verbs.c 59 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292
  1. /*
  2. * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
  3. * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
  4. * Copyright (c) 2004 Intel Corporation. All rights reserved.
  5. * Copyright (c) 2004 Topspin Corporation. All rights reserved.
  6. * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
  7. * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
  8. * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
  9. *
  10. * This software is available to you under a choice of one of two
  11. * licenses. You may choose to be licensed under the terms of the GNU
  12. * General Public License (GPL) Version 2, available from the file
  13. * COPYING in the main directory of this source tree, or the
  14. * OpenIB.org BSD license below:
  15. *
  16. * Redistribution and use in source and binary forms, with or
  17. * without modification, are permitted provided that the following
  18. * conditions are met:
  19. *
  20. * - Redistributions of source code must retain the above
  21. * copyright notice, this list of conditions and the following
  22. * disclaimer.
  23. *
  24. * - Redistributions in binary form must reproduce the above
  25. * copyright notice, this list of conditions and the following
  26. * disclaimer in the documentation and/or other materials
  27. * provided with the distribution.
  28. *
  29. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36. * SOFTWARE.
  37. */
  38. #include <linux/errno.h>
  39. #include <linux/err.h>
  40. #include <linux/export.h>
  41. #include <linux/string.h>
  42. #include <linux/slab.h>
  43. #include <linux/in.h>
  44. #include <linux/in6.h>
  45. #include <net/addrconf.h>
  46. #include <linux/security.h>
  47. #include <rdma/ib_verbs.h>
  48. #include <rdma/ib_cache.h>
  49. #include <rdma/ib_addr.h>
  50. #include <rdma/rw.h>
  51. #include "core_priv.h"
  52. static int ib_resolve_eth_dmac(struct ib_device *device,
  53. struct rdma_ah_attr *ah_attr);
  54. static const char * const ib_events[] = {
  55. [IB_EVENT_CQ_ERR] = "CQ error",
  56. [IB_EVENT_QP_FATAL] = "QP fatal error",
  57. [IB_EVENT_QP_REQ_ERR] = "QP request error",
  58. [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
  59. [IB_EVENT_COMM_EST] = "communication established",
  60. [IB_EVENT_SQ_DRAINED] = "send queue drained",
  61. [IB_EVENT_PATH_MIG] = "path migration successful",
  62. [IB_EVENT_PATH_MIG_ERR] = "path migration error",
  63. [IB_EVENT_DEVICE_FATAL] = "device fatal error",
  64. [IB_EVENT_PORT_ACTIVE] = "port active",
  65. [IB_EVENT_PORT_ERR] = "port error",
  66. [IB_EVENT_LID_CHANGE] = "LID change",
  67. [IB_EVENT_PKEY_CHANGE] = "P_key change",
  68. [IB_EVENT_SM_CHANGE] = "SM change",
  69. [IB_EVENT_SRQ_ERR] = "SRQ error",
  70. [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
  71. [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
  72. [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
  73. [IB_EVENT_GID_CHANGE] = "GID changed",
  74. };
  75. const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
  76. {
  77. size_t index = event;
  78. return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
  79. ib_events[index] : "unrecognized event";
  80. }
  81. EXPORT_SYMBOL(ib_event_msg);
  82. static const char * const wc_statuses[] = {
  83. [IB_WC_SUCCESS] = "success",
  84. [IB_WC_LOC_LEN_ERR] = "local length error",
  85. [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
  86. [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
  87. [IB_WC_LOC_PROT_ERR] = "local protection error",
  88. [IB_WC_WR_FLUSH_ERR] = "WR flushed",
  89. [IB_WC_MW_BIND_ERR] = "memory management operation error",
  90. [IB_WC_BAD_RESP_ERR] = "bad response error",
  91. [IB_WC_LOC_ACCESS_ERR] = "local access error",
  92. [IB_WC_REM_INV_REQ_ERR] = "invalid request error",
  93. [IB_WC_REM_ACCESS_ERR] = "remote access error",
  94. [IB_WC_REM_OP_ERR] = "remote operation error",
  95. [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
  96. [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
  97. [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
  98. [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
  99. [IB_WC_REM_ABORT_ERR] = "operation aborted",
  100. [IB_WC_INV_EECN_ERR] = "invalid EE context number",
  101. [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
  102. [IB_WC_FATAL_ERR] = "fatal error",
  103. [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
  104. [IB_WC_GENERAL_ERR] = "general error",
  105. };
  106. const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
  107. {
  108. size_t index = status;
  109. return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
  110. wc_statuses[index] : "unrecognized status";
  111. }
  112. EXPORT_SYMBOL(ib_wc_status_msg);
  113. __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
  114. {
  115. switch (rate) {
  116. case IB_RATE_2_5_GBPS: return 1;
  117. case IB_RATE_5_GBPS: return 2;
  118. case IB_RATE_10_GBPS: return 4;
  119. case IB_RATE_20_GBPS: return 8;
  120. case IB_RATE_30_GBPS: return 12;
  121. case IB_RATE_40_GBPS: return 16;
  122. case IB_RATE_60_GBPS: return 24;
  123. case IB_RATE_80_GBPS: return 32;
  124. case IB_RATE_120_GBPS: return 48;
  125. default: return -1;
  126. }
  127. }
  128. EXPORT_SYMBOL(ib_rate_to_mult);
  129. __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
  130. {
  131. switch (mult) {
  132. case 1: return IB_RATE_2_5_GBPS;
  133. case 2: return IB_RATE_5_GBPS;
  134. case 4: return IB_RATE_10_GBPS;
  135. case 8: return IB_RATE_20_GBPS;
  136. case 12: return IB_RATE_30_GBPS;
  137. case 16: return IB_RATE_40_GBPS;
  138. case 24: return IB_RATE_60_GBPS;
  139. case 32: return IB_RATE_80_GBPS;
  140. case 48: return IB_RATE_120_GBPS;
  141. default: return IB_RATE_PORT_CURRENT;
  142. }
  143. }
  144. EXPORT_SYMBOL(mult_to_ib_rate);
  145. __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
  146. {
  147. switch (rate) {
  148. case IB_RATE_2_5_GBPS: return 2500;
  149. case IB_RATE_5_GBPS: return 5000;
  150. case IB_RATE_10_GBPS: return 10000;
  151. case IB_RATE_20_GBPS: return 20000;
  152. case IB_RATE_30_GBPS: return 30000;
  153. case IB_RATE_40_GBPS: return 40000;
  154. case IB_RATE_60_GBPS: return 60000;
  155. case IB_RATE_80_GBPS: return 80000;
  156. case IB_RATE_120_GBPS: return 120000;
  157. case IB_RATE_14_GBPS: return 14062;
  158. case IB_RATE_56_GBPS: return 56250;
  159. case IB_RATE_112_GBPS: return 112500;
  160. case IB_RATE_168_GBPS: return 168750;
  161. case IB_RATE_25_GBPS: return 25781;
  162. case IB_RATE_100_GBPS: return 103125;
  163. case IB_RATE_200_GBPS: return 206250;
  164. case IB_RATE_300_GBPS: return 309375;
  165. default: return -1;
  166. }
  167. }
  168. EXPORT_SYMBOL(ib_rate_to_mbps);
  169. __attribute_const__ enum rdma_transport_type
  170. rdma_node_get_transport(enum rdma_node_type node_type)
  171. {
  172. if (node_type == RDMA_NODE_USNIC)
  173. return RDMA_TRANSPORT_USNIC;
  174. if (node_type == RDMA_NODE_USNIC_UDP)
  175. return RDMA_TRANSPORT_USNIC_UDP;
  176. if (node_type == RDMA_NODE_RNIC)
  177. return RDMA_TRANSPORT_IWARP;
  178. return RDMA_TRANSPORT_IB;
  179. }
  180. EXPORT_SYMBOL(rdma_node_get_transport);
  181. enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
  182. {
  183. enum rdma_transport_type lt;
  184. if (device->get_link_layer)
  185. return device->get_link_layer(device, port_num);
  186. lt = rdma_node_get_transport(device->node_type);
  187. if (lt == RDMA_TRANSPORT_IB)
  188. return IB_LINK_LAYER_INFINIBAND;
  189. return IB_LINK_LAYER_ETHERNET;
  190. }
  191. EXPORT_SYMBOL(rdma_port_get_link_layer);
  192. /* Protection domains */
  193. /**
  194. * ib_alloc_pd - Allocates an unused protection domain.
  195. * @device: The device on which to allocate the protection domain.
  196. *
  197. * A protection domain object provides an association between QPs, shared
  198. * receive queues, address handles, memory regions, and memory windows.
  199. *
  200. * Every PD has a local_dma_lkey which can be used as the lkey value for local
  201. * memory operations.
  202. */
  203. struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
  204. const char *caller)
  205. {
  206. struct ib_pd *pd;
  207. int mr_access_flags = 0;
  208. pd = device->alloc_pd(device, NULL, NULL);
  209. if (IS_ERR(pd))
  210. return pd;
  211. pd->device = device;
  212. pd->uobject = NULL;
  213. pd->__internal_mr = NULL;
  214. atomic_set(&pd->usecnt, 0);
  215. pd->flags = flags;
  216. if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
  217. pd->local_dma_lkey = device->local_dma_lkey;
  218. else
  219. mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
  220. if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
  221. pr_warn("%s: enabling unsafe global rkey\n", caller);
  222. mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
  223. }
  224. if (mr_access_flags) {
  225. struct ib_mr *mr;
  226. mr = pd->device->get_dma_mr(pd, mr_access_flags);
  227. if (IS_ERR(mr)) {
  228. ib_dealloc_pd(pd);
  229. return ERR_CAST(mr);
  230. }
  231. mr->device = pd->device;
  232. mr->pd = pd;
  233. mr->uobject = NULL;
  234. mr->need_inval = false;
  235. pd->__internal_mr = mr;
  236. if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
  237. pd->local_dma_lkey = pd->__internal_mr->lkey;
  238. if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
  239. pd->unsafe_global_rkey = pd->__internal_mr->rkey;
  240. }
  241. return pd;
  242. }
  243. EXPORT_SYMBOL(__ib_alloc_pd);
  244. /**
  245. * ib_dealloc_pd - Deallocates a protection domain.
  246. * @pd: The protection domain to deallocate.
  247. *
  248. * It is an error to call this function while any resources in the pd still
  249. * exist. The caller is responsible to synchronously destroy them and
  250. * guarantee no new allocations will happen.
  251. */
  252. void ib_dealloc_pd(struct ib_pd *pd)
  253. {
  254. int ret;
  255. if (pd->__internal_mr) {
  256. ret = pd->device->dereg_mr(pd->__internal_mr);
  257. WARN_ON(ret);
  258. pd->__internal_mr = NULL;
  259. }
  260. /* uverbs manipulates usecnt with proper locking, while the kabi
  261. requires the caller to guarantee we can't race here. */
  262. WARN_ON(atomic_read(&pd->usecnt));
  263. /* Making delalloc_pd a void return is a WIP, no driver should return
  264. an error here. */
  265. ret = pd->device->dealloc_pd(pd);
  266. WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
  267. }
  268. EXPORT_SYMBOL(ib_dealloc_pd);
  269. /* Address handles */
  270. static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
  271. struct rdma_ah_attr *ah_attr,
  272. struct ib_udata *udata)
  273. {
  274. struct ib_ah *ah;
  275. ah = pd->device->create_ah(pd, ah_attr, udata);
  276. if (!IS_ERR(ah)) {
  277. ah->device = pd->device;
  278. ah->pd = pd;
  279. ah->uobject = NULL;
  280. ah->type = ah_attr->type;
  281. atomic_inc(&pd->usecnt);
  282. }
  283. return ah;
  284. }
  285. struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr)
  286. {
  287. return _rdma_create_ah(pd, ah_attr, NULL);
  288. }
  289. EXPORT_SYMBOL(rdma_create_ah);
  290. /**
  291. * rdma_create_user_ah - Creates an address handle for the
  292. * given address vector.
  293. * It resolves destination mac address for ah attribute of RoCE type.
  294. * @pd: The protection domain associated with the address handle.
  295. * @ah_attr: The attributes of the address vector.
  296. * @udata: pointer to user's input output buffer information need by
  297. * provider driver.
  298. *
  299. * It returns 0 on success and returns appropriate error code on error.
  300. * The address handle is used to reference a local or global destination
  301. * in all UD QP post sends.
  302. */
  303. struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
  304. struct rdma_ah_attr *ah_attr,
  305. struct ib_udata *udata)
  306. {
  307. int err;
  308. if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
  309. err = ib_resolve_eth_dmac(pd->device, ah_attr);
  310. if (err)
  311. return ERR_PTR(err);
  312. }
  313. return _rdma_create_ah(pd, ah_attr, udata);
  314. }
  315. EXPORT_SYMBOL(rdma_create_user_ah);
  316. int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
  317. {
  318. const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
  319. struct iphdr ip4h_checked;
  320. const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
  321. /* If it's IPv6, the version must be 6, otherwise, the first
  322. * 20 bytes (before the IPv4 header) are garbled.
  323. */
  324. if (ip6h->version != 6)
  325. return (ip4h->version == 4) ? 4 : 0;
  326. /* version may be 6 or 4 because the first 20 bytes could be garbled */
  327. /* RoCE v2 requires no options, thus header length
  328. * must be 5 words
  329. */
  330. if (ip4h->ihl != 5)
  331. return 6;
  332. /* Verify checksum.
  333. * We can't write on scattered buffers so we need to copy to
  334. * temp buffer.
  335. */
  336. memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
  337. ip4h_checked.check = 0;
  338. ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
  339. /* if IPv4 header checksum is OK, believe it */
  340. if (ip4h->check == ip4h_checked.check)
  341. return 4;
  342. return 6;
  343. }
  344. EXPORT_SYMBOL(ib_get_rdma_header_version);
  345. static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
  346. u8 port_num,
  347. const struct ib_grh *grh)
  348. {
  349. int grh_version;
  350. if (rdma_protocol_ib(device, port_num))
  351. return RDMA_NETWORK_IB;
  352. grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
  353. if (grh_version == 4)
  354. return RDMA_NETWORK_IPV4;
  355. if (grh->next_hdr == IPPROTO_UDP)
  356. return RDMA_NETWORK_IPV6;
  357. return RDMA_NETWORK_ROCE_V1;
  358. }
  359. struct find_gid_index_context {
  360. u16 vlan_id;
  361. enum ib_gid_type gid_type;
  362. };
  363. static bool find_gid_index(const union ib_gid *gid,
  364. const struct ib_gid_attr *gid_attr,
  365. void *context)
  366. {
  367. struct find_gid_index_context *ctx =
  368. (struct find_gid_index_context *)context;
  369. if (ctx->gid_type != gid_attr->gid_type)
  370. return false;
  371. if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
  372. (is_vlan_dev(gid_attr->ndev) &&
  373. vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
  374. return false;
  375. return true;
  376. }
  377. static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
  378. u16 vlan_id, const union ib_gid *sgid,
  379. enum ib_gid_type gid_type,
  380. u16 *gid_index)
  381. {
  382. struct find_gid_index_context context = {.vlan_id = vlan_id,
  383. .gid_type = gid_type};
  384. return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
  385. &context, gid_index);
  386. }
  387. int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
  388. enum rdma_network_type net_type,
  389. union ib_gid *sgid, union ib_gid *dgid)
  390. {
  391. struct sockaddr_in src_in;
  392. struct sockaddr_in dst_in;
  393. __be32 src_saddr, dst_saddr;
  394. if (!sgid || !dgid)
  395. return -EINVAL;
  396. if (net_type == RDMA_NETWORK_IPV4) {
  397. memcpy(&src_in.sin_addr.s_addr,
  398. &hdr->roce4grh.saddr, 4);
  399. memcpy(&dst_in.sin_addr.s_addr,
  400. &hdr->roce4grh.daddr, 4);
  401. src_saddr = src_in.sin_addr.s_addr;
  402. dst_saddr = dst_in.sin_addr.s_addr;
  403. ipv6_addr_set_v4mapped(src_saddr,
  404. (struct in6_addr *)sgid);
  405. ipv6_addr_set_v4mapped(dst_saddr,
  406. (struct in6_addr *)dgid);
  407. return 0;
  408. } else if (net_type == RDMA_NETWORK_IPV6 ||
  409. net_type == RDMA_NETWORK_IB) {
  410. *dgid = hdr->ibgrh.dgid;
  411. *sgid = hdr->ibgrh.sgid;
  412. return 0;
  413. } else {
  414. return -EINVAL;
  415. }
  416. }
  417. EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
  418. /*
  419. * This function creates ah from the incoming packet.
  420. * Incoming packet has dgid of the receiver node on which this code is
  421. * getting executed and, sgid contains the GID of the sender.
  422. *
  423. * When resolving mac address of destination, the arrived dgid is used
  424. * as sgid and, sgid is used as dgid because sgid contains destinations
  425. * GID whom to respond to.
  426. *
  427. * This is why when calling rdma_addr_find_l2_eth_by_grh() function, the
  428. * position of arguments dgid and sgid do not match the order of the
  429. * parameters.
  430. */
  431. int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
  432. const struct ib_wc *wc, const struct ib_grh *grh,
  433. struct rdma_ah_attr *ah_attr)
  434. {
  435. u32 flow_class;
  436. u16 gid_index;
  437. int ret;
  438. enum rdma_network_type net_type = RDMA_NETWORK_IB;
  439. enum ib_gid_type gid_type = IB_GID_TYPE_IB;
  440. int hoplimit = 0xff;
  441. union ib_gid dgid;
  442. union ib_gid sgid;
  443. might_sleep();
  444. memset(ah_attr, 0, sizeof *ah_attr);
  445. ah_attr->type = rdma_ah_find_type(device, port_num);
  446. if (rdma_cap_eth_ah(device, port_num)) {
  447. if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
  448. net_type = wc->network_hdr_type;
  449. else
  450. net_type = ib_get_net_type_by_grh(device, port_num, grh);
  451. gid_type = ib_network_to_gid_type(net_type);
  452. }
  453. ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
  454. &sgid, &dgid);
  455. if (ret)
  456. return ret;
  457. if (rdma_protocol_roce(device, port_num)) {
  458. int if_index = 0;
  459. u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
  460. wc->vlan_id : 0xffff;
  461. struct net_device *idev;
  462. struct net_device *resolved_dev;
  463. if (!(wc->wc_flags & IB_WC_GRH))
  464. return -EPROTOTYPE;
  465. if (!device->get_netdev)
  466. return -EOPNOTSUPP;
  467. idev = device->get_netdev(device, port_num);
  468. if (!idev)
  469. return -ENODEV;
  470. ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
  471. ah_attr->roce.dmac,
  472. wc->wc_flags & IB_WC_WITH_VLAN ?
  473. NULL : &vlan_id,
  474. &if_index, &hoplimit);
  475. if (ret) {
  476. dev_put(idev);
  477. return ret;
  478. }
  479. resolved_dev = dev_get_by_index(&init_net, if_index);
  480. rcu_read_lock();
  481. if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
  482. resolved_dev))
  483. ret = -EHOSTUNREACH;
  484. rcu_read_unlock();
  485. dev_put(idev);
  486. dev_put(resolved_dev);
  487. if (ret)
  488. return ret;
  489. ret = get_sgid_index_from_eth(device, port_num, vlan_id,
  490. &dgid, gid_type, &gid_index);
  491. if (ret)
  492. return ret;
  493. }
  494. rdma_ah_set_dlid(ah_attr, wc->slid);
  495. rdma_ah_set_sl(ah_attr, wc->sl);
  496. rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
  497. rdma_ah_set_port_num(ah_attr, port_num);
  498. if (wc->wc_flags & IB_WC_GRH) {
  499. if (!rdma_cap_eth_ah(device, port_num)) {
  500. if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
  501. ret = ib_find_cached_gid_by_port(device, &dgid,
  502. IB_GID_TYPE_IB,
  503. port_num, NULL,
  504. &gid_index);
  505. if (ret)
  506. return ret;
  507. } else {
  508. gid_index = 0;
  509. }
  510. }
  511. flow_class = be32_to_cpu(grh->version_tclass_flow);
  512. rdma_ah_set_grh(ah_attr, &sgid,
  513. flow_class & 0xFFFFF,
  514. (u8)gid_index, hoplimit,
  515. (flow_class >> 20) & 0xFF);
  516. }
  517. return 0;
  518. }
  519. EXPORT_SYMBOL(ib_init_ah_from_wc);
  520. struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
  521. const struct ib_grh *grh, u8 port_num)
  522. {
  523. struct rdma_ah_attr ah_attr;
  524. int ret;
  525. ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
  526. if (ret)
  527. return ERR_PTR(ret);
  528. return rdma_create_ah(pd, &ah_attr);
  529. }
  530. EXPORT_SYMBOL(ib_create_ah_from_wc);
  531. int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
  532. {
  533. if (ah->type != ah_attr->type)
  534. return -EINVAL;
  535. return ah->device->modify_ah ?
  536. ah->device->modify_ah(ah, ah_attr) :
  537. -ENOSYS;
  538. }
  539. EXPORT_SYMBOL(rdma_modify_ah);
  540. int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
  541. {
  542. return ah->device->query_ah ?
  543. ah->device->query_ah(ah, ah_attr) :
  544. -ENOSYS;
  545. }
  546. EXPORT_SYMBOL(rdma_query_ah);
  547. int rdma_destroy_ah(struct ib_ah *ah)
  548. {
  549. struct ib_pd *pd;
  550. int ret;
  551. pd = ah->pd;
  552. ret = ah->device->destroy_ah(ah);
  553. if (!ret)
  554. atomic_dec(&pd->usecnt);
  555. return ret;
  556. }
  557. EXPORT_SYMBOL(rdma_destroy_ah);
  558. /* Shared receive queues */
  559. struct ib_srq *ib_create_srq(struct ib_pd *pd,
  560. struct ib_srq_init_attr *srq_init_attr)
  561. {
  562. struct ib_srq *srq;
  563. if (!pd->device->create_srq)
  564. return ERR_PTR(-ENOSYS);
  565. srq = pd->device->create_srq(pd, srq_init_attr, NULL);
  566. if (!IS_ERR(srq)) {
  567. srq->device = pd->device;
  568. srq->pd = pd;
  569. srq->uobject = NULL;
  570. srq->event_handler = srq_init_attr->event_handler;
  571. srq->srq_context = srq_init_attr->srq_context;
  572. srq->srq_type = srq_init_attr->srq_type;
  573. if (ib_srq_has_cq(srq->srq_type)) {
  574. srq->ext.cq = srq_init_attr->ext.cq;
  575. atomic_inc(&srq->ext.cq->usecnt);
  576. }
  577. if (srq->srq_type == IB_SRQT_XRC) {
  578. srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
  579. atomic_inc(&srq->ext.xrc.xrcd->usecnt);
  580. }
  581. atomic_inc(&pd->usecnt);
  582. atomic_set(&srq->usecnt, 0);
  583. }
  584. return srq;
  585. }
  586. EXPORT_SYMBOL(ib_create_srq);
  587. int ib_modify_srq(struct ib_srq *srq,
  588. struct ib_srq_attr *srq_attr,
  589. enum ib_srq_attr_mask srq_attr_mask)
  590. {
  591. return srq->device->modify_srq ?
  592. srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
  593. -ENOSYS;
  594. }
  595. EXPORT_SYMBOL(ib_modify_srq);
  596. int ib_query_srq(struct ib_srq *srq,
  597. struct ib_srq_attr *srq_attr)
  598. {
  599. return srq->device->query_srq ?
  600. srq->device->query_srq(srq, srq_attr) : -ENOSYS;
  601. }
  602. EXPORT_SYMBOL(ib_query_srq);
  603. int ib_destroy_srq(struct ib_srq *srq)
  604. {
  605. struct ib_pd *pd;
  606. enum ib_srq_type srq_type;
  607. struct ib_xrcd *uninitialized_var(xrcd);
  608. struct ib_cq *uninitialized_var(cq);
  609. int ret;
  610. if (atomic_read(&srq->usecnt))
  611. return -EBUSY;
  612. pd = srq->pd;
  613. srq_type = srq->srq_type;
  614. if (ib_srq_has_cq(srq_type))
  615. cq = srq->ext.cq;
  616. if (srq_type == IB_SRQT_XRC)
  617. xrcd = srq->ext.xrc.xrcd;
  618. ret = srq->device->destroy_srq(srq);
  619. if (!ret) {
  620. atomic_dec(&pd->usecnt);
  621. if (srq_type == IB_SRQT_XRC)
  622. atomic_dec(&xrcd->usecnt);
  623. if (ib_srq_has_cq(srq_type))
  624. atomic_dec(&cq->usecnt);
  625. }
  626. return ret;
  627. }
  628. EXPORT_SYMBOL(ib_destroy_srq);
  629. /* Queue pairs */
  630. static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
  631. {
  632. struct ib_qp *qp = context;
  633. unsigned long flags;
  634. spin_lock_irqsave(&qp->device->event_handler_lock, flags);
  635. list_for_each_entry(event->element.qp, &qp->open_list, open_list)
  636. if (event->element.qp->event_handler)
  637. event->element.qp->event_handler(event, event->element.qp->qp_context);
  638. spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
  639. }
  640. static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
  641. {
  642. mutex_lock(&xrcd->tgt_qp_mutex);
  643. list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
  644. mutex_unlock(&xrcd->tgt_qp_mutex);
  645. }
  646. static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
  647. void (*event_handler)(struct ib_event *, void *),
  648. void *qp_context)
  649. {
  650. struct ib_qp *qp;
  651. unsigned long flags;
  652. int err;
  653. qp = kzalloc(sizeof *qp, GFP_KERNEL);
  654. if (!qp)
  655. return ERR_PTR(-ENOMEM);
  656. qp->real_qp = real_qp;
  657. err = ib_open_shared_qp_security(qp, real_qp->device);
  658. if (err) {
  659. kfree(qp);
  660. return ERR_PTR(err);
  661. }
  662. qp->real_qp = real_qp;
  663. atomic_inc(&real_qp->usecnt);
  664. qp->device = real_qp->device;
  665. qp->event_handler = event_handler;
  666. qp->qp_context = qp_context;
  667. qp->qp_num = real_qp->qp_num;
  668. qp->qp_type = real_qp->qp_type;
  669. spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
  670. list_add(&qp->open_list, &real_qp->open_list);
  671. spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
  672. return qp;
  673. }
  674. struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
  675. struct ib_qp_open_attr *qp_open_attr)
  676. {
  677. struct ib_qp *qp, *real_qp;
  678. if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
  679. return ERR_PTR(-EINVAL);
  680. qp = ERR_PTR(-EINVAL);
  681. mutex_lock(&xrcd->tgt_qp_mutex);
  682. list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
  683. if (real_qp->qp_num == qp_open_attr->qp_num) {
  684. qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
  685. qp_open_attr->qp_context);
  686. break;
  687. }
  688. }
  689. mutex_unlock(&xrcd->tgt_qp_mutex);
  690. return qp;
  691. }
  692. EXPORT_SYMBOL(ib_open_qp);
  693. static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
  694. struct ib_qp_init_attr *qp_init_attr)
  695. {
  696. struct ib_qp *real_qp = qp;
  697. qp->event_handler = __ib_shared_qp_event_handler;
  698. qp->qp_context = qp;
  699. qp->pd = NULL;
  700. qp->send_cq = qp->recv_cq = NULL;
  701. qp->srq = NULL;
  702. qp->xrcd = qp_init_attr->xrcd;
  703. atomic_inc(&qp_init_attr->xrcd->usecnt);
  704. INIT_LIST_HEAD(&qp->open_list);
  705. qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
  706. qp_init_attr->qp_context);
  707. if (!IS_ERR(qp))
  708. __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
  709. else
  710. real_qp->device->destroy_qp(real_qp);
  711. return qp;
  712. }
  713. struct ib_qp *ib_create_qp(struct ib_pd *pd,
  714. struct ib_qp_init_attr *qp_init_attr)
  715. {
  716. struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
  717. struct ib_qp *qp;
  718. int ret;
  719. if (qp_init_attr->rwq_ind_tbl &&
  720. (qp_init_attr->recv_cq ||
  721. qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
  722. qp_init_attr->cap.max_recv_sge))
  723. return ERR_PTR(-EINVAL);
  724. /*
  725. * If the callers is using the RDMA API calculate the resources
  726. * needed for the RDMA READ/WRITE operations.
  727. *
  728. * Note that these callers need to pass in a port number.
  729. */
  730. if (qp_init_attr->cap.max_rdma_ctxs)
  731. rdma_rw_init_qp(device, qp_init_attr);
  732. qp = device->create_qp(pd, qp_init_attr, NULL);
  733. if (IS_ERR(qp))
  734. return qp;
  735. ret = ib_create_qp_security(qp, device);
  736. if (ret) {
  737. ib_destroy_qp(qp);
  738. return ERR_PTR(ret);
  739. }
  740. qp->device = device;
  741. qp->real_qp = qp;
  742. qp->uobject = NULL;
  743. qp->qp_type = qp_init_attr->qp_type;
  744. qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
  745. atomic_set(&qp->usecnt, 0);
  746. qp->mrs_used = 0;
  747. spin_lock_init(&qp->mr_lock);
  748. INIT_LIST_HEAD(&qp->rdma_mrs);
  749. INIT_LIST_HEAD(&qp->sig_mrs);
  750. qp->port = 0;
  751. if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
  752. return ib_create_xrc_qp(qp, qp_init_attr);
  753. qp->event_handler = qp_init_attr->event_handler;
  754. qp->qp_context = qp_init_attr->qp_context;
  755. if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
  756. qp->recv_cq = NULL;
  757. qp->srq = NULL;
  758. } else {
  759. qp->recv_cq = qp_init_attr->recv_cq;
  760. if (qp_init_attr->recv_cq)
  761. atomic_inc(&qp_init_attr->recv_cq->usecnt);
  762. qp->srq = qp_init_attr->srq;
  763. if (qp->srq)
  764. atomic_inc(&qp_init_attr->srq->usecnt);
  765. }
  766. qp->pd = pd;
  767. qp->send_cq = qp_init_attr->send_cq;
  768. qp->xrcd = NULL;
  769. atomic_inc(&pd->usecnt);
  770. if (qp_init_attr->send_cq)
  771. atomic_inc(&qp_init_attr->send_cq->usecnt);
  772. if (qp_init_attr->rwq_ind_tbl)
  773. atomic_inc(&qp->rwq_ind_tbl->usecnt);
  774. if (qp_init_attr->cap.max_rdma_ctxs) {
  775. ret = rdma_rw_init_mrs(qp, qp_init_attr);
  776. if (ret) {
  777. pr_err("failed to init MR pool ret= %d\n", ret);
  778. ib_destroy_qp(qp);
  779. return ERR_PTR(ret);
  780. }
  781. }
  782. /*
  783. * Note: all hw drivers guarantee that max_send_sge is lower than
  784. * the device RDMA WRITE SGE limit but not all hw drivers ensure that
  785. * max_send_sge <= max_sge_rd.
  786. */
  787. qp->max_write_sge = qp_init_attr->cap.max_send_sge;
  788. qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
  789. device->attrs.max_sge_rd);
  790. return qp;
  791. }
  792. EXPORT_SYMBOL(ib_create_qp);
  793. static const struct {
  794. int valid;
  795. enum ib_qp_attr_mask req_param[IB_QPT_MAX];
  796. enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
  797. } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
  798. [IB_QPS_RESET] = {
  799. [IB_QPS_RESET] = { .valid = 1 },
  800. [IB_QPS_INIT] = {
  801. .valid = 1,
  802. .req_param = {
  803. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  804. IB_QP_PORT |
  805. IB_QP_QKEY),
  806. [IB_QPT_RAW_PACKET] = IB_QP_PORT,
  807. [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
  808. IB_QP_PORT |
  809. IB_QP_ACCESS_FLAGS),
  810. [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
  811. IB_QP_PORT |
  812. IB_QP_ACCESS_FLAGS),
  813. [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
  814. IB_QP_PORT |
  815. IB_QP_ACCESS_FLAGS),
  816. [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
  817. IB_QP_PORT |
  818. IB_QP_ACCESS_FLAGS),
  819. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  820. IB_QP_QKEY),
  821. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  822. IB_QP_QKEY),
  823. }
  824. },
  825. },
  826. [IB_QPS_INIT] = {
  827. [IB_QPS_RESET] = { .valid = 1 },
  828. [IB_QPS_ERR] = { .valid = 1 },
  829. [IB_QPS_INIT] = {
  830. .valid = 1,
  831. .opt_param = {
  832. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  833. IB_QP_PORT |
  834. IB_QP_QKEY),
  835. [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
  836. IB_QP_PORT |
  837. IB_QP_ACCESS_FLAGS),
  838. [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
  839. IB_QP_PORT |
  840. IB_QP_ACCESS_FLAGS),
  841. [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
  842. IB_QP_PORT |
  843. IB_QP_ACCESS_FLAGS),
  844. [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
  845. IB_QP_PORT |
  846. IB_QP_ACCESS_FLAGS),
  847. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  848. IB_QP_QKEY),
  849. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  850. IB_QP_QKEY),
  851. }
  852. },
  853. [IB_QPS_RTR] = {
  854. .valid = 1,
  855. .req_param = {
  856. [IB_QPT_UC] = (IB_QP_AV |
  857. IB_QP_PATH_MTU |
  858. IB_QP_DEST_QPN |
  859. IB_QP_RQ_PSN),
  860. [IB_QPT_RC] = (IB_QP_AV |
  861. IB_QP_PATH_MTU |
  862. IB_QP_DEST_QPN |
  863. IB_QP_RQ_PSN |
  864. IB_QP_MAX_DEST_RD_ATOMIC |
  865. IB_QP_MIN_RNR_TIMER),
  866. [IB_QPT_XRC_INI] = (IB_QP_AV |
  867. IB_QP_PATH_MTU |
  868. IB_QP_DEST_QPN |
  869. IB_QP_RQ_PSN),
  870. [IB_QPT_XRC_TGT] = (IB_QP_AV |
  871. IB_QP_PATH_MTU |
  872. IB_QP_DEST_QPN |
  873. IB_QP_RQ_PSN |
  874. IB_QP_MAX_DEST_RD_ATOMIC |
  875. IB_QP_MIN_RNR_TIMER),
  876. },
  877. .opt_param = {
  878. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  879. IB_QP_QKEY),
  880. [IB_QPT_UC] = (IB_QP_ALT_PATH |
  881. IB_QP_ACCESS_FLAGS |
  882. IB_QP_PKEY_INDEX),
  883. [IB_QPT_RC] = (IB_QP_ALT_PATH |
  884. IB_QP_ACCESS_FLAGS |
  885. IB_QP_PKEY_INDEX),
  886. [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
  887. IB_QP_ACCESS_FLAGS |
  888. IB_QP_PKEY_INDEX),
  889. [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
  890. IB_QP_ACCESS_FLAGS |
  891. IB_QP_PKEY_INDEX),
  892. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  893. IB_QP_QKEY),
  894. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  895. IB_QP_QKEY),
  896. },
  897. },
  898. },
  899. [IB_QPS_RTR] = {
  900. [IB_QPS_RESET] = { .valid = 1 },
  901. [IB_QPS_ERR] = { .valid = 1 },
  902. [IB_QPS_RTS] = {
  903. .valid = 1,
  904. .req_param = {
  905. [IB_QPT_UD] = IB_QP_SQ_PSN,
  906. [IB_QPT_UC] = IB_QP_SQ_PSN,
  907. [IB_QPT_RC] = (IB_QP_TIMEOUT |
  908. IB_QP_RETRY_CNT |
  909. IB_QP_RNR_RETRY |
  910. IB_QP_SQ_PSN |
  911. IB_QP_MAX_QP_RD_ATOMIC),
  912. [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
  913. IB_QP_RETRY_CNT |
  914. IB_QP_RNR_RETRY |
  915. IB_QP_SQ_PSN |
  916. IB_QP_MAX_QP_RD_ATOMIC),
  917. [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
  918. IB_QP_SQ_PSN),
  919. [IB_QPT_SMI] = IB_QP_SQ_PSN,
  920. [IB_QPT_GSI] = IB_QP_SQ_PSN,
  921. },
  922. .opt_param = {
  923. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  924. IB_QP_QKEY),
  925. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  926. IB_QP_ALT_PATH |
  927. IB_QP_ACCESS_FLAGS |
  928. IB_QP_PATH_MIG_STATE),
  929. [IB_QPT_RC] = (IB_QP_CUR_STATE |
  930. IB_QP_ALT_PATH |
  931. IB_QP_ACCESS_FLAGS |
  932. IB_QP_MIN_RNR_TIMER |
  933. IB_QP_PATH_MIG_STATE),
  934. [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
  935. IB_QP_ALT_PATH |
  936. IB_QP_ACCESS_FLAGS |
  937. IB_QP_PATH_MIG_STATE),
  938. [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
  939. IB_QP_ALT_PATH |
  940. IB_QP_ACCESS_FLAGS |
  941. IB_QP_MIN_RNR_TIMER |
  942. IB_QP_PATH_MIG_STATE),
  943. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  944. IB_QP_QKEY),
  945. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  946. IB_QP_QKEY),
  947. [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
  948. }
  949. }
  950. },
  951. [IB_QPS_RTS] = {
  952. [IB_QPS_RESET] = { .valid = 1 },
  953. [IB_QPS_ERR] = { .valid = 1 },
  954. [IB_QPS_RTS] = {
  955. .valid = 1,
  956. .opt_param = {
  957. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  958. IB_QP_QKEY),
  959. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  960. IB_QP_ACCESS_FLAGS |
  961. IB_QP_ALT_PATH |
  962. IB_QP_PATH_MIG_STATE),
  963. [IB_QPT_RC] = (IB_QP_CUR_STATE |
  964. IB_QP_ACCESS_FLAGS |
  965. IB_QP_ALT_PATH |
  966. IB_QP_PATH_MIG_STATE |
  967. IB_QP_MIN_RNR_TIMER),
  968. [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
  969. IB_QP_ACCESS_FLAGS |
  970. IB_QP_ALT_PATH |
  971. IB_QP_PATH_MIG_STATE),
  972. [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
  973. IB_QP_ACCESS_FLAGS |
  974. IB_QP_ALT_PATH |
  975. IB_QP_PATH_MIG_STATE |
  976. IB_QP_MIN_RNR_TIMER),
  977. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  978. IB_QP_QKEY),
  979. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  980. IB_QP_QKEY),
  981. [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
  982. }
  983. },
  984. [IB_QPS_SQD] = {
  985. .valid = 1,
  986. .opt_param = {
  987. [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  988. [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  989. [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  990. [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  991. [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
  992. [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  993. [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
  994. }
  995. },
  996. },
  997. [IB_QPS_SQD] = {
  998. [IB_QPS_RESET] = { .valid = 1 },
  999. [IB_QPS_ERR] = { .valid = 1 },
  1000. [IB_QPS_RTS] = {
  1001. .valid = 1,
  1002. .opt_param = {
  1003. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  1004. IB_QP_QKEY),
  1005. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  1006. IB_QP_ALT_PATH |
  1007. IB_QP_ACCESS_FLAGS |
  1008. IB_QP_PATH_MIG_STATE),
  1009. [IB_QPT_RC] = (IB_QP_CUR_STATE |
  1010. IB_QP_ALT_PATH |
  1011. IB_QP_ACCESS_FLAGS |
  1012. IB_QP_MIN_RNR_TIMER |
  1013. IB_QP_PATH_MIG_STATE),
  1014. [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
  1015. IB_QP_ALT_PATH |
  1016. IB_QP_ACCESS_FLAGS |
  1017. IB_QP_PATH_MIG_STATE),
  1018. [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
  1019. IB_QP_ALT_PATH |
  1020. IB_QP_ACCESS_FLAGS |
  1021. IB_QP_MIN_RNR_TIMER |
  1022. IB_QP_PATH_MIG_STATE),
  1023. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  1024. IB_QP_QKEY),
  1025. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  1026. IB_QP_QKEY),
  1027. }
  1028. },
  1029. [IB_QPS_SQD] = {
  1030. .valid = 1,
  1031. .opt_param = {
  1032. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  1033. IB_QP_QKEY),
  1034. [IB_QPT_UC] = (IB_QP_AV |
  1035. IB_QP_ALT_PATH |
  1036. IB_QP_ACCESS_FLAGS |
  1037. IB_QP_PKEY_INDEX |
  1038. IB_QP_PATH_MIG_STATE),
  1039. [IB_QPT_RC] = (IB_QP_PORT |
  1040. IB_QP_AV |
  1041. IB_QP_TIMEOUT |
  1042. IB_QP_RETRY_CNT |
  1043. IB_QP_RNR_RETRY |
  1044. IB_QP_MAX_QP_RD_ATOMIC |
  1045. IB_QP_MAX_DEST_RD_ATOMIC |
  1046. IB_QP_ALT_PATH |
  1047. IB_QP_ACCESS_FLAGS |
  1048. IB_QP_PKEY_INDEX |
  1049. IB_QP_MIN_RNR_TIMER |
  1050. IB_QP_PATH_MIG_STATE),
  1051. [IB_QPT_XRC_INI] = (IB_QP_PORT |
  1052. IB_QP_AV |
  1053. IB_QP_TIMEOUT |
  1054. IB_QP_RETRY_CNT |
  1055. IB_QP_RNR_RETRY |
  1056. IB_QP_MAX_QP_RD_ATOMIC |
  1057. IB_QP_ALT_PATH |
  1058. IB_QP_ACCESS_FLAGS |
  1059. IB_QP_PKEY_INDEX |
  1060. IB_QP_PATH_MIG_STATE),
  1061. [IB_QPT_XRC_TGT] = (IB_QP_PORT |
  1062. IB_QP_AV |
  1063. IB_QP_TIMEOUT |
  1064. IB_QP_MAX_DEST_RD_ATOMIC |
  1065. IB_QP_ALT_PATH |
  1066. IB_QP_ACCESS_FLAGS |
  1067. IB_QP_PKEY_INDEX |
  1068. IB_QP_MIN_RNR_TIMER |
  1069. IB_QP_PATH_MIG_STATE),
  1070. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  1071. IB_QP_QKEY),
  1072. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  1073. IB_QP_QKEY),
  1074. }
  1075. }
  1076. },
  1077. [IB_QPS_SQE] = {
  1078. [IB_QPS_RESET] = { .valid = 1 },
  1079. [IB_QPS_ERR] = { .valid = 1 },
  1080. [IB_QPS_RTS] = {
  1081. .valid = 1,
  1082. .opt_param = {
  1083. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  1084. IB_QP_QKEY),
  1085. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  1086. IB_QP_ACCESS_FLAGS),
  1087. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  1088. IB_QP_QKEY),
  1089. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  1090. IB_QP_QKEY),
  1091. }
  1092. }
  1093. },
  1094. [IB_QPS_ERR] = {
  1095. [IB_QPS_RESET] = { .valid = 1 },
  1096. [IB_QPS_ERR] = { .valid = 1 }
  1097. }
  1098. };
  1099. int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
  1100. enum ib_qp_type type, enum ib_qp_attr_mask mask,
  1101. enum rdma_link_layer ll)
  1102. {
  1103. enum ib_qp_attr_mask req_param, opt_param;
  1104. if (cur_state < 0 || cur_state > IB_QPS_ERR ||
  1105. next_state < 0 || next_state > IB_QPS_ERR)
  1106. return 0;
  1107. if (mask & IB_QP_CUR_STATE &&
  1108. cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
  1109. cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
  1110. return 0;
  1111. if (!qp_state_table[cur_state][next_state].valid)
  1112. return 0;
  1113. req_param = qp_state_table[cur_state][next_state].req_param[type];
  1114. opt_param = qp_state_table[cur_state][next_state].opt_param[type];
  1115. if ((mask & req_param) != req_param)
  1116. return 0;
  1117. if (mask & ~(req_param | opt_param | IB_QP_STATE))
  1118. return 0;
  1119. return 1;
  1120. }
  1121. EXPORT_SYMBOL(ib_modify_qp_is_ok);
  1122. static int ib_resolve_eth_dmac(struct ib_device *device,
  1123. struct rdma_ah_attr *ah_attr)
  1124. {
  1125. int ret = 0;
  1126. struct ib_global_route *grh;
  1127. if (!rdma_is_port_valid(device, rdma_ah_get_port_num(ah_attr)))
  1128. return -EINVAL;
  1129. if (ah_attr->type != RDMA_AH_ATTR_TYPE_ROCE)
  1130. return 0;
  1131. grh = rdma_ah_retrieve_grh(ah_attr);
  1132. if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw)) {
  1133. rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
  1134. ah_attr->roce.dmac);
  1135. return 0;
  1136. }
  1137. if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
  1138. if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
  1139. __be32 addr = 0;
  1140. memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
  1141. ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
  1142. } else {
  1143. ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
  1144. (char *)ah_attr->roce.dmac);
  1145. }
  1146. } else {
  1147. union ib_gid sgid;
  1148. struct ib_gid_attr sgid_attr;
  1149. int ifindex;
  1150. int hop_limit;
  1151. ret = ib_query_gid(device,
  1152. rdma_ah_get_port_num(ah_attr),
  1153. grh->sgid_index,
  1154. &sgid, &sgid_attr);
  1155. if (ret || !sgid_attr.ndev) {
  1156. if (!ret)
  1157. ret = -ENXIO;
  1158. goto out;
  1159. }
  1160. ifindex = sgid_attr.ndev->ifindex;
  1161. ret =
  1162. rdma_addr_find_l2_eth_by_grh(&sgid, &grh->dgid,
  1163. ah_attr->roce.dmac,
  1164. NULL, &ifindex, &hop_limit);
  1165. dev_put(sgid_attr.ndev);
  1166. grh->hop_limit = hop_limit;
  1167. }
  1168. out:
  1169. return ret;
  1170. }
  1171. /**
  1172. * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
  1173. * @qp: The QP to modify.
  1174. * @attr: On input, specifies the QP attributes to modify. On output,
  1175. * the current values of selected QP attributes are returned.
  1176. * @attr_mask: A bit-mask used to specify which attributes of the QP
  1177. * are being modified.
  1178. * @udata: pointer to user's input output buffer information
  1179. * are being modified.
  1180. * It returns 0 on success and returns appropriate error code on error.
  1181. */
  1182. int ib_modify_qp_with_udata(struct ib_qp *qp, struct ib_qp_attr *attr,
  1183. int attr_mask, struct ib_udata *udata)
  1184. {
  1185. int ret;
  1186. if (attr_mask & IB_QP_AV) {
  1187. ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
  1188. if (ret)
  1189. return ret;
  1190. }
  1191. ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
  1192. if (!ret && (attr_mask & IB_QP_PORT))
  1193. qp->port = attr->port_num;
  1194. return ret;
  1195. }
  1196. EXPORT_SYMBOL(ib_modify_qp_with_udata);
  1197. int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
  1198. {
  1199. int rc;
  1200. u32 netdev_speed;
  1201. struct net_device *netdev;
  1202. struct ethtool_link_ksettings lksettings;
  1203. if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
  1204. return -EINVAL;
  1205. if (!dev->get_netdev)
  1206. return -EOPNOTSUPP;
  1207. netdev = dev->get_netdev(dev, port_num);
  1208. if (!netdev)
  1209. return -ENODEV;
  1210. rtnl_lock();
  1211. rc = __ethtool_get_link_ksettings(netdev, &lksettings);
  1212. rtnl_unlock();
  1213. dev_put(netdev);
  1214. if (!rc) {
  1215. netdev_speed = lksettings.base.speed;
  1216. } else {
  1217. netdev_speed = SPEED_1000;
  1218. pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
  1219. netdev_speed);
  1220. }
  1221. if (netdev_speed <= SPEED_1000) {
  1222. *width = IB_WIDTH_1X;
  1223. *speed = IB_SPEED_SDR;
  1224. } else if (netdev_speed <= SPEED_10000) {
  1225. *width = IB_WIDTH_1X;
  1226. *speed = IB_SPEED_FDR10;
  1227. } else if (netdev_speed <= SPEED_20000) {
  1228. *width = IB_WIDTH_4X;
  1229. *speed = IB_SPEED_DDR;
  1230. } else if (netdev_speed <= SPEED_25000) {
  1231. *width = IB_WIDTH_1X;
  1232. *speed = IB_SPEED_EDR;
  1233. } else if (netdev_speed <= SPEED_40000) {
  1234. *width = IB_WIDTH_4X;
  1235. *speed = IB_SPEED_FDR10;
  1236. } else {
  1237. *width = IB_WIDTH_4X;
  1238. *speed = IB_SPEED_EDR;
  1239. }
  1240. return 0;
  1241. }
  1242. EXPORT_SYMBOL(ib_get_eth_speed);
  1243. int ib_modify_qp(struct ib_qp *qp,
  1244. struct ib_qp_attr *qp_attr,
  1245. int qp_attr_mask)
  1246. {
  1247. return ib_modify_qp_with_udata(qp, qp_attr, qp_attr_mask, NULL);
  1248. }
  1249. EXPORT_SYMBOL(ib_modify_qp);
  1250. int ib_query_qp(struct ib_qp *qp,
  1251. struct ib_qp_attr *qp_attr,
  1252. int qp_attr_mask,
  1253. struct ib_qp_init_attr *qp_init_attr)
  1254. {
  1255. return qp->device->query_qp ?
  1256. qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
  1257. -ENOSYS;
  1258. }
  1259. EXPORT_SYMBOL(ib_query_qp);
  1260. int ib_close_qp(struct ib_qp *qp)
  1261. {
  1262. struct ib_qp *real_qp;
  1263. unsigned long flags;
  1264. real_qp = qp->real_qp;
  1265. if (real_qp == qp)
  1266. return -EINVAL;
  1267. spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
  1268. list_del(&qp->open_list);
  1269. spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
  1270. atomic_dec(&real_qp->usecnt);
  1271. ib_close_shared_qp_security(qp->qp_sec);
  1272. kfree(qp);
  1273. return 0;
  1274. }
  1275. EXPORT_SYMBOL(ib_close_qp);
  1276. static int __ib_destroy_shared_qp(struct ib_qp *qp)
  1277. {
  1278. struct ib_xrcd *xrcd;
  1279. struct ib_qp *real_qp;
  1280. int ret;
  1281. real_qp = qp->real_qp;
  1282. xrcd = real_qp->xrcd;
  1283. mutex_lock(&xrcd->tgt_qp_mutex);
  1284. ib_close_qp(qp);
  1285. if (atomic_read(&real_qp->usecnt) == 0)
  1286. list_del(&real_qp->xrcd_list);
  1287. else
  1288. real_qp = NULL;
  1289. mutex_unlock(&xrcd->tgt_qp_mutex);
  1290. if (real_qp) {
  1291. ret = ib_destroy_qp(real_qp);
  1292. if (!ret)
  1293. atomic_dec(&xrcd->usecnt);
  1294. else
  1295. __ib_insert_xrcd_qp(xrcd, real_qp);
  1296. }
  1297. return 0;
  1298. }
  1299. int ib_destroy_qp(struct ib_qp *qp)
  1300. {
  1301. struct ib_pd *pd;
  1302. struct ib_cq *scq, *rcq;
  1303. struct ib_srq *srq;
  1304. struct ib_rwq_ind_table *ind_tbl;
  1305. struct ib_qp_security *sec;
  1306. int ret;
  1307. WARN_ON_ONCE(qp->mrs_used > 0);
  1308. if (atomic_read(&qp->usecnt))
  1309. return -EBUSY;
  1310. if (qp->real_qp != qp)
  1311. return __ib_destroy_shared_qp(qp);
  1312. pd = qp->pd;
  1313. scq = qp->send_cq;
  1314. rcq = qp->recv_cq;
  1315. srq = qp->srq;
  1316. ind_tbl = qp->rwq_ind_tbl;
  1317. sec = qp->qp_sec;
  1318. if (sec)
  1319. ib_destroy_qp_security_begin(sec);
  1320. if (!qp->uobject)
  1321. rdma_rw_cleanup_mrs(qp);
  1322. ret = qp->device->destroy_qp(qp);
  1323. if (!ret) {
  1324. if (pd)
  1325. atomic_dec(&pd->usecnt);
  1326. if (scq)
  1327. atomic_dec(&scq->usecnt);
  1328. if (rcq)
  1329. atomic_dec(&rcq->usecnt);
  1330. if (srq)
  1331. atomic_dec(&srq->usecnt);
  1332. if (ind_tbl)
  1333. atomic_dec(&ind_tbl->usecnt);
  1334. if (sec)
  1335. ib_destroy_qp_security_end(sec);
  1336. } else {
  1337. if (sec)
  1338. ib_destroy_qp_security_abort(sec);
  1339. }
  1340. return ret;
  1341. }
  1342. EXPORT_SYMBOL(ib_destroy_qp);
  1343. /* Completion queues */
  1344. struct ib_cq *ib_create_cq(struct ib_device *device,
  1345. ib_comp_handler comp_handler,
  1346. void (*event_handler)(struct ib_event *, void *),
  1347. void *cq_context,
  1348. const struct ib_cq_init_attr *cq_attr)
  1349. {
  1350. struct ib_cq *cq;
  1351. cq = device->create_cq(device, cq_attr, NULL, NULL);
  1352. if (!IS_ERR(cq)) {
  1353. cq->device = device;
  1354. cq->uobject = NULL;
  1355. cq->comp_handler = comp_handler;
  1356. cq->event_handler = event_handler;
  1357. cq->cq_context = cq_context;
  1358. atomic_set(&cq->usecnt, 0);
  1359. }
  1360. return cq;
  1361. }
  1362. EXPORT_SYMBOL(ib_create_cq);
  1363. int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
  1364. {
  1365. return cq->device->modify_cq ?
  1366. cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
  1367. }
  1368. EXPORT_SYMBOL(rdma_set_cq_moderation);
  1369. int ib_destroy_cq(struct ib_cq *cq)
  1370. {
  1371. if (atomic_read(&cq->usecnt))
  1372. return -EBUSY;
  1373. return cq->device->destroy_cq(cq);
  1374. }
  1375. EXPORT_SYMBOL(ib_destroy_cq);
  1376. int ib_resize_cq(struct ib_cq *cq, int cqe)
  1377. {
  1378. return cq->device->resize_cq ?
  1379. cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
  1380. }
  1381. EXPORT_SYMBOL(ib_resize_cq);
  1382. /* Memory regions */
  1383. int ib_dereg_mr(struct ib_mr *mr)
  1384. {
  1385. struct ib_pd *pd = mr->pd;
  1386. int ret;
  1387. ret = mr->device->dereg_mr(mr);
  1388. if (!ret)
  1389. atomic_dec(&pd->usecnt);
  1390. return ret;
  1391. }
  1392. EXPORT_SYMBOL(ib_dereg_mr);
  1393. /**
  1394. * ib_alloc_mr() - Allocates a memory region
  1395. * @pd: protection domain associated with the region
  1396. * @mr_type: memory region type
  1397. * @max_num_sg: maximum sg entries available for registration.
  1398. *
  1399. * Notes:
  1400. * Memory registeration page/sg lists must not exceed max_num_sg.
  1401. * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
  1402. * max_num_sg * used_page_size.
  1403. *
  1404. */
  1405. struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
  1406. enum ib_mr_type mr_type,
  1407. u32 max_num_sg)
  1408. {
  1409. struct ib_mr *mr;
  1410. if (!pd->device->alloc_mr)
  1411. return ERR_PTR(-ENOSYS);
  1412. mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
  1413. if (!IS_ERR(mr)) {
  1414. mr->device = pd->device;
  1415. mr->pd = pd;
  1416. mr->uobject = NULL;
  1417. atomic_inc(&pd->usecnt);
  1418. mr->need_inval = false;
  1419. }
  1420. return mr;
  1421. }
  1422. EXPORT_SYMBOL(ib_alloc_mr);
  1423. /* "Fast" memory regions */
  1424. struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
  1425. int mr_access_flags,
  1426. struct ib_fmr_attr *fmr_attr)
  1427. {
  1428. struct ib_fmr *fmr;
  1429. if (!pd->device->alloc_fmr)
  1430. return ERR_PTR(-ENOSYS);
  1431. fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
  1432. if (!IS_ERR(fmr)) {
  1433. fmr->device = pd->device;
  1434. fmr->pd = pd;
  1435. atomic_inc(&pd->usecnt);
  1436. }
  1437. return fmr;
  1438. }
  1439. EXPORT_SYMBOL(ib_alloc_fmr);
  1440. int ib_unmap_fmr(struct list_head *fmr_list)
  1441. {
  1442. struct ib_fmr *fmr;
  1443. if (list_empty(fmr_list))
  1444. return 0;
  1445. fmr = list_entry(fmr_list->next, struct ib_fmr, list);
  1446. return fmr->device->unmap_fmr(fmr_list);
  1447. }
  1448. EXPORT_SYMBOL(ib_unmap_fmr);
  1449. int ib_dealloc_fmr(struct ib_fmr *fmr)
  1450. {
  1451. struct ib_pd *pd;
  1452. int ret;
  1453. pd = fmr->pd;
  1454. ret = fmr->device->dealloc_fmr(fmr);
  1455. if (!ret)
  1456. atomic_dec(&pd->usecnt);
  1457. return ret;
  1458. }
  1459. EXPORT_SYMBOL(ib_dealloc_fmr);
  1460. /* Multicast groups */
  1461. static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
  1462. {
  1463. struct ib_qp_init_attr init_attr = {};
  1464. struct ib_qp_attr attr = {};
  1465. int num_eth_ports = 0;
  1466. int port;
  1467. /* If QP state >= init, it is assigned to a port and we can check this
  1468. * port only.
  1469. */
  1470. if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
  1471. if (attr.qp_state >= IB_QPS_INIT) {
  1472. if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
  1473. IB_LINK_LAYER_INFINIBAND)
  1474. return true;
  1475. goto lid_check;
  1476. }
  1477. }
  1478. /* Can't get a quick answer, iterate over all ports */
  1479. for (port = 0; port < qp->device->phys_port_cnt; port++)
  1480. if (rdma_port_get_link_layer(qp->device, port) !=
  1481. IB_LINK_LAYER_INFINIBAND)
  1482. num_eth_ports++;
  1483. /* If we have at lease one Ethernet port, RoCE annex declares that
  1484. * multicast LID should be ignored. We can't tell at this step if the
  1485. * QP belongs to an IB or Ethernet port.
  1486. */
  1487. if (num_eth_ports)
  1488. return true;
  1489. /* If all the ports are IB, we can check according to IB spec. */
  1490. lid_check:
  1491. return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
  1492. lid == be16_to_cpu(IB_LID_PERMISSIVE));
  1493. }
  1494. int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
  1495. {
  1496. int ret;
  1497. if (!qp->device->attach_mcast)
  1498. return -ENOSYS;
  1499. if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
  1500. qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
  1501. return -EINVAL;
  1502. ret = qp->device->attach_mcast(qp, gid, lid);
  1503. if (!ret)
  1504. atomic_inc(&qp->usecnt);
  1505. return ret;
  1506. }
  1507. EXPORT_SYMBOL(ib_attach_mcast);
  1508. int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
  1509. {
  1510. int ret;
  1511. if (!qp->device->detach_mcast)
  1512. return -ENOSYS;
  1513. if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
  1514. qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
  1515. return -EINVAL;
  1516. ret = qp->device->detach_mcast(qp, gid, lid);
  1517. if (!ret)
  1518. atomic_dec(&qp->usecnt);
  1519. return ret;
  1520. }
  1521. EXPORT_SYMBOL(ib_detach_mcast);
  1522. struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
  1523. {
  1524. struct ib_xrcd *xrcd;
  1525. if (!device->alloc_xrcd)
  1526. return ERR_PTR(-ENOSYS);
  1527. xrcd = device->alloc_xrcd(device, NULL, NULL);
  1528. if (!IS_ERR(xrcd)) {
  1529. xrcd->device = device;
  1530. xrcd->inode = NULL;
  1531. atomic_set(&xrcd->usecnt, 0);
  1532. mutex_init(&xrcd->tgt_qp_mutex);
  1533. INIT_LIST_HEAD(&xrcd->tgt_qp_list);
  1534. }
  1535. return xrcd;
  1536. }
  1537. EXPORT_SYMBOL(ib_alloc_xrcd);
  1538. int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
  1539. {
  1540. struct ib_qp *qp;
  1541. int ret;
  1542. if (atomic_read(&xrcd->usecnt))
  1543. return -EBUSY;
  1544. while (!list_empty(&xrcd->tgt_qp_list)) {
  1545. qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
  1546. ret = ib_destroy_qp(qp);
  1547. if (ret)
  1548. return ret;
  1549. }
  1550. return xrcd->device->dealloc_xrcd(xrcd);
  1551. }
  1552. EXPORT_SYMBOL(ib_dealloc_xrcd);
  1553. /**
  1554. * ib_create_wq - Creates a WQ associated with the specified protection
  1555. * domain.
  1556. * @pd: The protection domain associated with the WQ.
  1557. * @wq_init_attr: A list of initial attributes required to create the
  1558. * WQ. If WQ creation succeeds, then the attributes are updated to
  1559. * the actual capabilities of the created WQ.
  1560. *
  1561. * wq_init_attr->max_wr and wq_init_attr->max_sge determine
  1562. * the requested size of the WQ, and set to the actual values allocated
  1563. * on return.
  1564. * If ib_create_wq() succeeds, then max_wr and max_sge will always be
  1565. * at least as large as the requested values.
  1566. */
  1567. struct ib_wq *ib_create_wq(struct ib_pd *pd,
  1568. struct ib_wq_init_attr *wq_attr)
  1569. {
  1570. struct ib_wq *wq;
  1571. if (!pd->device->create_wq)
  1572. return ERR_PTR(-ENOSYS);
  1573. wq = pd->device->create_wq(pd, wq_attr, NULL);
  1574. if (!IS_ERR(wq)) {
  1575. wq->event_handler = wq_attr->event_handler;
  1576. wq->wq_context = wq_attr->wq_context;
  1577. wq->wq_type = wq_attr->wq_type;
  1578. wq->cq = wq_attr->cq;
  1579. wq->device = pd->device;
  1580. wq->pd = pd;
  1581. wq->uobject = NULL;
  1582. atomic_inc(&pd->usecnt);
  1583. atomic_inc(&wq_attr->cq->usecnt);
  1584. atomic_set(&wq->usecnt, 0);
  1585. }
  1586. return wq;
  1587. }
  1588. EXPORT_SYMBOL(ib_create_wq);
  1589. /**
  1590. * ib_destroy_wq - Destroys the specified WQ.
  1591. * @wq: The WQ to destroy.
  1592. */
  1593. int ib_destroy_wq(struct ib_wq *wq)
  1594. {
  1595. int err;
  1596. struct ib_cq *cq = wq->cq;
  1597. struct ib_pd *pd = wq->pd;
  1598. if (atomic_read(&wq->usecnt))
  1599. return -EBUSY;
  1600. err = wq->device->destroy_wq(wq);
  1601. if (!err) {
  1602. atomic_dec(&pd->usecnt);
  1603. atomic_dec(&cq->usecnt);
  1604. }
  1605. return err;
  1606. }
  1607. EXPORT_SYMBOL(ib_destroy_wq);
  1608. /**
  1609. * ib_modify_wq - Modifies the specified WQ.
  1610. * @wq: The WQ to modify.
  1611. * @wq_attr: On input, specifies the WQ attributes to modify.
  1612. * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
  1613. * are being modified.
  1614. * On output, the current values of selected WQ attributes are returned.
  1615. */
  1616. int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
  1617. u32 wq_attr_mask)
  1618. {
  1619. int err;
  1620. if (!wq->device->modify_wq)
  1621. return -ENOSYS;
  1622. err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
  1623. return err;
  1624. }
  1625. EXPORT_SYMBOL(ib_modify_wq);
  1626. /*
  1627. * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
  1628. * @device: The device on which to create the rwq indirection table.
  1629. * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
  1630. * create the Indirection Table.
  1631. *
  1632. * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
  1633. * than the created ib_rwq_ind_table object and the caller is responsible
  1634. * for its memory allocation/free.
  1635. */
  1636. struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
  1637. struct ib_rwq_ind_table_init_attr *init_attr)
  1638. {
  1639. struct ib_rwq_ind_table *rwq_ind_table;
  1640. int i;
  1641. u32 table_size;
  1642. if (!device->create_rwq_ind_table)
  1643. return ERR_PTR(-ENOSYS);
  1644. table_size = (1 << init_attr->log_ind_tbl_size);
  1645. rwq_ind_table = device->create_rwq_ind_table(device,
  1646. init_attr, NULL);
  1647. if (IS_ERR(rwq_ind_table))
  1648. return rwq_ind_table;
  1649. rwq_ind_table->ind_tbl = init_attr->ind_tbl;
  1650. rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
  1651. rwq_ind_table->device = device;
  1652. rwq_ind_table->uobject = NULL;
  1653. atomic_set(&rwq_ind_table->usecnt, 0);
  1654. for (i = 0; i < table_size; i++)
  1655. atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
  1656. return rwq_ind_table;
  1657. }
  1658. EXPORT_SYMBOL(ib_create_rwq_ind_table);
  1659. /*
  1660. * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
  1661. * @wq_ind_table: The Indirection Table to destroy.
  1662. */
  1663. int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
  1664. {
  1665. int err, i;
  1666. u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
  1667. struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
  1668. if (atomic_read(&rwq_ind_table->usecnt))
  1669. return -EBUSY;
  1670. err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
  1671. if (!err) {
  1672. for (i = 0; i < table_size; i++)
  1673. atomic_dec(&ind_tbl[i]->usecnt);
  1674. }
  1675. return err;
  1676. }
  1677. EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
  1678. struct ib_flow *ib_create_flow(struct ib_qp *qp,
  1679. struct ib_flow_attr *flow_attr,
  1680. int domain)
  1681. {
  1682. struct ib_flow *flow_id;
  1683. if (!qp->device->create_flow)
  1684. return ERR_PTR(-ENOSYS);
  1685. flow_id = qp->device->create_flow(qp, flow_attr, domain);
  1686. if (!IS_ERR(flow_id)) {
  1687. atomic_inc(&qp->usecnt);
  1688. flow_id->qp = qp;
  1689. }
  1690. return flow_id;
  1691. }
  1692. EXPORT_SYMBOL(ib_create_flow);
  1693. int ib_destroy_flow(struct ib_flow *flow_id)
  1694. {
  1695. int err;
  1696. struct ib_qp *qp = flow_id->qp;
  1697. err = qp->device->destroy_flow(flow_id);
  1698. if (!err)
  1699. atomic_dec(&qp->usecnt);
  1700. return err;
  1701. }
  1702. EXPORT_SYMBOL(ib_destroy_flow);
  1703. int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
  1704. struct ib_mr_status *mr_status)
  1705. {
  1706. return mr->device->check_mr_status ?
  1707. mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
  1708. }
  1709. EXPORT_SYMBOL(ib_check_mr_status);
  1710. int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
  1711. int state)
  1712. {
  1713. if (!device->set_vf_link_state)
  1714. return -ENOSYS;
  1715. return device->set_vf_link_state(device, vf, port, state);
  1716. }
  1717. EXPORT_SYMBOL(ib_set_vf_link_state);
  1718. int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
  1719. struct ifla_vf_info *info)
  1720. {
  1721. if (!device->get_vf_config)
  1722. return -ENOSYS;
  1723. return device->get_vf_config(device, vf, port, info);
  1724. }
  1725. EXPORT_SYMBOL(ib_get_vf_config);
  1726. int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
  1727. struct ifla_vf_stats *stats)
  1728. {
  1729. if (!device->get_vf_stats)
  1730. return -ENOSYS;
  1731. return device->get_vf_stats(device, vf, port, stats);
  1732. }
  1733. EXPORT_SYMBOL(ib_get_vf_stats);
  1734. int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
  1735. int type)
  1736. {
  1737. if (!device->set_vf_guid)
  1738. return -ENOSYS;
  1739. return device->set_vf_guid(device, vf, port, guid, type);
  1740. }
  1741. EXPORT_SYMBOL(ib_set_vf_guid);
  1742. /**
  1743. * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
  1744. * and set it the memory region.
  1745. * @mr: memory region
  1746. * @sg: dma mapped scatterlist
  1747. * @sg_nents: number of entries in sg
  1748. * @sg_offset: offset in bytes into sg
  1749. * @page_size: page vector desired page size
  1750. *
  1751. * Constraints:
  1752. * - The first sg element is allowed to have an offset.
  1753. * - Each sg element must either be aligned to page_size or virtually
  1754. * contiguous to the previous element. In case an sg element has a
  1755. * non-contiguous offset, the mapping prefix will not include it.
  1756. * - The last sg element is allowed to have length less than page_size.
  1757. * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
  1758. * then only max_num_sg entries will be mapped.
  1759. * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
  1760. * constraints holds and the page_size argument is ignored.
  1761. *
  1762. * Returns the number of sg elements that were mapped to the memory region.
  1763. *
  1764. * After this completes successfully, the memory region
  1765. * is ready for registration.
  1766. */
  1767. int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
  1768. unsigned int *sg_offset, unsigned int page_size)
  1769. {
  1770. if (unlikely(!mr->device->map_mr_sg))
  1771. return -ENOSYS;
  1772. mr->page_size = page_size;
  1773. return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
  1774. }
  1775. EXPORT_SYMBOL(ib_map_mr_sg);
  1776. /**
  1777. * ib_sg_to_pages() - Convert the largest prefix of a sg list
  1778. * to a page vector
  1779. * @mr: memory region
  1780. * @sgl: dma mapped scatterlist
  1781. * @sg_nents: number of entries in sg
  1782. * @sg_offset_p: IN: start offset in bytes into sg
  1783. * OUT: offset in bytes for element n of the sg of the first
  1784. * byte that has not been processed where n is the return
  1785. * value of this function.
  1786. * @set_page: driver page assignment function pointer
  1787. *
  1788. * Core service helper for drivers to convert the largest
  1789. * prefix of given sg list to a page vector. The sg list
  1790. * prefix converted is the prefix that meet the requirements
  1791. * of ib_map_mr_sg.
  1792. *
  1793. * Returns the number of sg elements that were assigned to
  1794. * a page vector.
  1795. */
  1796. int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
  1797. unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
  1798. {
  1799. struct scatterlist *sg;
  1800. u64 last_end_dma_addr = 0;
  1801. unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
  1802. unsigned int last_page_off = 0;
  1803. u64 page_mask = ~((u64)mr->page_size - 1);
  1804. int i, ret;
  1805. if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
  1806. return -EINVAL;
  1807. mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
  1808. mr->length = 0;
  1809. for_each_sg(sgl, sg, sg_nents, i) {
  1810. u64 dma_addr = sg_dma_address(sg) + sg_offset;
  1811. u64 prev_addr = dma_addr;
  1812. unsigned int dma_len = sg_dma_len(sg) - sg_offset;
  1813. u64 end_dma_addr = dma_addr + dma_len;
  1814. u64 page_addr = dma_addr & page_mask;
  1815. /*
  1816. * For the second and later elements, check whether either the
  1817. * end of element i-1 or the start of element i is not aligned
  1818. * on a page boundary.
  1819. */
  1820. if (i && (last_page_off != 0 || page_addr != dma_addr)) {
  1821. /* Stop mapping if there is a gap. */
  1822. if (last_end_dma_addr != dma_addr)
  1823. break;
  1824. /*
  1825. * Coalesce this element with the last. If it is small
  1826. * enough just update mr->length. Otherwise start
  1827. * mapping from the next page.
  1828. */
  1829. goto next_page;
  1830. }
  1831. do {
  1832. ret = set_page(mr, page_addr);
  1833. if (unlikely(ret < 0)) {
  1834. sg_offset = prev_addr - sg_dma_address(sg);
  1835. mr->length += prev_addr - dma_addr;
  1836. if (sg_offset_p)
  1837. *sg_offset_p = sg_offset;
  1838. return i || sg_offset ? i : ret;
  1839. }
  1840. prev_addr = page_addr;
  1841. next_page:
  1842. page_addr += mr->page_size;
  1843. } while (page_addr < end_dma_addr);
  1844. mr->length += dma_len;
  1845. last_end_dma_addr = end_dma_addr;
  1846. last_page_off = end_dma_addr & ~page_mask;
  1847. sg_offset = 0;
  1848. }
  1849. if (sg_offset_p)
  1850. *sg_offset_p = 0;
  1851. return i;
  1852. }
  1853. EXPORT_SYMBOL(ib_sg_to_pages);
  1854. struct ib_drain_cqe {
  1855. struct ib_cqe cqe;
  1856. struct completion done;
  1857. };
  1858. static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
  1859. {
  1860. struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
  1861. cqe);
  1862. complete(&cqe->done);
  1863. }
  1864. /*
  1865. * Post a WR and block until its completion is reaped for the SQ.
  1866. */
  1867. static void __ib_drain_sq(struct ib_qp *qp)
  1868. {
  1869. struct ib_cq *cq = qp->send_cq;
  1870. struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
  1871. struct ib_drain_cqe sdrain;
  1872. struct ib_send_wr swr = {}, *bad_swr;
  1873. int ret;
  1874. swr.wr_cqe = &sdrain.cqe;
  1875. sdrain.cqe.done = ib_drain_qp_done;
  1876. init_completion(&sdrain.done);
  1877. ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
  1878. if (ret) {
  1879. WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
  1880. return;
  1881. }
  1882. ret = ib_post_send(qp, &swr, &bad_swr);
  1883. if (ret) {
  1884. WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
  1885. return;
  1886. }
  1887. if (cq->poll_ctx == IB_POLL_DIRECT)
  1888. while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
  1889. ib_process_cq_direct(cq, -1);
  1890. else
  1891. wait_for_completion(&sdrain.done);
  1892. }
  1893. /*
  1894. * Post a WR and block until its completion is reaped for the RQ.
  1895. */
  1896. static void __ib_drain_rq(struct ib_qp *qp)
  1897. {
  1898. struct ib_cq *cq = qp->recv_cq;
  1899. struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
  1900. struct ib_drain_cqe rdrain;
  1901. struct ib_recv_wr rwr = {}, *bad_rwr;
  1902. int ret;
  1903. rwr.wr_cqe = &rdrain.cqe;
  1904. rdrain.cqe.done = ib_drain_qp_done;
  1905. init_completion(&rdrain.done);
  1906. ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
  1907. if (ret) {
  1908. WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
  1909. return;
  1910. }
  1911. ret = ib_post_recv(qp, &rwr, &bad_rwr);
  1912. if (ret) {
  1913. WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
  1914. return;
  1915. }
  1916. if (cq->poll_ctx == IB_POLL_DIRECT)
  1917. while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
  1918. ib_process_cq_direct(cq, -1);
  1919. else
  1920. wait_for_completion(&rdrain.done);
  1921. }
  1922. /**
  1923. * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
  1924. * application.
  1925. * @qp: queue pair to drain
  1926. *
  1927. * If the device has a provider-specific drain function, then
  1928. * call that. Otherwise call the generic drain function
  1929. * __ib_drain_sq().
  1930. *
  1931. * The caller must:
  1932. *
  1933. * ensure there is room in the CQ and SQ for the drain work request and
  1934. * completion.
  1935. *
  1936. * allocate the CQ using ib_alloc_cq().
  1937. *
  1938. * ensure that there are no other contexts that are posting WRs concurrently.
  1939. * Otherwise the drain is not guaranteed.
  1940. */
  1941. void ib_drain_sq(struct ib_qp *qp)
  1942. {
  1943. if (qp->device->drain_sq)
  1944. qp->device->drain_sq(qp);
  1945. else
  1946. __ib_drain_sq(qp);
  1947. }
  1948. EXPORT_SYMBOL(ib_drain_sq);
  1949. /**
  1950. * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
  1951. * application.
  1952. * @qp: queue pair to drain
  1953. *
  1954. * If the device has a provider-specific drain function, then
  1955. * call that. Otherwise call the generic drain function
  1956. * __ib_drain_rq().
  1957. *
  1958. * The caller must:
  1959. *
  1960. * ensure there is room in the CQ and RQ for the drain work request and
  1961. * completion.
  1962. *
  1963. * allocate the CQ using ib_alloc_cq().
  1964. *
  1965. * ensure that there are no other contexts that are posting WRs concurrently.
  1966. * Otherwise the drain is not guaranteed.
  1967. */
  1968. void ib_drain_rq(struct ib_qp *qp)
  1969. {
  1970. if (qp->device->drain_rq)
  1971. qp->device->drain_rq(qp);
  1972. else
  1973. __ib_drain_rq(qp);
  1974. }
  1975. EXPORT_SYMBOL(ib_drain_rq);
  1976. /**
  1977. * ib_drain_qp() - Block until all CQEs have been consumed by the
  1978. * application on both the RQ and SQ.
  1979. * @qp: queue pair to drain
  1980. *
  1981. * The caller must:
  1982. *
  1983. * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
  1984. * and completions.
  1985. *
  1986. * allocate the CQs using ib_alloc_cq().
  1987. *
  1988. * ensure that there are no other contexts that are posting WRs concurrently.
  1989. * Otherwise the drain is not guaranteed.
  1990. */
  1991. void ib_drain_qp(struct ib_qp *qp)
  1992. {
  1993. ib_drain_sq(qp);
  1994. if (!qp->srq)
  1995. ib_drain_rq(qp);
  1996. }
  1997. EXPORT_SYMBOL(ib_drain_qp);