actions.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897
  1. /*
  2. * Copyright (c) 2007-2014 Nicira, Inc.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of version 2 of the GNU General Public
  6. * License as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  16. * 02110-1301, USA
  17. */
  18. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19. #include <linux/skbuff.h>
  20. #include <linux/in.h>
  21. #include <linux/ip.h>
  22. #include <linux/openvswitch.h>
  23. #include <linux/sctp.h>
  24. #include <linux/tcp.h>
  25. #include <linux/udp.h>
  26. #include <linux/in6.h>
  27. #include <linux/if_arp.h>
  28. #include <linux/if_vlan.h>
  29. #include <net/ip.h>
  30. #include <net/ipv6.h>
  31. #include <net/checksum.h>
  32. #include <net/dsfield.h>
  33. #include <net/mpls.h>
  34. #include <net/sctp/checksum.h>
  35. #include "datapath.h"
  36. #include "flow.h"
  37. #include "vport.h"
  38. static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
  39. struct sw_flow_key *key,
  40. const struct nlattr *attr, int len);
  41. struct deferred_action {
  42. struct sk_buff *skb;
  43. const struct nlattr *actions;
  44. /* Store pkt_key clone when creating deferred action. */
  45. struct sw_flow_key pkt_key;
  46. };
  47. #define DEFERRED_ACTION_FIFO_SIZE 10
  48. struct action_fifo {
  49. int head;
  50. int tail;
  51. /* Deferred action fifo queue storage. */
  52. struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
  53. };
  54. static struct action_fifo __percpu *action_fifos;
  55. static DEFINE_PER_CPU(int, exec_actions_level);
  56. static void action_fifo_init(struct action_fifo *fifo)
  57. {
  58. fifo->head = 0;
  59. fifo->tail = 0;
  60. }
  61. static bool action_fifo_is_empty(struct action_fifo *fifo)
  62. {
  63. return (fifo->head == fifo->tail);
  64. }
  65. static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
  66. {
  67. if (action_fifo_is_empty(fifo))
  68. return NULL;
  69. return &fifo->fifo[fifo->tail++];
  70. }
  71. static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
  72. {
  73. if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
  74. return NULL;
  75. return &fifo->fifo[fifo->head++];
  76. }
  77. /* Return true if fifo is not full */
  78. static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
  79. struct sw_flow_key *key,
  80. const struct nlattr *attr)
  81. {
  82. struct action_fifo *fifo;
  83. struct deferred_action *da;
  84. fifo = this_cpu_ptr(action_fifos);
  85. da = action_fifo_put(fifo);
  86. if (da) {
  87. da->skb = skb;
  88. da->actions = attr;
  89. da->pkt_key = *key;
  90. }
  91. return da;
  92. }
  93. static int make_writable(struct sk_buff *skb, int write_len)
  94. {
  95. if (!pskb_may_pull(skb, write_len))
  96. return -ENOMEM;
  97. if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
  98. return 0;
  99. return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  100. }
  101. static int push_mpls(struct sk_buff *skb,
  102. const struct ovs_action_push_mpls *mpls)
  103. {
  104. __be32 *new_mpls_lse;
  105. struct ethhdr *hdr;
  106. /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
  107. if (skb->encapsulation)
  108. return -ENOTSUPP;
  109. if (skb_cow_head(skb, MPLS_HLEN) < 0)
  110. return -ENOMEM;
  111. skb_push(skb, MPLS_HLEN);
  112. memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
  113. skb->mac_len);
  114. skb_reset_mac_header(skb);
  115. new_mpls_lse = (__be32 *)skb_mpls_header(skb);
  116. *new_mpls_lse = mpls->mpls_lse;
  117. if (skb->ip_summed == CHECKSUM_COMPLETE)
  118. skb->csum = csum_add(skb->csum, csum_partial(new_mpls_lse,
  119. MPLS_HLEN, 0));
  120. hdr = eth_hdr(skb);
  121. hdr->h_proto = mpls->mpls_ethertype;
  122. skb_set_inner_protocol(skb, skb->protocol);
  123. skb->protocol = mpls->mpls_ethertype;
  124. return 0;
  125. }
  126. static int pop_mpls(struct sk_buff *skb, const __be16 ethertype)
  127. {
  128. struct ethhdr *hdr;
  129. int err;
  130. err = make_writable(skb, skb->mac_len + MPLS_HLEN);
  131. if (unlikely(err))
  132. return err;
  133. if (skb->ip_summed == CHECKSUM_COMPLETE)
  134. skb->csum = csum_sub(skb->csum,
  135. csum_partial(skb_mpls_header(skb),
  136. MPLS_HLEN, 0));
  137. memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
  138. skb->mac_len);
  139. __skb_pull(skb, MPLS_HLEN);
  140. skb_reset_mac_header(skb);
  141. /* skb_mpls_header() is used to locate the ethertype
  142. * field correctly in the presence of VLAN tags.
  143. */
  144. hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
  145. hdr->h_proto = ethertype;
  146. if (eth_p_mpls(skb->protocol))
  147. skb->protocol = ethertype;
  148. return 0;
  149. }
  150. static int set_mpls(struct sk_buff *skb, const __be32 *mpls_lse)
  151. {
  152. __be32 *stack;
  153. int err;
  154. err = make_writable(skb, skb->mac_len + MPLS_HLEN);
  155. if (unlikely(err))
  156. return err;
  157. stack = (__be32 *)skb_mpls_header(skb);
  158. if (skb->ip_summed == CHECKSUM_COMPLETE) {
  159. __be32 diff[] = { ~(*stack), *mpls_lse };
  160. skb->csum = ~csum_partial((char *)diff, sizeof(diff),
  161. ~skb->csum);
  162. }
  163. *stack = *mpls_lse;
  164. return 0;
  165. }
  166. /* remove VLAN header from packet and update csum accordingly. */
  167. static int __pop_vlan_tci(struct sk_buff *skb, __be16 *current_tci)
  168. {
  169. struct vlan_hdr *vhdr;
  170. int err;
  171. err = make_writable(skb, VLAN_ETH_HLEN);
  172. if (unlikely(err))
  173. return err;
  174. if (skb->ip_summed == CHECKSUM_COMPLETE)
  175. skb->csum = csum_sub(skb->csum, csum_partial(skb->data
  176. + (2 * ETH_ALEN), VLAN_HLEN, 0));
  177. vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
  178. *current_tci = vhdr->h_vlan_TCI;
  179. memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
  180. __skb_pull(skb, VLAN_HLEN);
  181. vlan_set_encap_proto(skb, vhdr);
  182. skb->mac_header += VLAN_HLEN;
  183. if (skb_network_offset(skb) < ETH_HLEN)
  184. skb_set_network_header(skb, ETH_HLEN);
  185. /* Update mac_len for subsequent MPLS actions */
  186. skb_reset_mac_len(skb);
  187. return 0;
  188. }
  189. static int pop_vlan(struct sk_buff *skb)
  190. {
  191. __be16 tci;
  192. int err;
  193. if (likely(vlan_tx_tag_present(skb))) {
  194. skb->vlan_tci = 0;
  195. } else {
  196. if (unlikely(skb->protocol != htons(ETH_P_8021Q) ||
  197. skb->len < VLAN_ETH_HLEN))
  198. return 0;
  199. err = __pop_vlan_tci(skb, &tci);
  200. if (err)
  201. return err;
  202. }
  203. /* move next vlan tag to hw accel tag */
  204. if (likely(skb->protocol != htons(ETH_P_8021Q) ||
  205. skb->len < VLAN_ETH_HLEN))
  206. return 0;
  207. err = __pop_vlan_tci(skb, &tci);
  208. if (unlikely(err))
  209. return err;
  210. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(tci));
  211. return 0;
  212. }
  213. static int push_vlan(struct sk_buff *skb, const struct ovs_action_push_vlan *vlan)
  214. {
  215. if (unlikely(vlan_tx_tag_present(skb))) {
  216. u16 current_tag;
  217. /* push down current VLAN tag */
  218. current_tag = vlan_tx_tag_get(skb);
  219. if (!__vlan_put_tag(skb, skb->vlan_proto, current_tag))
  220. return -ENOMEM;
  221. /* Update mac_len for subsequent MPLS actions */
  222. skb->mac_len += VLAN_HLEN;
  223. if (skb->ip_summed == CHECKSUM_COMPLETE)
  224. skb->csum = csum_add(skb->csum, csum_partial(skb->data
  225. + (2 * ETH_ALEN), VLAN_HLEN, 0));
  226. }
  227. __vlan_hwaccel_put_tag(skb, vlan->vlan_tpid, ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
  228. return 0;
  229. }
  230. static int set_eth_addr(struct sk_buff *skb,
  231. const struct ovs_key_ethernet *eth_key)
  232. {
  233. int err;
  234. err = make_writable(skb, ETH_HLEN);
  235. if (unlikely(err))
  236. return err;
  237. skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
  238. ether_addr_copy(eth_hdr(skb)->h_source, eth_key->eth_src);
  239. ether_addr_copy(eth_hdr(skb)->h_dest, eth_key->eth_dst);
  240. ovs_skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
  241. return 0;
  242. }
  243. static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
  244. __be32 *addr, __be32 new_addr)
  245. {
  246. int transport_len = skb->len - skb_transport_offset(skb);
  247. if (nh->protocol == IPPROTO_TCP) {
  248. if (likely(transport_len >= sizeof(struct tcphdr)))
  249. inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
  250. *addr, new_addr, 1);
  251. } else if (nh->protocol == IPPROTO_UDP) {
  252. if (likely(transport_len >= sizeof(struct udphdr))) {
  253. struct udphdr *uh = udp_hdr(skb);
  254. if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
  255. inet_proto_csum_replace4(&uh->check, skb,
  256. *addr, new_addr, 1);
  257. if (!uh->check)
  258. uh->check = CSUM_MANGLED_0;
  259. }
  260. }
  261. }
  262. csum_replace4(&nh->check, *addr, new_addr);
  263. skb_clear_hash(skb);
  264. *addr = new_addr;
  265. }
  266. static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
  267. __be32 addr[4], const __be32 new_addr[4])
  268. {
  269. int transport_len = skb->len - skb_transport_offset(skb);
  270. if (l4_proto == IPPROTO_TCP) {
  271. if (likely(transport_len >= sizeof(struct tcphdr)))
  272. inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
  273. addr, new_addr, 1);
  274. } else if (l4_proto == IPPROTO_UDP) {
  275. if (likely(transport_len >= sizeof(struct udphdr))) {
  276. struct udphdr *uh = udp_hdr(skb);
  277. if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
  278. inet_proto_csum_replace16(&uh->check, skb,
  279. addr, new_addr, 1);
  280. if (!uh->check)
  281. uh->check = CSUM_MANGLED_0;
  282. }
  283. }
  284. }
  285. }
  286. static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
  287. __be32 addr[4], const __be32 new_addr[4],
  288. bool recalculate_csum)
  289. {
  290. if (recalculate_csum)
  291. update_ipv6_checksum(skb, l4_proto, addr, new_addr);
  292. skb_clear_hash(skb);
  293. memcpy(addr, new_addr, sizeof(__be32[4]));
  294. }
  295. static void set_ipv6_tc(struct ipv6hdr *nh, u8 tc)
  296. {
  297. nh->priority = tc >> 4;
  298. nh->flow_lbl[0] = (nh->flow_lbl[0] & 0x0F) | ((tc & 0x0F) << 4);
  299. }
  300. static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl)
  301. {
  302. nh->flow_lbl[0] = (nh->flow_lbl[0] & 0xF0) | (fl & 0x000F0000) >> 16;
  303. nh->flow_lbl[1] = (fl & 0x0000FF00) >> 8;
  304. nh->flow_lbl[2] = fl & 0x000000FF;
  305. }
  306. static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl)
  307. {
  308. csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
  309. nh->ttl = new_ttl;
  310. }
  311. static int set_ipv4(struct sk_buff *skb, const struct ovs_key_ipv4 *ipv4_key)
  312. {
  313. struct iphdr *nh;
  314. int err;
  315. err = make_writable(skb, skb_network_offset(skb) +
  316. sizeof(struct iphdr));
  317. if (unlikely(err))
  318. return err;
  319. nh = ip_hdr(skb);
  320. if (ipv4_key->ipv4_src != nh->saddr)
  321. set_ip_addr(skb, nh, &nh->saddr, ipv4_key->ipv4_src);
  322. if (ipv4_key->ipv4_dst != nh->daddr)
  323. set_ip_addr(skb, nh, &nh->daddr, ipv4_key->ipv4_dst);
  324. if (ipv4_key->ipv4_tos != nh->tos)
  325. ipv4_change_dsfield(nh, 0, ipv4_key->ipv4_tos);
  326. if (ipv4_key->ipv4_ttl != nh->ttl)
  327. set_ip_ttl(skb, nh, ipv4_key->ipv4_ttl);
  328. return 0;
  329. }
  330. static int set_ipv6(struct sk_buff *skb, const struct ovs_key_ipv6 *ipv6_key)
  331. {
  332. struct ipv6hdr *nh;
  333. int err;
  334. __be32 *saddr;
  335. __be32 *daddr;
  336. err = make_writable(skb, skb_network_offset(skb) +
  337. sizeof(struct ipv6hdr));
  338. if (unlikely(err))
  339. return err;
  340. nh = ipv6_hdr(skb);
  341. saddr = (__be32 *)&nh->saddr;
  342. daddr = (__be32 *)&nh->daddr;
  343. if (memcmp(ipv6_key->ipv6_src, saddr, sizeof(ipv6_key->ipv6_src)))
  344. set_ipv6_addr(skb, ipv6_key->ipv6_proto, saddr,
  345. ipv6_key->ipv6_src, true);
  346. if (memcmp(ipv6_key->ipv6_dst, daddr, sizeof(ipv6_key->ipv6_dst))) {
  347. unsigned int offset = 0;
  348. int flags = IP6_FH_F_SKIP_RH;
  349. bool recalc_csum = true;
  350. if (ipv6_ext_hdr(nh->nexthdr))
  351. recalc_csum = ipv6_find_hdr(skb, &offset,
  352. NEXTHDR_ROUTING, NULL,
  353. &flags) != NEXTHDR_ROUTING;
  354. set_ipv6_addr(skb, ipv6_key->ipv6_proto, daddr,
  355. ipv6_key->ipv6_dst, recalc_csum);
  356. }
  357. set_ipv6_tc(nh, ipv6_key->ipv6_tclass);
  358. set_ipv6_fl(nh, ntohl(ipv6_key->ipv6_label));
  359. nh->hop_limit = ipv6_key->ipv6_hlimit;
  360. return 0;
  361. }
  362. /* Must follow make_writable() since that can move the skb data. */
  363. static void set_tp_port(struct sk_buff *skb, __be16 *port,
  364. __be16 new_port, __sum16 *check)
  365. {
  366. inet_proto_csum_replace2(check, skb, *port, new_port, 0);
  367. *port = new_port;
  368. skb_clear_hash(skb);
  369. }
  370. static void set_udp_port(struct sk_buff *skb, __be16 *port, __be16 new_port)
  371. {
  372. struct udphdr *uh = udp_hdr(skb);
  373. if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
  374. set_tp_port(skb, port, new_port, &uh->check);
  375. if (!uh->check)
  376. uh->check = CSUM_MANGLED_0;
  377. } else {
  378. *port = new_port;
  379. skb_clear_hash(skb);
  380. }
  381. }
  382. static int set_udp(struct sk_buff *skb, const struct ovs_key_udp *udp_port_key)
  383. {
  384. struct udphdr *uh;
  385. int err;
  386. err = make_writable(skb, skb_transport_offset(skb) +
  387. sizeof(struct udphdr));
  388. if (unlikely(err))
  389. return err;
  390. uh = udp_hdr(skb);
  391. if (udp_port_key->udp_src != uh->source)
  392. set_udp_port(skb, &uh->source, udp_port_key->udp_src);
  393. if (udp_port_key->udp_dst != uh->dest)
  394. set_udp_port(skb, &uh->dest, udp_port_key->udp_dst);
  395. return 0;
  396. }
  397. static int set_tcp(struct sk_buff *skb, const struct ovs_key_tcp *tcp_port_key)
  398. {
  399. struct tcphdr *th;
  400. int err;
  401. err = make_writable(skb, skb_transport_offset(skb) +
  402. sizeof(struct tcphdr));
  403. if (unlikely(err))
  404. return err;
  405. th = tcp_hdr(skb);
  406. if (tcp_port_key->tcp_src != th->source)
  407. set_tp_port(skb, &th->source, tcp_port_key->tcp_src, &th->check);
  408. if (tcp_port_key->tcp_dst != th->dest)
  409. set_tp_port(skb, &th->dest, tcp_port_key->tcp_dst, &th->check);
  410. return 0;
  411. }
  412. static int set_sctp(struct sk_buff *skb,
  413. const struct ovs_key_sctp *sctp_port_key)
  414. {
  415. struct sctphdr *sh;
  416. int err;
  417. unsigned int sctphoff = skb_transport_offset(skb);
  418. err = make_writable(skb, sctphoff + sizeof(struct sctphdr));
  419. if (unlikely(err))
  420. return err;
  421. sh = sctp_hdr(skb);
  422. if (sctp_port_key->sctp_src != sh->source ||
  423. sctp_port_key->sctp_dst != sh->dest) {
  424. __le32 old_correct_csum, new_csum, old_csum;
  425. old_csum = sh->checksum;
  426. old_correct_csum = sctp_compute_cksum(skb, sctphoff);
  427. sh->source = sctp_port_key->sctp_src;
  428. sh->dest = sctp_port_key->sctp_dst;
  429. new_csum = sctp_compute_cksum(skb, sctphoff);
  430. /* Carry any checksum errors through. */
  431. sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
  432. skb_clear_hash(skb);
  433. }
  434. return 0;
  435. }
  436. static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port)
  437. {
  438. struct vport *vport = ovs_vport_rcu(dp, out_port);
  439. if (likely(vport))
  440. ovs_vport_send(vport, skb);
  441. else
  442. kfree_skb(skb);
  443. }
  444. static int output_userspace(struct datapath *dp, struct sk_buff *skb,
  445. struct sw_flow_key *key, const struct nlattr *attr)
  446. {
  447. struct dp_upcall_info upcall;
  448. const struct nlattr *a;
  449. int rem;
  450. upcall.cmd = OVS_PACKET_CMD_ACTION;
  451. upcall.key = key;
  452. upcall.userdata = NULL;
  453. upcall.portid = 0;
  454. for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
  455. a = nla_next(a, &rem)) {
  456. switch (nla_type(a)) {
  457. case OVS_USERSPACE_ATTR_USERDATA:
  458. upcall.userdata = a;
  459. break;
  460. case OVS_USERSPACE_ATTR_PID:
  461. upcall.portid = nla_get_u32(a);
  462. break;
  463. }
  464. }
  465. return ovs_dp_upcall(dp, skb, &upcall);
  466. }
  467. static int sample(struct datapath *dp, struct sk_buff *skb,
  468. struct sw_flow_key *key, const struct nlattr *attr)
  469. {
  470. const struct nlattr *acts_list = NULL;
  471. const struct nlattr *a;
  472. int rem;
  473. for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
  474. a = nla_next(a, &rem)) {
  475. switch (nla_type(a)) {
  476. case OVS_SAMPLE_ATTR_PROBABILITY:
  477. if (prandom_u32() >= nla_get_u32(a))
  478. return 0;
  479. break;
  480. case OVS_SAMPLE_ATTR_ACTIONS:
  481. acts_list = a;
  482. break;
  483. }
  484. }
  485. rem = nla_len(acts_list);
  486. a = nla_data(acts_list);
  487. /* Actions list is empty, do nothing */
  488. if (unlikely(!rem))
  489. return 0;
  490. /* The only known usage of sample action is having a single user-space
  491. * action. Treat this usage as a special case.
  492. * The output_userspace() should clone the skb to be sent to the
  493. * user space. This skb will be consumed by its caller.
  494. */
  495. if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
  496. nla_is_last(a, rem)))
  497. return output_userspace(dp, skb, key, a);
  498. skb = skb_clone(skb, GFP_ATOMIC);
  499. if (!skb)
  500. /* Skip the sample action when out of memory. */
  501. return 0;
  502. if (!add_deferred_actions(skb, key, a)) {
  503. if (net_ratelimit())
  504. pr_warn("%s: deferred actions limit reached, dropping sample action\n",
  505. ovs_dp_name(dp));
  506. kfree_skb(skb);
  507. }
  508. return 0;
  509. }
  510. static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
  511. const struct nlattr *attr)
  512. {
  513. struct ovs_action_hash *hash_act = nla_data(attr);
  514. u32 hash = 0;
  515. /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
  516. hash = skb_get_hash(skb);
  517. hash = jhash_1word(hash, hash_act->hash_basis);
  518. if (!hash)
  519. hash = 0x1;
  520. key->ovs_flow_hash = hash;
  521. }
  522. static int execute_set_action(struct sk_buff *skb,
  523. const struct nlattr *nested_attr)
  524. {
  525. int err = 0;
  526. switch (nla_type(nested_attr)) {
  527. case OVS_KEY_ATTR_PRIORITY:
  528. skb->priority = nla_get_u32(nested_attr);
  529. break;
  530. case OVS_KEY_ATTR_SKB_MARK:
  531. skb->mark = nla_get_u32(nested_attr);
  532. break;
  533. case OVS_KEY_ATTR_TUNNEL_INFO:
  534. OVS_CB(skb)->egress_tun_info = nla_data(nested_attr);
  535. break;
  536. case OVS_KEY_ATTR_ETHERNET:
  537. err = set_eth_addr(skb, nla_data(nested_attr));
  538. break;
  539. case OVS_KEY_ATTR_IPV4:
  540. err = set_ipv4(skb, nla_data(nested_attr));
  541. break;
  542. case OVS_KEY_ATTR_IPV6:
  543. err = set_ipv6(skb, nla_data(nested_attr));
  544. break;
  545. case OVS_KEY_ATTR_TCP:
  546. err = set_tcp(skb, nla_data(nested_attr));
  547. break;
  548. case OVS_KEY_ATTR_UDP:
  549. err = set_udp(skb, nla_data(nested_attr));
  550. break;
  551. case OVS_KEY_ATTR_SCTP:
  552. err = set_sctp(skb, nla_data(nested_attr));
  553. break;
  554. case OVS_KEY_ATTR_MPLS:
  555. err = set_mpls(skb, nla_data(nested_attr));
  556. break;
  557. }
  558. return err;
  559. }
  560. static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
  561. struct sw_flow_key *key,
  562. const struct nlattr *a, int rem)
  563. {
  564. struct deferred_action *da;
  565. int err;
  566. err = ovs_flow_key_update(skb, key);
  567. if (err)
  568. return err;
  569. if (!nla_is_last(a, rem)) {
  570. /* Recirc action is the not the last action
  571. * of the action list, need to clone the skb.
  572. */
  573. skb = skb_clone(skb, GFP_ATOMIC);
  574. /* Skip the recirc action when out of memory, but
  575. * continue on with the rest of the action list.
  576. */
  577. if (!skb)
  578. return 0;
  579. }
  580. da = add_deferred_actions(skb, key, NULL);
  581. if (da) {
  582. da->pkt_key.recirc_id = nla_get_u32(a);
  583. } else {
  584. kfree_skb(skb);
  585. if (net_ratelimit())
  586. pr_warn("%s: deferred action limit reached, drop recirc action\n",
  587. ovs_dp_name(dp));
  588. }
  589. return 0;
  590. }
  591. /* Execute a list of actions against 'skb'. */
  592. static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
  593. struct sw_flow_key *key,
  594. const struct nlattr *attr, int len)
  595. {
  596. /* Every output action needs a separate clone of 'skb', but the common
  597. * case is just a single output action, so that doing a clone and
  598. * then freeing the original skbuff is wasteful. So the following code
  599. * is slightly obscure just to avoid that. */
  600. int prev_port = -1;
  601. const struct nlattr *a;
  602. int rem;
  603. for (a = attr, rem = len; rem > 0;
  604. a = nla_next(a, &rem)) {
  605. int err = 0;
  606. if (unlikely(prev_port != -1)) {
  607. struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
  608. if (out_skb)
  609. do_output(dp, out_skb, prev_port);
  610. prev_port = -1;
  611. }
  612. switch (nla_type(a)) {
  613. case OVS_ACTION_ATTR_OUTPUT:
  614. prev_port = nla_get_u32(a);
  615. break;
  616. case OVS_ACTION_ATTR_USERSPACE:
  617. output_userspace(dp, skb, key, a);
  618. break;
  619. case OVS_ACTION_ATTR_HASH:
  620. execute_hash(skb, key, a);
  621. break;
  622. case OVS_ACTION_ATTR_PUSH_MPLS:
  623. err = push_mpls(skb, nla_data(a));
  624. break;
  625. case OVS_ACTION_ATTR_POP_MPLS:
  626. err = pop_mpls(skb, nla_get_be16(a));
  627. break;
  628. case OVS_ACTION_ATTR_PUSH_VLAN:
  629. err = push_vlan(skb, nla_data(a));
  630. if (unlikely(err)) /* skb already freed. */
  631. return err;
  632. break;
  633. case OVS_ACTION_ATTR_POP_VLAN:
  634. err = pop_vlan(skb);
  635. break;
  636. case OVS_ACTION_ATTR_RECIRC:
  637. err = execute_recirc(dp, skb, key, a, rem);
  638. if (nla_is_last(a, rem)) {
  639. /* If this is the last action, the skb has
  640. * been consumed or freed.
  641. * Return immediately.
  642. */
  643. return err;
  644. }
  645. break;
  646. case OVS_ACTION_ATTR_SET:
  647. err = execute_set_action(skb, nla_data(a));
  648. break;
  649. case OVS_ACTION_ATTR_SAMPLE:
  650. err = sample(dp, skb, key, a);
  651. if (unlikely(err)) /* skb already freed. */
  652. return err;
  653. break;
  654. }
  655. if (unlikely(err)) {
  656. kfree_skb(skb);
  657. return err;
  658. }
  659. }
  660. if (prev_port != -1)
  661. do_output(dp, skb, prev_port);
  662. else
  663. consume_skb(skb);
  664. return 0;
  665. }
  666. static void process_deferred_actions(struct datapath *dp)
  667. {
  668. struct action_fifo *fifo = this_cpu_ptr(action_fifos);
  669. /* Do not touch the FIFO in case there is no deferred actions. */
  670. if (action_fifo_is_empty(fifo))
  671. return;
  672. /* Finishing executing all deferred actions. */
  673. do {
  674. struct deferred_action *da = action_fifo_get(fifo);
  675. struct sk_buff *skb = da->skb;
  676. struct sw_flow_key *key = &da->pkt_key;
  677. const struct nlattr *actions = da->actions;
  678. if (actions)
  679. do_execute_actions(dp, skb, key, actions,
  680. nla_len(actions));
  681. else
  682. ovs_dp_process_packet(skb, key);
  683. } while (!action_fifo_is_empty(fifo));
  684. /* Reset FIFO for the next packet. */
  685. action_fifo_init(fifo);
  686. }
  687. /* Execute a list of actions against 'skb'. */
  688. int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
  689. struct sw_flow_actions *acts, struct sw_flow_key *key)
  690. {
  691. int level = this_cpu_read(exec_actions_level);
  692. int err;
  693. this_cpu_inc(exec_actions_level);
  694. OVS_CB(skb)->egress_tun_info = NULL;
  695. err = do_execute_actions(dp, skb, key,
  696. acts->actions, acts->actions_len);
  697. if (!level)
  698. process_deferred_actions(dp);
  699. this_cpu_dec(exec_actions_level);
  700. return err;
  701. }
  702. int action_fifos_init(void)
  703. {
  704. action_fifos = alloc_percpu(struct action_fifo);
  705. if (!action_fifos)
  706. return -ENOMEM;
  707. return 0;
  708. }
  709. void action_fifos_exit(void)
  710. {
  711. free_percpu(action_fifos);
  712. }