intel_rdt_rdtgroup.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080
  1. /*
  2. * User interface for Resource Alloction in Resource Director Technology(RDT)
  3. *
  4. * Copyright (C) 2016 Intel Corporation
  5. *
  6. * Author: Fenghua Yu <fenghua.yu@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * More information about RDT be found in the Intel (R) x86 Architecture
  18. * Software Developer Manual.
  19. */
  20. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  21. #include <linux/cpu.h>
  22. #include <linux/fs.h>
  23. #include <linux/sysfs.h>
  24. #include <linux/kernfs.h>
  25. #include <linux/seq_buf.h>
  26. #include <linux/seq_file.h>
  27. #include <linux/sched/signal.h>
  28. #include <linux/sched/task.h>
  29. #include <linux/slab.h>
  30. #include <linux/task_work.h>
  31. #include <uapi/linux/magic.h>
  32. #include <asm/intel_rdt_sched.h>
  33. #include "intel_rdt.h"
  34. DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
  35. DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
  36. DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
  37. static struct kernfs_root *rdt_root;
  38. struct rdtgroup rdtgroup_default;
  39. LIST_HEAD(rdt_all_groups);
  40. /* Kernel fs node for "info" directory under root */
  41. static struct kernfs_node *kn_info;
  42. /* Kernel fs node for "mon_groups" directory under root */
  43. static struct kernfs_node *kn_mongrp;
  44. /* Kernel fs node for "mon_data" directory under root */
  45. static struct kernfs_node *kn_mondata;
  46. static struct seq_buf last_cmd_status;
  47. static char last_cmd_status_buf[512];
  48. void rdt_last_cmd_clear(void)
  49. {
  50. lockdep_assert_held(&rdtgroup_mutex);
  51. seq_buf_clear(&last_cmd_status);
  52. }
  53. void rdt_last_cmd_puts(const char *s)
  54. {
  55. lockdep_assert_held(&rdtgroup_mutex);
  56. seq_buf_puts(&last_cmd_status, s);
  57. }
  58. void rdt_last_cmd_printf(const char *fmt, ...)
  59. {
  60. va_list ap;
  61. va_start(ap, fmt);
  62. lockdep_assert_held(&rdtgroup_mutex);
  63. seq_buf_vprintf(&last_cmd_status, fmt, ap);
  64. va_end(ap);
  65. }
  66. /*
  67. * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
  68. * we can keep a bitmap of free CLOSIDs in a single integer.
  69. *
  70. * Using a global CLOSID across all resources has some advantages and
  71. * some drawbacks:
  72. * + We can simply set "current->closid" to assign a task to a resource
  73. * group.
  74. * + Context switch code can avoid extra memory references deciding which
  75. * CLOSID to load into the PQR_ASSOC MSR
  76. * - We give up some options in configuring resource groups across multi-socket
  77. * systems.
  78. * - Our choices on how to configure each resource become progressively more
  79. * limited as the number of resources grows.
  80. */
  81. static int closid_free_map;
  82. static void closid_init(void)
  83. {
  84. struct rdt_resource *r;
  85. int rdt_min_closid = 32;
  86. /* Compute rdt_min_closid across all resources */
  87. for_each_alloc_enabled_rdt_resource(r)
  88. rdt_min_closid = min(rdt_min_closid, r->num_closid);
  89. closid_free_map = BIT_MASK(rdt_min_closid) - 1;
  90. /* CLOSID 0 is always reserved for the default group */
  91. closid_free_map &= ~1;
  92. }
  93. static int closid_alloc(void)
  94. {
  95. u32 closid = ffs(closid_free_map);
  96. if (closid == 0)
  97. return -ENOSPC;
  98. closid--;
  99. closid_free_map &= ~(1 << closid);
  100. return closid;
  101. }
  102. static void closid_free(int closid)
  103. {
  104. closid_free_map |= 1 << closid;
  105. }
  106. /* set uid and gid of rdtgroup dirs and files to that of the creator */
  107. static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
  108. {
  109. struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
  110. .ia_uid = current_fsuid(),
  111. .ia_gid = current_fsgid(), };
  112. if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
  113. gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
  114. return 0;
  115. return kernfs_setattr(kn, &iattr);
  116. }
  117. static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
  118. {
  119. struct kernfs_node *kn;
  120. int ret;
  121. kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
  122. 0, rft->kf_ops, rft, NULL, NULL);
  123. if (IS_ERR(kn))
  124. return PTR_ERR(kn);
  125. ret = rdtgroup_kn_set_ugid(kn);
  126. if (ret) {
  127. kernfs_remove(kn);
  128. return ret;
  129. }
  130. return 0;
  131. }
  132. static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
  133. {
  134. struct kernfs_open_file *of = m->private;
  135. struct rftype *rft = of->kn->priv;
  136. if (rft->seq_show)
  137. return rft->seq_show(of, m, arg);
  138. return 0;
  139. }
  140. static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
  141. size_t nbytes, loff_t off)
  142. {
  143. struct rftype *rft = of->kn->priv;
  144. if (rft->write)
  145. return rft->write(of, buf, nbytes, off);
  146. return -EINVAL;
  147. }
  148. static struct kernfs_ops rdtgroup_kf_single_ops = {
  149. .atomic_write_len = PAGE_SIZE,
  150. .write = rdtgroup_file_write,
  151. .seq_show = rdtgroup_seqfile_show,
  152. };
  153. static struct kernfs_ops kf_mondata_ops = {
  154. .atomic_write_len = PAGE_SIZE,
  155. .seq_show = rdtgroup_mondata_show,
  156. };
  157. static bool is_cpu_list(struct kernfs_open_file *of)
  158. {
  159. struct rftype *rft = of->kn->priv;
  160. return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
  161. }
  162. static int rdtgroup_cpus_show(struct kernfs_open_file *of,
  163. struct seq_file *s, void *v)
  164. {
  165. struct rdtgroup *rdtgrp;
  166. int ret = 0;
  167. rdtgrp = rdtgroup_kn_lock_live(of->kn);
  168. if (rdtgrp) {
  169. seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
  170. cpumask_pr_args(&rdtgrp->cpu_mask));
  171. } else {
  172. ret = -ENOENT;
  173. }
  174. rdtgroup_kn_unlock(of->kn);
  175. return ret;
  176. }
  177. /*
  178. * This is safe against intel_rdt_sched_in() called from __switch_to()
  179. * because __switch_to() is executed with interrupts disabled. A local call
  180. * from update_closid_rmid() is proteced against __switch_to() because
  181. * preemption is disabled.
  182. */
  183. static void update_cpu_closid_rmid(void *info)
  184. {
  185. struct rdtgroup *r = info;
  186. if (r) {
  187. this_cpu_write(pqr_state.default_closid, r->closid);
  188. this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
  189. }
  190. /*
  191. * We cannot unconditionally write the MSR because the current
  192. * executing task might have its own closid selected. Just reuse
  193. * the context switch code.
  194. */
  195. intel_rdt_sched_in();
  196. }
  197. /*
  198. * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
  199. *
  200. * Per task closids/rmids must have been set up before calling this function.
  201. */
  202. static void
  203. update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
  204. {
  205. int cpu = get_cpu();
  206. if (cpumask_test_cpu(cpu, cpu_mask))
  207. update_cpu_closid_rmid(r);
  208. smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
  209. put_cpu();
  210. }
  211. static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
  212. cpumask_var_t tmpmask)
  213. {
  214. struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
  215. struct list_head *head;
  216. /* Check whether cpus belong to parent ctrl group */
  217. cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
  218. if (cpumask_weight(tmpmask)) {
  219. rdt_last_cmd_puts("can only add CPUs to mongroup that belong to parent\n");
  220. return -EINVAL;
  221. }
  222. /* Check whether cpus are dropped from this group */
  223. cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
  224. if (cpumask_weight(tmpmask)) {
  225. /* Give any dropped cpus to parent rdtgroup */
  226. cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
  227. update_closid_rmid(tmpmask, prgrp);
  228. }
  229. /*
  230. * If we added cpus, remove them from previous group that owned them
  231. * and update per-cpu rmid
  232. */
  233. cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
  234. if (cpumask_weight(tmpmask)) {
  235. head = &prgrp->mon.crdtgrp_list;
  236. list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
  237. if (crgrp == rdtgrp)
  238. continue;
  239. cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
  240. tmpmask);
  241. }
  242. update_closid_rmid(tmpmask, rdtgrp);
  243. }
  244. /* Done pushing/pulling - update this group with new mask */
  245. cpumask_copy(&rdtgrp->cpu_mask, newmask);
  246. return 0;
  247. }
  248. static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
  249. {
  250. struct rdtgroup *crgrp;
  251. cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
  252. /* update the child mon group masks as well*/
  253. list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
  254. cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
  255. }
  256. static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
  257. cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
  258. {
  259. struct rdtgroup *r, *crgrp;
  260. struct list_head *head;
  261. /* Check whether cpus are dropped from this group */
  262. cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
  263. if (cpumask_weight(tmpmask)) {
  264. /* Can't drop from default group */
  265. if (rdtgrp == &rdtgroup_default) {
  266. rdt_last_cmd_puts("Can't drop CPUs from default group\n");
  267. return -EINVAL;
  268. }
  269. /* Give any dropped cpus to rdtgroup_default */
  270. cpumask_or(&rdtgroup_default.cpu_mask,
  271. &rdtgroup_default.cpu_mask, tmpmask);
  272. update_closid_rmid(tmpmask, &rdtgroup_default);
  273. }
  274. /*
  275. * If we added cpus, remove them from previous group and
  276. * the prev group's child groups that owned them
  277. * and update per-cpu closid/rmid.
  278. */
  279. cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
  280. if (cpumask_weight(tmpmask)) {
  281. list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
  282. if (r == rdtgrp)
  283. continue;
  284. cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
  285. if (cpumask_weight(tmpmask1))
  286. cpumask_rdtgrp_clear(r, tmpmask1);
  287. }
  288. update_closid_rmid(tmpmask, rdtgrp);
  289. }
  290. /* Done pushing/pulling - update this group with new mask */
  291. cpumask_copy(&rdtgrp->cpu_mask, newmask);
  292. /*
  293. * Clear child mon group masks since there is a new parent mask
  294. * now and update the rmid for the cpus the child lost.
  295. */
  296. head = &rdtgrp->mon.crdtgrp_list;
  297. list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
  298. cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
  299. update_closid_rmid(tmpmask, rdtgrp);
  300. cpumask_clear(&crgrp->cpu_mask);
  301. }
  302. return 0;
  303. }
  304. static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
  305. char *buf, size_t nbytes, loff_t off)
  306. {
  307. cpumask_var_t tmpmask, newmask, tmpmask1;
  308. struct rdtgroup *rdtgrp;
  309. int ret;
  310. if (!buf)
  311. return -EINVAL;
  312. if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
  313. return -ENOMEM;
  314. if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
  315. free_cpumask_var(tmpmask);
  316. return -ENOMEM;
  317. }
  318. if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
  319. free_cpumask_var(tmpmask);
  320. free_cpumask_var(newmask);
  321. return -ENOMEM;
  322. }
  323. rdtgrp = rdtgroup_kn_lock_live(of->kn);
  324. rdt_last_cmd_clear();
  325. if (!rdtgrp) {
  326. ret = -ENOENT;
  327. rdt_last_cmd_puts("directory was removed\n");
  328. goto unlock;
  329. }
  330. if (is_cpu_list(of))
  331. ret = cpulist_parse(buf, newmask);
  332. else
  333. ret = cpumask_parse(buf, newmask);
  334. if (ret) {
  335. rdt_last_cmd_puts("bad cpu list/mask\n");
  336. goto unlock;
  337. }
  338. /* check that user didn't specify any offline cpus */
  339. cpumask_andnot(tmpmask, newmask, cpu_online_mask);
  340. if (cpumask_weight(tmpmask)) {
  341. ret = -EINVAL;
  342. rdt_last_cmd_puts("can only assign online cpus\n");
  343. goto unlock;
  344. }
  345. if (rdtgrp->type == RDTCTRL_GROUP)
  346. ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
  347. else if (rdtgrp->type == RDTMON_GROUP)
  348. ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
  349. else
  350. ret = -EINVAL;
  351. unlock:
  352. rdtgroup_kn_unlock(of->kn);
  353. free_cpumask_var(tmpmask);
  354. free_cpumask_var(newmask);
  355. free_cpumask_var(tmpmask1);
  356. return ret ?: nbytes;
  357. }
  358. struct task_move_callback {
  359. struct callback_head work;
  360. struct rdtgroup *rdtgrp;
  361. };
  362. static void move_myself(struct callback_head *head)
  363. {
  364. struct task_move_callback *callback;
  365. struct rdtgroup *rdtgrp;
  366. callback = container_of(head, struct task_move_callback, work);
  367. rdtgrp = callback->rdtgrp;
  368. /*
  369. * If resource group was deleted before this task work callback
  370. * was invoked, then assign the task to root group and free the
  371. * resource group.
  372. */
  373. if (atomic_dec_and_test(&rdtgrp->waitcount) &&
  374. (rdtgrp->flags & RDT_DELETED)) {
  375. current->closid = 0;
  376. current->rmid = 0;
  377. kfree(rdtgrp);
  378. }
  379. preempt_disable();
  380. /* update PQR_ASSOC MSR to make resource group go into effect */
  381. intel_rdt_sched_in();
  382. preempt_enable();
  383. kfree(callback);
  384. }
  385. static int __rdtgroup_move_task(struct task_struct *tsk,
  386. struct rdtgroup *rdtgrp)
  387. {
  388. struct task_move_callback *callback;
  389. int ret;
  390. callback = kzalloc(sizeof(*callback), GFP_KERNEL);
  391. if (!callback)
  392. return -ENOMEM;
  393. callback->work.func = move_myself;
  394. callback->rdtgrp = rdtgrp;
  395. /*
  396. * Take a refcount, so rdtgrp cannot be freed before the
  397. * callback has been invoked.
  398. */
  399. atomic_inc(&rdtgrp->waitcount);
  400. ret = task_work_add(tsk, &callback->work, true);
  401. if (ret) {
  402. /*
  403. * Task is exiting. Drop the refcount and free the callback.
  404. * No need to check the refcount as the group cannot be
  405. * deleted before the write function unlocks rdtgroup_mutex.
  406. */
  407. atomic_dec(&rdtgrp->waitcount);
  408. kfree(callback);
  409. rdt_last_cmd_puts("task exited\n");
  410. } else {
  411. /*
  412. * For ctrl_mon groups move both closid and rmid.
  413. * For monitor groups, can move the tasks only from
  414. * their parent CTRL group.
  415. */
  416. if (rdtgrp->type == RDTCTRL_GROUP) {
  417. tsk->closid = rdtgrp->closid;
  418. tsk->rmid = rdtgrp->mon.rmid;
  419. } else if (rdtgrp->type == RDTMON_GROUP) {
  420. if (rdtgrp->mon.parent->closid == tsk->closid) {
  421. tsk->rmid = rdtgrp->mon.rmid;
  422. } else {
  423. rdt_last_cmd_puts("Can't move task to different control group\n");
  424. ret = -EINVAL;
  425. }
  426. }
  427. }
  428. return ret;
  429. }
  430. static int rdtgroup_task_write_permission(struct task_struct *task,
  431. struct kernfs_open_file *of)
  432. {
  433. const struct cred *tcred = get_task_cred(task);
  434. const struct cred *cred = current_cred();
  435. int ret = 0;
  436. /*
  437. * Even if we're attaching all tasks in the thread group, we only
  438. * need to check permissions on one of them.
  439. */
  440. if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
  441. !uid_eq(cred->euid, tcred->uid) &&
  442. !uid_eq(cred->euid, tcred->suid)) {
  443. rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
  444. ret = -EPERM;
  445. }
  446. put_cred(tcred);
  447. return ret;
  448. }
  449. static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
  450. struct kernfs_open_file *of)
  451. {
  452. struct task_struct *tsk;
  453. int ret;
  454. rcu_read_lock();
  455. if (pid) {
  456. tsk = find_task_by_vpid(pid);
  457. if (!tsk) {
  458. rcu_read_unlock();
  459. rdt_last_cmd_printf("No task %d\n", pid);
  460. return -ESRCH;
  461. }
  462. } else {
  463. tsk = current;
  464. }
  465. get_task_struct(tsk);
  466. rcu_read_unlock();
  467. ret = rdtgroup_task_write_permission(tsk, of);
  468. if (!ret)
  469. ret = __rdtgroup_move_task(tsk, rdtgrp);
  470. put_task_struct(tsk);
  471. return ret;
  472. }
  473. static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
  474. char *buf, size_t nbytes, loff_t off)
  475. {
  476. struct rdtgroup *rdtgrp;
  477. int ret = 0;
  478. pid_t pid;
  479. if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
  480. return -EINVAL;
  481. rdtgrp = rdtgroup_kn_lock_live(of->kn);
  482. rdt_last_cmd_clear();
  483. if (rdtgrp)
  484. ret = rdtgroup_move_task(pid, rdtgrp, of);
  485. else
  486. ret = -ENOENT;
  487. rdtgroup_kn_unlock(of->kn);
  488. return ret ?: nbytes;
  489. }
  490. static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
  491. {
  492. struct task_struct *p, *t;
  493. rcu_read_lock();
  494. for_each_process_thread(p, t) {
  495. if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
  496. (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid))
  497. seq_printf(s, "%d\n", t->pid);
  498. }
  499. rcu_read_unlock();
  500. }
  501. static int rdtgroup_tasks_show(struct kernfs_open_file *of,
  502. struct seq_file *s, void *v)
  503. {
  504. struct rdtgroup *rdtgrp;
  505. int ret = 0;
  506. rdtgrp = rdtgroup_kn_lock_live(of->kn);
  507. if (rdtgrp)
  508. show_rdt_tasks(rdtgrp, s);
  509. else
  510. ret = -ENOENT;
  511. rdtgroup_kn_unlock(of->kn);
  512. return ret;
  513. }
  514. static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
  515. struct seq_file *seq, void *v)
  516. {
  517. int len;
  518. mutex_lock(&rdtgroup_mutex);
  519. len = seq_buf_used(&last_cmd_status);
  520. if (len)
  521. seq_printf(seq, "%.*s", len, last_cmd_status_buf);
  522. else
  523. seq_puts(seq, "ok\n");
  524. mutex_unlock(&rdtgroup_mutex);
  525. return 0;
  526. }
  527. static int rdt_num_closids_show(struct kernfs_open_file *of,
  528. struct seq_file *seq, void *v)
  529. {
  530. struct rdt_resource *r = of->kn->parent->priv;
  531. seq_printf(seq, "%d\n", r->num_closid);
  532. return 0;
  533. }
  534. static int rdt_default_ctrl_show(struct kernfs_open_file *of,
  535. struct seq_file *seq, void *v)
  536. {
  537. struct rdt_resource *r = of->kn->parent->priv;
  538. seq_printf(seq, "%x\n", r->default_ctrl);
  539. return 0;
  540. }
  541. static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
  542. struct seq_file *seq, void *v)
  543. {
  544. struct rdt_resource *r = of->kn->parent->priv;
  545. seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
  546. return 0;
  547. }
  548. static int rdt_shareable_bits_show(struct kernfs_open_file *of,
  549. struct seq_file *seq, void *v)
  550. {
  551. struct rdt_resource *r = of->kn->parent->priv;
  552. seq_printf(seq, "%x\n", r->cache.shareable_bits);
  553. return 0;
  554. }
  555. static int rdt_min_bw_show(struct kernfs_open_file *of,
  556. struct seq_file *seq, void *v)
  557. {
  558. struct rdt_resource *r = of->kn->parent->priv;
  559. seq_printf(seq, "%u\n", r->membw.min_bw);
  560. return 0;
  561. }
  562. static int rdt_num_rmids_show(struct kernfs_open_file *of,
  563. struct seq_file *seq, void *v)
  564. {
  565. struct rdt_resource *r = of->kn->parent->priv;
  566. seq_printf(seq, "%d\n", r->num_rmid);
  567. return 0;
  568. }
  569. static int rdt_mon_features_show(struct kernfs_open_file *of,
  570. struct seq_file *seq, void *v)
  571. {
  572. struct rdt_resource *r = of->kn->parent->priv;
  573. struct mon_evt *mevt;
  574. list_for_each_entry(mevt, &r->evt_list, list)
  575. seq_printf(seq, "%s\n", mevt->name);
  576. return 0;
  577. }
  578. static int rdt_bw_gran_show(struct kernfs_open_file *of,
  579. struct seq_file *seq, void *v)
  580. {
  581. struct rdt_resource *r = of->kn->parent->priv;
  582. seq_printf(seq, "%u\n", r->membw.bw_gran);
  583. return 0;
  584. }
  585. static int rdt_delay_linear_show(struct kernfs_open_file *of,
  586. struct seq_file *seq, void *v)
  587. {
  588. struct rdt_resource *r = of->kn->parent->priv;
  589. seq_printf(seq, "%u\n", r->membw.delay_linear);
  590. return 0;
  591. }
  592. static int max_threshold_occ_show(struct kernfs_open_file *of,
  593. struct seq_file *seq, void *v)
  594. {
  595. struct rdt_resource *r = of->kn->parent->priv;
  596. seq_printf(seq, "%u\n", intel_cqm_threshold * r->mon_scale);
  597. return 0;
  598. }
  599. static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
  600. char *buf, size_t nbytes, loff_t off)
  601. {
  602. struct rdt_resource *r = of->kn->parent->priv;
  603. unsigned int bytes;
  604. int ret;
  605. ret = kstrtouint(buf, 0, &bytes);
  606. if (ret)
  607. return ret;
  608. if (bytes > (boot_cpu_data.x86_cache_size * 1024))
  609. return -EINVAL;
  610. intel_cqm_threshold = bytes / r->mon_scale;
  611. return nbytes;
  612. }
  613. /* rdtgroup information files for one cache resource. */
  614. static struct rftype res_common_files[] = {
  615. {
  616. .name = "last_cmd_status",
  617. .mode = 0444,
  618. .kf_ops = &rdtgroup_kf_single_ops,
  619. .seq_show = rdt_last_cmd_status_show,
  620. .fflags = RF_TOP_INFO,
  621. },
  622. {
  623. .name = "num_closids",
  624. .mode = 0444,
  625. .kf_ops = &rdtgroup_kf_single_ops,
  626. .seq_show = rdt_num_closids_show,
  627. .fflags = RF_CTRL_INFO,
  628. },
  629. {
  630. .name = "mon_features",
  631. .mode = 0444,
  632. .kf_ops = &rdtgroup_kf_single_ops,
  633. .seq_show = rdt_mon_features_show,
  634. .fflags = RF_MON_INFO,
  635. },
  636. {
  637. .name = "num_rmids",
  638. .mode = 0444,
  639. .kf_ops = &rdtgroup_kf_single_ops,
  640. .seq_show = rdt_num_rmids_show,
  641. .fflags = RF_MON_INFO,
  642. },
  643. {
  644. .name = "cbm_mask",
  645. .mode = 0444,
  646. .kf_ops = &rdtgroup_kf_single_ops,
  647. .seq_show = rdt_default_ctrl_show,
  648. .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
  649. },
  650. {
  651. .name = "min_cbm_bits",
  652. .mode = 0444,
  653. .kf_ops = &rdtgroup_kf_single_ops,
  654. .seq_show = rdt_min_cbm_bits_show,
  655. .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
  656. },
  657. {
  658. .name = "shareable_bits",
  659. .mode = 0444,
  660. .kf_ops = &rdtgroup_kf_single_ops,
  661. .seq_show = rdt_shareable_bits_show,
  662. .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
  663. },
  664. {
  665. .name = "min_bandwidth",
  666. .mode = 0444,
  667. .kf_ops = &rdtgroup_kf_single_ops,
  668. .seq_show = rdt_min_bw_show,
  669. .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
  670. },
  671. {
  672. .name = "bandwidth_gran",
  673. .mode = 0444,
  674. .kf_ops = &rdtgroup_kf_single_ops,
  675. .seq_show = rdt_bw_gran_show,
  676. .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
  677. },
  678. {
  679. .name = "delay_linear",
  680. .mode = 0444,
  681. .kf_ops = &rdtgroup_kf_single_ops,
  682. .seq_show = rdt_delay_linear_show,
  683. .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
  684. },
  685. {
  686. .name = "max_threshold_occupancy",
  687. .mode = 0644,
  688. .kf_ops = &rdtgroup_kf_single_ops,
  689. .write = max_threshold_occ_write,
  690. .seq_show = max_threshold_occ_show,
  691. .fflags = RF_MON_INFO | RFTYPE_RES_CACHE,
  692. },
  693. {
  694. .name = "cpus",
  695. .mode = 0644,
  696. .kf_ops = &rdtgroup_kf_single_ops,
  697. .write = rdtgroup_cpus_write,
  698. .seq_show = rdtgroup_cpus_show,
  699. .fflags = RFTYPE_BASE,
  700. },
  701. {
  702. .name = "cpus_list",
  703. .mode = 0644,
  704. .kf_ops = &rdtgroup_kf_single_ops,
  705. .write = rdtgroup_cpus_write,
  706. .seq_show = rdtgroup_cpus_show,
  707. .flags = RFTYPE_FLAGS_CPUS_LIST,
  708. .fflags = RFTYPE_BASE,
  709. },
  710. {
  711. .name = "tasks",
  712. .mode = 0644,
  713. .kf_ops = &rdtgroup_kf_single_ops,
  714. .write = rdtgroup_tasks_write,
  715. .seq_show = rdtgroup_tasks_show,
  716. .fflags = RFTYPE_BASE,
  717. },
  718. {
  719. .name = "schemata",
  720. .mode = 0644,
  721. .kf_ops = &rdtgroup_kf_single_ops,
  722. .write = rdtgroup_schemata_write,
  723. .seq_show = rdtgroup_schemata_show,
  724. .fflags = RF_CTRL_BASE,
  725. },
  726. };
  727. static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
  728. {
  729. struct rftype *rfts, *rft;
  730. int ret, len;
  731. rfts = res_common_files;
  732. len = ARRAY_SIZE(res_common_files);
  733. lockdep_assert_held(&rdtgroup_mutex);
  734. for (rft = rfts; rft < rfts + len; rft++) {
  735. if ((fflags & rft->fflags) == rft->fflags) {
  736. ret = rdtgroup_add_file(kn, rft);
  737. if (ret)
  738. goto error;
  739. }
  740. }
  741. return 0;
  742. error:
  743. pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
  744. while (--rft >= rfts) {
  745. if ((fflags & rft->fflags) == rft->fflags)
  746. kernfs_remove_by_name(kn, rft->name);
  747. }
  748. return ret;
  749. }
  750. static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
  751. unsigned long fflags)
  752. {
  753. struct kernfs_node *kn_subdir;
  754. int ret;
  755. kn_subdir = kernfs_create_dir(kn_info, name,
  756. kn_info->mode, r);
  757. if (IS_ERR(kn_subdir))
  758. return PTR_ERR(kn_subdir);
  759. kernfs_get(kn_subdir);
  760. ret = rdtgroup_kn_set_ugid(kn_subdir);
  761. if (ret)
  762. return ret;
  763. ret = rdtgroup_add_files(kn_subdir, fflags);
  764. if (!ret)
  765. kernfs_activate(kn_subdir);
  766. return ret;
  767. }
  768. static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
  769. {
  770. struct rdt_resource *r;
  771. unsigned long fflags;
  772. char name[32];
  773. int ret;
  774. /* create the directory */
  775. kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
  776. if (IS_ERR(kn_info))
  777. return PTR_ERR(kn_info);
  778. kernfs_get(kn_info);
  779. ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
  780. if (ret)
  781. goto out_destroy;
  782. for_each_alloc_enabled_rdt_resource(r) {
  783. fflags = r->fflags | RF_CTRL_INFO;
  784. ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
  785. if (ret)
  786. goto out_destroy;
  787. }
  788. for_each_mon_enabled_rdt_resource(r) {
  789. fflags = r->fflags | RF_MON_INFO;
  790. sprintf(name, "%s_MON", r->name);
  791. ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
  792. if (ret)
  793. goto out_destroy;
  794. }
  795. /*
  796. * This extra ref will be put in kernfs_remove() and guarantees
  797. * that @rdtgrp->kn is always accessible.
  798. */
  799. kernfs_get(kn_info);
  800. ret = rdtgroup_kn_set_ugid(kn_info);
  801. if (ret)
  802. goto out_destroy;
  803. kernfs_activate(kn_info);
  804. return 0;
  805. out_destroy:
  806. kernfs_remove(kn_info);
  807. return ret;
  808. }
  809. static int
  810. mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
  811. char *name, struct kernfs_node **dest_kn)
  812. {
  813. struct kernfs_node *kn;
  814. int ret;
  815. /* create the directory */
  816. kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
  817. if (IS_ERR(kn))
  818. return PTR_ERR(kn);
  819. if (dest_kn)
  820. *dest_kn = kn;
  821. /*
  822. * This extra ref will be put in kernfs_remove() and guarantees
  823. * that @rdtgrp->kn is always accessible.
  824. */
  825. kernfs_get(kn);
  826. ret = rdtgroup_kn_set_ugid(kn);
  827. if (ret)
  828. goto out_destroy;
  829. kernfs_activate(kn);
  830. return 0;
  831. out_destroy:
  832. kernfs_remove(kn);
  833. return ret;
  834. }
  835. static void l3_qos_cfg_update(void *arg)
  836. {
  837. bool *enable = arg;
  838. wrmsrl(IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
  839. }
  840. static void l2_qos_cfg_update(void *arg)
  841. {
  842. bool *enable = arg;
  843. wrmsrl(IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
  844. }
  845. static int set_cache_qos_cfg(int level, bool enable)
  846. {
  847. void (*update)(void *arg);
  848. struct rdt_resource *r_l;
  849. cpumask_var_t cpu_mask;
  850. struct rdt_domain *d;
  851. int cpu;
  852. if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
  853. return -ENOMEM;
  854. if (level == RDT_RESOURCE_L3)
  855. update = l3_qos_cfg_update;
  856. else if (level == RDT_RESOURCE_L2)
  857. update = l2_qos_cfg_update;
  858. else
  859. return -EINVAL;
  860. r_l = &rdt_resources_all[level];
  861. list_for_each_entry(d, &r_l->domains, list) {
  862. /* Pick one CPU from each domain instance to update MSR */
  863. cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
  864. }
  865. cpu = get_cpu();
  866. /* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
  867. if (cpumask_test_cpu(cpu, cpu_mask))
  868. update(&enable);
  869. /* Update QOS_CFG MSR on all other cpus in cpu_mask. */
  870. smp_call_function_many(cpu_mask, update, &enable, 1);
  871. put_cpu();
  872. free_cpumask_var(cpu_mask);
  873. return 0;
  874. }
  875. static int cdp_enable(int level, int data_type, int code_type)
  876. {
  877. struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
  878. struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
  879. struct rdt_resource *r_l = &rdt_resources_all[level];
  880. int ret;
  881. if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
  882. !r_lcode->alloc_capable)
  883. return -EINVAL;
  884. ret = set_cache_qos_cfg(level, true);
  885. if (!ret) {
  886. r_l->alloc_enabled = false;
  887. r_ldata->alloc_enabled = true;
  888. r_lcode->alloc_enabled = true;
  889. }
  890. return ret;
  891. }
  892. static int cdpl3_enable(void)
  893. {
  894. return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
  895. RDT_RESOURCE_L3CODE);
  896. }
  897. static int cdpl2_enable(void)
  898. {
  899. return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
  900. RDT_RESOURCE_L2CODE);
  901. }
  902. static void cdp_disable(int level, int data_type, int code_type)
  903. {
  904. struct rdt_resource *r = &rdt_resources_all[level];
  905. r->alloc_enabled = r->alloc_capable;
  906. if (rdt_resources_all[data_type].alloc_enabled) {
  907. rdt_resources_all[data_type].alloc_enabled = false;
  908. rdt_resources_all[code_type].alloc_enabled = false;
  909. set_cache_qos_cfg(level, false);
  910. }
  911. }
  912. static void cdpl3_disable(void)
  913. {
  914. cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
  915. }
  916. static void cdpl2_disable(void)
  917. {
  918. cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
  919. }
  920. static void cdp_disable_all(void)
  921. {
  922. if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
  923. cdpl3_disable();
  924. if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
  925. cdpl2_disable();
  926. }
  927. static int parse_rdtgroupfs_options(char *data)
  928. {
  929. char *token, *o = data;
  930. int ret = 0;
  931. while ((token = strsep(&o, ",")) != NULL) {
  932. if (!*token) {
  933. ret = -EINVAL;
  934. goto out;
  935. }
  936. if (!strcmp(token, "cdp")) {
  937. ret = cdpl3_enable();
  938. if (ret)
  939. goto out;
  940. } else if (!strcmp(token, "cdpl2")) {
  941. ret = cdpl2_enable();
  942. if (ret)
  943. goto out;
  944. } else {
  945. ret = -EINVAL;
  946. goto out;
  947. }
  948. }
  949. return 0;
  950. out:
  951. pr_err("Invalid mount option \"%s\"\n", token);
  952. return ret;
  953. }
  954. /*
  955. * We don't allow rdtgroup directories to be created anywhere
  956. * except the root directory. Thus when looking for the rdtgroup
  957. * structure for a kernfs node we are either looking at a directory,
  958. * in which case the rdtgroup structure is pointed at by the "priv"
  959. * field, otherwise we have a file, and need only look to the parent
  960. * to find the rdtgroup.
  961. */
  962. static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
  963. {
  964. if (kernfs_type(kn) == KERNFS_DIR) {
  965. /*
  966. * All the resource directories use "kn->priv"
  967. * to point to the "struct rdtgroup" for the
  968. * resource. "info" and its subdirectories don't
  969. * have rdtgroup structures, so return NULL here.
  970. */
  971. if (kn == kn_info || kn->parent == kn_info)
  972. return NULL;
  973. else
  974. return kn->priv;
  975. } else {
  976. return kn->parent->priv;
  977. }
  978. }
  979. struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
  980. {
  981. struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
  982. if (!rdtgrp)
  983. return NULL;
  984. atomic_inc(&rdtgrp->waitcount);
  985. kernfs_break_active_protection(kn);
  986. mutex_lock(&rdtgroup_mutex);
  987. /* Was this group deleted while we waited? */
  988. if (rdtgrp->flags & RDT_DELETED)
  989. return NULL;
  990. return rdtgrp;
  991. }
  992. void rdtgroup_kn_unlock(struct kernfs_node *kn)
  993. {
  994. struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
  995. if (!rdtgrp)
  996. return;
  997. mutex_unlock(&rdtgroup_mutex);
  998. if (atomic_dec_and_test(&rdtgrp->waitcount) &&
  999. (rdtgrp->flags & RDT_DELETED)) {
  1000. kernfs_unbreak_active_protection(kn);
  1001. kernfs_put(rdtgrp->kn);
  1002. kfree(rdtgrp);
  1003. } else {
  1004. kernfs_unbreak_active_protection(kn);
  1005. }
  1006. }
  1007. static int mkdir_mondata_all(struct kernfs_node *parent_kn,
  1008. struct rdtgroup *prgrp,
  1009. struct kernfs_node **mon_data_kn);
  1010. static struct dentry *rdt_mount(struct file_system_type *fs_type,
  1011. int flags, const char *unused_dev_name,
  1012. void *data)
  1013. {
  1014. struct rdt_domain *dom;
  1015. struct rdt_resource *r;
  1016. struct dentry *dentry;
  1017. int ret;
  1018. cpus_read_lock();
  1019. mutex_lock(&rdtgroup_mutex);
  1020. /*
  1021. * resctrl file system can only be mounted once.
  1022. */
  1023. if (static_branch_unlikely(&rdt_enable_key)) {
  1024. dentry = ERR_PTR(-EBUSY);
  1025. goto out;
  1026. }
  1027. ret = parse_rdtgroupfs_options(data);
  1028. if (ret) {
  1029. dentry = ERR_PTR(ret);
  1030. goto out_cdp;
  1031. }
  1032. closid_init();
  1033. ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
  1034. if (ret) {
  1035. dentry = ERR_PTR(ret);
  1036. goto out_cdp;
  1037. }
  1038. if (rdt_mon_capable) {
  1039. ret = mongroup_create_dir(rdtgroup_default.kn,
  1040. NULL, "mon_groups",
  1041. &kn_mongrp);
  1042. if (ret) {
  1043. dentry = ERR_PTR(ret);
  1044. goto out_info;
  1045. }
  1046. kernfs_get(kn_mongrp);
  1047. ret = mkdir_mondata_all(rdtgroup_default.kn,
  1048. &rdtgroup_default, &kn_mondata);
  1049. if (ret) {
  1050. dentry = ERR_PTR(ret);
  1051. goto out_mongrp;
  1052. }
  1053. kernfs_get(kn_mondata);
  1054. rdtgroup_default.mon.mon_data_kn = kn_mondata;
  1055. }
  1056. dentry = kernfs_mount(fs_type, flags, rdt_root,
  1057. RDTGROUP_SUPER_MAGIC, NULL);
  1058. if (IS_ERR(dentry))
  1059. goto out_mondata;
  1060. if (rdt_alloc_capable)
  1061. static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
  1062. if (rdt_mon_capable)
  1063. static_branch_enable_cpuslocked(&rdt_mon_enable_key);
  1064. if (rdt_alloc_capable || rdt_mon_capable)
  1065. static_branch_enable_cpuslocked(&rdt_enable_key);
  1066. if (is_mbm_enabled()) {
  1067. r = &rdt_resources_all[RDT_RESOURCE_L3];
  1068. list_for_each_entry(dom, &r->domains, list)
  1069. mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
  1070. }
  1071. goto out;
  1072. out_mondata:
  1073. if (rdt_mon_capable)
  1074. kernfs_remove(kn_mondata);
  1075. out_mongrp:
  1076. if (rdt_mon_capable)
  1077. kernfs_remove(kn_mongrp);
  1078. out_info:
  1079. kernfs_remove(kn_info);
  1080. out_cdp:
  1081. cdp_disable_all();
  1082. out:
  1083. rdt_last_cmd_clear();
  1084. mutex_unlock(&rdtgroup_mutex);
  1085. cpus_read_unlock();
  1086. return dentry;
  1087. }
  1088. static int reset_all_ctrls(struct rdt_resource *r)
  1089. {
  1090. struct msr_param msr_param;
  1091. cpumask_var_t cpu_mask;
  1092. struct rdt_domain *d;
  1093. int i, cpu;
  1094. if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
  1095. return -ENOMEM;
  1096. msr_param.res = r;
  1097. msr_param.low = 0;
  1098. msr_param.high = r->num_closid;
  1099. /*
  1100. * Disable resource control for this resource by setting all
  1101. * CBMs in all domains to the maximum mask value. Pick one CPU
  1102. * from each domain to update the MSRs below.
  1103. */
  1104. list_for_each_entry(d, &r->domains, list) {
  1105. cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
  1106. for (i = 0; i < r->num_closid; i++)
  1107. d->ctrl_val[i] = r->default_ctrl;
  1108. }
  1109. cpu = get_cpu();
  1110. /* Update CBM on this cpu if it's in cpu_mask. */
  1111. if (cpumask_test_cpu(cpu, cpu_mask))
  1112. rdt_ctrl_update(&msr_param);
  1113. /* Update CBM on all other cpus in cpu_mask. */
  1114. smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
  1115. put_cpu();
  1116. free_cpumask_var(cpu_mask);
  1117. return 0;
  1118. }
  1119. static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
  1120. {
  1121. return (rdt_alloc_capable &&
  1122. (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
  1123. }
  1124. static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
  1125. {
  1126. return (rdt_mon_capable &&
  1127. (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
  1128. }
  1129. /*
  1130. * Move tasks from one to the other group. If @from is NULL, then all tasks
  1131. * in the systems are moved unconditionally (used for teardown).
  1132. *
  1133. * If @mask is not NULL the cpus on which moved tasks are running are set
  1134. * in that mask so the update smp function call is restricted to affected
  1135. * cpus.
  1136. */
  1137. static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
  1138. struct cpumask *mask)
  1139. {
  1140. struct task_struct *p, *t;
  1141. read_lock(&tasklist_lock);
  1142. for_each_process_thread(p, t) {
  1143. if (!from || is_closid_match(t, from) ||
  1144. is_rmid_match(t, from)) {
  1145. t->closid = to->closid;
  1146. t->rmid = to->mon.rmid;
  1147. #ifdef CONFIG_SMP
  1148. /*
  1149. * This is safe on x86 w/o barriers as the ordering
  1150. * of writing to task_cpu() and t->on_cpu is
  1151. * reverse to the reading here. The detection is
  1152. * inaccurate as tasks might move or schedule
  1153. * before the smp function call takes place. In
  1154. * such a case the function call is pointless, but
  1155. * there is no other side effect.
  1156. */
  1157. if (mask && t->on_cpu)
  1158. cpumask_set_cpu(task_cpu(t), mask);
  1159. #endif
  1160. }
  1161. }
  1162. read_unlock(&tasklist_lock);
  1163. }
  1164. static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
  1165. {
  1166. struct rdtgroup *sentry, *stmp;
  1167. struct list_head *head;
  1168. head = &rdtgrp->mon.crdtgrp_list;
  1169. list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
  1170. free_rmid(sentry->mon.rmid);
  1171. list_del(&sentry->mon.crdtgrp_list);
  1172. kfree(sentry);
  1173. }
  1174. }
  1175. /*
  1176. * Forcibly remove all of subdirectories under root.
  1177. */
  1178. static void rmdir_all_sub(void)
  1179. {
  1180. struct rdtgroup *rdtgrp, *tmp;
  1181. /* Move all tasks to the default resource group */
  1182. rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
  1183. list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
  1184. /* Free any child rmids */
  1185. free_all_child_rdtgrp(rdtgrp);
  1186. /* Remove each rdtgroup other than root */
  1187. if (rdtgrp == &rdtgroup_default)
  1188. continue;
  1189. /*
  1190. * Give any CPUs back to the default group. We cannot copy
  1191. * cpu_online_mask because a CPU might have executed the
  1192. * offline callback already, but is still marked online.
  1193. */
  1194. cpumask_or(&rdtgroup_default.cpu_mask,
  1195. &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
  1196. free_rmid(rdtgrp->mon.rmid);
  1197. kernfs_remove(rdtgrp->kn);
  1198. list_del(&rdtgrp->rdtgroup_list);
  1199. kfree(rdtgrp);
  1200. }
  1201. /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
  1202. update_closid_rmid(cpu_online_mask, &rdtgroup_default);
  1203. kernfs_remove(kn_info);
  1204. kernfs_remove(kn_mongrp);
  1205. kernfs_remove(kn_mondata);
  1206. }
  1207. static void rdt_kill_sb(struct super_block *sb)
  1208. {
  1209. struct rdt_resource *r;
  1210. cpus_read_lock();
  1211. mutex_lock(&rdtgroup_mutex);
  1212. /*Put everything back to default values. */
  1213. for_each_alloc_enabled_rdt_resource(r)
  1214. reset_all_ctrls(r);
  1215. cdp_disable_all();
  1216. rmdir_all_sub();
  1217. static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
  1218. static_branch_disable_cpuslocked(&rdt_mon_enable_key);
  1219. static_branch_disable_cpuslocked(&rdt_enable_key);
  1220. kernfs_kill_sb(sb);
  1221. mutex_unlock(&rdtgroup_mutex);
  1222. cpus_read_unlock();
  1223. }
  1224. static struct file_system_type rdt_fs_type = {
  1225. .name = "resctrl",
  1226. .mount = rdt_mount,
  1227. .kill_sb = rdt_kill_sb,
  1228. };
  1229. static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
  1230. void *priv)
  1231. {
  1232. struct kernfs_node *kn;
  1233. int ret = 0;
  1234. kn = __kernfs_create_file(parent_kn, name, 0444, 0,
  1235. &kf_mondata_ops, priv, NULL, NULL);
  1236. if (IS_ERR(kn))
  1237. return PTR_ERR(kn);
  1238. ret = rdtgroup_kn_set_ugid(kn);
  1239. if (ret) {
  1240. kernfs_remove(kn);
  1241. return ret;
  1242. }
  1243. return ret;
  1244. }
  1245. /*
  1246. * Remove all subdirectories of mon_data of ctrl_mon groups
  1247. * and monitor groups with given domain id.
  1248. */
  1249. void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
  1250. {
  1251. struct rdtgroup *prgrp, *crgrp;
  1252. char name[32];
  1253. if (!r->mon_enabled)
  1254. return;
  1255. list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
  1256. sprintf(name, "mon_%s_%02d", r->name, dom_id);
  1257. kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
  1258. list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
  1259. kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
  1260. }
  1261. }
  1262. static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
  1263. struct rdt_domain *d,
  1264. struct rdt_resource *r, struct rdtgroup *prgrp)
  1265. {
  1266. union mon_data_bits priv;
  1267. struct kernfs_node *kn;
  1268. struct mon_evt *mevt;
  1269. struct rmid_read rr;
  1270. char name[32];
  1271. int ret;
  1272. sprintf(name, "mon_%s_%02d", r->name, d->id);
  1273. /* create the directory */
  1274. kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
  1275. if (IS_ERR(kn))
  1276. return PTR_ERR(kn);
  1277. /*
  1278. * This extra ref will be put in kernfs_remove() and guarantees
  1279. * that kn is always accessible.
  1280. */
  1281. kernfs_get(kn);
  1282. ret = rdtgroup_kn_set_ugid(kn);
  1283. if (ret)
  1284. goto out_destroy;
  1285. if (WARN_ON(list_empty(&r->evt_list))) {
  1286. ret = -EPERM;
  1287. goto out_destroy;
  1288. }
  1289. priv.u.rid = r->rid;
  1290. priv.u.domid = d->id;
  1291. list_for_each_entry(mevt, &r->evt_list, list) {
  1292. priv.u.evtid = mevt->evtid;
  1293. ret = mon_addfile(kn, mevt->name, priv.priv);
  1294. if (ret)
  1295. goto out_destroy;
  1296. if (is_mbm_event(mevt->evtid))
  1297. mon_event_read(&rr, d, prgrp, mevt->evtid, true);
  1298. }
  1299. kernfs_activate(kn);
  1300. return 0;
  1301. out_destroy:
  1302. kernfs_remove(kn);
  1303. return ret;
  1304. }
  1305. /*
  1306. * Add all subdirectories of mon_data for "ctrl_mon" groups
  1307. * and "monitor" groups with given domain id.
  1308. */
  1309. void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
  1310. struct rdt_domain *d)
  1311. {
  1312. struct kernfs_node *parent_kn;
  1313. struct rdtgroup *prgrp, *crgrp;
  1314. struct list_head *head;
  1315. if (!r->mon_enabled)
  1316. return;
  1317. list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
  1318. parent_kn = prgrp->mon.mon_data_kn;
  1319. mkdir_mondata_subdir(parent_kn, d, r, prgrp);
  1320. head = &prgrp->mon.crdtgrp_list;
  1321. list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
  1322. parent_kn = crgrp->mon.mon_data_kn;
  1323. mkdir_mondata_subdir(parent_kn, d, r, crgrp);
  1324. }
  1325. }
  1326. }
  1327. static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
  1328. struct rdt_resource *r,
  1329. struct rdtgroup *prgrp)
  1330. {
  1331. struct rdt_domain *dom;
  1332. int ret;
  1333. list_for_each_entry(dom, &r->domains, list) {
  1334. ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
  1335. if (ret)
  1336. return ret;
  1337. }
  1338. return 0;
  1339. }
  1340. /*
  1341. * This creates a directory mon_data which contains the monitored data.
  1342. *
  1343. * mon_data has one directory for each domain whic are named
  1344. * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
  1345. * with L3 domain looks as below:
  1346. * ./mon_data:
  1347. * mon_L3_00
  1348. * mon_L3_01
  1349. * mon_L3_02
  1350. * ...
  1351. *
  1352. * Each domain directory has one file per event:
  1353. * ./mon_L3_00/:
  1354. * llc_occupancy
  1355. *
  1356. */
  1357. static int mkdir_mondata_all(struct kernfs_node *parent_kn,
  1358. struct rdtgroup *prgrp,
  1359. struct kernfs_node **dest_kn)
  1360. {
  1361. struct rdt_resource *r;
  1362. struct kernfs_node *kn;
  1363. int ret;
  1364. /*
  1365. * Create the mon_data directory first.
  1366. */
  1367. ret = mongroup_create_dir(parent_kn, NULL, "mon_data", &kn);
  1368. if (ret)
  1369. return ret;
  1370. if (dest_kn)
  1371. *dest_kn = kn;
  1372. /*
  1373. * Create the subdirectories for each domain. Note that all events
  1374. * in a domain like L3 are grouped into a resource whose domain is L3
  1375. */
  1376. for_each_mon_enabled_rdt_resource(r) {
  1377. ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
  1378. if (ret)
  1379. goto out_destroy;
  1380. }
  1381. return 0;
  1382. out_destroy:
  1383. kernfs_remove(kn);
  1384. return ret;
  1385. }
  1386. static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
  1387. struct kernfs_node *prgrp_kn,
  1388. const char *name, umode_t mode,
  1389. enum rdt_group_type rtype, struct rdtgroup **r)
  1390. {
  1391. struct rdtgroup *prdtgrp, *rdtgrp;
  1392. struct kernfs_node *kn;
  1393. uint files = 0;
  1394. int ret;
  1395. prdtgrp = rdtgroup_kn_lock_live(prgrp_kn);
  1396. rdt_last_cmd_clear();
  1397. if (!prdtgrp) {
  1398. ret = -ENODEV;
  1399. rdt_last_cmd_puts("directory was removed\n");
  1400. goto out_unlock;
  1401. }
  1402. /* allocate the rdtgroup. */
  1403. rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
  1404. if (!rdtgrp) {
  1405. ret = -ENOSPC;
  1406. rdt_last_cmd_puts("kernel out of memory\n");
  1407. goto out_unlock;
  1408. }
  1409. *r = rdtgrp;
  1410. rdtgrp->mon.parent = prdtgrp;
  1411. rdtgrp->type = rtype;
  1412. INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
  1413. /* kernfs creates the directory for rdtgrp */
  1414. kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
  1415. if (IS_ERR(kn)) {
  1416. ret = PTR_ERR(kn);
  1417. rdt_last_cmd_puts("kernfs create error\n");
  1418. goto out_free_rgrp;
  1419. }
  1420. rdtgrp->kn = kn;
  1421. /*
  1422. * kernfs_remove() will drop the reference count on "kn" which
  1423. * will free it. But we still need it to stick around for the
  1424. * rdtgroup_kn_unlock(kn} call below. Take one extra reference
  1425. * here, which will be dropped inside rdtgroup_kn_unlock().
  1426. */
  1427. kernfs_get(kn);
  1428. ret = rdtgroup_kn_set_ugid(kn);
  1429. if (ret) {
  1430. rdt_last_cmd_puts("kernfs perm error\n");
  1431. goto out_destroy;
  1432. }
  1433. files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
  1434. ret = rdtgroup_add_files(kn, files);
  1435. if (ret) {
  1436. rdt_last_cmd_puts("kernfs fill error\n");
  1437. goto out_destroy;
  1438. }
  1439. if (rdt_mon_capable) {
  1440. ret = alloc_rmid();
  1441. if (ret < 0) {
  1442. rdt_last_cmd_puts("out of RMIDs\n");
  1443. goto out_destroy;
  1444. }
  1445. rdtgrp->mon.rmid = ret;
  1446. ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
  1447. if (ret) {
  1448. rdt_last_cmd_puts("kernfs subdir error\n");
  1449. goto out_idfree;
  1450. }
  1451. }
  1452. kernfs_activate(kn);
  1453. /*
  1454. * The caller unlocks the prgrp_kn upon success.
  1455. */
  1456. return 0;
  1457. out_idfree:
  1458. free_rmid(rdtgrp->mon.rmid);
  1459. out_destroy:
  1460. kernfs_remove(rdtgrp->kn);
  1461. out_free_rgrp:
  1462. kfree(rdtgrp);
  1463. out_unlock:
  1464. rdtgroup_kn_unlock(prgrp_kn);
  1465. return ret;
  1466. }
  1467. static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
  1468. {
  1469. kernfs_remove(rgrp->kn);
  1470. free_rmid(rgrp->mon.rmid);
  1471. kfree(rgrp);
  1472. }
  1473. /*
  1474. * Create a monitor group under "mon_groups" directory of a control
  1475. * and monitor group(ctrl_mon). This is a resource group
  1476. * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
  1477. */
  1478. static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
  1479. struct kernfs_node *prgrp_kn,
  1480. const char *name,
  1481. umode_t mode)
  1482. {
  1483. struct rdtgroup *rdtgrp, *prgrp;
  1484. int ret;
  1485. ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTMON_GROUP,
  1486. &rdtgrp);
  1487. if (ret)
  1488. return ret;
  1489. prgrp = rdtgrp->mon.parent;
  1490. rdtgrp->closid = prgrp->closid;
  1491. /*
  1492. * Add the rdtgrp to the list of rdtgrps the parent
  1493. * ctrl_mon group has to track.
  1494. */
  1495. list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
  1496. rdtgroup_kn_unlock(prgrp_kn);
  1497. return ret;
  1498. }
  1499. /*
  1500. * These are rdtgroups created under the root directory. Can be used
  1501. * to allocate and monitor resources.
  1502. */
  1503. static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
  1504. struct kernfs_node *prgrp_kn,
  1505. const char *name, umode_t mode)
  1506. {
  1507. struct rdtgroup *rdtgrp;
  1508. struct kernfs_node *kn;
  1509. u32 closid;
  1510. int ret;
  1511. ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTCTRL_GROUP,
  1512. &rdtgrp);
  1513. if (ret)
  1514. return ret;
  1515. kn = rdtgrp->kn;
  1516. ret = closid_alloc();
  1517. if (ret < 0) {
  1518. rdt_last_cmd_puts("out of CLOSIDs\n");
  1519. goto out_common_fail;
  1520. }
  1521. closid = ret;
  1522. ret = 0;
  1523. rdtgrp->closid = closid;
  1524. list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
  1525. if (rdt_mon_capable) {
  1526. /*
  1527. * Create an empty mon_groups directory to hold the subset
  1528. * of tasks and cpus to monitor.
  1529. */
  1530. ret = mongroup_create_dir(kn, NULL, "mon_groups", NULL);
  1531. if (ret) {
  1532. rdt_last_cmd_puts("kernfs subdir error\n");
  1533. goto out_id_free;
  1534. }
  1535. }
  1536. goto out_unlock;
  1537. out_id_free:
  1538. closid_free(closid);
  1539. list_del(&rdtgrp->rdtgroup_list);
  1540. out_common_fail:
  1541. mkdir_rdt_prepare_clean(rdtgrp);
  1542. out_unlock:
  1543. rdtgroup_kn_unlock(prgrp_kn);
  1544. return ret;
  1545. }
  1546. /*
  1547. * We allow creating mon groups only with in a directory called "mon_groups"
  1548. * which is present in every ctrl_mon group. Check if this is a valid
  1549. * "mon_groups" directory.
  1550. *
  1551. * 1. The directory should be named "mon_groups".
  1552. * 2. The mon group itself should "not" be named "mon_groups".
  1553. * This makes sure "mon_groups" directory always has a ctrl_mon group
  1554. * as parent.
  1555. */
  1556. static bool is_mon_groups(struct kernfs_node *kn, const char *name)
  1557. {
  1558. return (!strcmp(kn->name, "mon_groups") &&
  1559. strcmp(name, "mon_groups"));
  1560. }
  1561. static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
  1562. umode_t mode)
  1563. {
  1564. /* Do not accept '\n' to avoid unparsable situation. */
  1565. if (strchr(name, '\n'))
  1566. return -EINVAL;
  1567. /*
  1568. * If the parent directory is the root directory and RDT
  1569. * allocation is supported, add a control and monitoring
  1570. * subdirectory
  1571. */
  1572. if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
  1573. return rdtgroup_mkdir_ctrl_mon(parent_kn, parent_kn, name, mode);
  1574. /*
  1575. * If RDT monitoring is supported and the parent directory is a valid
  1576. * "mon_groups" directory, add a monitoring subdirectory.
  1577. */
  1578. if (rdt_mon_capable && is_mon_groups(parent_kn, name))
  1579. return rdtgroup_mkdir_mon(parent_kn, parent_kn->parent, name, mode);
  1580. return -EPERM;
  1581. }
  1582. static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
  1583. cpumask_var_t tmpmask)
  1584. {
  1585. struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
  1586. int cpu;
  1587. /* Give any tasks back to the parent group */
  1588. rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
  1589. /* Update per cpu rmid of the moved CPUs first */
  1590. for_each_cpu(cpu, &rdtgrp->cpu_mask)
  1591. per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
  1592. /*
  1593. * Update the MSR on moved CPUs and CPUs which have moved
  1594. * task running on them.
  1595. */
  1596. cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
  1597. update_closid_rmid(tmpmask, NULL);
  1598. rdtgrp->flags = RDT_DELETED;
  1599. free_rmid(rdtgrp->mon.rmid);
  1600. /*
  1601. * Remove the rdtgrp from the parent ctrl_mon group's list
  1602. */
  1603. WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
  1604. list_del(&rdtgrp->mon.crdtgrp_list);
  1605. /*
  1606. * one extra hold on this, will drop when we kfree(rdtgrp)
  1607. * in rdtgroup_kn_unlock()
  1608. */
  1609. kernfs_get(kn);
  1610. kernfs_remove(rdtgrp->kn);
  1611. return 0;
  1612. }
  1613. static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
  1614. cpumask_var_t tmpmask)
  1615. {
  1616. int cpu;
  1617. /* Give any tasks back to the default group */
  1618. rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
  1619. /* Give any CPUs back to the default group */
  1620. cpumask_or(&rdtgroup_default.cpu_mask,
  1621. &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
  1622. /* Update per cpu closid and rmid of the moved CPUs first */
  1623. for_each_cpu(cpu, &rdtgrp->cpu_mask) {
  1624. per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
  1625. per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
  1626. }
  1627. /*
  1628. * Update the MSR on moved CPUs and CPUs which have moved
  1629. * task running on them.
  1630. */
  1631. cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
  1632. update_closid_rmid(tmpmask, NULL);
  1633. rdtgrp->flags = RDT_DELETED;
  1634. closid_free(rdtgrp->closid);
  1635. free_rmid(rdtgrp->mon.rmid);
  1636. /*
  1637. * Free all the child monitor group rmids.
  1638. */
  1639. free_all_child_rdtgrp(rdtgrp);
  1640. list_del(&rdtgrp->rdtgroup_list);
  1641. /*
  1642. * one extra hold on this, will drop when we kfree(rdtgrp)
  1643. * in rdtgroup_kn_unlock()
  1644. */
  1645. kernfs_get(kn);
  1646. kernfs_remove(rdtgrp->kn);
  1647. return 0;
  1648. }
  1649. static int rdtgroup_rmdir(struct kernfs_node *kn)
  1650. {
  1651. struct kernfs_node *parent_kn = kn->parent;
  1652. struct rdtgroup *rdtgrp;
  1653. cpumask_var_t tmpmask;
  1654. int ret = 0;
  1655. if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
  1656. return -ENOMEM;
  1657. rdtgrp = rdtgroup_kn_lock_live(kn);
  1658. if (!rdtgrp) {
  1659. ret = -EPERM;
  1660. goto out;
  1661. }
  1662. /*
  1663. * If the rdtgroup is a ctrl_mon group and parent directory
  1664. * is the root directory, remove the ctrl_mon group.
  1665. *
  1666. * If the rdtgroup is a mon group and parent directory
  1667. * is a valid "mon_groups" directory, remove the mon group.
  1668. */
  1669. if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn)
  1670. ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
  1671. else if (rdtgrp->type == RDTMON_GROUP &&
  1672. is_mon_groups(parent_kn, kn->name))
  1673. ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
  1674. else
  1675. ret = -EPERM;
  1676. out:
  1677. rdtgroup_kn_unlock(kn);
  1678. free_cpumask_var(tmpmask);
  1679. return ret;
  1680. }
  1681. static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
  1682. {
  1683. if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
  1684. seq_puts(seq, ",cdp");
  1685. return 0;
  1686. }
  1687. static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
  1688. .mkdir = rdtgroup_mkdir,
  1689. .rmdir = rdtgroup_rmdir,
  1690. .show_options = rdtgroup_show_options,
  1691. };
  1692. static int __init rdtgroup_setup_root(void)
  1693. {
  1694. int ret;
  1695. rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
  1696. KERNFS_ROOT_CREATE_DEACTIVATED,
  1697. &rdtgroup_default);
  1698. if (IS_ERR(rdt_root))
  1699. return PTR_ERR(rdt_root);
  1700. mutex_lock(&rdtgroup_mutex);
  1701. rdtgroup_default.closid = 0;
  1702. rdtgroup_default.mon.rmid = 0;
  1703. rdtgroup_default.type = RDTCTRL_GROUP;
  1704. INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
  1705. list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
  1706. ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
  1707. if (ret) {
  1708. kernfs_destroy_root(rdt_root);
  1709. goto out;
  1710. }
  1711. rdtgroup_default.kn = rdt_root->kn;
  1712. kernfs_activate(rdtgroup_default.kn);
  1713. out:
  1714. mutex_unlock(&rdtgroup_mutex);
  1715. return ret;
  1716. }
  1717. /*
  1718. * rdtgroup_init - rdtgroup initialization
  1719. *
  1720. * Setup resctrl file system including set up root, create mount point,
  1721. * register rdtgroup filesystem, and initialize files under root directory.
  1722. *
  1723. * Return: 0 on success or -errno
  1724. */
  1725. int __init rdtgroup_init(void)
  1726. {
  1727. int ret = 0;
  1728. seq_buf_init(&last_cmd_status, last_cmd_status_buf,
  1729. sizeof(last_cmd_status_buf));
  1730. ret = rdtgroup_setup_root();
  1731. if (ret)
  1732. return ret;
  1733. ret = sysfs_create_mount_point(fs_kobj, "resctrl");
  1734. if (ret)
  1735. goto cleanup_root;
  1736. ret = register_filesystem(&rdt_fs_type);
  1737. if (ret)
  1738. goto cleanup_mountpoint;
  1739. return 0;
  1740. cleanup_mountpoint:
  1741. sysfs_remove_mount_point(fs_kobj, "resctrl");
  1742. cleanup_root:
  1743. kernfs_destroy_root(rdt_root);
  1744. return ret;
  1745. }