vc4_crtc.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083
  1. /*
  2. * Copyright (C) 2015 Broadcom
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. /**
  9. * DOC: VC4 CRTC module
  10. *
  11. * In VC4, the Pixel Valve is what most closely corresponds to the
  12. * DRM's concept of a CRTC. The PV generates video timings from the
  13. * encoder's clock plus its configuration. It pulls scaled pixels from
  14. * the HVS at that timing, and feeds it to the encoder.
  15. *
  16. * However, the DRM CRTC also collects the configuration of all the
  17. * DRM planes attached to it. As a result, the CRTC is also
  18. * responsible for writing the display list for the HVS channel that
  19. * the CRTC will use.
  20. *
  21. * The 2835 has 3 different pixel valves. pv0 in the audio power
  22. * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
  23. * image domain can feed either HDMI or the SDTV controller. The
  24. * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
  25. * SDTV, etc.) according to which output type is chosen in the mux.
  26. *
  27. * For power management, the pixel valve's registers are all clocked
  28. * by the AXI clock, while the timings and FIFOs make use of the
  29. * output-specific clock. Since the encoders also directly consume
  30. * the CPRMAN clocks, and know what timings they need, they are the
  31. * ones that set the clock.
  32. */
  33. #include "drm_atomic.h"
  34. #include "drm_atomic_helper.h"
  35. #include "drm_crtc_helper.h"
  36. #include "linux/clk.h"
  37. #include "drm_fb_cma_helper.h"
  38. #include "linux/component.h"
  39. #include "linux/of_device.h"
  40. #include "vc4_drv.h"
  41. #include "vc4_regs.h"
  42. struct vc4_crtc {
  43. struct drm_crtc base;
  44. const struct vc4_crtc_data *data;
  45. void __iomem *regs;
  46. /* Timestamp at start of vblank irq - unaffected by lock delays. */
  47. ktime_t t_vblank;
  48. /* Which HVS channel we're using for our CRTC. */
  49. int channel;
  50. u8 lut_r[256];
  51. u8 lut_g[256];
  52. u8 lut_b[256];
  53. /* Size in pixels of the COB memory allocated to this CRTC. */
  54. u32 cob_size;
  55. struct drm_pending_vblank_event *event;
  56. };
  57. struct vc4_crtc_state {
  58. struct drm_crtc_state base;
  59. /* Dlist area for this CRTC configuration. */
  60. struct drm_mm_node mm;
  61. };
  62. static inline struct vc4_crtc *
  63. to_vc4_crtc(struct drm_crtc *crtc)
  64. {
  65. return (struct vc4_crtc *)crtc;
  66. }
  67. static inline struct vc4_crtc_state *
  68. to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
  69. {
  70. return (struct vc4_crtc_state *)crtc_state;
  71. }
  72. struct vc4_crtc_data {
  73. /* Which channel of the HVS this pixelvalve sources from. */
  74. int hvs_channel;
  75. enum vc4_encoder_type encoder_types[4];
  76. };
  77. #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
  78. #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
  79. #define CRTC_REG(reg) { reg, #reg }
  80. static const struct {
  81. u32 reg;
  82. const char *name;
  83. } crtc_regs[] = {
  84. CRTC_REG(PV_CONTROL),
  85. CRTC_REG(PV_V_CONTROL),
  86. CRTC_REG(PV_VSYNCD_EVEN),
  87. CRTC_REG(PV_HORZA),
  88. CRTC_REG(PV_HORZB),
  89. CRTC_REG(PV_VERTA),
  90. CRTC_REG(PV_VERTB),
  91. CRTC_REG(PV_VERTA_EVEN),
  92. CRTC_REG(PV_VERTB_EVEN),
  93. CRTC_REG(PV_INTEN),
  94. CRTC_REG(PV_INTSTAT),
  95. CRTC_REG(PV_STAT),
  96. CRTC_REG(PV_HACT_ACT),
  97. };
  98. static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
  99. {
  100. int i;
  101. for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
  102. DRM_INFO("0x%04x (%s): 0x%08x\n",
  103. crtc_regs[i].reg, crtc_regs[i].name,
  104. CRTC_READ(crtc_regs[i].reg));
  105. }
  106. }
  107. #ifdef CONFIG_DEBUG_FS
  108. int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
  109. {
  110. struct drm_info_node *node = (struct drm_info_node *)m->private;
  111. struct drm_device *dev = node->minor->dev;
  112. int crtc_index = (uintptr_t)node->info_ent->data;
  113. struct drm_crtc *crtc;
  114. struct vc4_crtc *vc4_crtc;
  115. int i;
  116. i = 0;
  117. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  118. if (i == crtc_index)
  119. break;
  120. i++;
  121. }
  122. if (!crtc)
  123. return 0;
  124. vc4_crtc = to_vc4_crtc(crtc);
  125. for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
  126. seq_printf(m, "%s (0x%04x): 0x%08x\n",
  127. crtc_regs[i].name, crtc_regs[i].reg,
  128. CRTC_READ(crtc_regs[i].reg));
  129. }
  130. return 0;
  131. }
  132. #endif
  133. int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
  134. unsigned int flags, int *vpos, int *hpos,
  135. ktime_t *stime, ktime_t *etime,
  136. const struct drm_display_mode *mode)
  137. {
  138. struct vc4_dev *vc4 = to_vc4_dev(dev);
  139. struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
  140. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  141. u32 val;
  142. int fifo_lines;
  143. int vblank_lines;
  144. int ret = 0;
  145. /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
  146. /* Get optional system timestamp before query. */
  147. if (stime)
  148. *stime = ktime_get();
  149. /*
  150. * Read vertical scanline which is currently composed for our
  151. * pixelvalve by the HVS, and also the scaler status.
  152. */
  153. val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
  154. /* Get optional system timestamp after query. */
  155. if (etime)
  156. *etime = ktime_get();
  157. /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
  158. /* Vertical position of hvs composed scanline. */
  159. *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
  160. *hpos = 0;
  161. if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
  162. *vpos /= 2;
  163. /* Use hpos to correct for field offset in interlaced mode. */
  164. if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
  165. *hpos += mode->crtc_htotal / 2;
  166. }
  167. /* This is the offset we need for translating hvs -> pv scanout pos. */
  168. fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
  169. if (fifo_lines > 0)
  170. ret |= DRM_SCANOUTPOS_VALID;
  171. /* HVS more than fifo_lines into frame for compositing? */
  172. if (*vpos > fifo_lines) {
  173. /*
  174. * We are in active scanout and can get some meaningful results
  175. * from HVS. The actual PV scanout can not trail behind more
  176. * than fifo_lines as that is the fifo's capacity. Assume that
  177. * in active scanout the HVS and PV work in lockstep wrt. HVS
  178. * refilling the fifo and PV consuming from the fifo, ie.
  179. * whenever the PV consumes and frees up a scanline in the
  180. * fifo, the HVS will immediately refill it, therefore
  181. * incrementing vpos. Therefore we choose HVS read position -
  182. * fifo size in scanlines as a estimate of the real scanout
  183. * position of the PV.
  184. */
  185. *vpos -= fifo_lines + 1;
  186. ret |= DRM_SCANOUTPOS_ACCURATE;
  187. return ret;
  188. }
  189. /*
  190. * Less: This happens when we are in vblank and the HVS, after getting
  191. * the VSTART restart signal from the PV, just started refilling its
  192. * fifo with new lines from the top-most lines of the new framebuffers.
  193. * The PV does not scan out in vblank, so does not remove lines from
  194. * the fifo, so the fifo will be full quickly and the HVS has to pause.
  195. * We can't get meaningful readings wrt. scanline position of the PV
  196. * and need to make things up in a approximative but consistent way.
  197. */
  198. ret |= DRM_SCANOUTPOS_IN_VBLANK;
  199. vblank_lines = mode->vtotal - mode->vdisplay;
  200. if (flags & DRM_CALLED_FROM_VBLIRQ) {
  201. /*
  202. * Assume the irq handler got called close to first
  203. * line of vblank, so PV has about a full vblank
  204. * scanlines to go, and as a base timestamp use the
  205. * one taken at entry into vblank irq handler, so it
  206. * is not affected by random delays due to lock
  207. * contention on event_lock or vblank_time lock in
  208. * the core.
  209. */
  210. *vpos = -vblank_lines;
  211. if (stime)
  212. *stime = vc4_crtc->t_vblank;
  213. if (etime)
  214. *etime = vc4_crtc->t_vblank;
  215. /*
  216. * If the HVS fifo is not yet full then we know for certain
  217. * we are at the very beginning of vblank, as the hvs just
  218. * started refilling, and the stime and etime timestamps
  219. * truly correspond to start of vblank.
  220. */
  221. if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
  222. ret |= DRM_SCANOUTPOS_ACCURATE;
  223. } else {
  224. /*
  225. * No clue where we are inside vblank. Return a vpos of zero,
  226. * which will cause calling code to just return the etime
  227. * timestamp uncorrected. At least this is no worse than the
  228. * standard fallback.
  229. */
  230. *vpos = 0;
  231. }
  232. return ret;
  233. }
  234. int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
  235. int *max_error, struct timeval *vblank_time,
  236. unsigned flags)
  237. {
  238. struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
  239. struct drm_crtc_state *state = crtc->state;
  240. /* Helper routine in DRM core does all the work: */
  241. return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
  242. vblank_time, flags,
  243. &state->adjusted_mode);
  244. }
  245. static void vc4_crtc_destroy(struct drm_crtc *crtc)
  246. {
  247. drm_crtc_cleanup(crtc);
  248. }
  249. static void
  250. vc4_crtc_lut_load(struct drm_crtc *crtc)
  251. {
  252. struct drm_device *dev = crtc->dev;
  253. struct vc4_dev *vc4 = to_vc4_dev(dev);
  254. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  255. u32 i;
  256. /* The LUT memory is laid out with each HVS channel in order,
  257. * each of which takes 256 writes for R, 256 for G, then 256
  258. * for B.
  259. */
  260. HVS_WRITE(SCALER_GAMADDR,
  261. SCALER_GAMADDR_AUTOINC |
  262. (vc4_crtc->channel * 3 * crtc->gamma_size));
  263. for (i = 0; i < crtc->gamma_size; i++)
  264. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
  265. for (i = 0; i < crtc->gamma_size; i++)
  266. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
  267. for (i = 0; i < crtc->gamma_size; i++)
  268. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
  269. }
  270. static int
  271. vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
  272. uint32_t size)
  273. {
  274. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  275. u32 i;
  276. for (i = 0; i < size; i++) {
  277. vc4_crtc->lut_r[i] = r[i] >> 8;
  278. vc4_crtc->lut_g[i] = g[i] >> 8;
  279. vc4_crtc->lut_b[i] = b[i] >> 8;
  280. }
  281. vc4_crtc_lut_load(crtc);
  282. return 0;
  283. }
  284. static u32 vc4_get_fifo_full_level(u32 format)
  285. {
  286. static const u32 fifo_len_bytes = 64;
  287. static const u32 hvs_latency_pix = 6;
  288. switch (format) {
  289. case PV_CONTROL_FORMAT_DSIV_16:
  290. case PV_CONTROL_FORMAT_DSIC_16:
  291. return fifo_len_bytes - 2 * hvs_latency_pix;
  292. case PV_CONTROL_FORMAT_DSIV_18:
  293. return fifo_len_bytes - 14;
  294. case PV_CONTROL_FORMAT_24:
  295. case PV_CONTROL_FORMAT_DSIV_24:
  296. default:
  297. return fifo_len_bytes - 3 * hvs_latency_pix;
  298. }
  299. }
  300. /*
  301. * Returns the encoder attached to the CRTC.
  302. *
  303. * VC4 can only scan out to one encoder at a time, while the DRM core
  304. * allows drivers to push pixels to more than one encoder from the
  305. * same CRTC.
  306. */
  307. static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
  308. {
  309. struct drm_connector *connector;
  310. drm_for_each_connector(connector, crtc->dev) {
  311. if (connector->state->crtc == crtc) {
  312. return connector->encoder;
  313. }
  314. }
  315. return NULL;
  316. }
  317. static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
  318. {
  319. struct drm_device *dev = crtc->dev;
  320. struct vc4_dev *vc4 = to_vc4_dev(dev);
  321. struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
  322. struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
  323. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  324. struct drm_crtc_state *state = crtc->state;
  325. struct drm_display_mode *mode = &state->adjusted_mode;
  326. bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
  327. u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
  328. bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
  329. vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
  330. u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
  331. bool debug_dump_regs = false;
  332. if (debug_dump_regs) {
  333. DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
  334. vc4_crtc_dump_regs(vc4_crtc);
  335. }
  336. /* Reset the PV fifo. */
  337. CRTC_WRITE(PV_CONTROL, 0);
  338. CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
  339. CRTC_WRITE(PV_CONTROL, 0);
  340. CRTC_WRITE(PV_HORZA,
  341. VC4_SET_FIELD((mode->htotal -
  342. mode->hsync_end) * pixel_rep,
  343. PV_HORZA_HBP) |
  344. VC4_SET_FIELD((mode->hsync_end -
  345. mode->hsync_start) * pixel_rep,
  346. PV_HORZA_HSYNC));
  347. CRTC_WRITE(PV_HORZB,
  348. VC4_SET_FIELD((mode->hsync_start -
  349. mode->hdisplay) * pixel_rep,
  350. PV_HORZB_HFP) |
  351. VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
  352. CRTC_WRITE(PV_VERTA,
  353. VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
  354. PV_VERTA_VBP) |
  355. VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
  356. PV_VERTA_VSYNC));
  357. CRTC_WRITE(PV_VERTB,
  358. VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
  359. PV_VERTB_VFP) |
  360. VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
  361. if (interlace) {
  362. CRTC_WRITE(PV_VERTA_EVEN,
  363. VC4_SET_FIELD(mode->crtc_vtotal -
  364. mode->crtc_vsync_end - 1,
  365. PV_VERTA_VBP) |
  366. VC4_SET_FIELD(mode->crtc_vsync_end -
  367. mode->crtc_vsync_start,
  368. PV_VERTA_VSYNC));
  369. CRTC_WRITE(PV_VERTB_EVEN,
  370. VC4_SET_FIELD(mode->crtc_vsync_start -
  371. mode->crtc_vdisplay,
  372. PV_VERTB_VFP) |
  373. VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
  374. /* We set up first field even mode for HDMI. VEC's
  375. * NTSC mode would want first field odd instead, once
  376. * we support it (to do so, set ODD_FIRST and put the
  377. * delay in VSYNCD_EVEN instead).
  378. */
  379. CRTC_WRITE(PV_V_CONTROL,
  380. PV_VCONTROL_CONTINUOUS |
  381. (is_dsi ? PV_VCONTROL_DSI : 0) |
  382. PV_VCONTROL_INTERLACE |
  383. VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
  384. PV_VCONTROL_ODD_DELAY));
  385. CRTC_WRITE(PV_VSYNCD_EVEN, 0);
  386. } else {
  387. CRTC_WRITE(PV_V_CONTROL,
  388. PV_VCONTROL_CONTINUOUS |
  389. (is_dsi ? PV_VCONTROL_DSI : 0));
  390. }
  391. CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
  392. CRTC_WRITE(PV_CONTROL,
  393. VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
  394. VC4_SET_FIELD(vc4_get_fifo_full_level(format),
  395. PV_CONTROL_FIFO_LEVEL) |
  396. VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
  397. PV_CONTROL_CLR_AT_START |
  398. PV_CONTROL_TRIGGER_UNDERFLOW |
  399. PV_CONTROL_WAIT_HSTART |
  400. VC4_SET_FIELD(vc4_encoder->clock_select,
  401. PV_CONTROL_CLK_SELECT) |
  402. PV_CONTROL_FIFO_CLR |
  403. PV_CONTROL_EN);
  404. HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
  405. SCALER_DISPBKGND_AUTOHS |
  406. SCALER_DISPBKGND_GAMMA |
  407. (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
  408. /* Reload the LUT, since the SRAMs would have been disabled if
  409. * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
  410. */
  411. vc4_crtc_lut_load(crtc);
  412. if (debug_dump_regs) {
  413. DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
  414. vc4_crtc_dump_regs(vc4_crtc);
  415. }
  416. }
  417. static void require_hvs_enabled(struct drm_device *dev)
  418. {
  419. struct vc4_dev *vc4 = to_vc4_dev(dev);
  420. WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
  421. SCALER_DISPCTRL_ENABLE);
  422. }
  423. static void vc4_crtc_disable(struct drm_crtc *crtc)
  424. {
  425. struct drm_device *dev = crtc->dev;
  426. struct vc4_dev *vc4 = to_vc4_dev(dev);
  427. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  428. u32 chan = vc4_crtc->channel;
  429. int ret;
  430. require_hvs_enabled(dev);
  431. /* Disable vblank irq handling before crtc is disabled. */
  432. drm_crtc_vblank_off(crtc);
  433. CRTC_WRITE(PV_V_CONTROL,
  434. CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
  435. ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
  436. WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
  437. if (HVS_READ(SCALER_DISPCTRLX(chan)) &
  438. SCALER_DISPCTRLX_ENABLE) {
  439. HVS_WRITE(SCALER_DISPCTRLX(chan),
  440. SCALER_DISPCTRLX_RESET);
  441. /* While the docs say that reset is self-clearing, it
  442. * seems it doesn't actually.
  443. */
  444. HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
  445. }
  446. /* Once we leave, the scaler should be disabled and its fifo empty. */
  447. WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
  448. WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
  449. SCALER_DISPSTATX_MODE) !=
  450. SCALER_DISPSTATX_MODE_DISABLED);
  451. WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
  452. (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
  453. SCALER_DISPSTATX_EMPTY);
  454. }
  455. static void vc4_crtc_enable(struct drm_crtc *crtc)
  456. {
  457. struct drm_device *dev = crtc->dev;
  458. struct vc4_dev *vc4 = to_vc4_dev(dev);
  459. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  460. struct drm_crtc_state *state = crtc->state;
  461. struct drm_display_mode *mode = &state->adjusted_mode;
  462. require_hvs_enabled(dev);
  463. /* Turn on the scaler, which will wait for vstart to start
  464. * compositing.
  465. */
  466. HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
  467. VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
  468. VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
  469. SCALER_DISPCTRLX_ENABLE);
  470. /* Turn on the pixel valve, which will emit the vstart signal. */
  471. CRTC_WRITE(PV_V_CONTROL,
  472. CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
  473. /* Enable vblank irq handling after crtc is started. */
  474. drm_crtc_vblank_on(crtc);
  475. }
  476. static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
  477. const struct drm_display_mode *mode,
  478. struct drm_display_mode *adjusted_mode)
  479. {
  480. /* Do not allow doublescan modes from user space */
  481. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
  482. DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
  483. crtc->base.id);
  484. return false;
  485. }
  486. return true;
  487. }
  488. static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
  489. struct drm_crtc_state *state)
  490. {
  491. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
  492. struct drm_device *dev = crtc->dev;
  493. struct vc4_dev *vc4 = to_vc4_dev(dev);
  494. struct drm_plane *plane;
  495. unsigned long flags;
  496. const struct drm_plane_state *plane_state;
  497. u32 dlist_count = 0;
  498. int ret;
  499. /* The pixelvalve can only feed one encoder (and encoders are
  500. * 1:1 with connectors.)
  501. */
  502. if (hweight32(state->connector_mask) > 1)
  503. return -EINVAL;
  504. drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
  505. dlist_count += vc4_plane_dlist_size(plane_state);
  506. dlist_count++; /* Account for SCALER_CTL0_END. */
  507. spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
  508. ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
  509. dlist_count);
  510. spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
  511. if (ret)
  512. return ret;
  513. return 0;
  514. }
  515. static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
  516. struct drm_crtc_state *old_state)
  517. {
  518. struct drm_device *dev = crtc->dev;
  519. struct vc4_dev *vc4 = to_vc4_dev(dev);
  520. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  521. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
  522. struct drm_plane *plane;
  523. bool debug_dump_regs = false;
  524. u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
  525. u32 __iomem *dlist_next = dlist_start;
  526. if (debug_dump_regs) {
  527. DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
  528. vc4_hvs_dump_state(dev);
  529. }
  530. /* Copy all the active planes' dlist contents to the hardware dlist. */
  531. drm_atomic_crtc_for_each_plane(plane, crtc) {
  532. dlist_next += vc4_plane_write_dlist(plane, dlist_next);
  533. }
  534. writel(SCALER_CTL0_END, dlist_next);
  535. dlist_next++;
  536. WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
  537. if (crtc->state->event) {
  538. unsigned long flags;
  539. crtc->state->event->pipe = drm_crtc_index(crtc);
  540. WARN_ON(drm_crtc_vblank_get(crtc) != 0);
  541. spin_lock_irqsave(&dev->event_lock, flags);
  542. vc4_crtc->event = crtc->state->event;
  543. crtc->state->event = NULL;
  544. HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
  545. vc4_state->mm.start);
  546. spin_unlock_irqrestore(&dev->event_lock, flags);
  547. } else {
  548. HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
  549. vc4_state->mm.start);
  550. }
  551. if (debug_dump_regs) {
  552. DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
  553. vc4_hvs_dump_state(dev);
  554. }
  555. }
  556. static int vc4_enable_vblank(struct drm_crtc *crtc)
  557. {
  558. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  559. CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
  560. return 0;
  561. }
  562. static void vc4_disable_vblank(struct drm_crtc *crtc)
  563. {
  564. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  565. CRTC_WRITE(PV_INTEN, 0);
  566. }
  567. /* Must be called with the event lock held */
  568. bool vc4_event_pending(struct drm_crtc *crtc)
  569. {
  570. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  571. return !!vc4_crtc->event;
  572. }
  573. static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
  574. {
  575. struct drm_crtc *crtc = &vc4_crtc->base;
  576. struct drm_device *dev = crtc->dev;
  577. struct vc4_dev *vc4 = to_vc4_dev(dev);
  578. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
  579. u32 chan = vc4_crtc->channel;
  580. unsigned long flags;
  581. spin_lock_irqsave(&dev->event_lock, flags);
  582. if (vc4_crtc->event &&
  583. (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
  584. drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
  585. vc4_crtc->event = NULL;
  586. drm_crtc_vblank_put(crtc);
  587. }
  588. spin_unlock_irqrestore(&dev->event_lock, flags);
  589. }
  590. static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
  591. {
  592. struct vc4_crtc *vc4_crtc = data;
  593. u32 stat = CRTC_READ(PV_INTSTAT);
  594. irqreturn_t ret = IRQ_NONE;
  595. if (stat & PV_INT_VFP_START) {
  596. vc4_crtc->t_vblank = ktime_get();
  597. CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
  598. drm_crtc_handle_vblank(&vc4_crtc->base);
  599. vc4_crtc_handle_page_flip(vc4_crtc);
  600. ret = IRQ_HANDLED;
  601. }
  602. return ret;
  603. }
  604. struct vc4_async_flip_state {
  605. struct drm_crtc *crtc;
  606. struct drm_framebuffer *fb;
  607. struct drm_pending_vblank_event *event;
  608. struct vc4_seqno_cb cb;
  609. };
  610. /* Called when the V3D execution for the BO being flipped to is done, so that
  611. * we can actually update the plane's address to point to it.
  612. */
  613. static void
  614. vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
  615. {
  616. struct vc4_async_flip_state *flip_state =
  617. container_of(cb, struct vc4_async_flip_state, cb);
  618. struct drm_crtc *crtc = flip_state->crtc;
  619. struct drm_device *dev = crtc->dev;
  620. struct vc4_dev *vc4 = to_vc4_dev(dev);
  621. struct drm_plane *plane = crtc->primary;
  622. vc4_plane_async_set_fb(plane, flip_state->fb);
  623. if (flip_state->event) {
  624. unsigned long flags;
  625. spin_lock_irqsave(&dev->event_lock, flags);
  626. drm_crtc_send_vblank_event(crtc, flip_state->event);
  627. spin_unlock_irqrestore(&dev->event_lock, flags);
  628. }
  629. drm_crtc_vblank_put(crtc);
  630. drm_framebuffer_unreference(flip_state->fb);
  631. kfree(flip_state);
  632. up(&vc4->async_modeset);
  633. }
  634. /* Implements async (non-vblank-synced) page flips.
  635. *
  636. * The page flip ioctl needs to return immediately, so we grab the
  637. * modeset semaphore on the pipe, and queue the address update for
  638. * when V3D is done with the BO being flipped to.
  639. */
  640. static int vc4_async_page_flip(struct drm_crtc *crtc,
  641. struct drm_framebuffer *fb,
  642. struct drm_pending_vblank_event *event,
  643. uint32_t flags)
  644. {
  645. struct drm_device *dev = crtc->dev;
  646. struct vc4_dev *vc4 = to_vc4_dev(dev);
  647. struct drm_plane *plane = crtc->primary;
  648. int ret = 0;
  649. struct vc4_async_flip_state *flip_state;
  650. struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
  651. struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
  652. flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
  653. if (!flip_state)
  654. return -ENOMEM;
  655. drm_framebuffer_reference(fb);
  656. flip_state->fb = fb;
  657. flip_state->crtc = crtc;
  658. flip_state->event = event;
  659. /* Make sure all other async modesetes have landed. */
  660. ret = down_interruptible(&vc4->async_modeset);
  661. if (ret) {
  662. drm_framebuffer_unreference(fb);
  663. kfree(flip_state);
  664. return ret;
  665. }
  666. WARN_ON(drm_crtc_vblank_get(crtc) != 0);
  667. /* Immediately update the plane's legacy fb pointer, so that later
  668. * modeset prep sees the state that will be present when the semaphore
  669. * is released.
  670. */
  671. drm_atomic_set_fb_for_plane(plane->state, fb);
  672. plane->fb = fb;
  673. vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
  674. vc4_async_page_flip_complete);
  675. /* Driver takes ownership of state on successful async commit. */
  676. return 0;
  677. }
  678. static int vc4_page_flip(struct drm_crtc *crtc,
  679. struct drm_framebuffer *fb,
  680. struct drm_pending_vblank_event *event,
  681. uint32_t flags,
  682. struct drm_modeset_acquire_ctx *ctx)
  683. {
  684. if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
  685. return vc4_async_page_flip(crtc, fb, event, flags);
  686. else
  687. return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
  688. }
  689. static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
  690. {
  691. struct vc4_crtc_state *vc4_state;
  692. vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
  693. if (!vc4_state)
  694. return NULL;
  695. __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
  696. return &vc4_state->base;
  697. }
  698. static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
  699. struct drm_crtc_state *state)
  700. {
  701. struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
  702. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
  703. if (vc4_state->mm.allocated) {
  704. unsigned long flags;
  705. spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
  706. drm_mm_remove_node(&vc4_state->mm);
  707. spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
  708. }
  709. drm_atomic_helper_crtc_destroy_state(crtc, state);
  710. }
  711. static const struct drm_crtc_funcs vc4_crtc_funcs = {
  712. .set_config = drm_atomic_helper_set_config,
  713. .destroy = vc4_crtc_destroy,
  714. .page_flip = vc4_page_flip,
  715. .set_property = NULL,
  716. .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
  717. .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
  718. .reset = drm_atomic_helper_crtc_reset,
  719. .atomic_duplicate_state = vc4_crtc_duplicate_state,
  720. .atomic_destroy_state = vc4_crtc_destroy_state,
  721. .gamma_set = vc4_crtc_gamma_set,
  722. .enable_vblank = vc4_enable_vblank,
  723. .disable_vblank = vc4_disable_vblank,
  724. };
  725. static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
  726. .mode_set_nofb = vc4_crtc_mode_set_nofb,
  727. .disable = vc4_crtc_disable,
  728. .enable = vc4_crtc_enable,
  729. .mode_fixup = vc4_crtc_mode_fixup,
  730. .atomic_check = vc4_crtc_atomic_check,
  731. .atomic_flush = vc4_crtc_atomic_flush,
  732. };
  733. static const struct vc4_crtc_data pv0_data = {
  734. .hvs_channel = 0,
  735. .encoder_types = {
  736. [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
  737. [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
  738. },
  739. };
  740. static const struct vc4_crtc_data pv1_data = {
  741. .hvs_channel = 2,
  742. .encoder_types = {
  743. [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
  744. [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
  745. },
  746. };
  747. static const struct vc4_crtc_data pv2_data = {
  748. .hvs_channel = 1,
  749. .encoder_types = {
  750. [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
  751. [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
  752. },
  753. };
  754. static const struct of_device_id vc4_crtc_dt_match[] = {
  755. { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
  756. { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
  757. { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
  758. {}
  759. };
  760. static void vc4_set_crtc_possible_masks(struct drm_device *drm,
  761. struct drm_crtc *crtc)
  762. {
  763. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  764. const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
  765. const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
  766. struct drm_encoder *encoder;
  767. drm_for_each_encoder(encoder, drm) {
  768. struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
  769. int i;
  770. for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
  771. if (vc4_encoder->type == encoder_types[i]) {
  772. vc4_encoder->clock_select = i;
  773. encoder->possible_crtcs |= drm_crtc_mask(crtc);
  774. break;
  775. }
  776. }
  777. }
  778. }
  779. static void
  780. vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
  781. {
  782. struct drm_device *drm = vc4_crtc->base.dev;
  783. struct vc4_dev *vc4 = to_vc4_dev(drm);
  784. u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
  785. /* Top/base are supposed to be 4-pixel aligned, but the
  786. * Raspberry Pi firmware fills the low bits (which are
  787. * presumably ignored).
  788. */
  789. u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
  790. u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
  791. vc4_crtc->cob_size = top - base + 4;
  792. }
  793. static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
  794. {
  795. struct platform_device *pdev = to_platform_device(dev);
  796. struct drm_device *drm = dev_get_drvdata(master);
  797. struct vc4_crtc *vc4_crtc;
  798. struct drm_crtc *crtc;
  799. struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
  800. const struct of_device_id *match;
  801. int ret, i;
  802. vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
  803. if (!vc4_crtc)
  804. return -ENOMEM;
  805. crtc = &vc4_crtc->base;
  806. match = of_match_device(vc4_crtc_dt_match, dev);
  807. if (!match)
  808. return -ENODEV;
  809. vc4_crtc->data = match->data;
  810. vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
  811. if (IS_ERR(vc4_crtc->regs))
  812. return PTR_ERR(vc4_crtc->regs);
  813. /* For now, we create just the primary and the legacy cursor
  814. * planes. We should be able to stack more planes on easily,
  815. * but to do that we would need to compute the bandwidth
  816. * requirement of the plane configuration, and reject ones
  817. * that will take too much.
  818. */
  819. primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
  820. if (IS_ERR(primary_plane)) {
  821. dev_err(dev, "failed to construct primary plane\n");
  822. ret = PTR_ERR(primary_plane);
  823. goto err;
  824. }
  825. drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
  826. &vc4_crtc_funcs, NULL);
  827. drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
  828. primary_plane->crtc = crtc;
  829. vc4_crtc->channel = vc4_crtc->data->hvs_channel;
  830. drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
  831. /* Set up some arbitrary number of planes. We're not limited
  832. * by a set number of physical registers, just the space in
  833. * the HVS (16k) and how small an plane can be (28 bytes).
  834. * However, each plane we set up takes up some memory, and
  835. * increases the cost of looping over planes, which atomic
  836. * modesetting does quite a bit. As a result, we pick a
  837. * modest number of planes to expose, that should hopefully
  838. * still cover any sane usecase.
  839. */
  840. for (i = 0; i < 8; i++) {
  841. struct drm_plane *plane =
  842. vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
  843. if (IS_ERR(plane))
  844. continue;
  845. plane->possible_crtcs = 1 << drm_crtc_index(crtc);
  846. }
  847. /* Set up the legacy cursor after overlay initialization,
  848. * since we overlay planes on the CRTC in the order they were
  849. * initialized.
  850. */
  851. cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
  852. if (!IS_ERR(cursor_plane)) {
  853. cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
  854. cursor_plane->crtc = crtc;
  855. crtc->cursor = cursor_plane;
  856. }
  857. vc4_crtc_get_cob_allocation(vc4_crtc);
  858. CRTC_WRITE(PV_INTEN, 0);
  859. CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
  860. ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
  861. vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
  862. if (ret)
  863. goto err_destroy_planes;
  864. vc4_set_crtc_possible_masks(drm, crtc);
  865. for (i = 0; i < crtc->gamma_size; i++) {
  866. vc4_crtc->lut_r[i] = i;
  867. vc4_crtc->lut_g[i] = i;
  868. vc4_crtc->lut_b[i] = i;
  869. }
  870. platform_set_drvdata(pdev, vc4_crtc);
  871. return 0;
  872. err_destroy_planes:
  873. list_for_each_entry_safe(destroy_plane, temp,
  874. &drm->mode_config.plane_list, head) {
  875. if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
  876. destroy_plane->funcs->destroy(destroy_plane);
  877. }
  878. err:
  879. return ret;
  880. }
  881. static void vc4_crtc_unbind(struct device *dev, struct device *master,
  882. void *data)
  883. {
  884. struct platform_device *pdev = to_platform_device(dev);
  885. struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
  886. vc4_crtc_destroy(&vc4_crtc->base);
  887. CRTC_WRITE(PV_INTEN, 0);
  888. platform_set_drvdata(pdev, NULL);
  889. }
  890. static const struct component_ops vc4_crtc_ops = {
  891. .bind = vc4_crtc_bind,
  892. .unbind = vc4_crtc_unbind,
  893. };
  894. static int vc4_crtc_dev_probe(struct platform_device *pdev)
  895. {
  896. return component_add(&pdev->dev, &vc4_crtc_ops);
  897. }
  898. static int vc4_crtc_dev_remove(struct platform_device *pdev)
  899. {
  900. component_del(&pdev->dev, &vc4_crtc_ops);
  901. return 0;
  902. }
  903. struct platform_driver vc4_crtc_driver = {
  904. .probe = vc4_crtc_dev_probe,
  905. .remove = vc4_crtc_dev_remove,
  906. .driver = {
  907. .name = "vc4_crtc",
  908. .of_match_table = vc4_crtc_dt_match,
  909. },
  910. };