rtasd.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615
  1. /*
  2. * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Communication to userspace based on kernel/printk.c
  10. */
  11. #include <linux/types.h>
  12. #include <linux/errno.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/poll.h>
  16. #include <linux/proc_fs.h>
  17. #include <linux/init.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/spinlock.h>
  20. #include <linux/cpu.h>
  21. #include <linux/workqueue.h>
  22. #include <linux/slab.h>
  23. #include <linux/topology.h>
  24. #include <linux/uaccess.h>
  25. #include <asm/io.h>
  26. #include <asm/rtas.h>
  27. #include <asm/prom.h>
  28. #include <asm/nvram.h>
  29. #include <linux/atomic.h>
  30. #include <asm/machdep.h>
  31. #include <asm/topology.h>
  32. static DEFINE_SPINLOCK(rtasd_log_lock);
  33. static DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);
  34. static char *rtas_log_buf;
  35. static unsigned long rtas_log_start;
  36. static unsigned long rtas_log_size;
  37. static int surveillance_timeout = -1;
  38. static unsigned int rtas_error_log_max;
  39. static unsigned int rtas_error_log_buffer_max;
  40. /* RTAS service tokens */
  41. static unsigned int event_scan;
  42. static unsigned int rtas_event_scan_rate;
  43. static bool full_rtas_msgs;
  44. /* Stop logging to nvram after first fatal error */
  45. static int logging_enabled; /* Until we initialize everything,
  46. * make sure we don't try logging
  47. * anything */
  48. static int error_log_cnt;
  49. /*
  50. * Since we use 32 bit RTAS, the physical address of this must be below
  51. * 4G or else bad things happen. Allocate this in the kernel data and
  52. * make it big enough.
  53. */
  54. static unsigned char logdata[RTAS_ERROR_LOG_MAX];
  55. static char *rtas_type[] = {
  56. "Unknown", "Retry", "TCE Error", "Internal Device Failure",
  57. "Timeout", "Data Parity", "Address Parity", "Cache Parity",
  58. "Address Invalid", "ECC Uncorrected", "ECC Corrupted",
  59. };
  60. static char *rtas_event_type(int type)
  61. {
  62. if ((type > 0) && (type < 11))
  63. return rtas_type[type];
  64. switch (type) {
  65. case RTAS_TYPE_EPOW:
  66. return "EPOW";
  67. case RTAS_TYPE_PLATFORM:
  68. return "Platform Error";
  69. case RTAS_TYPE_IO:
  70. return "I/O Event";
  71. case RTAS_TYPE_INFO:
  72. return "Platform Information Event";
  73. case RTAS_TYPE_DEALLOC:
  74. return "Resource Deallocation Event";
  75. case RTAS_TYPE_DUMP:
  76. return "Dump Notification Event";
  77. case RTAS_TYPE_PRRN:
  78. return "Platform Resource Reassignment Event";
  79. }
  80. return rtas_type[0];
  81. }
  82. /* To see this info, grep RTAS /var/log/messages and each entry
  83. * will be collected together with obvious begin/end.
  84. * There will be a unique identifier on the begin and end lines.
  85. * This will persist across reboots.
  86. *
  87. * format of error logs returned from RTAS:
  88. * bytes (size) : contents
  89. * --------------------------------------------------------
  90. * 0-7 (8) : rtas_error_log
  91. * 8-47 (40) : extended info
  92. * 48-51 (4) : vendor id
  93. * 52-1023 (vendor specific) : location code and debug data
  94. */
  95. static void printk_log_rtas(char *buf, int len)
  96. {
  97. int i,j,n = 0;
  98. int perline = 16;
  99. char buffer[64];
  100. char * str = "RTAS event";
  101. if (full_rtas_msgs) {
  102. printk(RTAS_DEBUG "%d -------- %s begin --------\n",
  103. error_log_cnt, str);
  104. /*
  105. * Print perline bytes on each line, each line will start
  106. * with RTAS and a changing number, so syslogd will
  107. * print lines that are otherwise the same. Separate every
  108. * 4 bytes with a space.
  109. */
  110. for (i = 0; i < len; i++) {
  111. j = i % perline;
  112. if (j == 0) {
  113. memset(buffer, 0, sizeof(buffer));
  114. n = sprintf(buffer, "RTAS %d:", i/perline);
  115. }
  116. if ((i % 4) == 0)
  117. n += sprintf(buffer+n, " ");
  118. n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);
  119. if (j == (perline-1))
  120. printk(KERN_DEBUG "%s\n", buffer);
  121. }
  122. if ((i % perline) != 0)
  123. printk(KERN_DEBUG "%s\n", buffer);
  124. printk(RTAS_DEBUG "%d -------- %s end ----------\n",
  125. error_log_cnt, str);
  126. } else {
  127. struct rtas_error_log *errlog = (struct rtas_error_log *)buf;
  128. printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n",
  129. error_log_cnt, rtas_event_type(rtas_error_type(errlog)),
  130. rtas_error_severity(errlog));
  131. }
  132. }
  133. static int log_rtas_len(char * buf)
  134. {
  135. int len;
  136. struct rtas_error_log *err;
  137. uint32_t extended_log_length;
  138. /* rtas fixed header */
  139. len = 8;
  140. err = (struct rtas_error_log *)buf;
  141. extended_log_length = rtas_error_extended_log_length(err);
  142. if (rtas_error_extended(err) && extended_log_length) {
  143. /* extended header */
  144. len += extended_log_length;
  145. }
  146. if (rtas_error_log_max == 0)
  147. rtas_error_log_max = rtas_get_error_log_max();
  148. if (len > rtas_error_log_max)
  149. len = rtas_error_log_max;
  150. return len;
  151. }
  152. /*
  153. * First write to nvram, if fatal error, that is the only
  154. * place we log the info. The error will be picked up
  155. * on the next reboot by rtasd. If not fatal, run the
  156. * method for the type of error. Currently, only RTAS
  157. * errors have methods implemented, but in the future
  158. * there might be a need to store data in nvram before a
  159. * call to panic().
  160. *
  161. * XXX We write to nvram periodically, to indicate error has
  162. * been written and sync'd, but there is a possibility
  163. * that if we don't shutdown correctly, a duplicate error
  164. * record will be created on next reboot.
  165. */
  166. void pSeries_log_error(char *buf, unsigned int err_type, int fatal)
  167. {
  168. unsigned long offset;
  169. unsigned long s;
  170. int len = 0;
  171. pr_debug("rtasd: logging event\n");
  172. if (buf == NULL)
  173. return;
  174. spin_lock_irqsave(&rtasd_log_lock, s);
  175. /* get length and increase count */
  176. switch (err_type & ERR_TYPE_MASK) {
  177. case ERR_TYPE_RTAS_LOG:
  178. len = log_rtas_len(buf);
  179. if (!(err_type & ERR_FLAG_BOOT))
  180. error_log_cnt++;
  181. break;
  182. case ERR_TYPE_KERNEL_PANIC:
  183. default:
  184. WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
  185. spin_unlock_irqrestore(&rtasd_log_lock, s);
  186. return;
  187. }
  188. #ifdef CONFIG_PPC64
  189. /* Write error to NVRAM */
  190. if (logging_enabled && !(err_type & ERR_FLAG_BOOT))
  191. nvram_write_error_log(buf, len, err_type, error_log_cnt);
  192. #endif /* CONFIG_PPC64 */
  193. /*
  194. * rtas errors can occur during boot, and we do want to capture
  195. * those somewhere, even if nvram isn't ready (why not?), and even
  196. * if rtasd isn't ready. Put them into the boot log, at least.
  197. */
  198. if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)
  199. printk_log_rtas(buf, len);
  200. /* Check to see if we need to or have stopped logging */
  201. if (fatal || !logging_enabled) {
  202. logging_enabled = 0;
  203. WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
  204. spin_unlock_irqrestore(&rtasd_log_lock, s);
  205. return;
  206. }
  207. /* call type specific method for error */
  208. switch (err_type & ERR_TYPE_MASK) {
  209. case ERR_TYPE_RTAS_LOG:
  210. offset = rtas_error_log_buffer_max *
  211. ((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);
  212. /* First copy over sequence number */
  213. memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));
  214. /* Second copy over error log data */
  215. offset += sizeof(int);
  216. memcpy(&rtas_log_buf[offset], buf, len);
  217. if (rtas_log_size < LOG_NUMBER)
  218. rtas_log_size += 1;
  219. else
  220. rtas_log_start += 1;
  221. WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
  222. spin_unlock_irqrestore(&rtasd_log_lock, s);
  223. wake_up_interruptible(&rtas_log_wait);
  224. break;
  225. case ERR_TYPE_KERNEL_PANIC:
  226. default:
  227. WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
  228. spin_unlock_irqrestore(&rtasd_log_lock, s);
  229. return;
  230. }
  231. }
  232. #ifdef CONFIG_PPC_PSERIES
  233. static s32 prrn_update_scope;
  234. static void prrn_work_fn(struct work_struct *work)
  235. {
  236. /*
  237. * For PRRN, we must pass the negative of the scope value in
  238. * the RTAS event.
  239. */
  240. pseries_devicetree_update(-prrn_update_scope);
  241. numa_update_cpu_topology(false);
  242. }
  243. static DECLARE_WORK(prrn_work, prrn_work_fn);
  244. static void prrn_schedule_update(u32 scope)
  245. {
  246. flush_work(&prrn_work);
  247. prrn_update_scope = scope;
  248. schedule_work(&prrn_work);
  249. }
  250. static void handle_rtas_event(const struct rtas_error_log *log)
  251. {
  252. if (rtas_error_type(log) != RTAS_TYPE_PRRN || !prrn_is_enabled())
  253. return;
  254. /* For PRRN Events the extended log length is used to denote
  255. * the scope for calling rtas update-nodes.
  256. */
  257. prrn_schedule_update(rtas_error_extended_log_length(log));
  258. }
  259. #else
  260. static void handle_rtas_event(const struct rtas_error_log *log)
  261. {
  262. return;
  263. }
  264. #endif
  265. static int rtas_log_open(struct inode * inode, struct file * file)
  266. {
  267. return 0;
  268. }
  269. static int rtas_log_release(struct inode * inode, struct file * file)
  270. {
  271. return 0;
  272. }
  273. /* This will check if all events are logged, if they are then, we
  274. * know that we can safely clear the events in NVRAM.
  275. * Next we'll sit and wait for something else to log.
  276. */
  277. static ssize_t rtas_log_read(struct file * file, char __user * buf,
  278. size_t count, loff_t *ppos)
  279. {
  280. int error;
  281. char *tmp;
  282. unsigned long s;
  283. unsigned long offset;
  284. if (!buf || count < rtas_error_log_buffer_max)
  285. return -EINVAL;
  286. count = rtas_error_log_buffer_max;
  287. if (!access_ok(VERIFY_WRITE, buf, count))
  288. return -EFAULT;
  289. tmp = kmalloc(count, GFP_KERNEL);
  290. if (!tmp)
  291. return -ENOMEM;
  292. spin_lock_irqsave(&rtasd_log_lock, s);
  293. /* if it's 0, then we know we got the last one (the one in NVRAM) */
  294. while (rtas_log_size == 0) {
  295. if (file->f_flags & O_NONBLOCK) {
  296. spin_unlock_irqrestore(&rtasd_log_lock, s);
  297. error = -EAGAIN;
  298. goto out;
  299. }
  300. if (!logging_enabled) {
  301. spin_unlock_irqrestore(&rtasd_log_lock, s);
  302. error = -ENODATA;
  303. goto out;
  304. }
  305. #ifdef CONFIG_PPC64
  306. nvram_clear_error_log();
  307. #endif /* CONFIG_PPC64 */
  308. spin_unlock_irqrestore(&rtasd_log_lock, s);
  309. error = wait_event_interruptible(rtas_log_wait, rtas_log_size);
  310. if (error)
  311. goto out;
  312. spin_lock_irqsave(&rtasd_log_lock, s);
  313. }
  314. offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);
  315. memcpy(tmp, &rtas_log_buf[offset], count);
  316. rtas_log_start += 1;
  317. rtas_log_size -= 1;
  318. spin_unlock_irqrestore(&rtasd_log_lock, s);
  319. error = copy_to_user(buf, tmp, count) ? -EFAULT : count;
  320. out:
  321. kfree(tmp);
  322. return error;
  323. }
  324. static __poll_t rtas_log_poll(struct file *file, poll_table * wait)
  325. {
  326. poll_wait(file, &rtas_log_wait, wait);
  327. if (rtas_log_size)
  328. return EPOLLIN | EPOLLRDNORM;
  329. return 0;
  330. }
  331. static const struct file_operations proc_rtas_log_operations = {
  332. .read = rtas_log_read,
  333. .poll = rtas_log_poll,
  334. .open = rtas_log_open,
  335. .release = rtas_log_release,
  336. .llseek = noop_llseek,
  337. };
  338. static int enable_surveillance(int timeout)
  339. {
  340. int error;
  341. error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);
  342. if (error == 0)
  343. return 0;
  344. if (error == -EINVAL) {
  345. printk(KERN_DEBUG "rtasd: surveillance not supported\n");
  346. return 0;
  347. }
  348. printk(KERN_ERR "rtasd: could not update surveillance\n");
  349. return -1;
  350. }
  351. static void do_event_scan(void)
  352. {
  353. int error;
  354. do {
  355. memset(logdata, 0, rtas_error_log_max);
  356. error = rtas_call(event_scan, 4, 1, NULL,
  357. RTAS_EVENT_SCAN_ALL_EVENTS, 0,
  358. __pa(logdata), rtas_error_log_max);
  359. if (error == -1) {
  360. printk(KERN_ERR "event-scan failed\n");
  361. break;
  362. }
  363. if (error == 0) {
  364. if (rtas_error_type((struct rtas_error_log *)logdata) !=
  365. RTAS_TYPE_PRRN)
  366. pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG,
  367. 0);
  368. handle_rtas_event((struct rtas_error_log *)logdata);
  369. }
  370. } while(error == 0);
  371. }
  372. static void rtas_event_scan(struct work_struct *w);
  373. static DECLARE_DELAYED_WORK(event_scan_work, rtas_event_scan);
  374. /*
  375. * Delay should be at least one second since some machines have problems if
  376. * we call event-scan too quickly.
  377. */
  378. static unsigned long event_scan_delay = 1*HZ;
  379. static int first_pass = 1;
  380. static void rtas_event_scan(struct work_struct *w)
  381. {
  382. unsigned int cpu;
  383. do_event_scan();
  384. get_online_cpus();
  385. /* raw_ OK because just using CPU as starting point. */
  386. cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
  387. if (cpu >= nr_cpu_ids) {
  388. cpu = cpumask_first(cpu_online_mask);
  389. if (first_pass) {
  390. first_pass = 0;
  391. event_scan_delay = 30*HZ/rtas_event_scan_rate;
  392. if (surveillance_timeout != -1) {
  393. pr_debug("rtasd: enabling surveillance\n");
  394. enable_surveillance(surveillance_timeout);
  395. pr_debug("rtasd: surveillance enabled\n");
  396. }
  397. }
  398. }
  399. schedule_delayed_work_on(cpu, &event_scan_work,
  400. __round_jiffies_relative(event_scan_delay, cpu));
  401. put_online_cpus();
  402. }
  403. #ifdef CONFIG_PPC64
  404. static void retrieve_nvram_error_log(void)
  405. {
  406. unsigned int err_type ;
  407. int rc ;
  408. /* See if we have any error stored in NVRAM */
  409. memset(logdata, 0, rtas_error_log_max);
  410. rc = nvram_read_error_log(logdata, rtas_error_log_max,
  411. &err_type, &error_log_cnt);
  412. /* We can use rtas_log_buf now */
  413. logging_enabled = 1;
  414. if (!rc) {
  415. if (err_type != ERR_FLAG_ALREADY_LOGGED) {
  416. pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);
  417. }
  418. }
  419. }
  420. #else /* CONFIG_PPC64 */
  421. static void retrieve_nvram_error_log(void)
  422. {
  423. }
  424. #endif /* CONFIG_PPC64 */
  425. static void start_event_scan(void)
  426. {
  427. printk(KERN_DEBUG "RTAS daemon started\n");
  428. pr_debug("rtasd: will sleep for %d milliseconds\n",
  429. (30000 / rtas_event_scan_rate));
  430. /* Retrieve errors from nvram if any */
  431. retrieve_nvram_error_log();
  432. schedule_delayed_work_on(cpumask_first(cpu_online_mask),
  433. &event_scan_work, event_scan_delay);
  434. }
  435. /* Cancel the rtas event scan work */
  436. void rtas_cancel_event_scan(void)
  437. {
  438. cancel_delayed_work_sync(&event_scan_work);
  439. }
  440. EXPORT_SYMBOL_GPL(rtas_cancel_event_scan);
  441. static int __init rtas_event_scan_init(void)
  442. {
  443. if (!machine_is(pseries) && !machine_is(chrp))
  444. return 0;
  445. /* No RTAS */
  446. event_scan = rtas_token("event-scan");
  447. if (event_scan == RTAS_UNKNOWN_SERVICE) {
  448. printk(KERN_INFO "rtasd: No event-scan on system\n");
  449. return -ENODEV;
  450. }
  451. rtas_event_scan_rate = rtas_token("rtas-event-scan-rate");
  452. if (rtas_event_scan_rate == RTAS_UNKNOWN_SERVICE) {
  453. printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n");
  454. return -ENODEV;
  455. }
  456. if (!rtas_event_scan_rate) {
  457. /* Broken firmware: take a rate of zero to mean don't scan */
  458. printk(KERN_DEBUG "rtasd: scan rate is 0, not scanning\n");
  459. return 0;
  460. }
  461. /* Make room for the sequence number */
  462. rtas_error_log_max = rtas_get_error_log_max();
  463. rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);
  464. rtas_log_buf = vmalloc(array_size(LOG_NUMBER,
  465. rtas_error_log_buffer_max));
  466. if (!rtas_log_buf) {
  467. printk(KERN_ERR "rtasd: no memory\n");
  468. return -ENOMEM;
  469. }
  470. start_event_scan();
  471. return 0;
  472. }
  473. arch_initcall(rtas_event_scan_init);
  474. static int __init rtas_init(void)
  475. {
  476. struct proc_dir_entry *entry;
  477. if (!machine_is(pseries) && !machine_is(chrp))
  478. return 0;
  479. if (!rtas_log_buf)
  480. return -ENODEV;
  481. entry = proc_create("powerpc/rtas/error_log", 0400, NULL,
  482. &proc_rtas_log_operations);
  483. if (!entry)
  484. printk(KERN_ERR "Failed to create error_log proc entry\n");
  485. return 0;
  486. }
  487. __initcall(rtas_init);
  488. static int __init surveillance_setup(char *str)
  489. {
  490. int i;
  491. /* We only do surveillance on pseries */
  492. if (!machine_is(pseries))
  493. return 0;
  494. if (get_option(&str,&i)) {
  495. if (i >= 0 && i <= 255)
  496. surveillance_timeout = i;
  497. }
  498. return 1;
  499. }
  500. __setup("surveillance=", surveillance_setup);
  501. static int __init rtasmsgs_setup(char *str)
  502. {
  503. return (kstrtobool(str, &full_rtas_msgs) == 0);
  504. }
  505. __setup("rtasmsgs=", rtasmsgs_setup);