time.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306
  1. /*
  2. * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation, version 2.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11. * NON INFRINGEMENT. See the GNU General Public License for
  12. * more details.
  13. *
  14. * Support the cycle counter clocksource and tile timer clock event device.
  15. */
  16. #include <linux/time.h>
  17. #include <linux/timex.h>
  18. #include <linux/clocksource.h>
  19. #include <linux/clockchips.h>
  20. #include <linux/hardirq.h>
  21. #include <linux/sched.h>
  22. #include <linux/sched/clock.h>
  23. #include <linux/smp.h>
  24. #include <linux/delay.h>
  25. #include <linux/module.h>
  26. #include <linux/timekeeper_internal.h>
  27. #include <asm/irq_regs.h>
  28. #include <asm/traps.h>
  29. #include <asm/vdso.h>
  30. #include <hv/hypervisor.h>
  31. #include <arch/interrupts.h>
  32. #include <arch/spr_def.h>
  33. /*
  34. * Define the cycle counter clock source.
  35. */
  36. /* How many cycles per second we are running at. */
  37. static cycles_t cycles_per_sec __ro_after_init;
  38. cycles_t get_clock_rate(void)
  39. {
  40. return cycles_per_sec;
  41. }
  42. #if CHIP_HAS_SPLIT_CYCLE()
  43. cycles_t get_cycles(void)
  44. {
  45. unsigned int high = __insn_mfspr(SPR_CYCLE_HIGH);
  46. unsigned int low = __insn_mfspr(SPR_CYCLE_LOW);
  47. unsigned int high2 = __insn_mfspr(SPR_CYCLE_HIGH);
  48. while (unlikely(high != high2)) {
  49. low = __insn_mfspr(SPR_CYCLE_LOW);
  50. high = high2;
  51. high2 = __insn_mfspr(SPR_CYCLE_HIGH);
  52. }
  53. return (((cycles_t)high) << 32) | low;
  54. }
  55. EXPORT_SYMBOL(get_cycles);
  56. #endif
  57. /*
  58. * We use a relatively small shift value so that sched_clock()
  59. * won't wrap around very often.
  60. */
  61. #define SCHED_CLOCK_SHIFT 10
  62. static unsigned long sched_clock_mult __ro_after_init;
  63. static cycles_t clocksource_get_cycles(struct clocksource *cs)
  64. {
  65. return get_cycles();
  66. }
  67. static struct clocksource cycle_counter_cs = {
  68. .name = "cycle counter",
  69. .rating = 300,
  70. .read = clocksource_get_cycles,
  71. .mask = CLOCKSOURCE_MASK(64),
  72. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  73. };
  74. /*
  75. * Called very early from setup_arch() to set cycles_per_sec.
  76. * We initialize it early so we can use it to set up loops_per_jiffy.
  77. */
  78. void __init setup_clock(void)
  79. {
  80. cycles_per_sec = hv_sysconf(HV_SYSCONF_CPU_SPEED);
  81. sched_clock_mult =
  82. clocksource_hz2mult(cycles_per_sec, SCHED_CLOCK_SHIFT);
  83. }
  84. void __init calibrate_delay(void)
  85. {
  86. loops_per_jiffy = get_clock_rate() / HZ;
  87. pr_info("Clock rate yields %lu.%02lu BogoMIPS (lpj=%lu)\n",
  88. loops_per_jiffy / (500000 / HZ),
  89. (loops_per_jiffy / (5000 / HZ)) % 100, loops_per_jiffy);
  90. }
  91. /* Called fairly late in init/main.c, but before we go smp. */
  92. void __init time_init(void)
  93. {
  94. /* Initialize and register the clock source. */
  95. clocksource_register_hz(&cycle_counter_cs, cycles_per_sec);
  96. /* Start up the tile-timer interrupt source on the boot cpu. */
  97. setup_tile_timer();
  98. }
  99. /*
  100. * Define the tile timer clock event device. The timer is driven by
  101. * the TILE_TIMER_CONTROL register, which consists of a 31-bit down
  102. * counter, plus bit 31, which signifies that the counter has wrapped
  103. * from zero to (2**31) - 1. The INT_TILE_TIMER interrupt will be
  104. * raised as long as bit 31 is set.
  105. *
  106. * The TILE_MINSEC value represents the largest range of real-time
  107. * we can possibly cover with the timer, based on MAX_TICK combined
  108. * with the slowest reasonable clock rate we might run at.
  109. */
  110. #define MAX_TICK 0x7fffffff /* we have 31 bits of countdown timer */
  111. #define TILE_MINSEC 5 /* timer covers no more than 5 seconds */
  112. static int tile_timer_set_next_event(unsigned long ticks,
  113. struct clock_event_device *evt)
  114. {
  115. BUG_ON(ticks > MAX_TICK);
  116. __insn_mtspr(SPR_TILE_TIMER_CONTROL, ticks);
  117. arch_local_irq_unmask_now(INT_TILE_TIMER);
  118. return 0;
  119. }
  120. /*
  121. * Whenever anyone tries to change modes, we just mask interrupts
  122. * and wait for the next event to get set.
  123. */
  124. static int tile_timer_shutdown(struct clock_event_device *evt)
  125. {
  126. arch_local_irq_mask_now(INT_TILE_TIMER);
  127. return 0;
  128. }
  129. /*
  130. * Set min_delta_ns to 1 microsecond, since it takes about
  131. * that long to fire the interrupt.
  132. */
  133. static DEFINE_PER_CPU(struct clock_event_device, tile_timer) = {
  134. .name = "tile timer",
  135. .features = CLOCK_EVT_FEAT_ONESHOT,
  136. .min_delta_ns = 1000,
  137. .min_delta_ticks = 1,
  138. .max_delta_ticks = MAX_TICK,
  139. .rating = 100,
  140. .irq = -1,
  141. .set_next_event = tile_timer_set_next_event,
  142. .set_state_shutdown = tile_timer_shutdown,
  143. .set_state_oneshot = tile_timer_shutdown,
  144. .set_state_oneshot_stopped = tile_timer_shutdown,
  145. .tick_resume = tile_timer_shutdown,
  146. };
  147. void setup_tile_timer(void)
  148. {
  149. struct clock_event_device *evt = this_cpu_ptr(&tile_timer);
  150. /* Fill in fields that are speed-specific. */
  151. clockevents_calc_mult_shift(evt, cycles_per_sec, TILE_MINSEC);
  152. evt->max_delta_ns = clockevent_delta2ns(MAX_TICK, evt);
  153. /* Mark as being for this cpu only. */
  154. evt->cpumask = cpumask_of(smp_processor_id());
  155. /* Start out with timer not firing. */
  156. arch_local_irq_mask_now(INT_TILE_TIMER);
  157. /* Register tile timer. */
  158. clockevents_register_device(evt);
  159. }
  160. /* Called from the interrupt vector. */
  161. void do_timer_interrupt(struct pt_regs *regs, int fault_num)
  162. {
  163. struct pt_regs *old_regs = set_irq_regs(regs);
  164. struct clock_event_device *evt = this_cpu_ptr(&tile_timer);
  165. /*
  166. * Mask the timer interrupt here, since we are a oneshot timer
  167. * and there are now by definition no events pending.
  168. */
  169. arch_local_irq_mask(INT_TILE_TIMER);
  170. /* Track time spent here in an interrupt context */
  171. irq_enter();
  172. /* Track interrupt count. */
  173. __this_cpu_inc(irq_stat.irq_timer_count);
  174. /* Call the generic timer handler */
  175. evt->event_handler(evt);
  176. /*
  177. * Track time spent against the current process again and
  178. * process any softirqs if they are waiting.
  179. */
  180. irq_exit();
  181. set_irq_regs(old_regs);
  182. }
  183. /*
  184. * Scheduler clock - returns current time in nanosec units.
  185. * Note that with LOCKDEP, this is called during lockdep_init(), and
  186. * we will claim that sched_clock() is zero for a little while, until
  187. * we run setup_clock(), above.
  188. */
  189. unsigned long long sched_clock(void)
  190. {
  191. return mult_frac(get_cycles(),
  192. sched_clock_mult, 1ULL << SCHED_CLOCK_SHIFT);
  193. }
  194. int setup_profiling_timer(unsigned int multiplier)
  195. {
  196. return -EINVAL;
  197. }
  198. /*
  199. * Use the tile timer to convert nsecs to core clock cycles, relying
  200. * on it having the same frequency as SPR_CYCLE.
  201. */
  202. cycles_t ns2cycles(unsigned long nsecs)
  203. {
  204. /*
  205. * We do not have to disable preemption here as each core has the same
  206. * clock frequency.
  207. */
  208. struct clock_event_device *dev = raw_cpu_ptr(&tile_timer);
  209. /*
  210. * as in clocksource.h and x86's timer.h, we split the calculation
  211. * into 2 parts to avoid unecessary overflow of the intermediate
  212. * value. This will not lead to any loss of precision.
  213. */
  214. u64 quot = (u64)nsecs >> dev->shift;
  215. u64 rem = (u64)nsecs & ((1ULL << dev->shift) - 1);
  216. return quot * dev->mult + ((rem * dev->mult) >> dev->shift);
  217. }
  218. void update_vsyscall_tz(void)
  219. {
  220. write_seqcount_begin(&vdso_data->tz_seq);
  221. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  222. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  223. write_seqcount_end(&vdso_data->tz_seq);
  224. }
  225. void update_vsyscall(struct timekeeper *tk)
  226. {
  227. if (tk->tkr_mono.clock != &cycle_counter_cs)
  228. return;
  229. write_seqcount_begin(&vdso_data->tb_seq);
  230. vdso_data->cycle_last = tk->tkr_mono.cycle_last;
  231. vdso_data->mask = tk->tkr_mono.mask;
  232. vdso_data->mult = tk->tkr_mono.mult;
  233. vdso_data->shift = tk->tkr_mono.shift;
  234. vdso_data->wall_time_sec = tk->xtime_sec;
  235. vdso_data->wall_time_snsec = tk->tkr_mono.xtime_nsec;
  236. vdso_data->monotonic_time_sec = tk->xtime_sec
  237. + tk->wall_to_monotonic.tv_sec;
  238. vdso_data->monotonic_time_snsec = tk->tkr_mono.xtime_nsec
  239. + ((u64)tk->wall_to_monotonic.tv_nsec
  240. << tk->tkr_mono.shift);
  241. while (vdso_data->monotonic_time_snsec >=
  242. (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
  243. vdso_data->monotonic_time_snsec -=
  244. ((u64)NSEC_PER_SEC) << tk->tkr_mono.shift;
  245. vdso_data->monotonic_time_sec++;
  246. }
  247. vdso_data->wall_time_coarse_sec = tk->xtime_sec;
  248. vdso_data->wall_time_coarse_nsec = (long)(tk->tkr_mono.xtime_nsec >>
  249. tk->tkr_mono.shift);
  250. vdso_data->monotonic_time_coarse_sec =
  251. vdso_data->wall_time_coarse_sec + tk->wall_to_monotonic.tv_sec;
  252. vdso_data->monotonic_time_coarse_nsec =
  253. vdso_data->wall_time_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
  254. while (vdso_data->monotonic_time_coarse_nsec >= NSEC_PER_SEC) {
  255. vdso_data->monotonic_time_coarse_nsec -= NSEC_PER_SEC;
  256. vdso_data->monotonic_time_coarse_sec++;
  257. }
  258. write_seqcount_end(&vdso_data->tb_seq);
  259. }