bpf_jit_comp.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * BPF Jit compiler for s390.
  4. *
  5. * Minimum build requirements:
  6. *
  7. * - HAVE_MARCH_Z196_FEATURES: laal, laalg
  8. * - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
  9. * - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
  10. * - PACK_STACK
  11. * - 64BIT
  12. *
  13. * Copyright IBM Corp. 2012,2015
  14. *
  15. * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
  16. * Michael Holzheu <holzheu@linux.vnet.ibm.com>
  17. */
  18. #define KMSG_COMPONENT "bpf_jit"
  19. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  20. #include <linux/netdevice.h>
  21. #include <linux/filter.h>
  22. #include <linux/init.h>
  23. #include <linux/bpf.h>
  24. #include <asm/cacheflush.h>
  25. #include <asm/dis.h>
  26. #include <asm/set_memory.h>
  27. #include "bpf_jit.h"
  28. struct bpf_jit {
  29. u32 seen; /* Flags to remember seen eBPF instructions */
  30. u32 seen_reg[16]; /* Array to remember which registers are used */
  31. u32 *addrs; /* Array with relative instruction addresses */
  32. u8 *prg_buf; /* Start of program */
  33. int size; /* Size of program and literal pool */
  34. int size_prg; /* Size of program */
  35. int prg; /* Current position in program */
  36. int lit_start; /* Start of literal pool */
  37. int lit; /* Current position in literal pool */
  38. int base_ip; /* Base address for literal pool */
  39. int ret0_ip; /* Address of return 0 */
  40. int exit_ip; /* Address of exit */
  41. int tail_call_start; /* Tail call start offset */
  42. int labels[1]; /* Labels for local jumps */
  43. };
  44. #define BPF_SIZE_MAX 0xffff /* Max size for program (16 bit branches) */
  45. #define SEEN_SKB 1 /* skb access */
  46. #define SEEN_MEM 2 /* use mem[] for temporary storage */
  47. #define SEEN_RET0 4 /* ret0_ip points to a valid return 0 */
  48. #define SEEN_LITERAL 8 /* code uses literals */
  49. #define SEEN_FUNC 16 /* calls C functions */
  50. #define SEEN_TAIL_CALL 32 /* code uses tail calls */
  51. #define SEEN_REG_AX 64 /* code uses constant blinding */
  52. #define SEEN_STACK (SEEN_FUNC | SEEN_MEM | SEEN_SKB)
  53. /*
  54. * s390 registers
  55. */
  56. #define REG_W0 (MAX_BPF_JIT_REG + 0) /* Work register 1 (even) */
  57. #define REG_W1 (MAX_BPF_JIT_REG + 1) /* Work register 2 (odd) */
  58. #define REG_SKB_DATA (MAX_BPF_JIT_REG + 2) /* SKB data register */
  59. #define REG_L (MAX_BPF_JIT_REG + 3) /* Literal pool register */
  60. #define REG_15 (MAX_BPF_JIT_REG + 4) /* Register 15 */
  61. #define REG_0 REG_W0 /* Register 0 */
  62. #define REG_1 REG_W1 /* Register 1 */
  63. #define REG_2 BPF_REG_1 /* Register 2 */
  64. #define REG_14 BPF_REG_0 /* Register 14 */
  65. /*
  66. * Mapping of BPF registers to s390 registers
  67. */
  68. static const int reg2hex[] = {
  69. /* Return code */
  70. [BPF_REG_0] = 14,
  71. /* Function parameters */
  72. [BPF_REG_1] = 2,
  73. [BPF_REG_2] = 3,
  74. [BPF_REG_3] = 4,
  75. [BPF_REG_4] = 5,
  76. [BPF_REG_5] = 6,
  77. /* Call saved registers */
  78. [BPF_REG_6] = 7,
  79. [BPF_REG_7] = 8,
  80. [BPF_REG_8] = 9,
  81. [BPF_REG_9] = 10,
  82. /* BPF stack pointer */
  83. [BPF_REG_FP] = 13,
  84. /* Register for blinding (shared with REG_SKB_DATA) */
  85. [BPF_REG_AX] = 12,
  86. /* SKB data pointer */
  87. [REG_SKB_DATA] = 12,
  88. /* Work registers for s390x backend */
  89. [REG_W0] = 0,
  90. [REG_W1] = 1,
  91. [REG_L] = 11,
  92. [REG_15] = 15,
  93. };
  94. static inline u32 reg(u32 dst_reg, u32 src_reg)
  95. {
  96. return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
  97. }
  98. static inline u32 reg_high(u32 reg)
  99. {
  100. return reg2hex[reg] << 4;
  101. }
  102. static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
  103. {
  104. u32 r1 = reg2hex[b1];
  105. if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
  106. jit->seen_reg[r1] = 1;
  107. }
  108. #define REG_SET_SEEN(b1) \
  109. ({ \
  110. reg_set_seen(jit, b1); \
  111. })
  112. #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
  113. /*
  114. * EMIT macros for code generation
  115. */
  116. #define _EMIT2(op) \
  117. ({ \
  118. if (jit->prg_buf) \
  119. *(u16 *) (jit->prg_buf + jit->prg) = op; \
  120. jit->prg += 2; \
  121. })
  122. #define EMIT2(op, b1, b2) \
  123. ({ \
  124. _EMIT2(op | reg(b1, b2)); \
  125. REG_SET_SEEN(b1); \
  126. REG_SET_SEEN(b2); \
  127. })
  128. #define _EMIT4(op) \
  129. ({ \
  130. if (jit->prg_buf) \
  131. *(u32 *) (jit->prg_buf + jit->prg) = op; \
  132. jit->prg += 4; \
  133. })
  134. #define EMIT4(op, b1, b2) \
  135. ({ \
  136. _EMIT4(op | reg(b1, b2)); \
  137. REG_SET_SEEN(b1); \
  138. REG_SET_SEEN(b2); \
  139. })
  140. #define EMIT4_RRF(op, b1, b2, b3) \
  141. ({ \
  142. _EMIT4(op | reg_high(b3) << 8 | reg(b1, b2)); \
  143. REG_SET_SEEN(b1); \
  144. REG_SET_SEEN(b2); \
  145. REG_SET_SEEN(b3); \
  146. })
  147. #define _EMIT4_DISP(op, disp) \
  148. ({ \
  149. unsigned int __disp = (disp) & 0xfff; \
  150. _EMIT4(op | __disp); \
  151. })
  152. #define EMIT4_DISP(op, b1, b2, disp) \
  153. ({ \
  154. _EMIT4_DISP(op | reg_high(b1) << 16 | \
  155. reg_high(b2) << 8, disp); \
  156. REG_SET_SEEN(b1); \
  157. REG_SET_SEEN(b2); \
  158. })
  159. #define EMIT4_IMM(op, b1, imm) \
  160. ({ \
  161. unsigned int __imm = (imm) & 0xffff; \
  162. _EMIT4(op | reg_high(b1) << 16 | __imm); \
  163. REG_SET_SEEN(b1); \
  164. })
  165. #define EMIT4_PCREL(op, pcrel) \
  166. ({ \
  167. long __pcrel = ((pcrel) >> 1) & 0xffff; \
  168. _EMIT4(op | __pcrel); \
  169. })
  170. #define _EMIT6(op1, op2) \
  171. ({ \
  172. if (jit->prg_buf) { \
  173. *(u32 *) (jit->prg_buf + jit->prg) = op1; \
  174. *(u16 *) (jit->prg_buf + jit->prg + 4) = op2; \
  175. } \
  176. jit->prg += 6; \
  177. })
  178. #define _EMIT6_DISP(op1, op2, disp) \
  179. ({ \
  180. unsigned int __disp = (disp) & 0xfff; \
  181. _EMIT6(op1 | __disp, op2); \
  182. })
  183. #define _EMIT6_DISP_LH(op1, op2, disp) \
  184. ({ \
  185. u32 _disp = (u32) disp; \
  186. unsigned int __disp_h = _disp & 0xff000; \
  187. unsigned int __disp_l = _disp & 0x00fff; \
  188. _EMIT6(op1 | __disp_l, op2 | __disp_h >> 4); \
  189. })
  190. #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
  191. ({ \
  192. _EMIT6_DISP_LH(op1 | reg(b1, b2) << 16 | \
  193. reg_high(b3) << 8, op2, disp); \
  194. REG_SET_SEEN(b1); \
  195. REG_SET_SEEN(b2); \
  196. REG_SET_SEEN(b3); \
  197. })
  198. #define EMIT6_PCREL_LABEL(op1, op2, b1, b2, label, mask) \
  199. ({ \
  200. int rel = (jit->labels[label] - jit->prg) >> 1; \
  201. _EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), \
  202. op2 | mask << 12); \
  203. REG_SET_SEEN(b1); \
  204. REG_SET_SEEN(b2); \
  205. })
  206. #define EMIT6_PCREL_IMM_LABEL(op1, op2, b1, imm, label, mask) \
  207. ({ \
  208. int rel = (jit->labels[label] - jit->prg) >> 1; \
  209. _EMIT6(op1 | (reg_high(b1) | mask) << 16 | \
  210. (rel & 0xffff), op2 | (imm & 0xff) << 8); \
  211. REG_SET_SEEN(b1); \
  212. BUILD_BUG_ON(((unsigned long) imm) > 0xff); \
  213. })
  214. #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
  215. ({ \
  216. /* Branch instruction needs 6 bytes */ \
  217. int rel = (addrs[i + off + 1] - (addrs[i + 1] - 6)) / 2;\
  218. _EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), op2 | mask); \
  219. REG_SET_SEEN(b1); \
  220. REG_SET_SEEN(b2); \
  221. })
  222. #define _EMIT6_IMM(op, imm) \
  223. ({ \
  224. unsigned int __imm = (imm); \
  225. _EMIT6(op | (__imm >> 16), __imm & 0xffff); \
  226. })
  227. #define EMIT6_IMM(op, b1, imm) \
  228. ({ \
  229. _EMIT6_IMM(op | reg_high(b1) << 16, imm); \
  230. REG_SET_SEEN(b1); \
  231. })
  232. #define EMIT_CONST_U32(val) \
  233. ({ \
  234. unsigned int ret; \
  235. ret = jit->lit - jit->base_ip; \
  236. jit->seen |= SEEN_LITERAL; \
  237. if (jit->prg_buf) \
  238. *(u32 *) (jit->prg_buf + jit->lit) = (u32) val; \
  239. jit->lit += 4; \
  240. ret; \
  241. })
  242. #define EMIT_CONST_U64(val) \
  243. ({ \
  244. unsigned int ret; \
  245. ret = jit->lit - jit->base_ip; \
  246. jit->seen |= SEEN_LITERAL; \
  247. if (jit->prg_buf) \
  248. *(u64 *) (jit->prg_buf + jit->lit) = (u64) val; \
  249. jit->lit += 8; \
  250. ret; \
  251. })
  252. #define EMIT_ZERO(b1) \
  253. ({ \
  254. /* llgfr %dst,%dst (zero extend to 64 bit) */ \
  255. EMIT4(0xb9160000, b1, b1); \
  256. REG_SET_SEEN(b1); \
  257. })
  258. /*
  259. * Fill whole space with illegal instructions
  260. */
  261. static void jit_fill_hole(void *area, unsigned int size)
  262. {
  263. memset(area, 0, size);
  264. }
  265. /*
  266. * Save registers from "rs" (register start) to "re" (register end) on stack
  267. */
  268. static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
  269. {
  270. u32 off = STK_OFF_R6 + (rs - 6) * 8;
  271. if (rs == re)
  272. /* stg %rs,off(%r15) */
  273. _EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
  274. else
  275. /* stmg %rs,%re,off(%r15) */
  276. _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
  277. }
  278. /*
  279. * Restore registers from "rs" (register start) to "re" (register end) on stack
  280. */
  281. static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
  282. {
  283. u32 off = STK_OFF_R6 + (rs - 6) * 8;
  284. if (jit->seen & SEEN_STACK)
  285. off += STK_OFF + stack_depth;
  286. if (rs == re)
  287. /* lg %rs,off(%r15) */
  288. _EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
  289. else
  290. /* lmg %rs,%re,off(%r15) */
  291. _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
  292. }
  293. /*
  294. * Return first seen register (from start)
  295. */
  296. static int get_start(struct bpf_jit *jit, int start)
  297. {
  298. int i;
  299. for (i = start; i <= 15; i++) {
  300. if (jit->seen_reg[i])
  301. return i;
  302. }
  303. return 0;
  304. }
  305. /*
  306. * Return last seen register (from start) (gap >= 2)
  307. */
  308. static int get_end(struct bpf_jit *jit, int start)
  309. {
  310. int i;
  311. for (i = start; i < 15; i++) {
  312. if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
  313. return i - 1;
  314. }
  315. return jit->seen_reg[15] ? 15 : 14;
  316. }
  317. #define REGS_SAVE 1
  318. #define REGS_RESTORE 0
  319. /*
  320. * Save and restore clobbered registers (6-15) on stack.
  321. * We save/restore registers in chunks with gap >= 2 registers.
  322. */
  323. static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
  324. {
  325. int re = 6, rs;
  326. do {
  327. rs = get_start(jit, re);
  328. if (!rs)
  329. break;
  330. re = get_end(jit, rs + 1);
  331. if (op == REGS_SAVE)
  332. save_regs(jit, rs, re);
  333. else
  334. restore_regs(jit, rs, re, stack_depth);
  335. re++;
  336. } while (re <= 15);
  337. }
  338. /*
  339. * For SKB access %b1 contains the SKB pointer. For "bpf_jit.S"
  340. * we store the SKB header length on the stack and the SKB data
  341. * pointer in REG_SKB_DATA if BPF_REG_AX is not used.
  342. */
  343. static void emit_load_skb_data_hlen(struct bpf_jit *jit)
  344. {
  345. /* Header length: llgf %w1,<len>(%b1) */
  346. EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_1,
  347. offsetof(struct sk_buff, len));
  348. /* s %w1,<data_len>(%b1) */
  349. EMIT4_DISP(0x5b000000, REG_W1, BPF_REG_1,
  350. offsetof(struct sk_buff, data_len));
  351. /* stg %w1,ST_OFF_HLEN(%r0,%r15) */
  352. EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0, REG_15, STK_OFF_HLEN);
  353. if (!(jit->seen & SEEN_REG_AX))
  354. /* lg %skb_data,data_off(%b1) */
  355. EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
  356. BPF_REG_1, offsetof(struct sk_buff, data));
  357. }
  358. /*
  359. * Emit function prologue
  360. *
  361. * Save registers and create stack frame if necessary.
  362. * See stack frame layout desription in "bpf_jit.h"!
  363. */
  364. static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth)
  365. {
  366. if (jit->seen & SEEN_TAIL_CALL) {
  367. /* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
  368. _EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
  369. } else {
  370. /* j tail_call_start: NOP if no tail calls are used */
  371. EMIT4_PCREL(0xa7f40000, 6);
  372. _EMIT2(0);
  373. }
  374. /* Tail calls have to skip above initialization */
  375. jit->tail_call_start = jit->prg;
  376. /* Save registers */
  377. save_restore_regs(jit, REGS_SAVE, stack_depth);
  378. /* Setup literal pool */
  379. if (jit->seen & SEEN_LITERAL) {
  380. /* basr %r13,0 */
  381. EMIT2(0x0d00, REG_L, REG_0);
  382. jit->base_ip = jit->prg;
  383. }
  384. /* Setup stack and backchain */
  385. if (jit->seen & SEEN_STACK) {
  386. if (jit->seen & SEEN_FUNC)
  387. /* lgr %w1,%r15 (backchain) */
  388. EMIT4(0xb9040000, REG_W1, REG_15);
  389. /* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
  390. EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
  391. /* aghi %r15,-STK_OFF */
  392. EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
  393. if (jit->seen & SEEN_FUNC)
  394. /* stg %w1,152(%r15) (backchain) */
  395. EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
  396. REG_15, 152);
  397. }
  398. if (jit->seen & SEEN_SKB) {
  399. emit_load_skb_data_hlen(jit);
  400. /* stg %b1,ST_OFF_SKBP(%r0,%r15) */
  401. EMIT6_DISP_LH(0xe3000000, 0x0024, BPF_REG_1, REG_0, REG_15,
  402. STK_OFF_SKBP);
  403. }
  404. }
  405. /*
  406. * Function epilogue
  407. */
  408. static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
  409. {
  410. /* Return 0 */
  411. if (jit->seen & SEEN_RET0) {
  412. jit->ret0_ip = jit->prg;
  413. /* lghi %b0,0 */
  414. EMIT4_IMM(0xa7090000, BPF_REG_0, 0);
  415. }
  416. jit->exit_ip = jit->prg;
  417. /* Load exit code: lgr %r2,%b0 */
  418. EMIT4(0xb9040000, REG_2, BPF_REG_0);
  419. /* Restore registers */
  420. save_restore_regs(jit, REGS_RESTORE, stack_depth);
  421. /* br %r14 */
  422. _EMIT2(0x07fe);
  423. }
  424. /*
  425. * Compile one eBPF instruction into s390x code
  426. *
  427. * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
  428. * stack space for the large switch statement.
  429. */
  430. static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp, int i)
  431. {
  432. struct bpf_insn *insn = &fp->insnsi[i];
  433. int jmp_off, last, insn_count = 1;
  434. unsigned int func_addr, mask;
  435. u32 dst_reg = insn->dst_reg;
  436. u32 src_reg = insn->src_reg;
  437. u32 *addrs = jit->addrs;
  438. s32 imm = insn->imm;
  439. s16 off = insn->off;
  440. if (dst_reg == BPF_REG_AX || src_reg == BPF_REG_AX)
  441. jit->seen |= SEEN_REG_AX;
  442. switch (insn->code) {
  443. /*
  444. * BPF_MOV
  445. */
  446. case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
  447. /* llgfr %dst,%src */
  448. EMIT4(0xb9160000, dst_reg, src_reg);
  449. break;
  450. case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
  451. /* lgr %dst,%src */
  452. EMIT4(0xb9040000, dst_reg, src_reg);
  453. break;
  454. case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
  455. /* llilf %dst,imm */
  456. EMIT6_IMM(0xc00f0000, dst_reg, imm);
  457. break;
  458. case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
  459. /* lgfi %dst,imm */
  460. EMIT6_IMM(0xc0010000, dst_reg, imm);
  461. break;
  462. /*
  463. * BPF_LD 64
  464. */
  465. case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
  466. {
  467. /* 16 byte instruction that uses two 'struct bpf_insn' */
  468. u64 imm64;
  469. imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
  470. /* lg %dst,<d(imm)>(%l) */
  471. EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, REG_0, REG_L,
  472. EMIT_CONST_U64(imm64));
  473. insn_count = 2;
  474. break;
  475. }
  476. /*
  477. * BPF_ADD
  478. */
  479. case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
  480. /* ar %dst,%src */
  481. EMIT2(0x1a00, dst_reg, src_reg);
  482. EMIT_ZERO(dst_reg);
  483. break;
  484. case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
  485. /* agr %dst,%src */
  486. EMIT4(0xb9080000, dst_reg, src_reg);
  487. break;
  488. case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
  489. if (!imm)
  490. break;
  491. /* alfi %dst,imm */
  492. EMIT6_IMM(0xc20b0000, dst_reg, imm);
  493. EMIT_ZERO(dst_reg);
  494. break;
  495. case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
  496. if (!imm)
  497. break;
  498. /* agfi %dst,imm */
  499. EMIT6_IMM(0xc2080000, dst_reg, imm);
  500. break;
  501. /*
  502. * BPF_SUB
  503. */
  504. case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
  505. /* sr %dst,%src */
  506. EMIT2(0x1b00, dst_reg, src_reg);
  507. EMIT_ZERO(dst_reg);
  508. break;
  509. case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
  510. /* sgr %dst,%src */
  511. EMIT4(0xb9090000, dst_reg, src_reg);
  512. break;
  513. case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
  514. if (!imm)
  515. break;
  516. /* alfi %dst,-imm */
  517. EMIT6_IMM(0xc20b0000, dst_reg, -imm);
  518. EMIT_ZERO(dst_reg);
  519. break;
  520. case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
  521. if (!imm)
  522. break;
  523. /* agfi %dst,-imm */
  524. EMIT6_IMM(0xc2080000, dst_reg, -imm);
  525. break;
  526. /*
  527. * BPF_MUL
  528. */
  529. case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
  530. /* msr %dst,%src */
  531. EMIT4(0xb2520000, dst_reg, src_reg);
  532. EMIT_ZERO(dst_reg);
  533. break;
  534. case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
  535. /* msgr %dst,%src */
  536. EMIT4(0xb90c0000, dst_reg, src_reg);
  537. break;
  538. case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
  539. if (imm == 1)
  540. break;
  541. /* msfi %r5,imm */
  542. EMIT6_IMM(0xc2010000, dst_reg, imm);
  543. EMIT_ZERO(dst_reg);
  544. break;
  545. case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
  546. if (imm == 1)
  547. break;
  548. /* msgfi %dst,imm */
  549. EMIT6_IMM(0xc2000000, dst_reg, imm);
  550. break;
  551. /*
  552. * BPF_DIV / BPF_MOD
  553. */
  554. case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
  555. case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
  556. {
  557. int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
  558. /* lhi %w0,0 */
  559. EMIT4_IMM(0xa7080000, REG_W0, 0);
  560. /* lr %w1,%dst */
  561. EMIT2(0x1800, REG_W1, dst_reg);
  562. /* dlr %w0,%src */
  563. EMIT4(0xb9970000, REG_W0, src_reg);
  564. /* llgfr %dst,%rc */
  565. EMIT4(0xb9160000, dst_reg, rc_reg);
  566. break;
  567. }
  568. case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
  569. case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
  570. {
  571. int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
  572. /* lghi %w0,0 */
  573. EMIT4_IMM(0xa7090000, REG_W0, 0);
  574. /* lgr %w1,%dst */
  575. EMIT4(0xb9040000, REG_W1, dst_reg);
  576. /* dlgr %w0,%dst */
  577. EMIT4(0xb9870000, REG_W0, src_reg);
  578. /* lgr %dst,%rc */
  579. EMIT4(0xb9040000, dst_reg, rc_reg);
  580. break;
  581. }
  582. case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
  583. case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
  584. {
  585. int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
  586. if (imm == 1) {
  587. if (BPF_OP(insn->code) == BPF_MOD)
  588. /* lhgi %dst,0 */
  589. EMIT4_IMM(0xa7090000, dst_reg, 0);
  590. break;
  591. }
  592. /* lhi %w0,0 */
  593. EMIT4_IMM(0xa7080000, REG_W0, 0);
  594. /* lr %w1,%dst */
  595. EMIT2(0x1800, REG_W1, dst_reg);
  596. /* dl %w0,<d(imm)>(%l) */
  597. EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
  598. EMIT_CONST_U32(imm));
  599. /* llgfr %dst,%rc */
  600. EMIT4(0xb9160000, dst_reg, rc_reg);
  601. break;
  602. }
  603. case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
  604. case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
  605. {
  606. int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
  607. if (imm == 1) {
  608. if (BPF_OP(insn->code) == BPF_MOD)
  609. /* lhgi %dst,0 */
  610. EMIT4_IMM(0xa7090000, dst_reg, 0);
  611. break;
  612. }
  613. /* lghi %w0,0 */
  614. EMIT4_IMM(0xa7090000, REG_W0, 0);
  615. /* lgr %w1,%dst */
  616. EMIT4(0xb9040000, REG_W1, dst_reg);
  617. /* dlg %w0,<d(imm)>(%l) */
  618. EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
  619. EMIT_CONST_U64(imm));
  620. /* lgr %dst,%rc */
  621. EMIT4(0xb9040000, dst_reg, rc_reg);
  622. break;
  623. }
  624. /*
  625. * BPF_AND
  626. */
  627. case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
  628. /* nr %dst,%src */
  629. EMIT2(0x1400, dst_reg, src_reg);
  630. EMIT_ZERO(dst_reg);
  631. break;
  632. case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
  633. /* ngr %dst,%src */
  634. EMIT4(0xb9800000, dst_reg, src_reg);
  635. break;
  636. case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
  637. /* nilf %dst,imm */
  638. EMIT6_IMM(0xc00b0000, dst_reg, imm);
  639. EMIT_ZERO(dst_reg);
  640. break;
  641. case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
  642. /* ng %dst,<d(imm)>(%l) */
  643. EMIT6_DISP_LH(0xe3000000, 0x0080, dst_reg, REG_0, REG_L,
  644. EMIT_CONST_U64(imm));
  645. break;
  646. /*
  647. * BPF_OR
  648. */
  649. case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
  650. /* or %dst,%src */
  651. EMIT2(0x1600, dst_reg, src_reg);
  652. EMIT_ZERO(dst_reg);
  653. break;
  654. case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
  655. /* ogr %dst,%src */
  656. EMIT4(0xb9810000, dst_reg, src_reg);
  657. break;
  658. case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
  659. /* oilf %dst,imm */
  660. EMIT6_IMM(0xc00d0000, dst_reg, imm);
  661. EMIT_ZERO(dst_reg);
  662. break;
  663. case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
  664. /* og %dst,<d(imm)>(%l) */
  665. EMIT6_DISP_LH(0xe3000000, 0x0081, dst_reg, REG_0, REG_L,
  666. EMIT_CONST_U64(imm));
  667. break;
  668. /*
  669. * BPF_XOR
  670. */
  671. case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
  672. /* xr %dst,%src */
  673. EMIT2(0x1700, dst_reg, src_reg);
  674. EMIT_ZERO(dst_reg);
  675. break;
  676. case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
  677. /* xgr %dst,%src */
  678. EMIT4(0xb9820000, dst_reg, src_reg);
  679. break;
  680. case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
  681. if (!imm)
  682. break;
  683. /* xilf %dst,imm */
  684. EMIT6_IMM(0xc0070000, dst_reg, imm);
  685. EMIT_ZERO(dst_reg);
  686. break;
  687. case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
  688. /* xg %dst,<d(imm)>(%l) */
  689. EMIT6_DISP_LH(0xe3000000, 0x0082, dst_reg, REG_0, REG_L,
  690. EMIT_CONST_U64(imm));
  691. break;
  692. /*
  693. * BPF_LSH
  694. */
  695. case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
  696. /* sll %dst,0(%src) */
  697. EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
  698. EMIT_ZERO(dst_reg);
  699. break;
  700. case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
  701. /* sllg %dst,%dst,0(%src) */
  702. EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
  703. break;
  704. case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
  705. if (imm == 0)
  706. break;
  707. /* sll %dst,imm(%r0) */
  708. EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
  709. EMIT_ZERO(dst_reg);
  710. break;
  711. case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
  712. if (imm == 0)
  713. break;
  714. /* sllg %dst,%dst,imm(%r0) */
  715. EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
  716. break;
  717. /*
  718. * BPF_RSH
  719. */
  720. case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
  721. /* srl %dst,0(%src) */
  722. EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
  723. EMIT_ZERO(dst_reg);
  724. break;
  725. case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
  726. /* srlg %dst,%dst,0(%src) */
  727. EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
  728. break;
  729. case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
  730. if (imm == 0)
  731. break;
  732. /* srl %dst,imm(%r0) */
  733. EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
  734. EMIT_ZERO(dst_reg);
  735. break;
  736. case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
  737. if (imm == 0)
  738. break;
  739. /* srlg %dst,%dst,imm(%r0) */
  740. EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
  741. break;
  742. /*
  743. * BPF_ARSH
  744. */
  745. case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
  746. /* srag %dst,%dst,0(%src) */
  747. EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
  748. break;
  749. case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
  750. if (imm == 0)
  751. break;
  752. /* srag %dst,%dst,imm(%r0) */
  753. EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
  754. break;
  755. /*
  756. * BPF_NEG
  757. */
  758. case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
  759. /* lcr %dst,%dst */
  760. EMIT2(0x1300, dst_reg, dst_reg);
  761. EMIT_ZERO(dst_reg);
  762. break;
  763. case BPF_ALU64 | BPF_NEG: /* dst = -dst */
  764. /* lcgr %dst,%dst */
  765. EMIT4(0xb9130000, dst_reg, dst_reg);
  766. break;
  767. /*
  768. * BPF_FROM_BE/LE
  769. */
  770. case BPF_ALU | BPF_END | BPF_FROM_BE:
  771. /* s390 is big endian, therefore only clear high order bytes */
  772. switch (imm) {
  773. case 16: /* dst = (u16) cpu_to_be16(dst) */
  774. /* llghr %dst,%dst */
  775. EMIT4(0xb9850000, dst_reg, dst_reg);
  776. break;
  777. case 32: /* dst = (u32) cpu_to_be32(dst) */
  778. /* llgfr %dst,%dst */
  779. EMIT4(0xb9160000, dst_reg, dst_reg);
  780. break;
  781. case 64: /* dst = (u64) cpu_to_be64(dst) */
  782. break;
  783. }
  784. break;
  785. case BPF_ALU | BPF_END | BPF_FROM_LE:
  786. switch (imm) {
  787. case 16: /* dst = (u16) cpu_to_le16(dst) */
  788. /* lrvr %dst,%dst */
  789. EMIT4(0xb91f0000, dst_reg, dst_reg);
  790. /* srl %dst,16(%r0) */
  791. EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
  792. /* llghr %dst,%dst */
  793. EMIT4(0xb9850000, dst_reg, dst_reg);
  794. break;
  795. case 32: /* dst = (u32) cpu_to_le32(dst) */
  796. /* lrvr %dst,%dst */
  797. EMIT4(0xb91f0000, dst_reg, dst_reg);
  798. /* llgfr %dst,%dst */
  799. EMIT4(0xb9160000, dst_reg, dst_reg);
  800. break;
  801. case 64: /* dst = (u64) cpu_to_le64(dst) */
  802. /* lrvgr %dst,%dst */
  803. EMIT4(0xb90f0000, dst_reg, dst_reg);
  804. break;
  805. }
  806. break;
  807. /*
  808. * BPF_ST(X)
  809. */
  810. case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
  811. /* stcy %src,off(%dst) */
  812. EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
  813. jit->seen |= SEEN_MEM;
  814. break;
  815. case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
  816. /* sthy %src,off(%dst) */
  817. EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
  818. jit->seen |= SEEN_MEM;
  819. break;
  820. case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
  821. /* sty %src,off(%dst) */
  822. EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
  823. jit->seen |= SEEN_MEM;
  824. break;
  825. case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
  826. /* stg %src,off(%dst) */
  827. EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
  828. jit->seen |= SEEN_MEM;
  829. break;
  830. case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
  831. /* lhi %w0,imm */
  832. EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
  833. /* stcy %w0,off(dst) */
  834. EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
  835. jit->seen |= SEEN_MEM;
  836. break;
  837. case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
  838. /* lhi %w0,imm */
  839. EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
  840. /* sthy %w0,off(dst) */
  841. EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
  842. jit->seen |= SEEN_MEM;
  843. break;
  844. case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
  845. /* llilf %w0,imm */
  846. EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
  847. /* sty %w0,off(%dst) */
  848. EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
  849. jit->seen |= SEEN_MEM;
  850. break;
  851. case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
  852. /* lgfi %w0,imm */
  853. EMIT6_IMM(0xc0010000, REG_W0, imm);
  854. /* stg %w0,off(%dst) */
  855. EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
  856. jit->seen |= SEEN_MEM;
  857. break;
  858. /*
  859. * BPF_STX XADD (atomic_add)
  860. */
  861. case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
  862. /* laal %w0,%src,off(%dst) */
  863. EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
  864. dst_reg, off);
  865. jit->seen |= SEEN_MEM;
  866. break;
  867. case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
  868. /* laalg %w0,%src,off(%dst) */
  869. EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
  870. dst_reg, off);
  871. jit->seen |= SEEN_MEM;
  872. break;
  873. /*
  874. * BPF_LDX
  875. */
  876. case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
  877. /* llgc %dst,0(off,%src) */
  878. EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
  879. jit->seen |= SEEN_MEM;
  880. break;
  881. case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
  882. /* llgh %dst,0(off,%src) */
  883. EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
  884. jit->seen |= SEEN_MEM;
  885. break;
  886. case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
  887. /* llgf %dst,off(%src) */
  888. jit->seen |= SEEN_MEM;
  889. EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
  890. break;
  891. case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
  892. /* lg %dst,0(off,%src) */
  893. jit->seen |= SEEN_MEM;
  894. EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
  895. break;
  896. /*
  897. * BPF_JMP / CALL
  898. */
  899. case BPF_JMP | BPF_CALL:
  900. {
  901. /*
  902. * b0 = (__bpf_call_base + imm)(b1, b2, b3, b4, b5)
  903. */
  904. const u64 func = (u64)__bpf_call_base + imm;
  905. REG_SET_SEEN(BPF_REG_5);
  906. jit->seen |= SEEN_FUNC;
  907. /* lg %w1,<d(imm)>(%l) */
  908. EMIT6_DISP_LH(0xe3000000, 0x0004, REG_W1, REG_0, REG_L,
  909. EMIT_CONST_U64(func));
  910. /* basr %r14,%w1 */
  911. EMIT2(0x0d00, REG_14, REG_W1);
  912. /* lgr %b0,%r2: load return value into %b0 */
  913. EMIT4(0xb9040000, BPF_REG_0, REG_2);
  914. if ((jit->seen & SEEN_SKB) &&
  915. bpf_helper_changes_pkt_data((void *)func)) {
  916. /* lg %b1,ST_OFF_SKBP(%r15) */
  917. EMIT6_DISP_LH(0xe3000000, 0x0004, BPF_REG_1, REG_0,
  918. REG_15, STK_OFF_SKBP);
  919. emit_load_skb_data_hlen(jit);
  920. }
  921. break;
  922. }
  923. case BPF_JMP | BPF_TAIL_CALL:
  924. /*
  925. * Implicit input:
  926. * B1: pointer to ctx
  927. * B2: pointer to bpf_array
  928. * B3: index in bpf_array
  929. */
  930. jit->seen |= SEEN_TAIL_CALL;
  931. /*
  932. * if (index >= array->map.max_entries)
  933. * goto out;
  934. */
  935. /* llgf %w1,map.max_entries(%b2) */
  936. EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
  937. offsetof(struct bpf_array, map.max_entries));
  938. /* clgrj %b3,%w1,0xa,label0: if %b3 >= %w1 goto out */
  939. EMIT6_PCREL_LABEL(0xec000000, 0x0065, BPF_REG_3,
  940. REG_W1, 0, 0xa);
  941. /*
  942. * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
  943. * goto out;
  944. */
  945. if (jit->seen & SEEN_STACK)
  946. off = STK_OFF_TCCNT + STK_OFF + fp->aux->stack_depth;
  947. else
  948. off = STK_OFF_TCCNT;
  949. /* lhi %w0,1 */
  950. EMIT4_IMM(0xa7080000, REG_W0, 1);
  951. /* laal %w1,%w0,off(%r15) */
  952. EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
  953. /* clij %w1,MAX_TAIL_CALL_CNT,0x2,label0 */
  954. EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007f, REG_W1,
  955. MAX_TAIL_CALL_CNT, 0, 0x2);
  956. /*
  957. * prog = array->ptrs[index];
  958. * if (prog == NULL)
  959. * goto out;
  960. */
  961. /* sllg %r1,%b3,3: %r1 = index * 8 */
  962. EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, BPF_REG_3, REG_0, 3);
  963. /* lg %r1,prog(%b2,%r1) */
  964. EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, BPF_REG_2,
  965. REG_1, offsetof(struct bpf_array, ptrs));
  966. /* clgij %r1,0,0x8,label0 */
  967. EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007d, REG_1, 0, 0, 0x8);
  968. /*
  969. * Restore registers before calling function
  970. */
  971. save_restore_regs(jit, REGS_RESTORE, fp->aux->stack_depth);
  972. /*
  973. * goto *(prog->bpf_func + tail_call_start);
  974. */
  975. /* lg %r1,bpf_func(%r1) */
  976. EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
  977. offsetof(struct bpf_prog, bpf_func));
  978. /* bc 0xf,tail_call_start(%r1) */
  979. _EMIT4(0x47f01000 + jit->tail_call_start);
  980. /* out: */
  981. jit->labels[0] = jit->prg;
  982. break;
  983. case BPF_JMP | BPF_EXIT: /* return b0 */
  984. last = (i == fp->len - 1) ? 1 : 0;
  985. if (last && !(jit->seen & SEEN_RET0))
  986. break;
  987. /* j <exit> */
  988. EMIT4_PCREL(0xa7f40000, jit->exit_ip - jit->prg);
  989. break;
  990. /*
  991. * Branch relative (number of skipped instructions) to offset on
  992. * condition.
  993. *
  994. * Condition code to mask mapping:
  995. *
  996. * CC | Description | Mask
  997. * ------------------------------
  998. * 0 | Operands equal | 8
  999. * 1 | First operand low | 4
  1000. * 2 | First operand high | 2
  1001. * 3 | Unused | 1
  1002. *
  1003. * For s390x relative branches: ip = ip + off_bytes
  1004. * For BPF relative branches: insn = insn + off_insns + 1
  1005. *
  1006. * For example for s390x with offset 0 we jump to the branch
  1007. * instruction itself (loop) and for BPF with offset 0 we
  1008. * branch to the instruction behind the branch.
  1009. */
  1010. case BPF_JMP | BPF_JA: /* if (true) */
  1011. mask = 0xf000; /* j */
  1012. goto branch_oc;
  1013. case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
  1014. mask = 0x2000; /* jh */
  1015. goto branch_ks;
  1016. case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
  1017. mask = 0x4000; /* jl */
  1018. goto branch_ks;
  1019. case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
  1020. mask = 0xa000; /* jhe */
  1021. goto branch_ks;
  1022. case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
  1023. mask = 0xc000; /* jle */
  1024. goto branch_ks;
  1025. case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
  1026. mask = 0x2000; /* jh */
  1027. goto branch_ku;
  1028. case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
  1029. mask = 0x4000; /* jl */
  1030. goto branch_ku;
  1031. case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
  1032. mask = 0xa000; /* jhe */
  1033. goto branch_ku;
  1034. case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
  1035. mask = 0xc000; /* jle */
  1036. goto branch_ku;
  1037. case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
  1038. mask = 0x7000; /* jne */
  1039. goto branch_ku;
  1040. case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
  1041. mask = 0x8000; /* je */
  1042. goto branch_ku;
  1043. case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
  1044. mask = 0x7000; /* jnz */
  1045. /* lgfi %w1,imm (load sign extend imm) */
  1046. EMIT6_IMM(0xc0010000, REG_W1, imm);
  1047. /* ngr %w1,%dst */
  1048. EMIT4(0xb9800000, REG_W1, dst_reg);
  1049. goto branch_oc;
  1050. case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
  1051. mask = 0x2000; /* jh */
  1052. goto branch_xs;
  1053. case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
  1054. mask = 0x4000; /* jl */
  1055. goto branch_xs;
  1056. case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
  1057. mask = 0xa000; /* jhe */
  1058. goto branch_xs;
  1059. case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
  1060. mask = 0xc000; /* jle */
  1061. goto branch_xs;
  1062. case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
  1063. mask = 0x2000; /* jh */
  1064. goto branch_xu;
  1065. case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
  1066. mask = 0x4000; /* jl */
  1067. goto branch_xu;
  1068. case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
  1069. mask = 0xa000; /* jhe */
  1070. goto branch_xu;
  1071. case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
  1072. mask = 0xc000; /* jle */
  1073. goto branch_xu;
  1074. case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
  1075. mask = 0x7000; /* jne */
  1076. goto branch_xu;
  1077. case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
  1078. mask = 0x8000; /* je */
  1079. goto branch_xu;
  1080. case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
  1081. mask = 0x7000; /* jnz */
  1082. /* ngrk %w1,%dst,%src */
  1083. EMIT4_RRF(0xb9e40000, REG_W1, dst_reg, src_reg);
  1084. goto branch_oc;
  1085. branch_ks:
  1086. /* lgfi %w1,imm (load sign extend imm) */
  1087. EMIT6_IMM(0xc0010000, REG_W1, imm);
  1088. /* cgrj %dst,%w1,mask,off */
  1089. EMIT6_PCREL(0xec000000, 0x0064, dst_reg, REG_W1, i, off, mask);
  1090. break;
  1091. branch_ku:
  1092. /* lgfi %w1,imm (load sign extend imm) */
  1093. EMIT6_IMM(0xc0010000, REG_W1, imm);
  1094. /* clgrj %dst,%w1,mask,off */
  1095. EMIT6_PCREL(0xec000000, 0x0065, dst_reg, REG_W1, i, off, mask);
  1096. break;
  1097. branch_xs:
  1098. /* cgrj %dst,%src,mask,off */
  1099. EMIT6_PCREL(0xec000000, 0x0064, dst_reg, src_reg, i, off, mask);
  1100. break;
  1101. branch_xu:
  1102. /* clgrj %dst,%src,mask,off */
  1103. EMIT6_PCREL(0xec000000, 0x0065, dst_reg, src_reg, i, off, mask);
  1104. break;
  1105. branch_oc:
  1106. /* brc mask,jmp_off (branch instruction needs 4 bytes) */
  1107. jmp_off = addrs[i + off + 1] - (addrs[i + 1] - 4);
  1108. EMIT4_PCREL(0xa7040000 | mask << 8, jmp_off);
  1109. break;
  1110. /*
  1111. * BPF_LD
  1112. */
  1113. case BPF_LD | BPF_ABS | BPF_B: /* b0 = *(u8 *) (skb->data+imm) */
  1114. case BPF_LD | BPF_IND | BPF_B: /* b0 = *(u8 *) (skb->data+imm+src) */
  1115. if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
  1116. func_addr = __pa(sk_load_byte_pos);
  1117. else
  1118. func_addr = __pa(sk_load_byte);
  1119. goto call_fn;
  1120. case BPF_LD | BPF_ABS | BPF_H: /* b0 = *(u16 *) (skb->data+imm) */
  1121. case BPF_LD | BPF_IND | BPF_H: /* b0 = *(u16 *) (skb->data+imm+src) */
  1122. if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
  1123. func_addr = __pa(sk_load_half_pos);
  1124. else
  1125. func_addr = __pa(sk_load_half);
  1126. goto call_fn;
  1127. case BPF_LD | BPF_ABS | BPF_W: /* b0 = *(u32 *) (skb->data+imm) */
  1128. case BPF_LD | BPF_IND | BPF_W: /* b0 = *(u32 *) (skb->data+imm+src) */
  1129. if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
  1130. func_addr = __pa(sk_load_word_pos);
  1131. else
  1132. func_addr = __pa(sk_load_word);
  1133. goto call_fn;
  1134. call_fn:
  1135. jit->seen |= SEEN_SKB | SEEN_RET0 | SEEN_FUNC;
  1136. REG_SET_SEEN(REG_14); /* Return address of possible func call */
  1137. /*
  1138. * Implicit input:
  1139. * BPF_REG_6 (R7) : skb pointer
  1140. * REG_SKB_DATA (R12): skb data pointer (if no BPF_REG_AX)
  1141. *
  1142. * Calculated input:
  1143. * BPF_REG_2 (R3) : offset of byte(s) to fetch in skb
  1144. * BPF_REG_5 (R6) : return address
  1145. *
  1146. * Output:
  1147. * BPF_REG_0 (R14): data read from skb
  1148. *
  1149. * Scratch registers (BPF_REG_1-5)
  1150. */
  1151. /* Call function: llilf %w1,func_addr */
  1152. EMIT6_IMM(0xc00f0000, REG_W1, func_addr);
  1153. /* Offset: lgfi %b2,imm */
  1154. EMIT6_IMM(0xc0010000, BPF_REG_2, imm);
  1155. if (BPF_MODE(insn->code) == BPF_IND)
  1156. /* agfr %b2,%src (%src is s32 here) */
  1157. EMIT4(0xb9180000, BPF_REG_2, src_reg);
  1158. /* Reload REG_SKB_DATA if BPF_REG_AX is used */
  1159. if (jit->seen & SEEN_REG_AX)
  1160. /* lg %skb_data,data_off(%b6) */
  1161. EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
  1162. BPF_REG_6, offsetof(struct sk_buff, data));
  1163. /* basr %b5,%w1 (%b5 is call saved) */
  1164. EMIT2(0x0d00, BPF_REG_5, REG_W1);
  1165. /*
  1166. * Note: For fast access we jump directly after the
  1167. * jnz instruction from bpf_jit.S
  1168. */
  1169. /* jnz <ret0> */
  1170. EMIT4_PCREL(0xa7740000, jit->ret0_ip - jit->prg);
  1171. break;
  1172. default: /* too complex, give up */
  1173. pr_err("Unknown opcode %02x\n", insn->code);
  1174. return -1;
  1175. }
  1176. return insn_count;
  1177. }
  1178. /*
  1179. * Compile eBPF program into s390x code
  1180. */
  1181. static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp)
  1182. {
  1183. int i, insn_count;
  1184. jit->lit = jit->lit_start;
  1185. jit->prg = 0;
  1186. bpf_jit_prologue(jit, fp->aux->stack_depth);
  1187. for (i = 0; i < fp->len; i += insn_count) {
  1188. insn_count = bpf_jit_insn(jit, fp, i);
  1189. if (insn_count < 0)
  1190. return -1;
  1191. /* Next instruction address */
  1192. jit->addrs[i + insn_count] = jit->prg;
  1193. }
  1194. bpf_jit_epilogue(jit, fp->aux->stack_depth);
  1195. jit->lit_start = jit->prg;
  1196. jit->size = jit->lit;
  1197. jit->size_prg = jit->prg;
  1198. return 0;
  1199. }
  1200. /*
  1201. * Compile eBPF program "fp"
  1202. */
  1203. struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
  1204. {
  1205. struct bpf_prog *tmp, *orig_fp = fp;
  1206. struct bpf_binary_header *header;
  1207. bool tmp_blinded = false;
  1208. struct bpf_jit jit;
  1209. int pass;
  1210. if (!fp->jit_requested)
  1211. return orig_fp;
  1212. tmp = bpf_jit_blind_constants(fp);
  1213. /*
  1214. * If blinding was requested and we failed during blinding,
  1215. * we must fall back to the interpreter.
  1216. */
  1217. if (IS_ERR(tmp))
  1218. return orig_fp;
  1219. if (tmp != fp) {
  1220. tmp_blinded = true;
  1221. fp = tmp;
  1222. }
  1223. memset(&jit, 0, sizeof(jit));
  1224. jit.addrs = kcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
  1225. if (jit.addrs == NULL) {
  1226. fp = orig_fp;
  1227. goto out;
  1228. }
  1229. /*
  1230. * Three initial passes:
  1231. * - 1/2: Determine clobbered registers
  1232. * - 3: Calculate program size and addrs arrray
  1233. */
  1234. for (pass = 1; pass <= 3; pass++) {
  1235. if (bpf_jit_prog(&jit, fp)) {
  1236. fp = orig_fp;
  1237. goto free_addrs;
  1238. }
  1239. }
  1240. /*
  1241. * Final pass: Allocate and generate program
  1242. */
  1243. if (jit.size >= BPF_SIZE_MAX) {
  1244. fp = orig_fp;
  1245. goto free_addrs;
  1246. }
  1247. header = bpf_jit_binary_alloc(jit.size, &jit.prg_buf, 2, jit_fill_hole);
  1248. if (!header) {
  1249. fp = orig_fp;
  1250. goto free_addrs;
  1251. }
  1252. if (bpf_jit_prog(&jit, fp)) {
  1253. fp = orig_fp;
  1254. goto free_addrs;
  1255. }
  1256. if (bpf_jit_enable > 1) {
  1257. bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
  1258. print_fn_code(jit.prg_buf, jit.size_prg);
  1259. }
  1260. bpf_jit_binary_lock_ro(header);
  1261. fp->bpf_func = (void *) jit.prg_buf;
  1262. fp->jited = 1;
  1263. fp->jited_len = jit.size;
  1264. free_addrs:
  1265. kfree(jit.addrs);
  1266. out:
  1267. if (tmp_blinded)
  1268. bpf_jit_prog_release_other(fp, fp == orig_fp ?
  1269. tmp : orig_fp);
  1270. return fp;
  1271. }