bpf_jit_comp_64.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/moduleloader.h>
  3. #include <linux/workqueue.h>
  4. #include <linux/netdevice.h>
  5. #include <linux/filter.h>
  6. #include <linux/bpf.h>
  7. #include <linux/cache.h>
  8. #include <linux/if_vlan.h>
  9. #include <asm/cacheflush.h>
  10. #include <asm/ptrace.h>
  11. #include "bpf_jit_64.h"
  12. static inline bool is_simm13(unsigned int value)
  13. {
  14. return value + 0x1000 < 0x2000;
  15. }
  16. static inline bool is_simm10(unsigned int value)
  17. {
  18. return value + 0x200 < 0x400;
  19. }
  20. static inline bool is_simm5(unsigned int value)
  21. {
  22. return value + 0x10 < 0x20;
  23. }
  24. static inline bool is_sethi(unsigned int value)
  25. {
  26. return (value & ~0x3fffff) == 0;
  27. }
  28. static void bpf_flush_icache(void *start_, void *end_)
  29. {
  30. /* Cheetah's I-cache is fully coherent. */
  31. if (tlb_type == spitfire) {
  32. unsigned long start = (unsigned long) start_;
  33. unsigned long end = (unsigned long) end_;
  34. start &= ~7UL;
  35. end = (end + 7UL) & ~7UL;
  36. while (start < end) {
  37. flushi(start);
  38. start += 32;
  39. }
  40. }
  41. }
  42. #define SEEN_DATAREF 1 /* might call external helpers */
  43. #define SEEN_XREG 2 /* ebx is used */
  44. #define SEEN_MEM 4 /* use mem[] for temporary storage */
  45. #define S13(X) ((X) & 0x1fff)
  46. #define S5(X) ((X) & 0x1f)
  47. #define IMMED 0x00002000
  48. #define RD(X) ((X) << 25)
  49. #define RS1(X) ((X) << 14)
  50. #define RS2(X) ((X))
  51. #define OP(X) ((X) << 30)
  52. #define OP2(X) ((X) << 22)
  53. #define OP3(X) ((X) << 19)
  54. #define COND(X) (((X) & 0xf) << 25)
  55. #define CBCOND(X) (((X) & 0x1f) << 25)
  56. #define F1(X) OP(X)
  57. #define F2(X, Y) (OP(X) | OP2(Y))
  58. #define F3(X, Y) (OP(X) | OP3(Y))
  59. #define ASI(X) (((X) & 0xff) << 5)
  60. #define CONDN COND(0x0)
  61. #define CONDE COND(0x1)
  62. #define CONDLE COND(0x2)
  63. #define CONDL COND(0x3)
  64. #define CONDLEU COND(0x4)
  65. #define CONDCS COND(0x5)
  66. #define CONDNEG COND(0x6)
  67. #define CONDVC COND(0x7)
  68. #define CONDA COND(0x8)
  69. #define CONDNE COND(0x9)
  70. #define CONDG COND(0xa)
  71. #define CONDGE COND(0xb)
  72. #define CONDGU COND(0xc)
  73. #define CONDCC COND(0xd)
  74. #define CONDPOS COND(0xe)
  75. #define CONDVS COND(0xf)
  76. #define CONDGEU CONDCC
  77. #define CONDLU CONDCS
  78. #define WDISP22(X) (((X) >> 2) & 0x3fffff)
  79. #define WDISP19(X) (((X) >> 2) & 0x7ffff)
  80. /* The 10-bit branch displacement for CBCOND is split into two fields */
  81. static u32 WDISP10(u32 off)
  82. {
  83. u32 ret = ((off >> 2) & 0xff) << 5;
  84. ret |= ((off >> (2 + 8)) & 0x03) << 19;
  85. return ret;
  86. }
  87. #define CBCONDE CBCOND(0x09)
  88. #define CBCONDLE CBCOND(0x0a)
  89. #define CBCONDL CBCOND(0x0b)
  90. #define CBCONDLEU CBCOND(0x0c)
  91. #define CBCONDCS CBCOND(0x0d)
  92. #define CBCONDN CBCOND(0x0e)
  93. #define CBCONDVS CBCOND(0x0f)
  94. #define CBCONDNE CBCOND(0x19)
  95. #define CBCONDG CBCOND(0x1a)
  96. #define CBCONDGE CBCOND(0x1b)
  97. #define CBCONDGU CBCOND(0x1c)
  98. #define CBCONDCC CBCOND(0x1d)
  99. #define CBCONDPOS CBCOND(0x1e)
  100. #define CBCONDVC CBCOND(0x1f)
  101. #define CBCONDGEU CBCONDCC
  102. #define CBCONDLU CBCONDCS
  103. #define ANNUL (1 << 29)
  104. #define XCC (1 << 21)
  105. #define BRANCH (F2(0, 1) | XCC)
  106. #define CBCOND_OP (F2(0, 3) | XCC)
  107. #define BA (BRANCH | CONDA)
  108. #define BG (BRANCH | CONDG)
  109. #define BL (BRANCH | CONDL)
  110. #define BLE (BRANCH | CONDLE)
  111. #define BGU (BRANCH | CONDGU)
  112. #define BLEU (BRANCH | CONDLEU)
  113. #define BGE (BRANCH | CONDGE)
  114. #define BGEU (BRANCH | CONDGEU)
  115. #define BLU (BRANCH | CONDLU)
  116. #define BE (BRANCH | CONDE)
  117. #define BNE (BRANCH | CONDNE)
  118. #define SETHI(K, REG) \
  119. (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
  120. #define OR_LO(K, REG) \
  121. (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
  122. #define ADD F3(2, 0x00)
  123. #define AND F3(2, 0x01)
  124. #define ANDCC F3(2, 0x11)
  125. #define OR F3(2, 0x02)
  126. #define XOR F3(2, 0x03)
  127. #define SUB F3(2, 0x04)
  128. #define SUBCC F3(2, 0x14)
  129. #define MUL F3(2, 0x0a)
  130. #define MULX F3(2, 0x09)
  131. #define UDIVX F3(2, 0x0d)
  132. #define DIV F3(2, 0x0e)
  133. #define SLL F3(2, 0x25)
  134. #define SLLX (F3(2, 0x25)|(1<<12))
  135. #define SRA F3(2, 0x27)
  136. #define SRAX (F3(2, 0x27)|(1<<12))
  137. #define SRL F3(2, 0x26)
  138. #define SRLX (F3(2, 0x26)|(1<<12))
  139. #define JMPL F3(2, 0x38)
  140. #define SAVE F3(2, 0x3c)
  141. #define RESTORE F3(2, 0x3d)
  142. #define CALL F1(1)
  143. #define BR F2(0, 0x01)
  144. #define RD_Y F3(2, 0x28)
  145. #define WR_Y F3(2, 0x30)
  146. #define LD32 F3(3, 0x00)
  147. #define LD8 F3(3, 0x01)
  148. #define LD16 F3(3, 0x02)
  149. #define LD64 F3(3, 0x0b)
  150. #define LD64A F3(3, 0x1b)
  151. #define ST8 F3(3, 0x05)
  152. #define ST16 F3(3, 0x06)
  153. #define ST32 F3(3, 0x04)
  154. #define ST64 F3(3, 0x0e)
  155. #define CAS F3(3, 0x3c)
  156. #define CASX F3(3, 0x3e)
  157. #define LDPTR LD64
  158. #define BASE_STACKFRAME 176
  159. #define LD32I (LD32 | IMMED)
  160. #define LD8I (LD8 | IMMED)
  161. #define LD16I (LD16 | IMMED)
  162. #define LD64I (LD64 | IMMED)
  163. #define LDPTRI (LDPTR | IMMED)
  164. #define ST32I (ST32 | IMMED)
  165. struct jit_ctx {
  166. struct bpf_prog *prog;
  167. unsigned int *offset;
  168. int idx;
  169. int epilogue_offset;
  170. bool tmp_1_used;
  171. bool tmp_2_used;
  172. bool tmp_3_used;
  173. bool saw_ld_abs_ind;
  174. bool saw_frame_pointer;
  175. bool saw_call;
  176. bool saw_tail_call;
  177. u32 *image;
  178. };
  179. #define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
  180. #define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
  181. #define SKB_HLEN_REG (MAX_BPF_JIT_REG + 2)
  182. #define SKB_DATA_REG (MAX_BPF_JIT_REG + 3)
  183. #define TMP_REG_3 (MAX_BPF_JIT_REG + 4)
  184. /* Map BPF registers to SPARC registers */
  185. static const int bpf2sparc[] = {
  186. /* return value from in-kernel function, and exit value from eBPF */
  187. [BPF_REG_0] = O5,
  188. /* arguments from eBPF program to in-kernel function */
  189. [BPF_REG_1] = O0,
  190. [BPF_REG_2] = O1,
  191. [BPF_REG_3] = O2,
  192. [BPF_REG_4] = O3,
  193. [BPF_REG_5] = O4,
  194. /* callee saved registers that in-kernel function will preserve */
  195. [BPF_REG_6] = L0,
  196. [BPF_REG_7] = L1,
  197. [BPF_REG_8] = L2,
  198. [BPF_REG_9] = L3,
  199. /* read-only frame pointer to access stack */
  200. [BPF_REG_FP] = L6,
  201. [BPF_REG_AX] = G7,
  202. /* temporary register for internal BPF JIT */
  203. [TMP_REG_1] = G1,
  204. [TMP_REG_2] = G2,
  205. [TMP_REG_3] = G3,
  206. [SKB_HLEN_REG] = L4,
  207. [SKB_DATA_REG] = L5,
  208. };
  209. static void emit(const u32 insn, struct jit_ctx *ctx)
  210. {
  211. if (ctx->image != NULL)
  212. ctx->image[ctx->idx] = insn;
  213. ctx->idx++;
  214. }
  215. static void emit_call(u32 *func, struct jit_ctx *ctx)
  216. {
  217. if (ctx->image != NULL) {
  218. void *here = &ctx->image[ctx->idx];
  219. unsigned int off;
  220. off = (void *)func - here;
  221. ctx->image[ctx->idx] = CALL | ((off >> 2) & 0x3fffffff);
  222. }
  223. ctx->idx++;
  224. }
  225. static void emit_nop(struct jit_ctx *ctx)
  226. {
  227. emit(SETHI(0, G0), ctx);
  228. }
  229. static void emit_reg_move(u32 from, u32 to, struct jit_ctx *ctx)
  230. {
  231. emit(OR | RS1(G0) | RS2(from) | RD(to), ctx);
  232. }
  233. /* Emit 32-bit constant, zero extended. */
  234. static void emit_set_const(s32 K, u32 reg, struct jit_ctx *ctx)
  235. {
  236. emit(SETHI(K, reg), ctx);
  237. emit(OR_LO(K, reg), ctx);
  238. }
  239. /* Emit 32-bit constant, sign extended. */
  240. static void emit_set_const_sext(s32 K, u32 reg, struct jit_ctx *ctx)
  241. {
  242. if (K >= 0) {
  243. emit(SETHI(K, reg), ctx);
  244. emit(OR_LO(K, reg), ctx);
  245. } else {
  246. u32 hbits = ~(u32) K;
  247. u32 lbits = -0x400 | (u32) K;
  248. emit(SETHI(hbits, reg), ctx);
  249. emit(XOR | IMMED | RS1(reg) | S13(lbits) | RD(reg), ctx);
  250. }
  251. }
  252. static void emit_alu(u32 opcode, u32 src, u32 dst, struct jit_ctx *ctx)
  253. {
  254. emit(opcode | RS1(dst) | RS2(src) | RD(dst), ctx);
  255. }
  256. static void emit_alu3(u32 opcode, u32 a, u32 b, u32 c, struct jit_ctx *ctx)
  257. {
  258. emit(opcode | RS1(a) | RS2(b) | RD(c), ctx);
  259. }
  260. static void emit_alu_K(unsigned int opcode, unsigned int dst, unsigned int imm,
  261. struct jit_ctx *ctx)
  262. {
  263. bool small_immed = is_simm13(imm);
  264. unsigned int insn = opcode;
  265. insn |= RS1(dst) | RD(dst);
  266. if (small_immed) {
  267. emit(insn | IMMED | S13(imm), ctx);
  268. } else {
  269. unsigned int tmp = bpf2sparc[TMP_REG_1];
  270. ctx->tmp_1_used = true;
  271. emit_set_const_sext(imm, tmp, ctx);
  272. emit(insn | RS2(tmp), ctx);
  273. }
  274. }
  275. static void emit_alu3_K(unsigned int opcode, unsigned int src, unsigned int imm,
  276. unsigned int dst, struct jit_ctx *ctx)
  277. {
  278. bool small_immed = is_simm13(imm);
  279. unsigned int insn = opcode;
  280. insn |= RS1(src) | RD(dst);
  281. if (small_immed) {
  282. emit(insn | IMMED | S13(imm), ctx);
  283. } else {
  284. unsigned int tmp = bpf2sparc[TMP_REG_1];
  285. ctx->tmp_1_used = true;
  286. emit_set_const_sext(imm, tmp, ctx);
  287. emit(insn | RS2(tmp), ctx);
  288. }
  289. }
  290. static void emit_loadimm32(s32 K, unsigned int dest, struct jit_ctx *ctx)
  291. {
  292. if (K >= 0 && is_simm13(K)) {
  293. /* or %g0, K, DEST */
  294. emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
  295. } else {
  296. emit_set_const(K, dest, ctx);
  297. }
  298. }
  299. static void emit_loadimm(s32 K, unsigned int dest, struct jit_ctx *ctx)
  300. {
  301. if (is_simm13(K)) {
  302. /* or %g0, K, DEST */
  303. emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
  304. } else {
  305. emit_set_const(K, dest, ctx);
  306. }
  307. }
  308. static void emit_loadimm_sext(s32 K, unsigned int dest, struct jit_ctx *ctx)
  309. {
  310. if (is_simm13(K)) {
  311. /* or %g0, K, DEST */
  312. emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
  313. } else {
  314. emit_set_const_sext(K, dest, ctx);
  315. }
  316. }
  317. static void analyze_64bit_constant(u32 high_bits, u32 low_bits,
  318. int *hbsp, int *lbsp, int *abbasp)
  319. {
  320. int lowest_bit_set, highest_bit_set, all_bits_between_are_set;
  321. int i;
  322. lowest_bit_set = highest_bit_set = -1;
  323. i = 0;
  324. do {
  325. if ((lowest_bit_set == -1) && ((low_bits >> i) & 1))
  326. lowest_bit_set = i;
  327. if ((highest_bit_set == -1) && ((high_bits >> (32 - i - 1)) & 1))
  328. highest_bit_set = (64 - i - 1);
  329. } while (++i < 32 && (highest_bit_set == -1 ||
  330. lowest_bit_set == -1));
  331. if (i == 32) {
  332. i = 0;
  333. do {
  334. if (lowest_bit_set == -1 && ((high_bits >> i) & 1))
  335. lowest_bit_set = i + 32;
  336. if (highest_bit_set == -1 &&
  337. ((low_bits >> (32 - i - 1)) & 1))
  338. highest_bit_set = 32 - i - 1;
  339. } while (++i < 32 && (highest_bit_set == -1 ||
  340. lowest_bit_set == -1));
  341. }
  342. all_bits_between_are_set = 1;
  343. for (i = lowest_bit_set; i <= highest_bit_set; i++) {
  344. if (i < 32) {
  345. if ((low_bits & (1 << i)) != 0)
  346. continue;
  347. } else {
  348. if ((high_bits & (1 << (i - 32))) != 0)
  349. continue;
  350. }
  351. all_bits_between_are_set = 0;
  352. break;
  353. }
  354. *hbsp = highest_bit_set;
  355. *lbsp = lowest_bit_set;
  356. *abbasp = all_bits_between_are_set;
  357. }
  358. static unsigned long create_simple_focus_bits(unsigned long high_bits,
  359. unsigned long low_bits,
  360. int lowest_bit_set, int shift)
  361. {
  362. long hi, lo;
  363. if (lowest_bit_set < 32) {
  364. lo = (low_bits >> lowest_bit_set) << shift;
  365. hi = ((high_bits << (32 - lowest_bit_set)) << shift);
  366. } else {
  367. lo = 0;
  368. hi = ((high_bits >> (lowest_bit_set - 32)) << shift);
  369. }
  370. return hi | lo;
  371. }
  372. static bool const64_is_2insns(unsigned long high_bits,
  373. unsigned long low_bits)
  374. {
  375. int highest_bit_set, lowest_bit_set, all_bits_between_are_set;
  376. if (high_bits == 0 || high_bits == 0xffffffff)
  377. return true;
  378. analyze_64bit_constant(high_bits, low_bits,
  379. &highest_bit_set, &lowest_bit_set,
  380. &all_bits_between_are_set);
  381. if ((highest_bit_set == 63 || lowest_bit_set == 0) &&
  382. all_bits_between_are_set != 0)
  383. return true;
  384. if (highest_bit_set - lowest_bit_set < 21)
  385. return true;
  386. return false;
  387. }
  388. static void sparc_emit_set_const64_quick2(unsigned long high_bits,
  389. unsigned long low_imm,
  390. unsigned int dest,
  391. int shift_count, struct jit_ctx *ctx)
  392. {
  393. emit_loadimm32(high_bits, dest, ctx);
  394. /* Now shift it up into place. */
  395. emit_alu_K(SLLX, dest, shift_count, ctx);
  396. /* If there is a low immediate part piece, finish up by
  397. * putting that in as well.
  398. */
  399. if (low_imm != 0)
  400. emit(OR | IMMED | RS1(dest) | S13(low_imm) | RD(dest), ctx);
  401. }
  402. static void emit_loadimm64(u64 K, unsigned int dest, struct jit_ctx *ctx)
  403. {
  404. int all_bits_between_are_set, lowest_bit_set, highest_bit_set;
  405. unsigned int tmp = bpf2sparc[TMP_REG_1];
  406. u32 low_bits = (K & 0xffffffff);
  407. u32 high_bits = (K >> 32);
  408. /* These two tests also take care of all of the one
  409. * instruction cases.
  410. */
  411. if (high_bits == 0xffffffff && (low_bits & 0x80000000))
  412. return emit_loadimm_sext(K, dest, ctx);
  413. if (high_bits == 0x00000000)
  414. return emit_loadimm32(K, dest, ctx);
  415. analyze_64bit_constant(high_bits, low_bits, &highest_bit_set,
  416. &lowest_bit_set, &all_bits_between_are_set);
  417. /* 1) mov -1, %reg
  418. * sllx %reg, shift, %reg
  419. * 2) mov -1, %reg
  420. * srlx %reg, shift, %reg
  421. * 3) mov some_small_const, %reg
  422. * sllx %reg, shift, %reg
  423. */
  424. if (((highest_bit_set == 63 || lowest_bit_set == 0) &&
  425. all_bits_between_are_set != 0) ||
  426. ((highest_bit_set - lowest_bit_set) < 12)) {
  427. int shift = lowest_bit_set;
  428. long the_const = -1;
  429. if ((highest_bit_set != 63 && lowest_bit_set != 0) ||
  430. all_bits_between_are_set == 0) {
  431. the_const =
  432. create_simple_focus_bits(high_bits, low_bits,
  433. lowest_bit_set, 0);
  434. } else if (lowest_bit_set == 0)
  435. shift = -(63 - highest_bit_set);
  436. emit(OR | IMMED | RS1(G0) | S13(the_const) | RD(dest), ctx);
  437. if (shift > 0)
  438. emit_alu_K(SLLX, dest, shift, ctx);
  439. else if (shift < 0)
  440. emit_alu_K(SRLX, dest, -shift, ctx);
  441. return;
  442. }
  443. /* Now a range of 22 or less bits set somewhere.
  444. * 1) sethi %hi(focus_bits), %reg
  445. * sllx %reg, shift, %reg
  446. * 2) sethi %hi(focus_bits), %reg
  447. * srlx %reg, shift, %reg
  448. */
  449. if ((highest_bit_set - lowest_bit_set) < 21) {
  450. unsigned long focus_bits =
  451. create_simple_focus_bits(high_bits, low_bits,
  452. lowest_bit_set, 10);
  453. emit(SETHI(focus_bits, dest), ctx);
  454. /* If lowest_bit_set == 10 then a sethi alone could
  455. * have done it.
  456. */
  457. if (lowest_bit_set < 10)
  458. emit_alu_K(SRLX, dest, 10 - lowest_bit_set, ctx);
  459. else if (lowest_bit_set > 10)
  460. emit_alu_K(SLLX, dest, lowest_bit_set - 10, ctx);
  461. return;
  462. }
  463. /* Ok, now 3 instruction sequences. */
  464. if (low_bits == 0) {
  465. emit_loadimm32(high_bits, dest, ctx);
  466. emit_alu_K(SLLX, dest, 32, ctx);
  467. return;
  468. }
  469. /* We may be able to do something quick
  470. * when the constant is negated, so try that.
  471. */
  472. if (const64_is_2insns((~high_bits) & 0xffffffff,
  473. (~low_bits) & 0xfffffc00)) {
  474. /* NOTE: The trailing bits get XOR'd so we need the
  475. * non-negated bits, not the negated ones.
  476. */
  477. unsigned long trailing_bits = low_bits & 0x3ff;
  478. if ((((~high_bits) & 0xffffffff) == 0 &&
  479. ((~low_bits) & 0x80000000) == 0) ||
  480. (((~high_bits) & 0xffffffff) == 0xffffffff &&
  481. ((~low_bits) & 0x80000000) != 0)) {
  482. unsigned long fast_int = (~low_bits & 0xffffffff);
  483. if ((is_sethi(fast_int) &&
  484. (~high_bits & 0xffffffff) == 0)) {
  485. emit(SETHI(fast_int, dest), ctx);
  486. } else if (is_simm13(fast_int)) {
  487. emit(OR | IMMED | RS1(G0) | S13(fast_int) | RD(dest), ctx);
  488. } else {
  489. emit_loadimm64(fast_int, dest, ctx);
  490. }
  491. } else {
  492. u64 n = ((~low_bits) & 0xfffffc00) |
  493. (((unsigned long)((~high_bits) & 0xffffffff))<<32);
  494. emit_loadimm64(n, dest, ctx);
  495. }
  496. low_bits = -0x400 | trailing_bits;
  497. emit(XOR | IMMED | RS1(dest) | S13(low_bits) | RD(dest), ctx);
  498. return;
  499. }
  500. /* 1) sethi %hi(xxx), %reg
  501. * or %reg, %lo(xxx), %reg
  502. * sllx %reg, yyy, %reg
  503. */
  504. if ((highest_bit_set - lowest_bit_set) < 32) {
  505. unsigned long focus_bits =
  506. create_simple_focus_bits(high_bits, low_bits,
  507. lowest_bit_set, 0);
  508. /* So what we know is that the set bits straddle the
  509. * middle of the 64-bit word.
  510. */
  511. sparc_emit_set_const64_quick2(focus_bits, 0, dest,
  512. lowest_bit_set, ctx);
  513. return;
  514. }
  515. /* 1) sethi %hi(high_bits), %reg
  516. * or %reg, %lo(high_bits), %reg
  517. * sllx %reg, 32, %reg
  518. * or %reg, low_bits, %reg
  519. */
  520. if (is_simm13(low_bits) && ((int)low_bits > 0)) {
  521. sparc_emit_set_const64_quick2(high_bits, low_bits,
  522. dest, 32, ctx);
  523. return;
  524. }
  525. /* Oh well, we tried... Do a full 64-bit decomposition. */
  526. ctx->tmp_1_used = true;
  527. emit_loadimm32(high_bits, tmp, ctx);
  528. emit_loadimm32(low_bits, dest, ctx);
  529. emit_alu_K(SLLX, tmp, 32, ctx);
  530. emit(OR | RS1(dest) | RS2(tmp) | RD(dest), ctx);
  531. }
  532. static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int to_idx,
  533. struct jit_ctx *ctx)
  534. {
  535. unsigned int off = to_idx - from_idx;
  536. if (br_opc & XCC)
  537. emit(br_opc | WDISP19(off << 2), ctx);
  538. else
  539. emit(br_opc | WDISP22(off << 2), ctx);
  540. }
  541. static void emit_cbcond(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
  542. const u8 dst, const u8 src, struct jit_ctx *ctx)
  543. {
  544. unsigned int off = to_idx - from_idx;
  545. emit(cb_opc | WDISP10(off << 2) | RS1(dst) | RS2(src), ctx);
  546. }
  547. static void emit_cbcondi(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
  548. const u8 dst, s32 imm, struct jit_ctx *ctx)
  549. {
  550. unsigned int off = to_idx - from_idx;
  551. emit(cb_opc | IMMED | WDISP10(off << 2) | RS1(dst) | S5(imm), ctx);
  552. }
  553. #define emit_read_y(REG, CTX) emit(RD_Y | RD(REG), CTX)
  554. #define emit_write_y(REG, CTX) emit(WR_Y | IMMED | RS1(REG) | S13(0), CTX)
  555. #define emit_cmp(R1, R2, CTX) \
  556. emit(SUBCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
  557. #define emit_cmpi(R1, IMM, CTX) \
  558. emit(SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
  559. #define emit_btst(R1, R2, CTX) \
  560. emit(ANDCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
  561. #define emit_btsti(R1, IMM, CTX) \
  562. emit(ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
  563. static int emit_compare_and_branch(const u8 code, const u8 dst, u8 src,
  564. const s32 imm, bool is_imm, int branch_dst,
  565. struct jit_ctx *ctx)
  566. {
  567. bool use_cbcond = (sparc64_elf_hwcap & AV_SPARC_CBCOND) != 0;
  568. const u8 tmp = bpf2sparc[TMP_REG_1];
  569. branch_dst = ctx->offset[branch_dst];
  570. if (!is_simm10(branch_dst - ctx->idx) ||
  571. BPF_OP(code) == BPF_JSET)
  572. use_cbcond = false;
  573. if (is_imm) {
  574. bool fits = true;
  575. if (use_cbcond) {
  576. if (!is_simm5(imm))
  577. fits = false;
  578. } else if (!is_simm13(imm)) {
  579. fits = false;
  580. }
  581. if (!fits) {
  582. ctx->tmp_1_used = true;
  583. emit_loadimm_sext(imm, tmp, ctx);
  584. src = tmp;
  585. is_imm = false;
  586. }
  587. }
  588. if (!use_cbcond) {
  589. u32 br_opcode;
  590. if (BPF_OP(code) == BPF_JSET) {
  591. if (is_imm)
  592. emit_btsti(dst, imm, ctx);
  593. else
  594. emit_btst(dst, src, ctx);
  595. } else {
  596. if (is_imm)
  597. emit_cmpi(dst, imm, ctx);
  598. else
  599. emit_cmp(dst, src, ctx);
  600. }
  601. switch (BPF_OP(code)) {
  602. case BPF_JEQ:
  603. br_opcode = BE;
  604. break;
  605. case BPF_JGT:
  606. br_opcode = BGU;
  607. break;
  608. case BPF_JLT:
  609. br_opcode = BLU;
  610. break;
  611. case BPF_JGE:
  612. br_opcode = BGEU;
  613. break;
  614. case BPF_JLE:
  615. br_opcode = BLEU;
  616. break;
  617. case BPF_JSET:
  618. case BPF_JNE:
  619. br_opcode = BNE;
  620. break;
  621. case BPF_JSGT:
  622. br_opcode = BG;
  623. break;
  624. case BPF_JSLT:
  625. br_opcode = BL;
  626. break;
  627. case BPF_JSGE:
  628. br_opcode = BGE;
  629. break;
  630. case BPF_JSLE:
  631. br_opcode = BLE;
  632. break;
  633. default:
  634. /* Make sure we dont leak kernel information to the
  635. * user.
  636. */
  637. return -EFAULT;
  638. }
  639. emit_branch(br_opcode, ctx->idx, branch_dst, ctx);
  640. emit_nop(ctx);
  641. } else {
  642. u32 cbcond_opcode;
  643. switch (BPF_OP(code)) {
  644. case BPF_JEQ:
  645. cbcond_opcode = CBCONDE;
  646. break;
  647. case BPF_JGT:
  648. cbcond_opcode = CBCONDGU;
  649. break;
  650. case BPF_JLT:
  651. cbcond_opcode = CBCONDLU;
  652. break;
  653. case BPF_JGE:
  654. cbcond_opcode = CBCONDGEU;
  655. break;
  656. case BPF_JLE:
  657. cbcond_opcode = CBCONDLEU;
  658. break;
  659. case BPF_JNE:
  660. cbcond_opcode = CBCONDNE;
  661. break;
  662. case BPF_JSGT:
  663. cbcond_opcode = CBCONDG;
  664. break;
  665. case BPF_JSLT:
  666. cbcond_opcode = CBCONDL;
  667. break;
  668. case BPF_JSGE:
  669. cbcond_opcode = CBCONDGE;
  670. break;
  671. case BPF_JSLE:
  672. cbcond_opcode = CBCONDLE;
  673. break;
  674. default:
  675. /* Make sure we dont leak kernel information to the
  676. * user.
  677. */
  678. return -EFAULT;
  679. }
  680. cbcond_opcode |= CBCOND_OP;
  681. if (is_imm)
  682. emit_cbcondi(cbcond_opcode, ctx->idx, branch_dst,
  683. dst, imm, ctx);
  684. else
  685. emit_cbcond(cbcond_opcode, ctx->idx, branch_dst,
  686. dst, src, ctx);
  687. }
  688. return 0;
  689. }
  690. static void load_skb_regs(struct jit_ctx *ctx, u8 r_skb)
  691. {
  692. const u8 r_headlen = bpf2sparc[SKB_HLEN_REG];
  693. const u8 r_data = bpf2sparc[SKB_DATA_REG];
  694. const u8 r_tmp = bpf2sparc[TMP_REG_1];
  695. unsigned int off;
  696. off = offsetof(struct sk_buff, len);
  697. emit(LD32I | RS1(r_skb) | S13(off) | RD(r_headlen), ctx);
  698. off = offsetof(struct sk_buff, data_len);
  699. emit(LD32I | RS1(r_skb) | S13(off) | RD(r_tmp), ctx);
  700. emit(SUB | RS1(r_headlen) | RS2(r_tmp) | RD(r_headlen), ctx);
  701. off = offsetof(struct sk_buff, data);
  702. emit(LDPTRI | RS1(r_skb) | S13(off) | RD(r_data), ctx);
  703. }
  704. /* Just skip the save instruction and the ctx register move. */
  705. #define BPF_TAILCALL_PROLOGUE_SKIP 16
  706. #define BPF_TAILCALL_CNT_SP_OFF (STACK_BIAS + 128)
  707. static void build_prologue(struct jit_ctx *ctx)
  708. {
  709. s32 stack_needed = BASE_STACKFRAME;
  710. if (ctx->saw_frame_pointer || ctx->saw_tail_call) {
  711. struct bpf_prog *prog = ctx->prog;
  712. u32 stack_depth;
  713. stack_depth = prog->aux->stack_depth;
  714. stack_needed += round_up(stack_depth, 16);
  715. }
  716. if (ctx->saw_tail_call)
  717. stack_needed += 8;
  718. /* save %sp, -176, %sp */
  719. emit(SAVE | IMMED | RS1(SP) | S13(-stack_needed) | RD(SP), ctx);
  720. /* tail_call_cnt = 0 */
  721. if (ctx->saw_tail_call) {
  722. u32 off = BPF_TAILCALL_CNT_SP_OFF;
  723. emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(G0), ctx);
  724. } else {
  725. emit_nop(ctx);
  726. }
  727. if (ctx->saw_frame_pointer) {
  728. const u8 vfp = bpf2sparc[BPF_REG_FP];
  729. emit(ADD | IMMED | RS1(FP) | S13(STACK_BIAS) | RD(vfp), ctx);
  730. }
  731. emit_reg_move(I0, O0, ctx);
  732. /* If you add anything here, adjust BPF_TAILCALL_PROLOGUE_SKIP above. */
  733. if (ctx->saw_ld_abs_ind)
  734. load_skb_regs(ctx, bpf2sparc[BPF_REG_1]);
  735. }
  736. static void build_epilogue(struct jit_ctx *ctx)
  737. {
  738. ctx->epilogue_offset = ctx->idx;
  739. /* ret (jmpl %i7 + 8, %g0) */
  740. emit(JMPL | IMMED | RS1(I7) | S13(8) | RD(G0), ctx);
  741. /* restore %i5, %g0, %o0 */
  742. emit(RESTORE | RS1(bpf2sparc[BPF_REG_0]) | RS2(G0) | RD(O0), ctx);
  743. }
  744. static void emit_tail_call(struct jit_ctx *ctx)
  745. {
  746. const u8 bpf_array = bpf2sparc[BPF_REG_2];
  747. const u8 bpf_index = bpf2sparc[BPF_REG_3];
  748. const u8 tmp = bpf2sparc[TMP_REG_1];
  749. u32 off;
  750. ctx->saw_tail_call = true;
  751. off = offsetof(struct bpf_array, map.max_entries);
  752. emit(LD32 | IMMED | RS1(bpf_array) | S13(off) | RD(tmp), ctx);
  753. emit_cmp(bpf_index, tmp, ctx);
  754. #define OFFSET1 17
  755. emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET1, ctx);
  756. emit_nop(ctx);
  757. off = BPF_TAILCALL_CNT_SP_OFF;
  758. emit(LD32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
  759. emit_cmpi(tmp, MAX_TAIL_CALL_CNT, ctx);
  760. #define OFFSET2 13
  761. emit_branch(BGU, ctx->idx, ctx->idx + OFFSET2, ctx);
  762. emit_nop(ctx);
  763. emit_alu_K(ADD, tmp, 1, ctx);
  764. off = BPF_TAILCALL_CNT_SP_OFF;
  765. emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
  766. emit_alu3_K(SLL, bpf_index, 3, tmp, ctx);
  767. emit_alu(ADD, bpf_array, tmp, ctx);
  768. off = offsetof(struct bpf_array, ptrs);
  769. emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
  770. emit_cmpi(tmp, 0, ctx);
  771. #define OFFSET3 5
  772. emit_branch(BE, ctx->idx, ctx->idx + OFFSET3, ctx);
  773. emit_nop(ctx);
  774. off = offsetof(struct bpf_prog, bpf_func);
  775. emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
  776. off = BPF_TAILCALL_PROLOGUE_SKIP;
  777. emit(JMPL | IMMED | RS1(tmp) | S13(off) | RD(G0), ctx);
  778. emit_nop(ctx);
  779. }
  780. static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
  781. {
  782. const u8 code = insn->code;
  783. const u8 dst = bpf2sparc[insn->dst_reg];
  784. const u8 src = bpf2sparc[insn->src_reg];
  785. const int i = insn - ctx->prog->insnsi;
  786. const s16 off = insn->off;
  787. const s32 imm = insn->imm;
  788. u32 *func;
  789. if (insn->src_reg == BPF_REG_FP)
  790. ctx->saw_frame_pointer = true;
  791. switch (code) {
  792. /* dst = src */
  793. case BPF_ALU | BPF_MOV | BPF_X:
  794. emit_alu3_K(SRL, src, 0, dst, ctx);
  795. break;
  796. case BPF_ALU64 | BPF_MOV | BPF_X:
  797. emit_reg_move(src, dst, ctx);
  798. break;
  799. /* dst = dst OP src */
  800. case BPF_ALU | BPF_ADD | BPF_X:
  801. case BPF_ALU64 | BPF_ADD | BPF_X:
  802. emit_alu(ADD, src, dst, ctx);
  803. goto do_alu32_trunc;
  804. case BPF_ALU | BPF_SUB | BPF_X:
  805. case BPF_ALU64 | BPF_SUB | BPF_X:
  806. emit_alu(SUB, src, dst, ctx);
  807. goto do_alu32_trunc;
  808. case BPF_ALU | BPF_AND | BPF_X:
  809. case BPF_ALU64 | BPF_AND | BPF_X:
  810. emit_alu(AND, src, dst, ctx);
  811. goto do_alu32_trunc;
  812. case BPF_ALU | BPF_OR | BPF_X:
  813. case BPF_ALU64 | BPF_OR | BPF_X:
  814. emit_alu(OR, src, dst, ctx);
  815. goto do_alu32_trunc;
  816. case BPF_ALU | BPF_XOR | BPF_X:
  817. case BPF_ALU64 | BPF_XOR | BPF_X:
  818. emit_alu(XOR, src, dst, ctx);
  819. goto do_alu32_trunc;
  820. case BPF_ALU | BPF_MUL | BPF_X:
  821. emit_alu(MUL, src, dst, ctx);
  822. goto do_alu32_trunc;
  823. case BPF_ALU64 | BPF_MUL | BPF_X:
  824. emit_alu(MULX, src, dst, ctx);
  825. break;
  826. case BPF_ALU | BPF_DIV | BPF_X:
  827. emit_write_y(G0, ctx);
  828. emit_alu(DIV, src, dst, ctx);
  829. break;
  830. case BPF_ALU64 | BPF_DIV | BPF_X:
  831. emit_alu(UDIVX, src, dst, ctx);
  832. break;
  833. case BPF_ALU | BPF_MOD | BPF_X: {
  834. const u8 tmp = bpf2sparc[TMP_REG_1];
  835. ctx->tmp_1_used = true;
  836. emit_write_y(G0, ctx);
  837. emit_alu3(DIV, dst, src, tmp, ctx);
  838. emit_alu3(MULX, tmp, src, tmp, ctx);
  839. emit_alu3(SUB, dst, tmp, dst, ctx);
  840. goto do_alu32_trunc;
  841. }
  842. case BPF_ALU64 | BPF_MOD | BPF_X: {
  843. const u8 tmp = bpf2sparc[TMP_REG_1];
  844. ctx->tmp_1_used = true;
  845. emit_alu3(UDIVX, dst, src, tmp, ctx);
  846. emit_alu3(MULX, tmp, src, tmp, ctx);
  847. emit_alu3(SUB, dst, tmp, dst, ctx);
  848. break;
  849. }
  850. case BPF_ALU | BPF_LSH | BPF_X:
  851. emit_alu(SLL, src, dst, ctx);
  852. goto do_alu32_trunc;
  853. case BPF_ALU64 | BPF_LSH | BPF_X:
  854. emit_alu(SLLX, src, dst, ctx);
  855. break;
  856. case BPF_ALU | BPF_RSH | BPF_X:
  857. emit_alu(SRL, src, dst, ctx);
  858. break;
  859. case BPF_ALU64 | BPF_RSH | BPF_X:
  860. emit_alu(SRLX, src, dst, ctx);
  861. break;
  862. case BPF_ALU | BPF_ARSH | BPF_X:
  863. emit_alu(SRA, src, dst, ctx);
  864. goto do_alu32_trunc;
  865. case BPF_ALU64 | BPF_ARSH | BPF_X:
  866. emit_alu(SRAX, src, dst, ctx);
  867. break;
  868. /* dst = -dst */
  869. case BPF_ALU | BPF_NEG:
  870. case BPF_ALU64 | BPF_NEG:
  871. emit(SUB | RS1(0) | RS2(dst) | RD(dst), ctx);
  872. goto do_alu32_trunc;
  873. case BPF_ALU | BPF_END | BPF_FROM_BE:
  874. switch (imm) {
  875. case 16:
  876. emit_alu_K(SLL, dst, 16, ctx);
  877. emit_alu_K(SRL, dst, 16, ctx);
  878. break;
  879. case 32:
  880. emit_alu_K(SRL, dst, 0, ctx);
  881. break;
  882. case 64:
  883. /* nop */
  884. break;
  885. }
  886. break;
  887. /* dst = BSWAP##imm(dst) */
  888. case BPF_ALU | BPF_END | BPF_FROM_LE: {
  889. const u8 tmp = bpf2sparc[TMP_REG_1];
  890. const u8 tmp2 = bpf2sparc[TMP_REG_2];
  891. ctx->tmp_1_used = true;
  892. switch (imm) {
  893. case 16:
  894. emit_alu3_K(AND, dst, 0xff, tmp, ctx);
  895. emit_alu3_K(SRL, dst, 8, dst, ctx);
  896. emit_alu3_K(AND, dst, 0xff, dst, ctx);
  897. emit_alu3_K(SLL, tmp, 8, tmp, ctx);
  898. emit_alu(OR, tmp, dst, ctx);
  899. break;
  900. case 32:
  901. ctx->tmp_2_used = true;
  902. emit_alu3_K(SRL, dst, 24, tmp, ctx); /* tmp = dst >> 24 */
  903. emit_alu3_K(SRL, dst, 16, tmp2, ctx); /* tmp2 = dst >> 16 */
  904. emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
  905. emit_alu3_K(SLL, tmp2, 8, tmp2, ctx); /* tmp2 = tmp2 << 8 */
  906. emit_alu(OR, tmp2, tmp, ctx); /* tmp = tmp | tmp2 */
  907. emit_alu3_K(SRL, dst, 8, tmp2, ctx); /* tmp2 = dst >> 8 */
  908. emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
  909. emit_alu3_K(SLL, tmp2, 16, tmp2, ctx); /* tmp2 = tmp2 << 16 */
  910. emit_alu(OR, tmp2, tmp, ctx); /* tmp = tmp | tmp2 */
  911. emit_alu3_K(AND, dst, 0xff, dst, ctx); /* dst = dst & 0xff */
  912. emit_alu3_K(SLL, dst, 24, dst, ctx); /* dst = dst << 24 */
  913. emit_alu(OR, tmp, dst, ctx); /* dst = dst | tmp */
  914. break;
  915. case 64:
  916. emit_alu3_K(ADD, SP, STACK_BIAS + 128, tmp, ctx);
  917. emit(ST64 | RS1(tmp) | RS2(G0) | RD(dst), ctx);
  918. emit(LD64A | ASI(ASI_PL) | RS1(tmp) | RS2(G0) | RD(dst), ctx);
  919. break;
  920. }
  921. break;
  922. }
  923. /* dst = imm */
  924. case BPF_ALU | BPF_MOV | BPF_K:
  925. emit_loadimm32(imm, dst, ctx);
  926. break;
  927. case BPF_ALU64 | BPF_MOV | BPF_K:
  928. emit_loadimm_sext(imm, dst, ctx);
  929. break;
  930. /* dst = dst OP imm */
  931. case BPF_ALU | BPF_ADD | BPF_K:
  932. case BPF_ALU64 | BPF_ADD | BPF_K:
  933. emit_alu_K(ADD, dst, imm, ctx);
  934. goto do_alu32_trunc;
  935. case BPF_ALU | BPF_SUB | BPF_K:
  936. case BPF_ALU64 | BPF_SUB | BPF_K:
  937. emit_alu_K(SUB, dst, imm, ctx);
  938. goto do_alu32_trunc;
  939. case BPF_ALU | BPF_AND | BPF_K:
  940. case BPF_ALU64 | BPF_AND | BPF_K:
  941. emit_alu_K(AND, dst, imm, ctx);
  942. goto do_alu32_trunc;
  943. case BPF_ALU | BPF_OR | BPF_K:
  944. case BPF_ALU64 | BPF_OR | BPF_K:
  945. emit_alu_K(OR, dst, imm, ctx);
  946. goto do_alu32_trunc;
  947. case BPF_ALU | BPF_XOR | BPF_K:
  948. case BPF_ALU64 | BPF_XOR | BPF_K:
  949. emit_alu_K(XOR, dst, imm, ctx);
  950. goto do_alu32_trunc;
  951. case BPF_ALU | BPF_MUL | BPF_K:
  952. emit_alu_K(MUL, dst, imm, ctx);
  953. goto do_alu32_trunc;
  954. case BPF_ALU64 | BPF_MUL | BPF_K:
  955. emit_alu_K(MULX, dst, imm, ctx);
  956. break;
  957. case BPF_ALU | BPF_DIV | BPF_K:
  958. if (imm == 0)
  959. return -EINVAL;
  960. emit_write_y(G0, ctx);
  961. emit_alu_K(DIV, dst, imm, ctx);
  962. goto do_alu32_trunc;
  963. case BPF_ALU64 | BPF_DIV | BPF_K:
  964. if (imm == 0)
  965. return -EINVAL;
  966. emit_alu_K(UDIVX, dst, imm, ctx);
  967. break;
  968. case BPF_ALU64 | BPF_MOD | BPF_K:
  969. case BPF_ALU | BPF_MOD | BPF_K: {
  970. const u8 tmp = bpf2sparc[TMP_REG_2];
  971. unsigned int div;
  972. if (imm == 0)
  973. return -EINVAL;
  974. div = (BPF_CLASS(code) == BPF_ALU64) ? UDIVX : DIV;
  975. ctx->tmp_2_used = true;
  976. if (BPF_CLASS(code) != BPF_ALU64)
  977. emit_write_y(G0, ctx);
  978. if (is_simm13(imm)) {
  979. emit(div | IMMED | RS1(dst) | S13(imm) | RD(tmp), ctx);
  980. emit(MULX | IMMED | RS1(tmp) | S13(imm) | RD(tmp), ctx);
  981. emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
  982. } else {
  983. const u8 tmp1 = bpf2sparc[TMP_REG_1];
  984. ctx->tmp_1_used = true;
  985. emit_set_const_sext(imm, tmp1, ctx);
  986. emit(div | RS1(dst) | RS2(tmp1) | RD(tmp), ctx);
  987. emit(MULX | RS1(tmp) | RS2(tmp1) | RD(tmp), ctx);
  988. emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
  989. }
  990. goto do_alu32_trunc;
  991. }
  992. case BPF_ALU | BPF_LSH | BPF_K:
  993. emit_alu_K(SLL, dst, imm, ctx);
  994. goto do_alu32_trunc;
  995. case BPF_ALU64 | BPF_LSH | BPF_K:
  996. emit_alu_K(SLLX, dst, imm, ctx);
  997. break;
  998. case BPF_ALU | BPF_RSH | BPF_K:
  999. emit_alu_K(SRL, dst, imm, ctx);
  1000. break;
  1001. case BPF_ALU64 | BPF_RSH | BPF_K:
  1002. emit_alu_K(SRLX, dst, imm, ctx);
  1003. break;
  1004. case BPF_ALU | BPF_ARSH | BPF_K:
  1005. emit_alu_K(SRA, dst, imm, ctx);
  1006. goto do_alu32_trunc;
  1007. case BPF_ALU64 | BPF_ARSH | BPF_K:
  1008. emit_alu_K(SRAX, dst, imm, ctx);
  1009. break;
  1010. do_alu32_trunc:
  1011. if (BPF_CLASS(code) == BPF_ALU)
  1012. emit_alu_K(SRL, dst, 0, ctx);
  1013. break;
  1014. /* JUMP off */
  1015. case BPF_JMP | BPF_JA:
  1016. emit_branch(BA, ctx->idx, ctx->offset[i + off], ctx);
  1017. emit_nop(ctx);
  1018. break;
  1019. /* IF (dst COND src) JUMP off */
  1020. case BPF_JMP | BPF_JEQ | BPF_X:
  1021. case BPF_JMP | BPF_JGT | BPF_X:
  1022. case BPF_JMP | BPF_JLT | BPF_X:
  1023. case BPF_JMP | BPF_JGE | BPF_X:
  1024. case BPF_JMP | BPF_JLE | BPF_X:
  1025. case BPF_JMP | BPF_JNE | BPF_X:
  1026. case BPF_JMP | BPF_JSGT | BPF_X:
  1027. case BPF_JMP | BPF_JSLT | BPF_X:
  1028. case BPF_JMP | BPF_JSGE | BPF_X:
  1029. case BPF_JMP | BPF_JSLE | BPF_X:
  1030. case BPF_JMP | BPF_JSET | BPF_X: {
  1031. int err;
  1032. err = emit_compare_and_branch(code, dst, src, 0, false, i + off, ctx);
  1033. if (err)
  1034. return err;
  1035. break;
  1036. }
  1037. /* IF (dst COND imm) JUMP off */
  1038. case BPF_JMP | BPF_JEQ | BPF_K:
  1039. case BPF_JMP | BPF_JGT | BPF_K:
  1040. case BPF_JMP | BPF_JLT | BPF_K:
  1041. case BPF_JMP | BPF_JGE | BPF_K:
  1042. case BPF_JMP | BPF_JLE | BPF_K:
  1043. case BPF_JMP | BPF_JNE | BPF_K:
  1044. case BPF_JMP | BPF_JSGT | BPF_K:
  1045. case BPF_JMP | BPF_JSLT | BPF_K:
  1046. case BPF_JMP | BPF_JSGE | BPF_K:
  1047. case BPF_JMP | BPF_JSLE | BPF_K:
  1048. case BPF_JMP | BPF_JSET | BPF_K: {
  1049. int err;
  1050. err = emit_compare_and_branch(code, dst, 0, imm, true, i + off, ctx);
  1051. if (err)
  1052. return err;
  1053. break;
  1054. }
  1055. /* function call */
  1056. case BPF_JMP | BPF_CALL:
  1057. {
  1058. u8 *func = ((u8 *)__bpf_call_base) + imm;
  1059. ctx->saw_call = true;
  1060. if (ctx->saw_ld_abs_ind && bpf_helper_changes_pkt_data(func))
  1061. emit_reg_move(bpf2sparc[BPF_REG_1], L7, ctx);
  1062. emit_call((u32 *)func, ctx);
  1063. emit_nop(ctx);
  1064. emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
  1065. if (ctx->saw_ld_abs_ind && bpf_helper_changes_pkt_data(func))
  1066. load_skb_regs(ctx, L7);
  1067. break;
  1068. }
  1069. /* tail call */
  1070. case BPF_JMP | BPF_TAIL_CALL:
  1071. emit_tail_call(ctx);
  1072. break;
  1073. /* function return */
  1074. case BPF_JMP | BPF_EXIT:
  1075. /* Optimization: when last instruction is EXIT,
  1076. simply fallthrough to epilogue. */
  1077. if (i == ctx->prog->len - 1)
  1078. break;
  1079. emit_branch(BA, ctx->idx, ctx->epilogue_offset, ctx);
  1080. emit_nop(ctx);
  1081. break;
  1082. /* dst = imm64 */
  1083. case BPF_LD | BPF_IMM | BPF_DW:
  1084. {
  1085. const struct bpf_insn insn1 = insn[1];
  1086. u64 imm64;
  1087. imm64 = (u64)insn1.imm << 32 | (u32)imm;
  1088. emit_loadimm64(imm64, dst, ctx);
  1089. return 1;
  1090. }
  1091. /* LDX: dst = *(size *)(src + off) */
  1092. case BPF_LDX | BPF_MEM | BPF_W:
  1093. case BPF_LDX | BPF_MEM | BPF_H:
  1094. case BPF_LDX | BPF_MEM | BPF_B:
  1095. case BPF_LDX | BPF_MEM | BPF_DW: {
  1096. const u8 tmp = bpf2sparc[TMP_REG_1];
  1097. u32 opcode = 0, rs2;
  1098. ctx->tmp_1_used = true;
  1099. switch (BPF_SIZE(code)) {
  1100. case BPF_W:
  1101. opcode = LD32;
  1102. break;
  1103. case BPF_H:
  1104. opcode = LD16;
  1105. break;
  1106. case BPF_B:
  1107. opcode = LD8;
  1108. break;
  1109. case BPF_DW:
  1110. opcode = LD64;
  1111. break;
  1112. }
  1113. if (is_simm13(off)) {
  1114. opcode |= IMMED;
  1115. rs2 = S13(off);
  1116. } else {
  1117. emit_loadimm(off, tmp, ctx);
  1118. rs2 = RS2(tmp);
  1119. }
  1120. emit(opcode | RS1(src) | rs2 | RD(dst), ctx);
  1121. break;
  1122. }
  1123. /* ST: *(size *)(dst + off) = imm */
  1124. case BPF_ST | BPF_MEM | BPF_W:
  1125. case BPF_ST | BPF_MEM | BPF_H:
  1126. case BPF_ST | BPF_MEM | BPF_B:
  1127. case BPF_ST | BPF_MEM | BPF_DW: {
  1128. const u8 tmp = bpf2sparc[TMP_REG_1];
  1129. const u8 tmp2 = bpf2sparc[TMP_REG_2];
  1130. u32 opcode = 0, rs2;
  1131. ctx->tmp_2_used = true;
  1132. emit_loadimm(imm, tmp2, ctx);
  1133. switch (BPF_SIZE(code)) {
  1134. case BPF_W:
  1135. opcode = ST32;
  1136. break;
  1137. case BPF_H:
  1138. opcode = ST16;
  1139. break;
  1140. case BPF_B:
  1141. opcode = ST8;
  1142. break;
  1143. case BPF_DW:
  1144. opcode = ST64;
  1145. break;
  1146. }
  1147. if (is_simm13(off)) {
  1148. opcode |= IMMED;
  1149. rs2 = S13(off);
  1150. } else {
  1151. ctx->tmp_1_used = true;
  1152. emit_loadimm(off, tmp, ctx);
  1153. rs2 = RS2(tmp);
  1154. }
  1155. emit(opcode | RS1(dst) | rs2 | RD(tmp2), ctx);
  1156. break;
  1157. }
  1158. /* STX: *(size *)(dst + off) = src */
  1159. case BPF_STX | BPF_MEM | BPF_W:
  1160. case BPF_STX | BPF_MEM | BPF_H:
  1161. case BPF_STX | BPF_MEM | BPF_B:
  1162. case BPF_STX | BPF_MEM | BPF_DW: {
  1163. const u8 tmp = bpf2sparc[TMP_REG_1];
  1164. u32 opcode = 0, rs2;
  1165. switch (BPF_SIZE(code)) {
  1166. case BPF_W:
  1167. opcode = ST32;
  1168. break;
  1169. case BPF_H:
  1170. opcode = ST16;
  1171. break;
  1172. case BPF_B:
  1173. opcode = ST8;
  1174. break;
  1175. case BPF_DW:
  1176. opcode = ST64;
  1177. break;
  1178. }
  1179. if (is_simm13(off)) {
  1180. opcode |= IMMED;
  1181. rs2 = S13(off);
  1182. } else {
  1183. ctx->tmp_1_used = true;
  1184. emit_loadimm(off, tmp, ctx);
  1185. rs2 = RS2(tmp);
  1186. }
  1187. emit(opcode | RS1(dst) | rs2 | RD(src), ctx);
  1188. break;
  1189. }
  1190. /* STX XADD: lock *(u32 *)(dst + off) += src */
  1191. case BPF_STX | BPF_XADD | BPF_W: {
  1192. const u8 tmp = bpf2sparc[TMP_REG_1];
  1193. const u8 tmp2 = bpf2sparc[TMP_REG_2];
  1194. const u8 tmp3 = bpf2sparc[TMP_REG_3];
  1195. ctx->tmp_1_used = true;
  1196. ctx->tmp_2_used = true;
  1197. ctx->tmp_3_used = true;
  1198. emit_loadimm(off, tmp, ctx);
  1199. emit_alu3(ADD, dst, tmp, tmp, ctx);
  1200. emit(LD32 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
  1201. emit_alu3(ADD, tmp2, src, tmp3, ctx);
  1202. emit(CAS | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
  1203. emit_cmp(tmp2, tmp3, ctx);
  1204. emit_branch(BNE, 4, 0, ctx);
  1205. emit_nop(ctx);
  1206. break;
  1207. }
  1208. /* STX XADD: lock *(u64 *)(dst + off) += src */
  1209. case BPF_STX | BPF_XADD | BPF_DW: {
  1210. const u8 tmp = bpf2sparc[TMP_REG_1];
  1211. const u8 tmp2 = bpf2sparc[TMP_REG_2];
  1212. const u8 tmp3 = bpf2sparc[TMP_REG_3];
  1213. ctx->tmp_1_used = true;
  1214. ctx->tmp_2_used = true;
  1215. ctx->tmp_3_used = true;
  1216. emit_loadimm(off, tmp, ctx);
  1217. emit_alu3(ADD, dst, tmp, tmp, ctx);
  1218. emit(LD64 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
  1219. emit_alu3(ADD, tmp2, src, tmp3, ctx);
  1220. emit(CASX | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
  1221. emit_cmp(tmp2, tmp3, ctx);
  1222. emit_branch(BNE, 4, 0, ctx);
  1223. emit_nop(ctx);
  1224. break;
  1225. }
  1226. #define CHOOSE_LOAD_FUNC(K, func) \
  1227. ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
  1228. /* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + imm)) */
  1229. case BPF_LD | BPF_ABS | BPF_W:
  1230. func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_word);
  1231. goto common_load;
  1232. case BPF_LD | BPF_ABS | BPF_H:
  1233. func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_half);
  1234. goto common_load;
  1235. case BPF_LD | BPF_ABS | BPF_B:
  1236. func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_byte);
  1237. goto common_load;
  1238. /* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + src + imm)) */
  1239. case BPF_LD | BPF_IND | BPF_W:
  1240. func = bpf_jit_load_word;
  1241. goto common_load;
  1242. case BPF_LD | BPF_IND | BPF_H:
  1243. func = bpf_jit_load_half;
  1244. goto common_load;
  1245. case BPF_LD | BPF_IND | BPF_B:
  1246. func = bpf_jit_load_byte;
  1247. common_load:
  1248. ctx->saw_ld_abs_ind = true;
  1249. emit_reg_move(bpf2sparc[BPF_REG_6], O0, ctx);
  1250. emit_loadimm(imm, O1, ctx);
  1251. if (BPF_MODE(code) == BPF_IND)
  1252. emit_alu(ADD, src, O1, ctx);
  1253. emit_call(func, ctx);
  1254. emit_alu_K(SRA, O1, 0, ctx);
  1255. emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
  1256. break;
  1257. default:
  1258. pr_err_once("unknown opcode %02x\n", code);
  1259. return -EINVAL;
  1260. }
  1261. return 0;
  1262. }
  1263. static int build_body(struct jit_ctx *ctx)
  1264. {
  1265. const struct bpf_prog *prog = ctx->prog;
  1266. int i;
  1267. for (i = 0; i < prog->len; i++) {
  1268. const struct bpf_insn *insn = &prog->insnsi[i];
  1269. int ret;
  1270. ret = build_insn(insn, ctx);
  1271. if (ret > 0) {
  1272. i++;
  1273. ctx->offset[i] = ctx->idx;
  1274. continue;
  1275. }
  1276. ctx->offset[i] = ctx->idx;
  1277. if (ret)
  1278. return ret;
  1279. }
  1280. return 0;
  1281. }
  1282. static void jit_fill_hole(void *area, unsigned int size)
  1283. {
  1284. u32 *ptr;
  1285. /* We are guaranteed to have aligned memory. */
  1286. for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
  1287. *ptr++ = 0x91d02005; /* ta 5 */
  1288. }
  1289. struct sparc64_jit_data {
  1290. struct bpf_binary_header *header;
  1291. u8 *image;
  1292. struct jit_ctx ctx;
  1293. };
  1294. struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
  1295. {
  1296. struct bpf_prog *tmp, *orig_prog = prog;
  1297. struct sparc64_jit_data *jit_data;
  1298. struct bpf_binary_header *header;
  1299. bool tmp_blinded = false;
  1300. bool extra_pass = false;
  1301. struct jit_ctx ctx;
  1302. u32 image_size;
  1303. u8 *image_ptr;
  1304. int pass;
  1305. if (!prog->jit_requested)
  1306. return orig_prog;
  1307. tmp = bpf_jit_blind_constants(prog);
  1308. /* If blinding was requested and we failed during blinding,
  1309. * we must fall back to the interpreter.
  1310. */
  1311. if (IS_ERR(tmp))
  1312. return orig_prog;
  1313. if (tmp != prog) {
  1314. tmp_blinded = true;
  1315. prog = tmp;
  1316. }
  1317. jit_data = prog->aux->jit_data;
  1318. if (!jit_data) {
  1319. jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
  1320. if (!jit_data) {
  1321. prog = orig_prog;
  1322. goto out;
  1323. }
  1324. prog->aux->jit_data = jit_data;
  1325. }
  1326. if (jit_data->ctx.offset) {
  1327. ctx = jit_data->ctx;
  1328. image_ptr = jit_data->image;
  1329. header = jit_data->header;
  1330. extra_pass = true;
  1331. image_size = sizeof(u32) * ctx.idx;
  1332. goto skip_init_ctx;
  1333. }
  1334. memset(&ctx, 0, sizeof(ctx));
  1335. ctx.prog = prog;
  1336. ctx.offset = kcalloc(prog->len, sizeof(unsigned int), GFP_KERNEL);
  1337. if (ctx.offset == NULL) {
  1338. prog = orig_prog;
  1339. goto out_off;
  1340. }
  1341. /* Fake pass to detect features used, and get an accurate assessment
  1342. * of what the final image size will be.
  1343. */
  1344. if (build_body(&ctx)) {
  1345. prog = orig_prog;
  1346. goto out_off;
  1347. }
  1348. build_prologue(&ctx);
  1349. build_epilogue(&ctx);
  1350. /* Now we know the actual image size. */
  1351. image_size = sizeof(u32) * ctx.idx;
  1352. header = bpf_jit_binary_alloc(image_size, &image_ptr,
  1353. sizeof(u32), jit_fill_hole);
  1354. if (header == NULL) {
  1355. prog = orig_prog;
  1356. goto out_off;
  1357. }
  1358. ctx.image = (u32 *)image_ptr;
  1359. skip_init_ctx:
  1360. for (pass = 1; pass < 3; pass++) {
  1361. ctx.idx = 0;
  1362. build_prologue(&ctx);
  1363. if (build_body(&ctx)) {
  1364. bpf_jit_binary_free(header);
  1365. prog = orig_prog;
  1366. goto out_off;
  1367. }
  1368. build_epilogue(&ctx);
  1369. if (bpf_jit_enable > 1)
  1370. pr_info("Pass %d: shrink = %d, seen = [%c%c%c%c%c%c%c]\n", pass,
  1371. image_size - (ctx.idx * 4),
  1372. ctx.tmp_1_used ? '1' : ' ',
  1373. ctx.tmp_2_used ? '2' : ' ',
  1374. ctx.tmp_3_used ? '3' : ' ',
  1375. ctx.saw_ld_abs_ind ? 'L' : ' ',
  1376. ctx.saw_frame_pointer ? 'F' : ' ',
  1377. ctx.saw_call ? 'C' : ' ',
  1378. ctx.saw_tail_call ? 'T' : ' ');
  1379. }
  1380. if (bpf_jit_enable > 1)
  1381. bpf_jit_dump(prog->len, image_size, pass, ctx.image);
  1382. bpf_flush_icache(header, (u8 *)header + (header->pages * PAGE_SIZE));
  1383. if (!prog->is_func || extra_pass) {
  1384. bpf_jit_binary_lock_ro(header);
  1385. } else {
  1386. jit_data->ctx = ctx;
  1387. jit_data->image = image_ptr;
  1388. jit_data->header = header;
  1389. }
  1390. prog->bpf_func = (void *)ctx.image;
  1391. prog->jited = 1;
  1392. prog->jited_len = image_size;
  1393. if (!prog->is_func || extra_pass) {
  1394. out_off:
  1395. kfree(ctx.offset);
  1396. kfree(jit_data);
  1397. prog->aux->jit_data = NULL;
  1398. }
  1399. out:
  1400. if (tmp_blinded)
  1401. bpf_jit_prog_release_other(prog, prog == orig_prog ?
  1402. tmp : orig_prog);
  1403. return prog;
  1404. }