crash.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692
  1. /*
  2. * Architecture specific (i386/x86_64) functions for kexec based crash dumps.
  3. *
  4. * Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
  5. *
  6. * Copyright (C) IBM Corporation, 2004. All rights reserved.
  7. * Copyright (C) Red Hat Inc., 2014. All rights reserved.
  8. * Authors:
  9. * Vivek Goyal <vgoyal@redhat.com>
  10. *
  11. */
  12. #define pr_fmt(fmt) "kexec: " fmt
  13. #include <linux/types.h>
  14. #include <linux/kernel.h>
  15. #include <linux/smp.h>
  16. #include <linux/reboot.h>
  17. #include <linux/kexec.h>
  18. #include <linux/delay.h>
  19. #include <linux/elf.h>
  20. #include <linux/elfcore.h>
  21. #include <linux/export.h>
  22. #include <linux/slab.h>
  23. #include <linux/vmalloc.h>
  24. #include <asm/processor.h>
  25. #include <asm/hardirq.h>
  26. #include <asm/nmi.h>
  27. #include <asm/hw_irq.h>
  28. #include <asm/apic.h>
  29. #include <asm/e820/types.h>
  30. #include <asm/io_apic.h>
  31. #include <asm/hpet.h>
  32. #include <linux/kdebug.h>
  33. #include <asm/cpu.h>
  34. #include <asm/reboot.h>
  35. #include <asm/virtext.h>
  36. #include <asm/intel_pt.h>
  37. /* Alignment required for elf header segment */
  38. #define ELF_CORE_HEADER_ALIGN 4096
  39. /* This primarily represents number of split ranges due to exclusion */
  40. #define CRASH_MAX_RANGES 16
  41. struct crash_mem_range {
  42. u64 start, end;
  43. };
  44. struct crash_mem {
  45. unsigned int nr_ranges;
  46. struct crash_mem_range ranges[CRASH_MAX_RANGES];
  47. };
  48. /* Misc data about ram ranges needed to prepare elf headers */
  49. struct crash_elf_data {
  50. struct kimage *image;
  51. /*
  52. * Total number of ram ranges we have after various adjustments for
  53. * crash reserved region, etc.
  54. */
  55. unsigned int max_nr_ranges;
  56. /* Pointer to elf header */
  57. void *ehdr;
  58. /* Pointer to next phdr */
  59. void *bufp;
  60. struct crash_mem mem;
  61. };
  62. /* Used while preparing memory map entries for second kernel */
  63. struct crash_memmap_data {
  64. struct boot_params *params;
  65. /* Type of memory */
  66. unsigned int type;
  67. };
  68. /*
  69. * This is used to VMCLEAR all VMCSs loaded on the
  70. * processor. And when loading kvm_intel module, the
  71. * callback function pointer will be assigned.
  72. *
  73. * protected by rcu.
  74. */
  75. crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL;
  76. EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss);
  77. unsigned long crash_zero_bytes;
  78. static inline void cpu_crash_vmclear_loaded_vmcss(void)
  79. {
  80. crash_vmclear_fn *do_vmclear_operation = NULL;
  81. rcu_read_lock();
  82. do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss);
  83. if (do_vmclear_operation)
  84. do_vmclear_operation();
  85. rcu_read_unlock();
  86. }
  87. #if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC)
  88. static void kdump_nmi_callback(int cpu, struct pt_regs *regs)
  89. {
  90. #ifdef CONFIG_X86_32
  91. struct pt_regs fixed_regs;
  92. if (!user_mode(regs)) {
  93. crash_fixup_ss_esp(&fixed_regs, regs);
  94. regs = &fixed_regs;
  95. }
  96. #endif
  97. crash_save_cpu(regs, cpu);
  98. /*
  99. * VMCLEAR VMCSs loaded on all cpus if needed.
  100. */
  101. cpu_crash_vmclear_loaded_vmcss();
  102. /* Disable VMX or SVM if needed.
  103. *
  104. * We need to disable virtualization on all CPUs.
  105. * Having VMX or SVM enabled on any CPU may break rebooting
  106. * after the kdump kernel has finished its task.
  107. */
  108. cpu_emergency_vmxoff();
  109. cpu_emergency_svm_disable();
  110. /*
  111. * Disable Intel PT to stop its logging
  112. */
  113. cpu_emergency_stop_pt();
  114. disable_local_APIC();
  115. }
  116. void kdump_nmi_shootdown_cpus(void)
  117. {
  118. nmi_shootdown_cpus(kdump_nmi_callback);
  119. disable_local_APIC();
  120. }
  121. /* Override the weak function in kernel/panic.c */
  122. void crash_smp_send_stop(void)
  123. {
  124. static int cpus_stopped;
  125. if (cpus_stopped)
  126. return;
  127. if (smp_ops.crash_stop_other_cpus)
  128. smp_ops.crash_stop_other_cpus();
  129. else
  130. smp_send_stop();
  131. cpus_stopped = 1;
  132. }
  133. #else
  134. void crash_smp_send_stop(void)
  135. {
  136. /* There are no cpus to shootdown */
  137. }
  138. #endif
  139. void native_machine_crash_shutdown(struct pt_regs *regs)
  140. {
  141. /* This function is only called after the system
  142. * has panicked or is otherwise in a critical state.
  143. * The minimum amount of code to allow a kexec'd kernel
  144. * to run successfully needs to happen here.
  145. *
  146. * In practice this means shooting down the other cpus in
  147. * an SMP system.
  148. */
  149. /* The kernel is broken so disable interrupts */
  150. local_irq_disable();
  151. crash_smp_send_stop();
  152. /*
  153. * VMCLEAR VMCSs loaded on this cpu if needed.
  154. */
  155. cpu_crash_vmclear_loaded_vmcss();
  156. /* Booting kdump kernel with VMX or SVM enabled won't work,
  157. * because (among other limitations) we can't disable paging
  158. * with the virt flags.
  159. */
  160. cpu_emergency_vmxoff();
  161. cpu_emergency_svm_disable();
  162. /*
  163. * Disable Intel PT to stop its logging
  164. */
  165. cpu_emergency_stop_pt();
  166. #ifdef CONFIG_X86_IO_APIC
  167. /* Prevent crash_kexec() from deadlocking on ioapic_lock. */
  168. ioapic_zap_locks();
  169. disable_IO_APIC();
  170. #endif
  171. lapic_shutdown();
  172. #ifdef CONFIG_HPET_TIMER
  173. hpet_disable();
  174. #endif
  175. crash_save_cpu(regs, safe_smp_processor_id());
  176. }
  177. #ifdef CONFIG_KEXEC_FILE
  178. static int get_nr_ram_ranges_callback(struct resource *res, void *arg)
  179. {
  180. unsigned int *nr_ranges = arg;
  181. (*nr_ranges)++;
  182. return 0;
  183. }
  184. /* Gather all the required information to prepare elf headers for ram regions */
  185. static void fill_up_crash_elf_data(struct crash_elf_data *ced,
  186. struct kimage *image)
  187. {
  188. unsigned int nr_ranges = 0;
  189. ced->image = image;
  190. walk_system_ram_res(0, -1, &nr_ranges,
  191. get_nr_ram_ranges_callback);
  192. ced->max_nr_ranges = nr_ranges;
  193. /* Exclusion of crash region could split memory ranges */
  194. ced->max_nr_ranges++;
  195. /* If crashk_low_res is not 0, another range split possible */
  196. if (crashk_low_res.end)
  197. ced->max_nr_ranges++;
  198. }
  199. static int exclude_mem_range(struct crash_mem *mem,
  200. unsigned long long mstart, unsigned long long mend)
  201. {
  202. int i, j;
  203. unsigned long long start, end;
  204. struct crash_mem_range temp_range = {0, 0};
  205. for (i = 0; i < mem->nr_ranges; i++) {
  206. start = mem->ranges[i].start;
  207. end = mem->ranges[i].end;
  208. if (mstart > end || mend < start)
  209. continue;
  210. /* Truncate any area outside of range */
  211. if (mstart < start)
  212. mstart = start;
  213. if (mend > end)
  214. mend = end;
  215. /* Found completely overlapping range */
  216. if (mstart == start && mend == end) {
  217. mem->ranges[i].start = 0;
  218. mem->ranges[i].end = 0;
  219. if (i < mem->nr_ranges - 1) {
  220. /* Shift rest of the ranges to left */
  221. for (j = i; j < mem->nr_ranges - 1; j++) {
  222. mem->ranges[j].start =
  223. mem->ranges[j+1].start;
  224. mem->ranges[j].end =
  225. mem->ranges[j+1].end;
  226. }
  227. }
  228. mem->nr_ranges--;
  229. return 0;
  230. }
  231. if (mstart > start && mend < end) {
  232. /* Split original range */
  233. mem->ranges[i].end = mstart - 1;
  234. temp_range.start = mend + 1;
  235. temp_range.end = end;
  236. } else if (mstart != start)
  237. mem->ranges[i].end = mstart - 1;
  238. else
  239. mem->ranges[i].start = mend + 1;
  240. break;
  241. }
  242. /* If a split happend, add the split to array */
  243. if (!temp_range.end)
  244. return 0;
  245. /* Split happened */
  246. if (i == CRASH_MAX_RANGES - 1) {
  247. pr_err("Too many crash ranges after split\n");
  248. return -ENOMEM;
  249. }
  250. /* Location where new range should go */
  251. j = i + 1;
  252. if (j < mem->nr_ranges) {
  253. /* Move over all ranges one slot towards the end */
  254. for (i = mem->nr_ranges - 1; i >= j; i--)
  255. mem->ranges[i + 1] = mem->ranges[i];
  256. }
  257. mem->ranges[j].start = temp_range.start;
  258. mem->ranges[j].end = temp_range.end;
  259. mem->nr_ranges++;
  260. return 0;
  261. }
  262. /*
  263. * Look for any unwanted ranges between mstart, mend and remove them. This
  264. * might lead to split and split ranges are put in ced->mem.ranges[] array
  265. */
  266. static int elf_header_exclude_ranges(struct crash_elf_data *ced,
  267. unsigned long long mstart, unsigned long long mend)
  268. {
  269. struct crash_mem *cmem = &ced->mem;
  270. int ret = 0;
  271. memset(cmem->ranges, 0, sizeof(cmem->ranges));
  272. cmem->ranges[0].start = mstart;
  273. cmem->ranges[0].end = mend;
  274. cmem->nr_ranges = 1;
  275. /* Exclude crashkernel region */
  276. ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
  277. if (ret)
  278. return ret;
  279. if (crashk_low_res.end) {
  280. ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end);
  281. if (ret)
  282. return ret;
  283. }
  284. return ret;
  285. }
  286. static int prepare_elf64_ram_headers_callback(struct resource *res, void *arg)
  287. {
  288. struct crash_elf_data *ced = arg;
  289. Elf64_Ehdr *ehdr;
  290. Elf64_Phdr *phdr;
  291. unsigned long mstart, mend;
  292. struct kimage *image = ced->image;
  293. struct crash_mem *cmem;
  294. int ret, i;
  295. ehdr = ced->ehdr;
  296. /* Exclude unwanted mem ranges */
  297. ret = elf_header_exclude_ranges(ced, res->start, res->end);
  298. if (ret)
  299. return ret;
  300. /* Go through all the ranges in ced->mem.ranges[] and prepare phdr */
  301. cmem = &ced->mem;
  302. for (i = 0; i < cmem->nr_ranges; i++) {
  303. mstart = cmem->ranges[i].start;
  304. mend = cmem->ranges[i].end;
  305. phdr = ced->bufp;
  306. ced->bufp += sizeof(Elf64_Phdr);
  307. phdr->p_type = PT_LOAD;
  308. phdr->p_flags = PF_R|PF_W|PF_X;
  309. phdr->p_offset = mstart;
  310. /*
  311. * If a range matches backup region, adjust offset to backup
  312. * segment.
  313. */
  314. if (mstart == image->arch.backup_src_start &&
  315. (mend - mstart + 1) == image->arch.backup_src_sz)
  316. phdr->p_offset = image->arch.backup_load_addr;
  317. phdr->p_paddr = mstart;
  318. phdr->p_vaddr = (unsigned long long) __va(mstart);
  319. phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
  320. phdr->p_align = 0;
  321. ehdr->e_phnum++;
  322. pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
  323. phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
  324. ehdr->e_phnum, phdr->p_offset);
  325. }
  326. return ret;
  327. }
  328. static int prepare_elf64_headers(struct crash_elf_data *ced,
  329. void **addr, unsigned long *sz)
  330. {
  331. Elf64_Ehdr *ehdr;
  332. Elf64_Phdr *phdr;
  333. unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
  334. unsigned char *buf, *bufp;
  335. unsigned int cpu;
  336. unsigned long long notes_addr;
  337. int ret;
  338. /* extra phdr for vmcoreinfo elf note */
  339. nr_phdr = nr_cpus + 1;
  340. nr_phdr += ced->max_nr_ranges;
  341. /*
  342. * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
  343. * area on x86_64 (ffffffff80000000 - ffffffffa0000000).
  344. * I think this is required by tools like gdb. So same physical
  345. * memory will be mapped in two elf headers. One will contain kernel
  346. * text virtual addresses and other will have __va(physical) addresses.
  347. */
  348. nr_phdr++;
  349. elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
  350. elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
  351. buf = vzalloc(elf_sz);
  352. if (!buf)
  353. return -ENOMEM;
  354. bufp = buf;
  355. ehdr = (Elf64_Ehdr *)bufp;
  356. bufp += sizeof(Elf64_Ehdr);
  357. memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
  358. ehdr->e_ident[EI_CLASS] = ELFCLASS64;
  359. ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
  360. ehdr->e_ident[EI_VERSION] = EV_CURRENT;
  361. ehdr->e_ident[EI_OSABI] = ELF_OSABI;
  362. memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
  363. ehdr->e_type = ET_CORE;
  364. ehdr->e_machine = ELF_ARCH;
  365. ehdr->e_version = EV_CURRENT;
  366. ehdr->e_phoff = sizeof(Elf64_Ehdr);
  367. ehdr->e_ehsize = sizeof(Elf64_Ehdr);
  368. ehdr->e_phentsize = sizeof(Elf64_Phdr);
  369. /* Prepare one phdr of type PT_NOTE for each present cpu */
  370. for_each_present_cpu(cpu) {
  371. phdr = (Elf64_Phdr *)bufp;
  372. bufp += sizeof(Elf64_Phdr);
  373. phdr->p_type = PT_NOTE;
  374. notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
  375. phdr->p_offset = phdr->p_paddr = notes_addr;
  376. phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
  377. (ehdr->e_phnum)++;
  378. }
  379. /* Prepare one PT_NOTE header for vmcoreinfo */
  380. phdr = (Elf64_Phdr *)bufp;
  381. bufp += sizeof(Elf64_Phdr);
  382. phdr->p_type = PT_NOTE;
  383. phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
  384. phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
  385. (ehdr->e_phnum)++;
  386. #ifdef CONFIG_X86_64
  387. /* Prepare PT_LOAD type program header for kernel text region */
  388. phdr = (Elf64_Phdr *)bufp;
  389. bufp += sizeof(Elf64_Phdr);
  390. phdr->p_type = PT_LOAD;
  391. phdr->p_flags = PF_R|PF_W|PF_X;
  392. phdr->p_vaddr = (Elf64_Addr)_text;
  393. phdr->p_filesz = phdr->p_memsz = _end - _text;
  394. phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
  395. (ehdr->e_phnum)++;
  396. #endif
  397. /* Prepare PT_LOAD headers for system ram chunks. */
  398. ced->ehdr = ehdr;
  399. ced->bufp = bufp;
  400. ret = walk_system_ram_res(0, -1, ced,
  401. prepare_elf64_ram_headers_callback);
  402. if (ret < 0)
  403. return ret;
  404. *addr = buf;
  405. *sz = elf_sz;
  406. return 0;
  407. }
  408. /* Prepare elf headers. Return addr and size */
  409. static int prepare_elf_headers(struct kimage *image, void **addr,
  410. unsigned long *sz)
  411. {
  412. struct crash_elf_data *ced;
  413. int ret;
  414. ced = kzalloc(sizeof(*ced), GFP_KERNEL);
  415. if (!ced)
  416. return -ENOMEM;
  417. fill_up_crash_elf_data(ced, image);
  418. /* By default prepare 64bit headers */
  419. ret = prepare_elf64_headers(ced, addr, sz);
  420. kfree(ced);
  421. return ret;
  422. }
  423. static int add_e820_entry(struct boot_params *params, struct e820_entry *entry)
  424. {
  425. unsigned int nr_e820_entries;
  426. nr_e820_entries = params->e820_entries;
  427. if (nr_e820_entries >= E820_MAX_ENTRIES_ZEROPAGE)
  428. return 1;
  429. memcpy(&params->e820_table[nr_e820_entries], entry,
  430. sizeof(struct e820_entry));
  431. params->e820_entries++;
  432. return 0;
  433. }
  434. static int memmap_entry_callback(struct resource *res, void *arg)
  435. {
  436. struct crash_memmap_data *cmd = arg;
  437. struct boot_params *params = cmd->params;
  438. struct e820_entry ei;
  439. ei.addr = res->start;
  440. ei.size = resource_size(res);
  441. ei.type = cmd->type;
  442. add_e820_entry(params, &ei);
  443. return 0;
  444. }
  445. static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem,
  446. unsigned long long mstart,
  447. unsigned long long mend)
  448. {
  449. unsigned long start, end;
  450. int ret = 0;
  451. cmem->ranges[0].start = mstart;
  452. cmem->ranges[0].end = mend;
  453. cmem->nr_ranges = 1;
  454. /* Exclude Backup region */
  455. start = image->arch.backup_load_addr;
  456. end = start + image->arch.backup_src_sz - 1;
  457. ret = exclude_mem_range(cmem, start, end);
  458. if (ret)
  459. return ret;
  460. /* Exclude elf header region */
  461. start = image->arch.elf_load_addr;
  462. end = start + image->arch.elf_headers_sz - 1;
  463. return exclude_mem_range(cmem, start, end);
  464. }
  465. /* Prepare memory map for crash dump kernel */
  466. int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params)
  467. {
  468. int i, ret = 0;
  469. unsigned long flags;
  470. struct e820_entry ei;
  471. struct crash_memmap_data cmd;
  472. struct crash_mem *cmem;
  473. cmem = vzalloc(sizeof(struct crash_mem));
  474. if (!cmem)
  475. return -ENOMEM;
  476. memset(&cmd, 0, sizeof(struct crash_memmap_data));
  477. cmd.params = params;
  478. /* Add first 640K segment */
  479. ei.addr = image->arch.backup_src_start;
  480. ei.size = image->arch.backup_src_sz;
  481. ei.type = E820_TYPE_RAM;
  482. add_e820_entry(params, &ei);
  483. /* Add ACPI tables */
  484. cmd.type = E820_TYPE_ACPI;
  485. flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  486. walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, &cmd,
  487. memmap_entry_callback);
  488. /* Add ACPI Non-volatile Storage */
  489. cmd.type = E820_TYPE_NVS;
  490. walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, &cmd,
  491. memmap_entry_callback);
  492. /* Add crashk_low_res region */
  493. if (crashk_low_res.end) {
  494. ei.addr = crashk_low_res.start;
  495. ei.size = crashk_low_res.end - crashk_low_res.start + 1;
  496. ei.type = E820_TYPE_RAM;
  497. add_e820_entry(params, &ei);
  498. }
  499. /* Exclude some ranges from crashk_res and add rest to memmap */
  500. ret = memmap_exclude_ranges(image, cmem, crashk_res.start,
  501. crashk_res.end);
  502. if (ret)
  503. goto out;
  504. for (i = 0; i < cmem->nr_ranges; i++) {
  505. ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1;
  506. /* If entry is less than a page, skip it */
  507. if (ei.size < PAGE_SIZE)
  508. continue;
  509. ei.addr = cmem->ranges[i].start;
  510. ei.type = E820_TYPE_RAM;
  511. add_e820_entry(params, &ei);
  512. }
  513. out:
  514. vfree(cmem);
  515. return ret;
  516. }
  517. static int determine_backup_region(struct resource *res, void *arg)
  518. {
  519. struct kimage *image = arg;
  520. image->arch.backup_src_start = res->start;
  521. image->arch.backup_src_sz = resource_size(res);
  522. /* Expecting only one range for backup region */
  523. return 1;
  524. }
  525. int crash_load_segments(struct kimage *image)
  526. {
  527. int ret;
  528. struct kexec_buf kbuf = { .image = image, .buf_min = 0,
  529. .buf_max = ULONG_MAX, .top_down = false };
  530. /*
  531. * Determine and load a segment for backup area. First 640K RAM
  532. * region is backup source
  533. */
  534. ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END,
  535. image, determine_backup_region);
  536. /* Zero or postive return values are ok */
  537. if (ret < 0)
  538. return ret;
  539. /* Add backup segment. */
  540. if (image->arch.backup_src_sz) {
  541. kbuf.buffer = &crash_zero_bytes;
  542. kbuf.bufsz = sizeof(crash_zero_bytes);
  543. kbuf.memsz = image->arch.backup_src_sz;
  544. kbuf.buf_align = PAGE_SIZE;
  545. /*
  546. * Ideally there is no source for backup segment. This is
  547. * copied in purgatory after crash. Just add a zero filled
  548. * segment for now to make sure checksum logic works fine.
  549. */
  550. ret = kexec_add_buffer(&kbuf);
  551. if (ret)
  552. return ret;
  553. image->arch.backup_load_addr = kbuf.mem;
  554. pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n",
  555. image->arch.backup_load_addr,
  556. image->arch.backup_src_start, kbuf.memsz);
  557. }
  558. /* Prepare elf headers and add a segment */
  559. ret = prepare_elf_headers(image, &kbuf.buffer, &kbuf.bufsz);
  560. if (ret)
  561. return ret;
  562. image->arch.elf_headers = kbuf.buffer;
  563. image->arch.elf_headers_sz = kbuf.bufsz;
  564. kbuf.memsz = kbuf.bufsz;
  565. kbuf.buf_align = ELF_CORE_HEADER_ALIGN;
  566. ret = kexec_add_buffer(&kbuf);
  567. if (ret) {
  568. vfree((void *)image->arch.elf_headers);
  569. return ret;
  570. }
  571. image->arch.elf_load_addr = kbuf.mem;
  572. pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
  573. image->arch.elf_load_addr, kbuf.bufsz, kbuf.bufsz);
  574. return ret;
  575. }
  576. #endif /* CONFIG_KEXEC_FILE */