags;
  1315. u32 dma_addr;
  1316. void *buffer;
  1317. u32 entry;
  1318. u32 len;
  1319. spin_lock_irqsave(&priv->lock, flags);
  1320. if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
  1321. NUM_TX_DESC) {
  1322. netif_err(priv, tx_queued, ndev,
  1323. "still transmitting with the full ring!\n");
  1324. netif_stop_subqueue(ndev, q);
  1325. spin_unlock_irqrestore(&priv->lock, flags);
  1326. return NETDEV_TX_BUSY;
  1327. }
  1328. if (skb_put_padto(skb, ETH_ZLEN))
  1329. goto exit;
  1330. entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * NUM_TX_DESC);
  1331. priv->tx_skb[q][entry / NUM_TX_DESC] = skb;
  1332. buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
  1333. entry / NUM_TX_DESC * DPTR_ALIGN;
  1334. len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
  1335. /* Zero length DMA descriptors are problematic as they seem to
  1336. * terminate DMA transfers. Avoid them by simply using a length of
  1337. * DPTR_ALIGN (4) when skb data is aligned to DPTR_ALIGN.
  1338. *
  1339. * As skb is guaranteed to have at least ETH_ZLEN (60) bytes of
  1340. * data by the call to skb_put_padto() above this is safe with
  1341. * respect to both the length of the first DMA descriptor (len)
  1342. * overflowing the available data and the length of the second DMA
  1343. * descriptor (skb->len - len) being negative.
  1344. */
  1345. if (len == 0)
  1346. len = DPTR_ALIGN;
  1347. memcpy(buffer, skb->data, len);
  1348. dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
  1349. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  1350. goto drop;
  1351. desc = &priv->tx_ring[q][entry];
  1352. desc->ds_tagl = cpu_to_le16(len);
  1353. desc->dptr = cpu_to_le32(dma_addr);
  1354. buffer = skb->data + len;
  1355. len = skb->len - len;
  1356. dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
  1357. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  1358. goto unmap;
  1359. desc++;
  1360. desc->ds_tagl = cpu_to_le16(len);
  1361. desc->dptr = cpu_to_le32(dma_addr);
  1362. /* TX timestamp required */
  1363. if (q == RAVB_NC) {
  1364. ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
  1365. if (!ts_skb) {
  1366. desc--;
  1367. dma_unmap_single(ndev->dev.parent, dma_addr, len,
  1368. DMA_TO_DEVICE);
  1369. goto unmap;
  1370. }
  1371. ts_skb->skb = skb;
  1372. ts_skb->tag = priv->ts_skb_tag++;
  1373. priv->ts_skb_tag &= 0x3ff;
  1374. list_add_tail(&ts_skb->list, &priv->ts_skb_list);
  1375. /* TAG and timestamp required flag */
  1376. skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
  1377. desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
  1378. desc->ds_tagl |= le16_to_cpu(ts_skb->tag << 12);
  1379. }
  1380. skb_tx_timestamp(skb);
  1381. /* Descriptor type must be set after all the above writes */
  1382. dma_wmb();
  1383. desc->die_dt = DT_FEND;
  1384. desc--;
  1385. desc->die_dt = DT_FSTART;
  1386. ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
  1387. priv->cur_tx[q] += NUM_TX_DESC;
  1388. if (priv->cur_tx[q] - priv->dirty_tx[q] >
  1389. (priv->num_tx_ring[q] - 1) * NUM_TX_DESC &&
  1390. !ravb_tx_free(ndev, q, true))
  1391. netif_stop_subqueue(ndev, q);
  1392. exit:
  1393. mmiowb();
  1394. spin_unlock_irqrestore(&priv->lock, flags);
  1395. return NETDEV_TX_OK;
  1396. unmap:
  1397. dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
  1398. le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
  1399. drop:
  1400. dev_kfree_skb_any(skb);
  1401. priv->tx_skb[q][entry / NUM_TX_DESC] = NULL;
  1402. goto exit;
  1403. }
  1404. static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
  1405. void *accel_priv, select_queue_fallback_t fallback)
  1406. {
  1407. /* If skb needs TX timestamp, it is handled in network control queue */
  1408. return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
  1409. RAVB_BE;
  1410. }
  1411. static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
  1412. {
  1413. struct ravb_private *priv = netdev_priv(ndev);
  1414. struct net_device_stats *nstats, *stats0, *stats1;
  1415. nstats = &ndev->stats;
  1416. stats0 = &priv->stats[RAVB_BE];
  1417. stats1 = &priv->stats[RAVB_NC];
  1418. nstats->tx_dropped += ravb_read(ndev, TROCR);
  1419. ravb_write(ndev, 0, TROCR); /* (write clear) */
  1420. nstats->collisions += ravb_read(ndev, CDCR);
  1421. ravb_write(ndev, 0, CDCR); /* (write clear) */
  1422. nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
  1423. ravb_write(ndev, 0, LCCR); /* (write clear) */
  1424. nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
  1425. ravb_write(ndev, 0, CERCR); /* (write clear) */
  1426. nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
  1427. ravb_write(ndev, 0, CEECR); /* (write clear) */
  1428. nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
  1429. nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
  1430. nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
  1431. nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
  1432. nstats->multicast = stats0->multicast + stats1->multicast;
  1433. nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
  1434. nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
  1435. nstats->rx_frame_errors =
  1436. stats0->rx_frame_errors + stats1->rx_frame_errors;
  1437. nstats->rx_length_errors =
  1438. stats0->rx_length_errors + stats1->rx_length_errors;
  1439. nstats->rx_missed_errors =
  1440. stats0->rx_missed_errors + stats1->rx_missed_errors;
  1441. nstats->rx_over_errors =
  1442. stats0->rx_over_errors + stats1->rx_over_errors;
  1443. return nstats;
  1444. }
  1445. /* Update promiscuous bit */
  1446. static void ravb_set_rx_mode(struct net_device *ndev)
  1447. {
  1448. struct ravb_private *priv = netdev_priv(ndev);
  1449. unsigned long flags;
  1450. spin_lock_irqsave(&priv->lock, flags);
  1451. ravb_modify(ndev, ECMR, ECMR_PRM,
  1452. ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
  1453. mmiowb();
  1454. spin_unlock_irqrestore(&priv->lock, flags);
  1455. }
  1456. /* Device close function for Ethernet AVB */
  1457. static int ravb_close(struct net_device *ndev)
  1458. {
  1459. struct device_node *np = ndev->dev.parent->of_node;
  1460. struct ravb_private *priv = netdev_priv(ndev);
  1461. struct ravb_tstamp_skb *ts_skb, *ts_skb2;
  1462. netif_tx_stop_all_queues(ndev);
  1463. /* Disable interrupts by clearing the interrupt masks. */
  1464. ravb_write(ndev, 0, RIC0);
  1465. ravb_write(ndev, 0, RIC2);
  1466. ravb_write(ndev, 0, TIC);
  1467. /* Stop PTP Clock driver */
  1468. if (priv->chip_id == RCAR_GEN2)
  1469. ravb_ptp_stop(ndev);
  1470. /* Set the config mode to stop the AVB-DMAC's processes */
  1471. if (ravb_stop_dma(ndev) < 0)
  1472. netdev_err(ndev,
  1473. "device will be stopped after h/w processes are done.\n");
  1474. /* Clear the timestamp list */
  1475. list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
  1476. list_del(&ts_skb->list);
  1477. kfree(ts_skb);
  1478. }
  1479. /* PHY disconnect */
  1480. if (ndev->phydev) {
  1481. phy_stop(ndev->phydev);
  1482. phy_disconnect(ndev->phydev);
  1483. if (of_phy_is_fixed_link(np))
  1484. of_phy_deregister_fixed_link(np);
  1485. }
  1486. if (priv->chip_id != RCAR_GEN2) {
  1487. free_irq(priv->tx_irqs[RAVB_NC], ndev);
  1488. free_irq(priv->rx_irqs[RAVB_NC], ndev);
  1489. free_irq(priv->tx_irqs[RAVB_BE], ndev);
  1490. free_irq(priv->rx_irqs[RAVB_BE], ndev);
  1491. free_irq(priv->emac_irq, ndev);
  1492. }
  1493. free_irq(ndev->irq, ndev);
  1494. napi_disable(&priv->napi[RAVB_NC]);
  1495. napi_disable(&priv->napi[RAVB_BE]);
  1496. /* Free all the skb's in the RX queue and the DMA buffers. */
  1497. ravb_ring_free(ndev, RAVB_BE);
  1498. ravb_ring_free(ndev, RAVB_NC);
  1499. return 0;
  1500. }
  1501. static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
  1502. {
  1503. struct ravb_private *priv = netdev_priv(ndev);
  1504. struct hwtstamp_config config;
  1505. config.flags = 0;
  1506. config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
  1507. HWTSTAMP_TX_OFF;
  1508. if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
  1509. config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
  1510. else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
  1511. config.rx_filter = HWTSTAMP_FILTER_ALL;
  1512. else
  1513. config.rx_filter = HWTSTAMP_FILTER_NONE;
  1514. return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
  1515. -EFAULT : 0;
  1516. }
  1517. /* Control hardware time stamping */
  1518. static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
  1519. {
  1520. struct ravb_private *priv = netdev_priv(ndev);
  1521. struct hwtstamp_config config;
  1522. u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
  1523. u32 tstamp_tx_ctrl;
  1524. if (copy_from_user(&config, req->ifr_data, sizeof(config)))
  1525. return -EFAULT;
  1526. /* Reserved for future extensions */
  1527. if (config.flags)
  1528. return -EINVAL;
  1529. switch (config.tx_type) {
  1530. case HWTSTAMP_TX_OFF:
  1531. tstamp_tx_ctrl = 0;
  1532. break;
  1533. case HWTSTAMP_TX_ON:
  1534. tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
  1535. break;
  1536. default:
  1537. return -ERANGE;
  1538. }
  1539. switch (config.rx_filter) {
  1540. case HWTSTAMP_FILTER_NONE:
  1541. tstamp_rx_ctrl = 0;
  1542. break;
  1543. case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
  1544. tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
  1545. break;
  1546. default:
  1547. config.rx_filter = HWTSTAMP_FILTER_ALL;
  1548. tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
  1549. }
  1550. priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
  1551. priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
  1552. return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
  1553. -EFAULT : 0;
  1554. }
  1555. /* ioctl to device function */
  1556. static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
  1557. {
  1558. struct phy_device *phydev = ndev->phydev;
  1559. if (!netif_running(ndev))
  1560. return -EINVAL;
  1561. if (!phydev)
  1562. return -ENODEV;
  1563. switch (cmd) {
  1564. case SIOCGHWTSTAMP:
  1565. return ravb_hwtstamp_get(ndev, req);
  1566. case SIOCSHWTSTAMP:
  1567. return ravb_hwtstamp_set(ndev, req);
  1568. }
  1569. return phy_mii_ioctl(phydev, req, cmd);
  1570. }
  1571. static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
  1572. {
  1573. if (netif_running(ndev))
  1574. return -EBUSY;
  1575. ndev->mtu = new_mtu;
  1576. netdev_update_features(ndev);
  1577. return 0;
  1578. }
  1579. static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
  1580. {
  1581. struct ravb_private *priv = netdev_priv(ndev);
  1582. unsigned long flags;
  1583. spin_lock_irqsave(&priv->lock, flags);
  1584. /* Disable TX and RX */
  1585. ravb_rcv_snd_disable(ndev);
  1586. /* Modify RX Checksum setting */
  1587. ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
  1588. /* Enable TX and RX */
  1589. ravb_rcv_snd_enable(ndev);
  1590. spin_unlock_irqrestore(&priv->lock, flags);
  1591. }
  1592. static int ravb_set_features(struct net_device *ndev,
  1593. netdev_features_t features)
  1594. {
  1595. netdev_features_t changed = ndev->features ^ features;
  1596. if (changed & NETIF_F_RXCSUM)
  1597. ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
  1598. ndev->features = features;
  1599. return 0;
  1600. }
  1601. static const struct net_device_ops ravb_netdev_ops = {
  1602. .ndo_open = ravb_open,
  1603. .ndo_stop = ravb_close,
  1604. .ndo_start_xmit = ravb_start_xmit,
  1605. .ndo_select_queue = ravb_select_queue,
  1606. .ndo_get_stats = ravb_get_stats,
  1607. .ndo_set_rx_mode = ravb_set_rx_mode,
  1608. .ndo_tx_timeout = ravb_tx_timeout,
  1609. .ndo_do_ioctl = ravb_do_ioctl,
  1610. .ndo_change_mtu = ravb_change_mtu,
  1611. .ndo_validate_addr = eth_validate_addr,
  1612. .ndo_set_mac_address = eth_mac_addr,
  1613. .ndo_set_features = ravb_set_features,
  1614. };
  1615. /* MDIO bus init function */
  1616. static int ravb_mdio_init(struct ravb_private *priv)
  1617. {
  1618. struct platform_device *pdev = priv->pdev;
  1619. struct device *dev = &pdev->dev;
  1620. int error;
  1621. /* Bitbang init */
  1622. priv->mdiobb.ops = &bb_ops;
  1623. /* MII controller setting */
  1624. priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
  1625. if (!priv->mii_bus)
  1626. return -ENOMEM;
  1627. /* Hook up MII support for ethtool */
  1628. priv->mii_bus->name = "ravb_mii";
  1629. priv->mii_bus->parent = dev;
  1630. snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
  1631. pdev->name, pdev->id);
  1632. /* Register MDIO bus */
  1633. error = of_mdiobus_register(priv->mii_bus, dev->of_node);
  1634. if (error)
  1635. goto out_free_bus;
  1636. return 0;
  1637. out_free_bus:
  1638. free_mdio_bitbang(priv->mii_bus);
  1639. return error;
  1640. }
  1641. /* MDIO bus release function */
  1642. static int ravb_mdio_release(struct ravb_private *priv)
  1643. {
  1644. /* Unregister mdio bus */
  1645. mdiobus_unregister(priv->mii_bus);
  1646. /* Free bitbang info */
  1647. free_mdio_bitbang(priv->mii_bus);
  1648. return 0;
  1649. }
  1650. static const struct of_device_id ravb_match_table[] = {
  1651. { .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
  1652. { .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
  1653. { .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
  1654. { .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
  1655. { .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
  1656. { }
  1657. };
  1658. MODULE_DEVICE_TABLE(of, ravb_match_table);
  1659. static int ravb_set_gti(struct net_device *ndev)
  1660. {
  1661. struct ravb_private *priv = netdev_priv(ndev);
  1662. struct device *dev = ndev->dev.parent;
  1663. unsigned long rate;
  1664. uint64_t inc;
  1665. rate = clk_get_rate(priv->clk);
  1666. if (!rate)
  1667. return -EINVAL;
  1668. inc = 1000000000ULL << 20;
  1669. do_div(inc, rate);
  1670. if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
  1671. dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
  1672. inc, GTI_TIV_MIN, GTI_TIV_MAX);
  1673. return -EINVAL;
  1674. }
  1675. ravb_write(ndev, inc, GTI);
  1676. return 0;
  1677. }
  1678. static void ravb_set_config_mode(struct net_device *ndev)
  1679. {
  1680. struct ravb_private *priv = netdev_priv(ndev);
  1681. if (priv->chip_id == RCAR_GEN2) {
  1682. ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
  1683. /* Set CSEL value */
  1684. ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
  1685. } else {
  1686. ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
  1687. CCC_GAC | CCC_CSEL_HPB);
  1688. }
  1689. }
  1690. /* Set tx and rx clock internal delay modes */
  1691. static void ravb_set_delay_mode(struct net_device *ndev)
  1692. {
  1693. struct ravb_private *priv = netdev_priv(ndev);
  1694. int set = 0;
  1695. if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
  1696. priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID)
  1697. set |= APSR_DM_RDM;
  1698. if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
  1699. priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
  1700. set |= APSR_DM_TDM;
  1701. ravb_modify(ndev, APSR, APSR_DM, set);
  1702. }
  1703. static int ravb_probe(struct platform_device *pdev)
  1704. {
  1705. struct device_node *np = pdev->dev.of_node;
  1706. struct ravb_private *priv;
  1707. enum ravb_chip_id chip_id;
  1708. struct net_device *ndev;
  1709. int error, irq, q;
  1710. struct resource *res;
  1711. int i;
  1712. if (!np) {
  1713. dev_err(&pdev->dev,
  1714. "this driver is required to be instantiated from device tree\n");
  1715. return -EINVAL;
  1716. }
  1717. /* Get base address */
  1718. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1719. if (!res) {
  1720. dev_err(&pdev->dev, "invalid resource\n");
  1721. return -EINVAL;
  1722. }
  1723. ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
  1724. NUM_TX_QUEUE, NUM_RX_QUEUE);
  1725. if (!ndev)
  1726. return -ENOMEM;
  1727. ndev->features = NETIF_F_RXCSUM;
  1728. ndev->hw_features = NETIF_F_RXCSUM;
  1729. pm_runtime_enable(&pdev->dev);
  1730. pm_runtime_get_sync(&pdev->dev);
  1731. /* The Ether-specific entries in the device structure. */
  1732. ndev->base_addr = res->start;
  1733. chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
  1734. if (chip_id == RCAR_GEN3)
  1735. irq = platform_get_irq_byname(pdev, "ch22");
  1736. else
  1737. irq = platform_get_irq(pdev, 0);
  1738. if (irq < 0) {
  1739. error = irq;
  1740. goto out_release;
  1741. }
  1742. ndev->irq = irq;
  1743. SET_NETDEV_DEV(ndev, &pdev->dev);
  1744. priv = netdev_priv(ndev);
  1745. priv->ndev = ndev;
  1746. priv->pdev = pdev;
  1747. priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
  1748. priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
  1749. priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
  1750. priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
  1751. priv->addr = devm_ioremap_resource(&pdev->dev, res);
  1752. if (IS_ERR(priv->addr)) {
  1753. error = PTR_ERR(priv->addr);
  1754. goto out_release;
  1755. }
  1756. spin_lock_init(&priv->lock);
  1757. INIT_WORK(&priv->work, ravb_tx_timeout_work);
  1758. priv->phy_interface = of_get_phy_mode(np);
  1759. priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
  1760. priv->avb_link_active_low =
  1761. of_property_read_bool(np, "renesas,ether-link-active-low");
  1762. if (chip_id == RCAR_GEN3) {
  1763. irq = platform_get_irq_byname(pdev, "ch24");
  1764. if (irq < 0) {
  1765. error = irq;
  1766. goto out_release;
  1767. }
  1768. priv->emac_irq = irq;
  1769. for (i = 0; i < NUM_RX_QUEUE; i++) {
  1770. irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
  1771. if (irq < 0) {
  1772. error = irq;
  1773. goto out_release;
  1774. }
  1775. priv->rx_irqs[i] = irq;
  1776. }
  1777. for (i = 0; i < NUM_TX_QUEUE; i++) {
  1778. irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
  1779. if (irq < 0) {
  1780. error = irq;
  1781. goto out_release;
  1782. }
  1783. priv->tx_irqs[i] = irq;
  1784. }
  1785. }
  1786. priv->chip_id = chip_id;
  1787. priv->clk = devm_clk_get(&pdev->dev, NULL);
  1788. if (IS_ERR(priv->clk)) {
  1789. error = PTR_ERR(priv->clk);
  1790. goto out_release;
  1791. }
  1792. ndev->max_mtu = 2048 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
  1793. ndev->min_mtu = ETH_MIN_MTU;
  1794. /* Set function */
  1795. ndev->netdev_ops = &ravb_netdev_ops;
  1796. ndev->ethtool_ops = &ravb_ethtool_ops;
  1797. /* Set AVB config mode */
  1798. ravb_set_config_mode(ndev);
  1799. /* Set GTI value */
  1800. error = ravb_set_gti(ndev);
  1801. if (error)
  1802. goto out_release;
  1803. /* Request GTI loading */
  1804. ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
  1805. if (priv->chip_id != RCAR_GEN2)
  1806. ravb_set_delay_mode(ndev);
  1807. /* Allocate descriptor base address table */
  1808. priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
  1809. priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
  1810. &priv->desc_bat_dma, GFP_KERNEL);
  1811. if (!priv->desc_bat) {
  1812. dev_err(&pdev->dev,
  1813. "Cannot allocate desc base address table (size %d bytes)\n",
  1814. priv->desc_bat_size);
  1815. error = -ENOMEM;
  1816. goto out_release;
  1817. }
  1818. for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
  1819. priv->desc_bat[q].die_dt = DT_EOS;
  1820. ravb_write(ndev, priv->desc_bat_dma, DBAT);
  1821. /* Initialise HW timestamp list */
  1822. INIT_LIST_HEAD(&priv->ts_skb_list);
  1823. /* Initialise PTP Clock driver */
  1824. if (chip_id != RCAR_GEN2)
  1825. ravb_ptp_init(ndev, pdev);
  1826. /* Debug message level */
  1827. priv->msg_enable = RAVB_DEF_MSG_ENABLE;
  1828. /* Read and set MAC address */
  1829. ravb_read_mac_address(ndev, of_get_mac_address(np));
  1830. if (!is_valid_ether_addr(ndev->dev_addr)) {
  1831. dev_warn(&pdev->dev,
  1832. "no valid MAC address supplied, using a random one\n");
  1833. eth_hw_addr_random(ndev);
  1834. }
  1835. /* MDIO bus init */
  1836. error = ravb_mdio_init(priv);
  1837. if (error) {
  1838. dev_err(&pdev->dev, "failed to initialize MDIO\n");
  1839. goto out_dma_free;
  1840. }
  1841. netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
  1842. netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
  1843. /* Network device register */
  1844. error = register_netdev(ndev);
  1845. if (error)
  1846. goto out_napi_del;
  1847. device_set_wakeup_capable(&pdev->dev, 1);
  1848. /* Print device information */
  1849. netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
  1850. (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
  1851. platform_set_drvdata(pdev, ndev);
  1852. return 0;
  1853. out_napi_del:
  1854. netif_napi_del(&priv->napi[RAVB_NC]);
  1855. netif_napi_del(&priv->napi[RAVB_BE]);
  1856. ravb_mdio_release(priv);
  1857. out_dma_free:
  1858. dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
  1859. priv->desc_bat_dma);
  1860. /* Stop PTP Clock driver */
  1861. if (chip_id != RCAR_GEN2)
  1862. ravb_ptp_stop(ndev);
  1863. out_release:
  1864. free_netdev(ndev);
  1865. pm_runtime_put(&pdev->dev);
  1866. pm_runtime_disable(&pdev->dev);
  1867. return error;
  1868. }
  1869. static int ravb_remove(struct platform_device *pdev)
  1870. {
  1871. struct net_device *ndev = platform_get_drvdata(pdev);
  1872. struct ravb_private *priv = netdev_priv(ndev);
  1873. /* Stop PTP Clock driver */
  1874. if (priv->chip_id != RCAR_GEN2)
  1875. ravb_ptp_stop(ndev);
  1876. dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
  1877. priv->desc_bat_dma);
  1878. /* Set reset mode */
  1879. ravb_write(ndev, CCC_OPC_RESET, CCC);
  1880. pm_runtime_put_sync(&pdev->dev);
  1881. unregister_netdev(ndev);
  1882. netif_napi_del(&priv->napi[RAVB_NC]);
  1883. netif_napi_del(&priv->napi[RAVB_BE]);
  1884. ravb_mdio_release(priv);
  1885. pm_runtime_disable(&pdev->dev);
  1886. free_netdev(ndev);
  1887. platform_set_drvdata(pdev, NULL);
  1888. return 0;
  1889. }
  1890. static int ravb_wol_setup(struct net_device *ndev)
  1891. {
  1892. struct ravb_private *priv = netdev_priv(ndev);
  1893. /* Disable interrupts by clearing the interrupt masks. */
  1894. ravb_write(ndev, 0, RIC0);
  1895. ravb_write(ndev, 0, RIC2);
  1896. ravb_write(ndev, 0, TIC);
  1897. /* Only allow ECI interrupts */
  1898. synchronize_irq(priv->emac_irq);
  1899. napi_disable(&priv->napi[RAVB_NC]);
  1900. napi_disable(&priv->napi[RAVB_BE]);
  1901. ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
  1902. /* Enable MagicPacket */
  1903. ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
  1904. return enable_irq_wake(priv->emac_irq);
  1905. }
  1906. static int ravb_wol_restore(struct net_device *ndev)
  1907. {
  1908. struct ravb_private *priv = netdev_priv(ndev);
  1909. int ret;
  1910. napi_enable(&priv->napi[RAVB_NC]);
  1911. napi_enable(&priv->napi[RAVB_BE]);
  1912. /* Disable MagicPacket */
  1913. ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
  1914. ret = ravb_close(ndev);
  1915. if (ret < 0)
  1916. return ret;
  1917. return disable_irq_wake(priv->emac_irq);
  1918. }
  1919. static int __maybe_unused ravb_suspend(struct device *dev)
  1920. {
  1921. struct net_device *ndev = dev_get_drvdata(dev);
  1922. struct ravb_private *priv = netdev_priv(ndev);
  1923. int ret;
  1924. if (!netif_running(ndev))
  1925. return 0;
  1926. netif_device_detach(ndev);
  1927. if (priv->wol_enabled)
  1928. ret = ravb_wol_setup(ndev);
  1929. else
  1930. ret = ravb_close(ndev);
  1931. return ret;
  1932. }
  1933. static int __maybe_unused ravb_resume(struct device *dev)
  1934. {
  1935. struct net_device *ndev = dev_get_drvdata(dev);
  1936. struct ravb_private *priv = netdev_priv(ndev);
  1937. int ret = 0;
  1938. /* If WoL is enabled set reset mode to rearm the WoL logic */
  1939. if (priv->wol_enabled)
  1940. ravb_write(ndev, CCC_OPC_RESET, CCC);
  1941. /* All register have been reset to default values.
  1942. * Restore all registers which where setup at probe time and
  1943. * reopen device if it was running before system suspended.
  1944. */
  1945. /* Set AVB config mode */
  1946. ravb_set_config_mode(ndev);
  1947. /* Set GTI value */
  1948. ret = ravb_set_gti(ndev);
  1949. if (ret)
  1950. return ret;
  1951. /* Request GTI loading */
  1952. ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
  1953. if (priv->chip_id != RCAR_GEN2)
  1954. ravb_set_delay_mode(ndev);
  1955. /* Restore descriptor base address table */
  1956. ravb_write(ndev, priv->desc_bat_dma, DBAT);
  1957. if (netif_running(ndev)) {
  1958. if (priv->wol_enabled) {
  1959. ret = ravb_wol_restore(ndev);
  1960. if (ret)
  1961. return ret;
  1962. }
  1963. ret = ravb_open(ndev);
  1964. if (ret < 0)
  1965. return ret;
  1966. netif_device_attach(ndev);
  1967. }
  1968. return ret;
  1969. }
  1970. static int __maybe_unused ravb_runtime_nop(struct device *dev)
  1971. {
  1972. /* Runtime PM callback shared between ->runtime_suspend()
  1973. * and ->runtime_resume(). Simply returns success.
  1974. *
  1975. * This driver re-initializes all registers after
  1976. * pm_runtime_get_sync() anyway so there is no need
  1977. * to save and restore registers here.
  1978. */
  1979. return 0;
  1980. }
  1981. static const struct dev_pm_ops ravb_dev_pm_ops = {
  1982. SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
  1983. SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
  1984. };
  1985. static struct platform_driver ravb_driver = {
  1986. .probe = ravb_probe,
  1987. .remove = ravb_remove,
  1988. .driver = {
  1989. .name = "ravb",
  1990. .pm = &ravb_dev_pm_ops,
  1991. .of_match_table = ravb_match_table,
  1992. },
  1993. };
  1994. module_platform_driver(ravb_driver);
  1995. MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
  1996. MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
  1997. MODULE_LICENSE("GPL v2");