uprobes.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098
  1. /*
  2. * User-space Probes (UProbes) for x86
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17. *
  18. * Copyright (C) IBM Corporation, 2008-2011
  19. * Authors:
  20. * Srikar Dronamraju
  21. * Jim Keniston
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/sched.h>
  25. #include <linux/ptrace.h>
  26. #include <linux/uprobes.h>
  27. #include <linux/uaccess.h>
  28. #include <linux/kdebug.h>
  29. #include <asm/processor.h>
  30. #include <asm/insn.h>
  31. #include <asm/mmu_context.h>
  32. /* Post-execution fixups. */
  33. /* Adjust IP back to vicinity of actual insn */
  34. #define UPROBE_FIX_IP 0x01
  35. /* Adjust the return address of a call insn */
  36. #define UPROBE_FIX_CALL 0x02
  37. /* Instruction will modify TF, don't change it */
  38. #define UPROBE_FIX_SETF 0x04
  39. #define UPROBE_FIX_RIP_SI 0x08
  40. #define UPROBE_FIX_RIP_DI 0x10
  41. #define UPROBE_FIX_RIP_BX 0x20
  42. #define UPROBE_FIX_RIP_MASK \
  43. (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
  44. #define UPROBE_TRAP_NR UINT_MAX
  45. /* Adaptations for mhiramat x86 decoder v14. */
  46. #define OPCODE1(insn) ((insn)->opcode.bytes[0])
  47. #define OPCODE2(insn) ((insn)->opcode.bytes[1])
  48. #define OPCODE3(insn) ((insn)->opcode.bytes[2])
  49. #define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value)
  50. #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  51. (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
  52. (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
  53. (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
  54. (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
  55. << (row % 32))
  56. /*
  57. * Good-instruction tables for 32-bit apps. This is non-const and volatile
  58. * to keep gcc from statically optimizing it out, as variable_test_bit makes
  59. * some versions of gcc to think only *(unsigned long*) is used.
  60. *
  61. * Opcodes we'll probably never support:
  62. * 6c-6f - ins,outs. SEGVs if used in userspace
  63. * e4-e7 - in,out imm. SEGVs if used in userspace
  64. * ec-ef - in,out acc. SEGVs if used in userspace
  65. * cc - int3. SIGTRAP if used in userspace
  66. * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
  67. * (why we support bound (62) then? it's similar, and similarly unused...)
  68. * f1 - int1. SIGTRAP if used in userspace
  69. * f4 - hlt. SEGVs if used in userspace
  70. * fa - cli. SEGVs if used in userspace
  71. * fb - sti. SEGVs if used in userspace
  72. *
  73. * Opcodes which need some work to be supported:
  74. * 07,17,1f - pop es/ss/ds
  75. * Normally not used in userspace, but would execute if used.
  76. * Can cause GP or stack exception if tries to load wrong segment descriptor.
  77. * We hesitate to run them under single step since kernel's handling
  78. * of userspace single-stepping (TF flag) is fragile.
  79. * We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
  80. * on the same grounds that they are never used.
  81. * cd - int N.
  82. * Used by userspace for "int 80" syscall entry. (Other "int N"
  83. * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
  84. * Not supported since kernel's handling of userspace single-stepping
  85. * (TF flag) is fragile.
  86. * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
  87. */
  88. #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
  89. static volatile u32 good_insns_32[256 / 32] = {
  90. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  91. /* ---------------------------------------------- */
  92. W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
  93. W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
  94. W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
  95. W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
  96. W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  97. W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
  98. W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
  99. W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
  100. W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
  101. W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
  102. W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
  103. W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
  104. W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
  105. W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
  106. W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
  107. W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
  108. /* ---------------------------------------------- */
  109. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  110. };
  111. #else
  112. #define good_insns_32 NULL
  113. #endif
  114. /* Good-instruction tables for 64-bit apps.
  115. *
  116. * Genuinely invalid opcodes:
  117. * 06,07 - formerly push/pop es
  118. * 0e - formerly push cs
  119. * 16,17 - formerly push/pop ss
  120. * 1e,1f - formerly push/pop ds
  121. * 27,2f,37,3f - formerly daa/das/aaa/aas
  122. * 60,61 - formerly pusha/popa
  123. * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
  124. * 82 - formerly redundant encoding of Group1
  125. * 9a - formerly call seg:ofs
  126. * ce - formerly into
  127. * d4,d5 - formerly aam/aad
  128. * d6 - formerly undocumented salc
  129. * ea - formerly jmp seg:ofs
  130. *
  131. * Opcodes we'll probably never support:
  132. * 6c-6f - ins,outs. SEGVs if used in userspace
  133. * e4-e7 - in,out imm. SEGVs if used in userspace
  134. * ec-ef - in,out acc. SEGVs if used in userspace
  135. * cc - int3. SIGTRAP if used in userspace
  136. * f1 - int1. SIGTRAP if used in userspace
  137. * f4 - hlt. SEGVs if used in userspace
  138. * fa - cli. SEGVs if used in userspace
  139. * fb - sti. SEGVs if used in userspace
  140. *
  141. * Opcodes which need some work to be supported:
  142. * cd - int N.
  143. * Used by userspace for "int 80" syscall entry. (Other "int N"
  144. * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
  145. * Not supported since kernel's handling of userspace single-stepping
  146. * (TF flag) is fragile.
  147. * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
  148. */
  149. #if defined(CONFIG_X86_64)
  150. static volatile u32 good_insns_64[256 / 32] = {
  151. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  152. /* ---------------------------------------------- */
  153. W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
  154. W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
  155. W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
  156. W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
  157. W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  158. W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
  159. W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
  160. W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
  161. W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
  162. W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
  163. W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
  164. W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
  165. W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
  166. W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
  167. W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
  168. W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
  169. /* ---------------------------------------------- */
  170. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  171. };
  172. #else
  173. #define good_insns_64 NULL
  174. #endif
  175. /* Using this for both 64-bit and 32-bit apps.
  176. * Opcodes we don't support:
  177. * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
  178. * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
  179. * Also encodes tons of other system insns if mod=11.
  180. * Some are in fact non-system: xend, xtest, rdtscp, maybe more
  181. * 0f 05 - syscall
  182. * 0f 06 - clts (CPL0 insn)
  183. * 0f 07 - sysret
  184. * 0f 08 - invd (CPL0 insn)
  185. * 0f 09 - wbinvd (CPL0 insn)
  186. * 0f 0b - ud2
  187. * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
  188. * 0f 34 - sysenter
  189. * 0f 35 - sysexit
  190. * 0f 37 - getsec
  191. * 0f 78 - vmread (Intel VMX. CPL0 insn)
  192. * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
  193. * Note: with prefixes, these two opcodes are
  194. * extrq/insertq/AVX512 convert vector ops.
  195. * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
  196. * {rd,wr}{fs,gs}base,{s,l,m}fence.
  197. * Why? They are all user-executable.
  198. */
  199. static volatile u32 good_2byte_insns[256 / 32] = {
  200. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  201. /* ---------------------------------------------- */
  202. W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
  203. W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
  204. W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
  205. W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
  206. W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  207. W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
  208. W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
  209. W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
  210. W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
  211. W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
  212. W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
  213. W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
  214. W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
  215. W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
  216. W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
  217. W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /* f0 */
  218. /* ---------------------------------------------- */
  219. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  220. };
  221. #undef W
  222. /*
  223. * opcodes we may need to refine support for:
  224. *
  225. * 0f - 2-byte instructions: For many of these instructions, the validity
  226. * depends on the prefix and/or the reg field. On such instructions, we
  227. * just consider the opcode combination valid if it corresponds to any
  228. * valid instruction.
  229. *
  230. * 8f - Group 1 - only reg = 0 is OK
  231. * c6-c7 - Group 11 - only reg = 0 is OK
  232. * d9-df - fpu insns with some illegal encodings
  233. * f2, f3 - repnz, repz prefixes. These are also the first byte for
  234. * certain floating-point instructions, such as addsd.
  235. *
  236. * fe - Group 4 - only reg = 0 or 1 is OK
  237. * ff - Group 5 - only reg = 0-6 is OK
  238. *
  239. * others -- Do we need to support these?
  240. *
  241. * 0f - (floating-point?) prefetch instructions
  242. * 07, 17, 1f - pop es, pop ss, pop ds
  243. * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
  244. * but 64 and 65 (fs: and gs:) seem to be used, so we support them
  245. * 67 - addr16 prefix
  246. * ce - into
  247. * f0 - lock prefix
  248. */
  249. /*
  250. * TODO:
  251. * - Where necessary, examine the modrm byte and allow only valid instructions
  252. * in the different Groups and fpu instructions.
  253. */
  254. static bool is_prefix_bad(struct insn *insn)
  255. {
  256. int i;
  257. for (i = 0; i < insn->prefixes.nbytes; i++) {
  258. insn_attr_t attr;
  259. attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
  260. switch (attr) {
  261. case INAT_MAKE_PREFIX(INAT_PFX_ES):
  262. case INAT_MAKE_PREFIX(INAT_PFX_CS):
  263. case INAT_MAKE_PREFIX(INAT_PFX_DS):
  264. case INAT_MAKE_PREFIX(INAT_PFX_SS):
  265. case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
  266. return true;
  267. }
  268. }
  269. return false;
  270. }
  271. static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
  272. {
  273. u32 volatile *good_insns;
  274. insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
  275. /* has the side-effect of processing the entire instruction */
  276. insn_get_length(insn);
  277. if (WARN_ON_ONCE(!insn_complete(insn)))
  278. return -ENOEXEC;
  279. if (is_prefix_bad(insn))
  280. return -ENOTSUPP;
  281. if (x86_64)
  282. good_insns = good_insns_64;
  283. else
  284. good_insns = good_insns_32;
  285. if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
  286. return 0;
  287. if (insn->opcode.nbytes == 2) {
  288. if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
  289. return 0;
  290. }
  291. return -ENOTSUPP;
  292. }
  293. #ifdef CONFIG_X86_64
  294. /*
  295. * If arch_uprobe->insn doesn't use rip-relative addressing, return
  296. * immediately. Otherwise, rewrite the instruction so that it accesses
  297. * its memory operand indirectly through a scratch register. Set
  298. * defparam->fixups accordingly. (The contents of the scratch register
  299. * will be saved before we single-step the modified instruction,
  300. * and restored afterward).
  301. *
  302. * We do this because a rip-relative instruction can access only a
  303. * relatively small area (+/- 2 GB from the instruction), and the XOL
  304. * area typically lies beyond that area. At least for instructions
  305. * that store to memory, we can't execute the original instruction
  306. * and "fix things up" later, because the misdirected store could be
  307. * disastrous.
  308. *
  309. * Some useful facts about rip-relative instructions:
  310. *
  311. * - There's always a modrm byte with bit layout "00 reg 101".
  312. * - There's never a SIB byte.
  313. * - The displacement is always 4 bytes.
  314. * - REX.B=1 bit in REX prefix, which normally extends r/m field,
  315. * has no effect on rip-relative mode. It doesn't make modrm byte
  316. * with r/m=101 refer to register 1101 = R13.
  317. */
  318. static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
  319. {
  320. u8 *cursor;
  321. u8 reg;
  322. u8 reg2;
  323. if (!insn_rip_relative(insn))
  324. return;
  325. /*
  326. * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
  327. * Clear REX.b bit (extension of MODRM.rm field):
  328. * we want to encode low numbered reg, not r8+.
  329. */
  330. if (insn->rex_prefix.nbytes) {
  331. cursor = auprobe->insn + insn_offset_rex_prefix(insn);
  332. /* REX byte has 0100wrxb layout, clearing REX.b bit */
  333. *cursor &= 0xfe;
  334. }
  335. /*
  336. * Similar treatment for VEX3/EVEX prefix.
  337. * TODO: add XOP treatment when insn decoder supports them
  338. */
  339. if (insn->vex_prefix.nbytes >= 3) {
  340. /*
  341. * vex2: c5 rvvvvLpp (has no b bit)
  342. * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
  343. * evex: 62 rxbR00mm wvvvv1pp zllBVaaa
  344. * Setting VEX3.b (setting because it has inverted meaning).
  345. * Setting EVEX.x since (in non-SIB encoding) EVEX.x
  346. * is the 4th bit of MODRM.rm, and needs the same treatment.
  347. * For VEX3-encoded insns, VEX3.x value has no effect in
  348. * non-SIB encoding, the change is superfluous but harmless.
  349. */
  350. cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
  351. *cursor |= 0x60;
  352. }
  353. /*
  354. * Convert from rip-relative addressing to register-relative addressing
  355. * via a scratch register.
  356. *
  357. * This is tricky since there are insns with modrm byte
  358. * which also use registers not encoded in modrm byte:
  359. * [i]div/[i]mul: implicitly use dx:ax
  360. * shift ops: implicitly use cx
  361. * cmpxchg: implicitly uses ax
  362. * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
  363. * Encoding: 0f c7/1 modrm
  364. * The code below thinks that reg=1 (cx), chooses si as scratch.
  365. * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
  366. * First appeared in Haswell (BMI2 insn). It is vex-encoded.
  367. * Example where none of bx,cx,dx can be used as scratch reg:
  368. * c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx
  369. * [v]pcmpistri: implicitly uses cx, xmm0
  370. * [v]pcmpistrm: implicitly uses xmm0
  371. * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
  372. * [v]pcmpestrm: implicitly uses ax, dx, xmm0
  373. * Evil SSE4.2 string comparison ops from hell.
  374. * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
  375. * Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
  376. * Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
  377. * AMD says it has no 3-operand form (vex.vvvv must be 1111)
  378. * and that it can have only register operands, not mem
  379. * (its modrm byte must have mode=11).
  380. * If these restrictions will ever be lifted,
  381. * we'll need code to prevent selection of di as scratch reg!
  382. *
  383. * Summary: I don't know any insns with modrm byte which
  384. * use SI register implicitly. DI register is used only
  385. * by one insn (maskmovq) and BX register is used
  386. * only by one too (cmpxchg8b).
  387. * BP is stack-segment based (may be a problem?).
  388. * AX, DX, CX are off-limits (many implicit users).
  389. * SP is unusable (it's stack pointer - think about "pop mem";
  390. * also, rsp+disp32 needs sib encoding -> insn length change).
  391. */
  392. reg = MODRM_REG(insn); /* Fetch modrm.reg */
  393. reg2 = 0xff; /* Fetch vex.vvvv */
  394. if (insn->vex_prefix.nbytes)
  395. reg2 = insn->vex_prefix.bytes[2];
  396. /*
  397. * TODO: add XOP vvvv reading.
  398. *
  399. * vex.vvvv field is in bits 6-3, bits are inverted.
  400. * But in 32-bit mode, high-order bit may be ignored.
  401. * Therefore, let's consider only 3 low-order bits.
  402. */
  403. reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
  404. /*
  405. * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
  406. *
  407. * Choose scratch reg. Order is important: must not select bx
  408. * if we can use si (cmpxchg8b case!)
  409. */
  410. if (reg != 6 && reg2 != 6) {
  411. reg2 = 6;
  412. auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
  413. } else if (reg != 7 && reg2 != 7) {
  414. reg2 = 7;
  415. auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
  416. /* TODO (paranoia): force maskmovq to not use di */
  417. } else {
  418. reg2 = 3;
  419. auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
  420. }
  421. /*
  422. * Point cursor at the modrm byte. The next 4 bytes are the
  423. * displacement. Beyond the displacement, for some instructions,
  424. * is the immediate operand.
  425. */
  426. cursor = auprobe->insn + insn_offset_modrm(insn);
  427. /*
  428. * Change modrm from "00 reg 101" to "10 reg reg2". Example:
  429. * 89 05 disp32 mov %eax,disp32(%rip) becomes
  430. * 89 86 disp32 mov %eax,disp32(%rsi)
  431. */
  432. *cursor = 0x80 | (reg << 3) | reg2;
  433. }
  434. static inline unsigned long *
  435. scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
  436. {
  437. if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
  438. return &regs->si;
  439. if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
  440. return &regs->di;
  441. return &regs->bx;
  442. }
  443. /*
  444. * If we're emulating a rip-relative instruction, save the contents
  445. * of the scratch register and store the target address in that register.
  446. */
  447. static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
  448. {
  449. if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
  450. struct uprobe_task *utask = current->utask;
  451. unsigned long *sr = scratch_reg(auprobe, regs);
  452. utask->autask.saved_scratch_register = *sr;
  453. *sr = utask->vaddr + auprobe->defparam.ilen;
  454. }
  455. }
  456. static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
  457. {
  458. if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
  459. struct uprobe_task *utask = current->utask;
  460. unsigned long *sr = scratch_reg(auprobe, regs);
  461. *sr = utask->autask.saved_scratch_register;
  462. }
  463. }
  464. #else /* 32-bit: */
  465. /*
  466. * No RIP-relative addressing on 32-bit
  467. */
  468. static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
  469. {
  470. }
  471. static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
  472. {
  473. }
  474. static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
  475. {
  476. }
  477. #endif /* CONFIG_X86_64 */
  478. struct uprobe_xol_ops {
  479. bool (*emulate)(struct arch_uprobe *, struct pt_regs *);
  480. int (*pre_xol)(struct arch_uprobe *, struct pt_regs *);
  481. int (*post_xol)(struct arch_uprobe *, struct pt_regs *);
  482. void (*abort)(struct arch_uprobe *, struct pt_regs *);
  483. };
  484. static inline int sizeof_long(void)
  485. {
  486. return in_ia32_syscall() ? 4 : 8;
  487. }
  488. static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
  489. {
  490. riprel_pre_xol(auprobe, regs);
  491. return 0;
  492. }
  493. static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
  494. {
  495. unsigned long new_sp = regs->sp - sizeof_long();
  496. if (copy_to_user((void __user *)new_sp, &val, sizeof_long()))
  497. return -EFAULT;
  498. regs->sp = new_sp;
  499. return 0;
  500. }
  501. /*
  502. * We have to fix things up as follows:
  503. *
  504. * Typically, the new ip is relative to the copied instruction. We need
  505. * to make it relative to the original instruction (FIX_IP). Exceptions
  506. * are return instructions and absolute or indirect jump or call instructions.
  507. *
  508. * If the single-stepped instruction was a call, the return address that
  509. * is atop the stack is the address following the copied instruction. We
  510. * need to make it the address following the original instruction (FIX_CALL).
  511. *
  512. * If the original instruction was a rip-relative instruction such as
  513. * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
  514. * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
  515. * We need to restore the contents of the scratch register
  516. * (FIX_RIP_reg).
  517. */
  518. static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
  519. {
  520. struct uprobe_task *utask = current->utask;
  521. riprel_post_xol(auprobe, regs);
  522. if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
  523. long correction = utask->vaddr - utask->xol_vaddr;
  524. regs->ip += correction;
  525. } else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
  526. regs->sp += sizeof_long(); /* Pop incorrect return address */
  527. if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
  528. return -ERESTART;
  529. }
  530. /* popf; tell the caller to not touch TF */
  531. if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
  532. utask->autask.saved_tf = true;
  533. return 0;
  534. }
  535. static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
  536. {
  537. riprel_post_xol(auprobe, regs);
  538. }
  539. static const struct uprobe_xol_ops default_xol_ops = {
  540. .pre_xol = default_pre_xol_op,
  541. .post_xol = default_post_xol_op,
  542. .abort = default_abort_op,
  543. };
  544. static bool branch_is_call(struct arch_uprobe *auprobe)
  545. {
  546. return auprobe->branch.opc1 == 0xe8;
  547. }
  548. #define CASE_COND \
  549. COND(70, 71, XF(OF)) \
  550. COND(72, 73, XF(CF)) \
  551. COND(74, 75, XF(ZF)) \
  552. COND(78, 79, XF(SF)) \
  553. COND(7a, 7b, XF(PF)) \
  554. COND(76, 77, XF(CF) || XF(ZF)) \
  555. COND(7c, 7d, XF(SF) != XF(OF)) \
  556. COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
  557. #define COND(op_y, op_n, expr) \
  558. case 0x ## op_y: DO((expr) != 0) \
  559. case 0x ## op_n: DO((expr) == 0)
  560. #define XF(xf) (!!(flags & X86_EFLAGS_ ## xf))
  561. static bool is_cond_jmp_opcode(u8 opcode)
  562. {
  563. switch (opcode) {
  564. #define DO(expr) \
  565. return true;
  566. CASE_COND
  567. #undef DO
  568. default:
  569. return false;
  570. }
  571. }
  572. static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
  573. {
  574. unsigned long flags = regs->flags;
  575. switch (auprobe->branch.opc1) {
  576. #define DO(expr) \
  577. return expr;
  578. CASE_COND
  579. #undef DO
  580. default: /* not a conditional jmp */
  581. return true;
  582. }
  583. }
  584. #undef XF
  585. #undef COND
  586. #undef CASE_COND
  587. static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
  588. {
  589. unsigned long new_ip = regs->ip += auprobe->branch.ilen;
  590. unsigned long offs = (long)auprobe->branch.offs;
  591. if (branch_is_call(auprobe)) {
  592. /*
  593. * If it fails we execute this (mangled, see the comment in
  594. * branch_clear_offset) insn out-of-line. In the likely case
  595. * this should trigger the trap, and the probed application
  596. * should die or restart the same insn after it handles the
  597. * signal, arch_uprobe_post_xol() won't be even called.
  598. *
  599. * But there is corner case, see the comment in ->post_xol().
  600. */
  601. if (emulate_push_stack(regs, new_ip))
  602. return false;
  603. } else if (!check_jmp_cond(auprobe, regs)) {
  604. offs = 0;
  605. }
  606. regs->ip = new_ip + offs;
  607. return true;
  608. }
  609. static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
  610. {
  611. unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
  612. if (emulate_push_stack(regs, *src_ptr))
  613. return false;
  614. regs->ip += auprobe->push.ilen;
  615. return true;
  616. }
  617. static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
  618. {
  619. BUG_ON(!branch_is_call(auprobe));
  620. /*
  621. * We can only get here if branch_emulate_op() failed to push the ret
  622. * address _and_ another thread expanded our stack before the (mangled)
  623. * "call" insn was executed out-of-line. Just restore ->sp and restart.
  624. * We could also restore ->ip and try to call branch_emulate_op() again.
  625. */
  626. regs->sp += sizeof_long();
  627. return -ERESTART;
  628. }
  629. static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
  630. {
  631. /*
  632. * Turn this insn into "call 1f; 1:", this is what we will execute
  633. * out-of-line if ->emulate() fails. We only need this to generate
  634. * a trap, so that the probed task receives the correct signal with
  635. * the properly filled siginfo.
  636. *
  637. * But see the comment in ->post_xol(), in the unlikely case it can
  638. * succeed. So we need to ensure that the new ->ip can not fall into
  639. * the non-canonical area and trigger #GP.
  640. *
  641. * We could turn it into (say) "pushf", but then we would need to
  642. * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
  643. * of ->insn[] for set_orig_insn().
  644. */
  645. memset(auprobe->insn + insn_offset_immediate(insn),
  646. 0, insn->immediate.nbytes);
  647. }
  648. static const struct uprobe_xol_ops branch_xol_ops = {
  649. .emulate = branch_emulate_op,
  650. .post_xol = branch_post_xol_op,
  651. };
  652. static const struct uprobe_xol_ops push_xol_ops = {
  653. .emulate = push_emulate_op,
  654. };
  655. /* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
  656. static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
  657. {
  658. u8 opc1 = OPCODE1(insn);
  659. int i;
  660. switch (opc1) {
  661. case 0xeb: /* jmp 8 */
  662. case 0xe9: /* jmp 32 */
  663. case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */
  664. break;
  665. case 0xe8: /* call relative */
  666. branch_clear_offset(auprobe, insn);
  667. break;
  668. case 0x0f:
  669. if (insn->opcode.nbytes != 2)
  670. return -ENOSYS;
  671. /*
  672. * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
  673. * OPCODE1() of the "short" jmp which checks the same condition.
  674. */
  675. opc1 = OPCODE2(insn) - 0x10;
  676. default:
  677. if (!is_cond_jmp_opcode(opc1))
  678. return -ENOSYS;
  679. }
  680. /*
  681. * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
  682. * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
  683. * No one uses these insns, reject any branch insns with such prefix.
  684. */
  685. for (i = 0; i < insn->prefixes.nbytes; i++) {
  686. if (insn->prefixes.bytes[i] == 0x66)
  687. return -ENOTSUPP;
  688. }
  689. auprobe->branch.opc1 = opc1;
  690. auprobe->branch.ilen = insn->length;
  691. auprobe->branch.offs = insn->immediate.value;
  692. auprobe->ops = &branch_xol_ops;
  693. return 0;
  694. }
  695. /* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
  696. static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
  697. {
  698. u8 opc1 = OPCODE1(insn), reg_offset = 0;
  699. if (opc1 < 0x50 || opc1 > 0x57)
  700. return -ENOSYS;
  701. if (insn->length > 2)
  702. return -ENOSYS;
  703. if (insn->length == 2) {
  704. /* only support rex_prefix 0x41 (x64 only) */
  705. #ifdef CONFIG_X86_64
  706. if (insn->rex_prefix.nbytes != 1 ||
  707. insn->rex_prefix.bytes[0] != 0x41)
  708. return -ENOSYS;
  709. switch (opc1) {
  710. case 0x50:
  711. reg_offset = offsetof(struct pt_regs, r8);
  712. break;
  713. case 0x51:
  714. reg_offset = offsetof(struct pt_regs, r9);
  715. break;
  716. case 0x52:
  717. reg_offset = offsetof(struct pt_regs, r10);
  718. break;
  719. case 0x53:
  720. reg_offset = offsetof(struct pt_regs, r11);
  721. break;
  722. case 0x54:
  723. reg_offset = offsetof(struct pt_regs, r12);
  724. break;
  725. case 0x55:
  726. reg_offset = offsetof(struct pt_regs, r13);
  727. break;
  728. case 0x56:
  729. reg_offset = offsetof(struct pt_regs, r14);
  730. break;
  731. case 0x57:
  732. reg_offset = offsetof(struct pt_regs, r15);
  733. break;
  734. }
  735. #else
  736. return -ENOSYS;
  737. #endif
  738. } else {
  739. switch (opc1) {
  740. case 0x50:
  741. reg_offset = offsetof(struct pt_regs, ax);
  742. break;
  743. case 0x51:
  744. reg_offset = offsetof(struct pt_regs, cx);
  745. break;
  746. case 0x52:
  747. reg_offset = offsetof(struct pt_regs, dx);
  748. break;
  749. case 0x53:
  750. reg_offset = offsetof(struct pt_regs, bx);
  751. break;
  752. case 0x54:
  753. reg_offset = offsetof(struct pt_regs, sp);
  754. break;
  755. case 0x55:
  756. reg_offset = offsetof(struct pt_regs, bp);
  757. break;
  758. case 0x56:
  759. reg_offset = offsetof(struct pt_regs, si);
  760. break;
  761. case 0x57:
  762. reg_offset = offsetof(struct pt_regs, di);
  763. break;
  764. }
  765. }
  766. auprobe->push.reg_offset = reg_offset;
  767. auprobe->push.ilen = insn->length;
  768. auprobe->ops = &push_xol_ops;
  769. return 0;
  770. }
  771. /**
  772. * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
  773. * @mm: the probed address space.
  774. * @arch_uprobe: the probepoint information.
  775. * @addr: virtual address at which to install the probepoint
  776. * Return 0 on success or a -ve number on error.
  777. */
  778. int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
  779. {
  780. struct insn insn;
  781. u8 fix_ip_or_call = UPROBE_FIX_IP;
  782. int ret;
  783. ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
  784. if (ret)
  785. return ret;
  786. ret = branch_setup_xol_ops(auprobe, &insn);
  787. if (ret != -ENOSYS)
  788. return ret;
  789. ret = push_setup_xol_ops(auprobe, &insn);
  790. if (ret != -ENOSYS)
  791. return ret;
  792. /*
  793. * Figure out which fixups default_post_xol_op() will need to perform,
  794. * and annotate defparam->fixups accordingly.
  795. */
  796. switch (OPCODE1(&insn)) {
  797. case 0x9d: /* popf */
  798. auprobe->defparam.fixups |= UPROBE_FIX_SETF;
  799. break;
  800. case 0xc3: /* ret or lret -- ip is correct */
  801. case 0xcb:
  802. case 0xc2:
  803. case 0xca:
  804. case 0xea: /* jmp absolute -- ip is correct */
  805. fix_ip_or_call = 0;
  806. break;
  807. case 0x9a: /* call absolute - Fix return addr, not ip */
  808. fix_ip_or_call = UPROBE_FIX_CALL;
  809. break;
  810. case 0xff:
  811. switch (MODRM_REG(&insn)) {
  812. case 2: case 3: /* call or lcall, indirect */
  813. fix_ip_or_call = UPROBE_FIX_CALL;
  814. break;
  815. case 4: case 5: /* jmp or ljmp, indirect */
  816. fix_ip_or_call = 0;
  817. break;
  818. }
  819. /* fall through */
  820. default:
  821. riprel_analyze(auprobe, &insn);
  822. }
  823. auprobe->defparam.ilen = insn.length;
  824. auprobe->defparam.fixups |= fix_ip_or_call;
  825. auprobe->ops = &default_xol_ops;
  826. return 0;
  827. }
  828. /*
  829. * arch_uprobe_pre_xol - prepare to execute out of line.
  830. * @auprobe: the probepoint information.
  831. * @regs: reflects the saved user state of current task.
  832. */
  833. int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
  834. {
  835. struct uprobe_task *utask = current->utask;
  836. if (auprobe->ops->pre_xol) {
  837. int err = auprobe->ops->pre_xol(auprobe, regs);
  838. if (err)
  839. return err;
  840. }
  841. regs->ip = utask->xol_vaddr;
  842. utask->autask.saved_trap_nr = current->thread.trap_nr;
  843. current->thread.trap_nr = UPROBE_TRAP_NR;
  844. utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
  845. regs->flags |= X86_EFLAGS_TF;
  846. if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
  847. set_task_blockstep(current, false);
  848. return 0;
  849. }
  850. /*
  851. * If xol insn itself traps and generates a signal(Say,
  852. * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
  853. * instruction jumps back to its own address. It is assumed that anything
  854. * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
  855. *
  856. * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
  857. * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
  858. * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
  859. */
  860. bool arch_uprobe_xol_was_trapped(struct task_struct *t)
  861. {
  862. if (t->thread.trap_nr != UPROBE_TRAP_NR)
  863. return true;
  864. return false;
  865. }
  866. /*
  867. * Called after single-stepping. To avoid the SMP problems that can
  868. * occur when we temporarily put back the original opcode to
  869. * single-step, we single-stepped a copy of the instruction.
  870. *
  871. * This function prepares to resume execution after the single-step.
  872. */
  873. int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
  874. {
  875. struct uprobe_task *utask = current->utask;
  876. bool send_sigtrap = utask->autask.saved_tf;
  877. int err = 0;
  878. WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
  879. current->thread.trap_nr = utask->autask.saved_trap_nr;
  880. if (auprobe->ops->post_xol) {
  881. err = auprobe->ops->post_xol(auprobe, regs);
  882. if (err) {
  883. /*
  884. * Restore ->ip for restart or post mortem analysis.
  885. * ->post_xol() must not return -ERESTART unless this
  886. * is really possible.
  887. */
  888. regs->ip = utask->vaddr;
  889. if (err == -ERESTART)
  890. err = 0;
  891. send_sigtrap = false;
  892. }
  893. }
  894. /*
  895. * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
  896. * so we can get an extra SIGTRAP if we do not clear TF. We need
  897. * to examine the opcode to make it right.
  898. */
  899. if (send_sigtrap)
  900. send_sig(SIGTRAP, current, 0);
  901. if (!utask->autask.saved_tf)
  902. regs->flags &= ~X86_EFLAGS_TF;
  903. return err;
  904. }
  905. /* callback routine for handling exceptions. */
  906. int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
  907. {
  908. struct die_args *args = data;
  909. struct pt_regs *regs = args->regs;
  910. int ret = NOTIFY_DONE;
  911. /* We are only interested in userspace traps */
  912. if (regs && !user_mode(regs))
  913. return NOTIFY_DONE;
  914. switch (val) {
  915. case DIE_INT3:
  916. if (uprobe_pre_sstep_notifier(regs))
  917. ret = NOTIFY_STOP;
  918. break;
  919. case DIE_DEBUG:
  920. if (uprobe_post_sstep_notifier(regs))
  921. ret = NOTIFY_STOP;
  922. default:
  923. break;
  924. }
  925. return ret;
  926. }
  927. /*
  928. * This function gets called when XOL instruction either gets trapped or
  929. * the thread has a fatal signal. Reset the instruction pointer to its
  930. * probed address for the potential restart or for post mortem analysis.
  931. */
  932. void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
  933. {
  934. struct uprobe_task *utask = current->utask;
  935. if (auprobe->ops->abort)
  936. auprobe->ops->abort(auprobe, regs);
  937. current->thread.trap_nr = utask->autask.saved_trap_nr;
  938. regs->ip = utask->vaddr;
  939. /* clear TF if it was set by us in arch_uprobe_pre_xol() */
  940. if (!utask->autask.saved_tf)
  941. regs->flags &= ~X86_EFLAGS_TF;
  942. }
  943. static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
  944. {
  945. if (auprobe->ops->emulate)
  946. return auprobe->ops->emulate(auprobe, regs);
  947. return false;
  948. }
  949. bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
  950. {
  951. bool ret = __skip_sstep(auprobe, regs);
  952. if (ret && (regs->flags & X86_EFLAGS_TF))
  953. send_sig(SIGTRAP, current, 0);
  954. return ret;
  955. }
  956. unsigned long
  957. arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
  958. {
  959. int rasize = sizeof_long(), nleft;
  960. unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
  961. if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
  962. return -1;
  963. /* check whether address has been already hijacked */
  964. if (orig_ret_vaddr == trampoline_vaddr)
  965. return orig_ret_vaddr;
  966. nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
  967. if (likely(!nleft))
  968. return orig_ret_vaddr;
  969. if (nleft != rasize) {
  970. pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
  971. "%%ip=%#lx\n", current->pid, regs->sp, regs->ip);
  972. force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
  973. }
  974. return -1;
  975. }
  976. bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
  977. struct pt_regs *regs)
  978. {
  979. if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
  980. return regs->sp < ret->stack;
  981. else
  982. return regs->sp <= ret->stack;
  983. }