x86.h 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. #ifndef ARCH_X86_KVM_X86_H
  3. #define ARCH_X86_KVM_X86_H
  4. #include <asm/processor.h>
  5. #include <asm/mwait.h>
  6. #include <linux/kvm_host.h>
  7. #include <asm/pvclock.h>
  8. #include "kvm_cache_regs.h"
  9. #define MSR_IA32_CR_PAT_DEFAULT 0x0007040600070406ULL
  10. static inline void kvm_clear_exception_queue(struct kvm_vcpu *vcpu)
  11. {
  12. vcpu->arch.exception.pending = false;
  13. vcpu->arch.exception.injected = false;
  14. }
  15. static inline void kvm_queue_interrupt(struct kvm_vcpu *vcpu, u8 vector,
  16. bool soft)
  17. {
  18. vcpu->arch.interrupt.pending = true;
  19. vcpu->arch.interrupt.soft = soft;
  20. vcpu->arch.interrupt.nr = vector;
  21. }
  22. static inline void kvm_clear_interrupt_queue(struct kvm_vcpu *vcpu)
  23. {
  24. vcpu->arch.interrupt.pending = false;
  25. }
  26. static inline bool kvm_event_needs_reinjection(struct kvm_vcpu *vcpu)
  27. {
  28. return vcpu->arch.exception.injected || vcpu->arch.interrupt.pending ||
  29. vcpu->arch.nmi_injected;
  30. }
  31. static inline bool kvm_exception_is_soft(unsigned int nr)
  32. {
  33. return (nr == BP_VECTOR) || (nr == OF_VECTOR);
  34. }
  35. static inline bool is_protmode(struct kvm_vcpu *vcpu)
  36. {
  37. return kvm_read_cr0_bits(vcpu, X86_CR0_PE);
  38. }
  39. static inline int is_long_mode(struct kvm_vcpu *vcpu)
  40. {
  41. #ifdef CONFIG_X86_64
  42. return vcpu->arch.efer & EFER_LMA;
  43. #else
  44. return 0;
  45. #endif
  46. }
  47. static inline bool is_64_bit_mode(struct kvm_vcpu *vcpu)
  48. {
  49. int cs_db, cs_l;
  50. if (!is_long_mode(vcpu))
  51. return false;
  52. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  53. return cs_l;
  54. }
  55. static inline bool is_la57_mode(struct kvm_vcpu *vcpu)
  56. {
  57. #ifdef CONFIG_X86_64
  58. return (vcpu->arch.efer & EFER_LMA) &&
  59. kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
  60. #else
  61. return 0;
  62. #endif
  63. }
  64. static inline bool mmu_is_nested(struct kvm_vcpu *vcpu)
  65. {
  66. return vcpu->arch.walk_mmu == &vcpu->arch.nested_mmu;
  67. }
  68. static inline int is_pae(struct kvm_vcpu *vcpu)
  69. {
  70. return kvm_read_cr4_bits(vcpu, X86_CR4_PAE);
  71. }
  72. static inline int is_pse(struct kvm_vcpu *vcpu)
  73. {
  74. return kvm_read_cr4_bits(vcpu, X86_CR4_PSE);
  75. }
  76. static inline int is_paging(struct kvm_vcpu *vcpu)
  77. {
  78. return likely(kvm_read_cr0_bits(vcpu, X86_CR0_PG));
  79. }
  80. static inline u32 bit(int bitno)
  81. {
  82. return 1 << (bitno & 31);
  83. }
  84. static inline u8 vcpu_virt_addr_bits(struct kvm_vcpu *vcpu)
  85. {
  86. return kvm_read_cr4_bits(vcpu, X86_CR4_LA57) ? 57 : 48;
  87. }
  88. static inline u8 ctxt_virt_addr_bits(struct x86_emulate_ctxt *ctxt)
  89. {
  90. return (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_LA57) ? 57 : 48;
  91. }
  92. static inline u64 get_canonical(u64 la, u8 vaddr_bits)
  93. {
  94. return ((int64_t)la << (64 - vaddr_bits)) >> (64 - vaddr_bits);
  95. }
  96. static inline bool is_noncanonical_address(u64 la, struct kvm_vcpu *vcpu)
  97. {
  98. #ifdef CONFIG_X86_64
  99. return get_canonical(la, vcpu_virt_addr_bits(vcpu)) != la;
  100. #else
  101. return false;
  102. #endif
  103. }
  104. static inline bool emul_is_noncanonical_address(u64 la,
  105. struct x86_emulate_ctxt *ctxt)
  106. {
  107. #ifdef CONFIG_X86_64
  108. return get_canonical(la, ctxt_virt_addr_bits(ctxt)) != la;
  109. #else
  110. return false;
  111. #endif
  112. }
  113. static inline void vcpu_cache_mmio_info(struct kvm_vcpu *vcpu,
  114. gva_t gva, gfn_t gfn, unsigned access)
  115. {
  116. /*
  117. * If this is a shadow nested page table, the "GVA" is
  118. * actually a nGPA.
  119. */
  120. vcpu->arch.mmio_gva = mmu_is_nested(vcpu) ? 0 : gva & PAGE_MASK;
  121. vcpu->arch.access = access;
  122. vcpu->arch.mmio_gfn = gfn;
  123. vcpu->arch.mmio_gen = kvm_memslots(vcpu->kvm)->generation;
  124. }
  125. static inline bool vcpu_match_mmio_gen(struct kvm_vcpu *vcpu)
  126. {
  127. return vcpu->arch.mmio_gen == kvm_memslots(vcpu->kvm)->generation;
  128. }
  129. /*
  130. * Clear the mmio cache info for the given gva. If gva is MMIO_GVA_ANY, we
  131. * clear all mmio cache info.
  132. */
  133. #define MMIO_GVA_ANY (~(gva_t)0)
  134. static inline void vcpu_clear_mmio_info(struct kvm_vcpu *vcpu, gva_t gva)
  135. {
  136. if (gva != MMIO_GVA_ANY && vcpu->arch.mmio_gva != (gva & PAGE_MASK))
  137. return;
  138. vcpu->arch.mmio_gva = 0;
  139. }
  140. static inline bool vcpu_match_mmio_gva(struct kvm_vcpu *vcpu, unsigned long gva)
  141. {
  142. if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gva &&
  143. vcpu->arch.mmio_gva == (gva & PAGE_MASK))
  144. return true;
  145. return false;
  146. }
  147. static inline bool vcpu_match_mmio_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  148. {
  149. if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gfn &&
  150. vcpu->arch.mmio_gfn == gpa >> PAGE_SHIFT)
  151. return true;
  152. return false;
  153. }
  154. static inline unsigned long kvm_register_readl(struct kvm_vcpu *vcpu,
  155. enum kvm_reg reg)
  156. {
  157. unsigned long val = kvm_register_read(vcpu, reg);
  158. return is_64_bit_mode(vcpu) ? val : (u32)val;
  159. }
  160. static inline void kvm_register_writel(struct kvm_vcpu *vcpu,
  161. enum kvm_reg reg,
  162. unsigned long val)
  163. {
  164. if (!is_64_bit_mode(vcpu))
  165. val = (u32)val;
  166. return kvm_register_write(vcpu, reg, val);
  167. }
  168. static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk)
  169. {
  170. return !(kvm->arch.disabled_quirks & quirk);
  171. }
  172. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu);
  173. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu);
  174. void kvm_set_pending_timer(struct kvm_vcpu *vcpu);
  175. int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip);
  176. void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr);
  177. u64 get_kvmclock_ns(struct kvm *kvm);
  178. int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
  179. gva_t addr, void *val, unsigned int bytes,
  180. struct x86_exception *exception);
  181. int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
  182. gva_t addr, void *val, unsigned int bytes,
  183. struct x86_exception *exception);
  184. void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu);
  185. u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn);
  186. bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data);
  187. int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data);
  188. int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata);
  189. bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
  190. int page_num);
  191. bool kvm_vector_hashing_enabled(void);
  192. #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
  193. | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
  194. | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
  195. | XFEATURE_MASK_PKRU)
  196. extern u64 host_xcr0;
  197. extern u64 kvm_supported_xcr0(void);
  198. extern unsigned int min_timer_period_us;
  199. extern unsigned int lapic_timer_advance_ns;
  200. extern struct static_key kvm_no_apic_vcpu;
  201. static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
  202. {
  203. return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
  204. vcpu->arch.virtual_tsc_shift);
  205. }
  206. /* Same "calling convention" as do_div:
  207. * - divide (n << 32) by base
  208. * - put result in n
  209. * - return remainder
  210. */
  211. #define do_shl32_div32(n, base) \
  212. ({ \
  213. u32 __quot, __rem; \
  214. asm("divl %2" : "=a" (__quot), "=d" (__rem) \
  215. : "rm" (base), "0" (0), "1" ((u32) n)); \
  216. n = __quot; \
  217. __rem; \
  218. })
  219. static inline bool kvm_mwait_in_guest(void)
  220. {
  221. return boot_cpu_has(X86_FEATURE_MWAIT) &&
  222. !boot_cpu_has_bug(X86_BUG_MONITOR);
  223. }
  224. #endif