fsl-quadspi.c 25 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013
  1. /*
  2. * Freescale QuadSPI driver.
  3. *
  4. * Copyright (C) 2013 Freescale Semiconductor, Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/module.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/errno.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/sched.h>
  17. #include <linux/delay.h>
  18. #include <linux/io.h>
  19. #include <linux/clk.h>
  20. #include <linux/err.h>
  21. #include <linux/of.h>
  22. #include <linux/of_device.h>
  23. #include <linux/timer.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/completion.h>
  26. #include <linux/mtd/mtd.h>
  27. #include <linux/mtd/partitions.h>
  28. #include <linux/mtd/spi-nor.h>
  29. /* The registers */
  30. #define QUADSPI_MCR 0x00
  31. #define QUADSPI_MCR_RESERVED_SHIFT 16
  32. #define QUADSPI_MCR_RESERVED_MASK (0xF << QUADSPI_MCR_RESERVED_SHIFT)
  33. #define QUADSPI_MCR_MDIS_SHIFT 14
  34. #define QUADSPI_MCR_MDIS_MASK (1 << QUADSPI_MCR_MDIS_SHIFT)
  35. #define QUADSPI_MCR_CLR_TXF_SHIFT 11
  36. #define QUADSPI_MCR_CLR_TXF_MASK (1 << QUADSPI_MCR_CLR_TXF_SHIFT)
  37. #define QUADSPI_MCR_CLR_RXF_SHIFT 10
  38. #define QUADSPI_MCR_CLR_RXF_MASK (1 << QUADSPI_MCR_CLR_RXF_SHIFT)
  39. #define QUADSPI_MCR_DDR_EN_SHIFT 7
  40. #define QUADSPI_MCR_DDR_EN_MASK (1 << QUADSPI_MCR_DDR_EN_SHIFT)
  41. #define QUADSPI_MCR_END_CFG_SHIFT 2
  42. #define QUADSPI_MCR_END_CFG_MASK (3 << QUADSPI_MCR_END_CFG_SHIFT)
  43. #define QUADSPI_MCR_SWRSTHD_SHIFT 1
  44. #define QUADSPI_MCR_SWRSTHD_MASK (1 << QUADSPI_MCR_SWRSTHD_SHIFT)
  45. #define QUADSPI_MCR_SWRSTSD_SHIFT 0
  46. #define QUADSPI_MCR_SWRSTSD_MASK (1 << QUADSPI_MCR_SWRSTSD_SHIFT)
  47. #define QUADSPI_IPCR 0x08
  48. #define QUADSPI_IPCR_SEQID_SHIFT 24
  49. #define QUADSPI_IPCR_SEQID_MASK (0xF << QUADSPI_IPCR_SEQID_SHIFT)
  50. #define QUADSPI_BUF0CR 0x10
  51. #define QUADSPI_BUF1CR 0x14
  52. #define QUADSPI_BUF2CR 0x18
  53. #define QUADSPI_BUFXCR_INVALID_MSTRID 0xe
  54. #define QUADSPI_BUF3CR 0x1c
  55. #define QUADSPI_BUF3CR_ALLMST_SHIFT 31
  56. #define QUADSPI_BUF3CR_ALLMST_MASK (1 << QUADSPI_BUF3CR_ALLMST_SHIFT)
  57. #define QUADSPI_BUF3CR_ADATSZ_SHIFT 8
  58. #define QUADSPI_BUF3CR_ADATSZ_MASK (0xFF << QUADSPI_BUF3CR_ADATSZ_SHIFT)
  59. #define QUADSPI_BFGENCR 0x20
  60. #define QUADSPI_BFGENCR_PAR_EN_SHIFT 16
  61. #define QUADSPI_BFGENCR_PAR_EN_MASK (1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
  62. #define QUADSPI_BFGENCR_SEQID_SHIFT 12
  63. #define QUADSPI_BFGENCR_SEQID_MASK (0xF << QUADSPI_BFGENCR_SEQID_SHIFT)
  64. #define QUADSPI_BUF0IND 0x30
  65. #define QUADSPI_BUF1IND 0x34
  66. #define QUADSPI_BUF2IND 0x38
  67. #define QUADSPI_SFAR 0x100
  68. #define QUADSPI_SMPR 0x108
  69. #define QUADSPI_SMPR_DDRSMP_SHIFT 16
  70. #define QUADSPI_SMPR_DDRSMP_MASK (7 << QUADSPI_SMPR_DDRSMP_SHIFT)
  71. #define QUADSPI_SMPR_FSDLY_SHIFT 6
  72. #define QUADSPI_SMPR_FSDLY_MASK (1 << QUADSPI_SMPR_FSDLY_SHIFT)
  73. #define QUADSPI_SMPR_FSPHS_SHIFT 5
  74. #define QUADSPI_SMPR_FSPHS_MASK (1 << QUADSPI_SMPR_FSPHS_SHIFT)
  75. #define QUADSPI_SMPR_HSENA_SHIFT 0
  76. #define QUADSPI_SMPR_HSENA_MASK (1 << QUADSPI_SMPR_HSENA_SHIFT)
  77. #define QUADSPI_RBSR 0x10c
  78. #define QUADSPI_RBSR_RDBFL_SHIFT 8
  79. #define QUADSPI_RBSR_RDBFL_MASK (0x3F << QUADSPI_RBSR_RDBFL_SHIFT)
  80. #define QUADSPI_RBCT 0x110
  81. #define QUADSPI_RBCT_WMRK_MASK 0x1F
  82. #define QUADSPI_RBCT_RXBRD_SHIFT 8
  83. #define QUADSPI_RBCT_RXBRD_USEIPS (0x1 << QUADSPI_RBCT_RXBRD_SHIFT)
  84. #define QUADSPI_TBSR 0x150
  85. #define QUADSPI_TBDR 0x154
  86. #define QUADSPI_SR 0x15c
  87. #define QUADSPI_SR_IP_ACC_SHIFT 1
  88. #define QUADSPI_SR_IP_ACC_MASK (0x1 << QUADSPI_SR_IP_ACC_SHIFT)
  89. #define QUADSPI_SR_AHB_ACC_SHIFT 2
  90. #define QUADSPI_SR_AHB_ACC_MASK (0x1 << QUADSPI_SR_AHB_ACC_SHIFT)
  91. #define QUADSPI_FR 0x160
  92. #define QUADSPI_FR_TFF_MASK 0x1
  93. #define QUADSPI_SFA1AD 0x180
  94. #define QUADSPI_SFA2AD 0x184
  95. #define QUADSPI_SFB1AD 0x188
  96. #define QUADSPI_SFB2AD 0x18c
  97. #define QUADSPI_RBDR 0x200
  98. #define QUADSPI_LUTKEY 0x300
  99. #define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
  100. #define QUADSPI_LCKCR 0x304
  101. #define QUADSPI_LCKER_LOCK 0x1
  102. #define QUADSPI_LCKER_UNLOCK 0x2
  103. #define QUADSPI_RSER 0x164
  104. #define QUADSPI_RSER_TFIE (0x1 << 0)
  105. #define QUADSPI_LUT_BASE 0x310
  106. /*
  107. * The definition of the LUT register shows below:
  108. *
  109. * ---------------------------------------------------
  110. * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
  111. * ---------------------------------------------------
  112. */
  113. #define OPRND0_SHIFT 0
  114. #define PAD0_SHIFT 8
  115. #define INSTR0_SHIFT 10
  116. #define OPRND1_SHIFT 16
  117. /* Instruction set for the LUT register. */
  118. #define LUT_STOP 0
  119. #define LUT_CMD 1
  120. #define LUT_ADDR 2
  121. #define LUT_DUMMY 3
  122. #define LUT_MODE 4
  123. #define LUT_MODE2 5
  124. #define LUT_MODE4 6
  125. #define LUT_READ 7
  126. #define LUT_WRITE 8
  127. #define LUT_JMP_ON_CS 9
  128. #define LUT_ADDR_DDR 10
  129. #define LUT_MODE_DDR 11
  130. #define LUT_MODE2_DDR 12
  131. #define LUT_MODE4_DDR 13
  132. #define LUT_READ_DDR 14
  133. #define LUT_WRITE_DDR 15
  134. #define LUT_DATA_LEARN 16
  135. /*
  136. * The PAD definitions for LUT register.
  137. *
  138. * The pad stands for the lines number of IO[0:3].
  139. * For example, the Quad read need four IO lines, so you should
  140. * set LUT_PAD4 which means we use four IO lines.
  141. */
  142. #define LUT_PAD1 0
  143. #define LUT_PAD2 1
  144. #define LUT_PAD4 2
  145. /* Oprands for the LUT register. */
  146. #define ADDR24BIT 0x18
  147. #define ADDR32BIT 0x20
  148. /* Macros for constructing the LUT register. */
  149. #define LUT0(ins, pad, opr) \
  150. (((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
  151. ((LUT_##ins) << INSTR0_SHIFT))
  152. #define LUT1(ins, pad, opr) (LUT0(ins, pad, opr) << OPRND1_SHIFT)
  153. /* other macros for LUT register. */
  154. #define QUADSPI_LUT(x) (QUADSPI_LUT_BASE + (x) * 4)
  155. #define QUADSPI_LUT_NUM 64
  156. /* SEQID -- we can have 16 seqids at most. */
  157. #define SEQID_QUAD_READ 0
  158. #define SEQID_WREN 1
  159. #define SEQID_WRDI 2
  160. #define SEQID_RDSR 3
  161. #define SEQID_SE 4
  162. #define SEQID_CHIP_ERASE 5
  163. #define SEQID_PP 6
  164. #define SEQID_RDID 7
  165. #define SEQID_WRSR 8
  166. #define SEQID_RDCR 9
  167. #define SEQID_EN4B 10
  168. #define SEQID_BRWR 11
  169. enum fsl_qspi_devtype {
  170. FSL_QUADSPI_VYBRID,
  171. FSL_QUADSPI_IMX6SX,
  172. };
  173. struct fsl_qspi_devtype_data {
  174. enum fsl_qspi_devtype devtype;
  175. int rxfifo;
  176. int txfifo;
  177. int ahb_buf_size;
  178. };
  179. static struct fsl_qspi_devtype_data vybrid_data = {
  180. .devtype = FSL_QUADSPI_VYBRID,
  181. .rxfifo = 128,
  182. .txfifo = 64,
  183. .ahb_buf_size = 1024
  184. };
  185. static struct fsl_qspi_devtype_data imx6sx_data = {
  186. .devtype = FSL_QUADSPI_IMX6SX,
  187. .rxfifo = 128,
  188. .txfifo = 512,
  189. .ahb_buf_size = 1024
  190. };
  191. #define FSL_QSPI_MAX_CHIP 4
  192. struct fsl_qspi {
  193. struct mtd_info mtd[FSL_QSPI_MAX_CHIP];
  194. struct spi_nor nor[FSL_QSPI_MAX_CHIP];
  195. void __iomem *iobase;
  196. void __iomem *ahb_base; /* Used when read from AHB bus */
  197. u32 memmap_phy;
  198. struct clk *clk, *clk_en;
  199. struct device *dev;
  200. struct completion c;
  201. struct fsl_qspi_devtype_data *devtype_data;
  202. u32 nor_size;
  203. u32 nor_num;
  204. u32 clk_rate;
  205. unsigned int chip_base_addr; /* We may support two chips. */
  206. bool has_second_chip;
  207. };
  208. static inline int is_vybrid_qspi(struct fsl_qspi *q)
  209. {
  210. return q->devtype_data->devtype == FSL_QUADSPI_VYBRID;
  211. }
  212. static inline int is_imx6sx_qspi(struct fsl_qspi *q)
  213. {
  214. return q->devtype_data->devtype == FSL_QUADSPI_IMX6SX;
  215. }
  216. /*
  217. * An IC bug makes us to re-arrange the 32-bit data.
  218. * The following chips, such as IMX6SLX, have fixed this bug.
  219. */
  220. static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
  221. {
  222. return is_vybrid_qspi(q) ? __swab32(a) : a;
  223. }
  224. static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q)
  225. {
  226. writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
  227. writel(QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
  228. }
  229. static inline void fsl_qspi_lock_lut(struct fsl_qspi *q)
  230. {
  231. writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
  232. writel(QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
  233. }
  234. static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
  235. {
  236. struct fsl_qspi *q = dev_id;
  237. u32 reg;
  238. /* clear interrupt */
  239. reg = readl(q->iobase + QUADSPI_FR);
  240. writel(reg, q->iobase + QUADSPI_FR);
  241. if (reg & QUADSPI_FR_TFF_MASK)
  242. complete(&q->c);
  243. dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg);
  244. return IRQ_HANDLED;
  245. }
  246. static void fsl_qspi_init_lut(struct fsl_qspi *q)
  247. {
  248. void __iomem *base = q->iobase;
  249. int rxfifo = q->devtype_data->rxfifo;
  250. u32 lut_base;
  251. u8 cmd, addrlen, dummy;
  252. int i;
  253. fsl_qspi_unlock_lut(q);
  254. /* Clear all the LUT table */
  255. for (i = 0; i < QUADSPI_LUT_NUM; i++)
  256. writel(0, base + QUADSPI_LUT_BASE + i * 4);
  257. /* Quad Read */
  258. lut_base = SEQID_QUAD_READ * 4;
  259. if (q->nor_size <= SZ_16M) {
  260. cmd = SPINOR_OP_READ_1_1_4;
  261. addrlen = ADDR24BIT;
  262. dummy = 8;
  263. } else {
  264. /* use the 4-byte address */
  265. cmd = SPINOR_OP_READ_1_1_4;
  266. addrlen = ADDR32BIT;
  267. dummy = 8;
  268. }
  269. writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
  270. base + QUADSPI_LUT(lut_base));
  271. writel(LUT0(DUMMY, PAD1, dummy) | LUT1(READ, PAD4, rxfifo),
  272. base + QUADSPI_LUT(lut_base + 1));
  273. /* Write enable */
  274. lut_base = SEQID_WREN * 4;
  275. writel(LUT0(CMD, PAD1, SPINOR_OP_WREN), base + QUADSPI_LUT(lut_base));
  276. /* Page Program */
  277. lut_base = SEQID_PP * 4;
  278. if (q->nor_size <= SZ_16M) {
  279. cmd = SPINOR_OP_PP;
  280. addrlen = ADDR24BIT;
  281. } else {
  282. /* use the 4-byte address */
  283. cmd = SPINOR_OP_PP;
  284. addrlen = ADDR32BIT;
  285. }
  286. writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
  287. base + QUADSPI_LUT(lut_base));
  288. writel(LUT0(WRITE, PAD1, 0), base + QUADSPI_LUT(lut_base + 1));
  289. /* Read Status */
  290. lut_base = SEQID_RDSR * 4;
  291. writel(LUT0(CMD, PAD1, SPINOR_OP_RDSR) | LUT1(READ, PAD1, 0x1),
  292. base + QUADSPI_LUT(lut_base));
  293. /* Erase a sector */
  294. lut_base = SEQID_SE * 4;
  295. if (q->nor_size <= SZ_16M) {
  296. cmd = SPINOR_OP_SE;
  297. addrlen = ADDR24BIT;
  298. } else {
  299. /* use the 4-byte address */
  300. cmd = SPINOR_OP_SE;
  301. addrlen = ADDR32BIT;
  302. }
  303. writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
  304. base + QUADSPI_LUT(lut_base));
  305. /* Erase the whole chip */
  306. lut_base = SEQID_CHIP_ERASE * 4;
  307. writel(LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
  308. base + QUADSPI_LUT(lut_base));
  309. /* READ ID */
  310. lut_base = SEQID_RDID * 4;
  311. writel(LUT0(CMD, PAD1, SPINOR_OP_RDID) | LUT1(READ, PAD1, 0x8),
  312. base + QUADSPI_LUT(lut_base));
  313. /* Write Register */
  314. lut_base = SEQID_WRSR * 4;
  315. writel(LUT0(CMD, PAD1, SPINOR_OP_WRSR) | LUT1(WRITE, PAD1, 0x2),
  316. base + QUADSPI_LUT(lut_base));
  317. /* Read Configuration Register */
  318. lut_base = SEQID_RDCR * 4;
  319. writel(LUT0(CMD, PAD1, SPINOR_OP_RDCR) | LUT1(READ, PAD1, 0x1),
  320. base + QUADSPI_LUT(lut_base));
  321. /* Write disable */
  322. lut_base = SEQID_WRDI * 4;
  323. writel(LUT0(CMD, PAD1, SPINOR_OP_WRDI), base + QUADSPI_LUT(lut_base));
  324. /* Enter 4 Byte Mode (Micron) */
  325. lut_base = SEQID_EN4B * 4;
  326. writel(LUT0(CMD, PAD1, SPINOR_OP_EN4B), base + QUADSPI_LUT(lut_base));
  327. /* Enter 4 Byte Mode (Spansion) */
  328. lut_base = SEQID_BRWR * 4;
  329. writel(LUT0(CMD, PAD1, SPINOR_OP_BRWR), base + QUADSPI_LUT(lut_base));
  330. fsl_qspi_lock_lut(q);
  331. }
  332. /* Get the SEQID for the command */
  333. static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd)
  334. {
  335. switch (cmd) {
  336. case SPINOR_OP_READ_1_1_4:
  337. return SEQID_QUAD_READ;
  338. case SPINOR_OP_WREN:
  339. return SEQID_WREN;
  340. case SPINOR_OP_WRDI:
  341. return SEQID_WRDI;
  342. case SPINOR_OP_RDSR:
  343. return SEQID_RDSR;
  344. case SPINOR_OP_SE:
  345. return SEQID_SE;
  346. case SPINOR_OP_CHIP_ERASE:
  347. return SEQID_CHIP_ERASE;
  348. case SPINOR_OP_PP:
  349. return SEQID_PP;
  350. case SPINOR_OP_RDID:
  351. return SEQID_RDID;
  352. case SPINOR_OP_WRSR:
  353. return SEQID_WRSR;
  354. case SPINOR_OP_RDCR:
  355. return SEQID_RDCR;
  356. case SPINOR_OP_EN4B:
  357. return SEQID_EN4B;
  358. case SPINOR_OP_BRWR:
  359. return SEQID_BRWR;
  360. default:
  361. dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd);
  362. break;
  363. }
  364. return -EINVAL;
  365. }
  366. static int
  367. fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
  368. {
  369. void __iomem *base = q->iobase;
  370. int seqid;
  371. u32 reg, reg2;
  372. int err;
  373. init_completion(&q->c);
  374. dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
  375. q->chip_base_addr, addr, len, cmd);
  376. /* save the reg */
  377. reg = readl(base + QUADSPI_MCR);
  378. writel(q->memmap_phy + q->chip_base_addr + addr, base + QUADSPI_SFAR);
  379. writel(QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
  380. base + QUADSPI_RBCT);
  381. writel(reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);
  382. do {
  383. reg2 = readl(base + QUADSPI_SR);
  384. if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) {
  385. udelay(1);
  386. dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2);
  387. continue;
  388. }
  389. break;
  390. } while (1);
  391. /* trigger the LUT now */
  392. seqid = fsl_qspi_get_seqid(q, cmd);
  393. writel((seqid << QUADSPI_IPCR_SEQID_SHIFT) | len, base + QUADSPI_IPCR);
  394. /* Wait for the interrupt. */
  395. err = wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000));
  396. if (!err) {
  397. dev_err(q->dev,
  398. "cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
  399. cmd, addr, readl(base + QUADSPI_FR),
  400. readl(base + QUADSPI_SR));
  401. err = -ETIMEDOUT;
  402. } else {
  403. err = 0;
  404. }
  405. /* restore the MCR */
  406. writel(reg, base + QUADSPI_MCR);
  407. return err;
  408. }
  409. /* Read out the data from the QUADSPI_RBDR buffer registers. */
  410. static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf)
  411. {
  412. u32 tmp;
  413. int i = 0;
  414. while (len > 0) {
  415. tmp = readl(q->iobase + QUADSPI_RBDR + i * 4);
  416. tmp = fsl_qspi_endian_xchg(q, tmp);
  417. dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n",
  418. q->chip_base_addr, tmp);
  419. if (len >= 4) {
  420. *((u32 *)rxbuf) = tmp;
  421. rxbuf += 4;
  422. } else {
  423. memcpy(rxbuf, &tmp, len);
  424. break;
  425. }
  426. len -= 4;
  427. i++;
  428. }
  429. }
  430. /*
  431. * If we have changed the content of the flash by writing or erasing,
  432. * we need to invalidate the AHB buffer. If we do not do so, we may read out
  433. * the wrong data. The spec tells us reset the AHB domain and Serial Flash
  434. * domain at the same time.
  435. */
  436. static inline void fsl_qspi_invalid(struct fsl_qspi *q)
  437. {
  438. u32 reg;
  439. reg = readl(q->iobase + QUADSPI_MCR);
  440. reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
  441. writel(reg, q->iobase + QUADSPI_MCR);
  442. /*
  443. * The minimum delay : 1 AHB + 2 SFCK clocks.
  444. * Delay 1 us is enough.
  445. */
  446. udelay(1);
  447. reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
  448. writel(reg, q->iobase + QUADSPI_MCR);
  449. }
  450. static int fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor,
  451. u8 opcode, unsigned int to, u32 *txbuf,
  452. unsigned count, size_t *retlen)
  453. {
  454. int ret, i, j;
  455. u32 tmp;
  456. dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n",
  457. q->chip_base_addr, to, count);
  458. /* clear the TX FIFO. */
  459. tmp = readl(q->iobase + QUADSPI_MCR);
  460. writel(tmp | QUADSPI_MCR_CLR_RXF_MASK, q->iobase + QUADSPI_MCR);
  461. /* fill the TX data to the FIFO */
  462. for (j = 0, i = ((count + 3) / 4); j < i; j++) {
  463. tmp = fsl_qspi_endian_xchg(q, *txbuf);
  464. writel(tmp, q->iobase + QUADSPI_TBDR);
  465. txbuf++;
  466. }
  467. /* Trigger it */
  468. ret = fsl_qspi_runcmd(q, opcode, to, count);
  469. if (ret == 0 && retlen)
  470. *retlen += count;
  471. return ret;
  472. }
  473. static void fsl_qspi_set_map_addr(struct fsl_qspi *q)
  474. {
  475. int nor_size = q->nor_size;
  476. void __iomem *base = q->iobase;
  477. writel(nor_size + q->memmap_phy, base + QUADSPI_SFA1AD);
  478. writel(nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD);
  479. writel(nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD);
  480. writel(nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD);
  481. }
  482. /*
  483. * There are two different ways to read out the data from the flash:
  484. * the "IP Command Read" and the "AHB Command Read".
  485. *
  486. * The IC guy suggests we use the "AHB Command Read" which is faster
  487. * then the "IP Command Read". (What's more is that there is a bug in
  488. * the "IP Command Read" in the Vybrid.)
  489. *
  490. * After we set up the registers for the "AHB Command Read", we can use
  491. * the memcpy to read the data directly. A "missed" access to the buffer
  492. * causes the controller to clear the buffer, and use the sequence pointed
  493. * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
  494. */
  495. static void fsl_qspi_init_abh_read(struct fsl_qspi *q)
  496. {
  497. void __iomem *base = q->iobase;
  498. int seqid;
  499. /* AHB configuration for access buffer 0/1/2 .*/
  500. writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
  501. writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
  502. writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
  503. /*
  504. * Set ADATSZ with the maximum AHB buffer size to improve the
  505. * read performance.
  506. */
  507. writel(QUADSPI_BUF3CR_ALLMST_MASK | ((q->devtype_data->ahb_buf_size / 8)
  508. << QUADSPI_BUF3CR_ADATSZ_SHIFT), base + QUADSPI_BUF3CR);
  509. /* We only use the buffer3 */
  510. writel(0, base + QUADSPI_BUF0IND);
  511. writel(0, base + QUADSPI_BUF1IND);
  512. writel(0, base + QUADSPI_BUF2IND);
  513. /* Set the default lut sequence for AHB Read. */
  514. seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode);
  515. writel(seqid << QUADSPI_BFGENCR_SEQID_SHIFT,
  516. q->iobase + QUADSPI_BFGENCR);
  517. }
  518. /* We use this function to do some basic init for spi_nor_scan(). */
  519. static int fsl_qspi_nor_setup(struct fsl_qspi *q)
  520. {
  521. void __iomem *base = q->iobase;
  522. u32 reg;
  523. int ret;
  524. /* the default frequency, we will change it in the future.*/
  525. ret = clk_set_rate(q->clk, 66000000);
  526. if (ret)
  527. return ret;
  528. /* Init the LUT table. */
  529. fsl_qspi_init_lut(q);
  530. /* Disable the module */
  531. writel(QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
  532. base + QUADSPI_MCR);
  533. reg = readl(base + QUADSPI_SMPR);
  534. writel(reg & ~(QUADSPI_SMPR_FSDLY_MASK
  535. | QUADSPI_SMPR_FSPHS_MASK
  536. | QUADSPI_SMPR_HSENA_MASK
  537. | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
  538. /* Enable the module */
  539. writel(QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
  540. base + QUADSPI_MCR);
  541. /* enable the interrupt */
  542. writel(QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
  543. return 0;
  544. }
  545. static int fsl_qspi_nor_setup_last(struct fsl_qspi *q)
  546. {
  547. unsigned long rate = q->clk_rate;
  548. int ret;
  549. if (is_imx6sx_qspi(q))
  550. rate *= 4;
  551. ret = clk_set_rate(q->clk, rate);
  552. if (ret)
  553. return ret;
  554. /* Init the LUT table again. */
  555. fsl_qspi_init_lut(q);
  556. /* Init for AHB read */
  557. fsl_qspi_init_abh_read(q);
  558. return 0;
  559. }
  560. static struct of_device_id fsl_qspi_dt_ids[] = {
  561. { .compatible = "fsl,vf610-qspi", .data = (void *)&vybrid_data, },
  562. { .compatible = "fsl,imx6sx-qspi", .data = (void *)&imx6sx_data, },
  563. { /* sentinel */ }
  564. };
  565. MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
  566. static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor)
  567. {
  568. q->chip_base_addr = q->nor_size * (nor - q->nor);
  569. }
  570. static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
  571. {
  572. int ret;
  573. struct fsl_qspi *q = nor->priv;
  574. ret = fsl_qspi_runcmd(q, opcode, 0, len);
  575. if (ret)
  576. return ret;
  577. fsl_qspi_read_data(q, len, buf);
  578. return 0;
  579. }
  580. static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len,
  581. int write_enable)
  582. {
  583. struct fsl_qspi *q = nor->priv;
  584. int ret;
  585. if (!buf) {
  586. ret = fsl_qspi_runcmd(q, opcode, 0, 1);
  587. if (ret)
  588. return ret;
  589. if (opcode == SPINOR_OP_CHIP_ERASE)
  590. fsl_qspi_invalid(q);
  591. } else if (len > 0) {
  592. ret = fsl_qspi_nor_write(q, nor, opcode, 0,
  593. (u32 *)buf, len, NULL);
  594. } else {
  595. dev_err(q->dev, "invalid cmd %d\n", opcode);
  596. ret = -EINVAL;
  597. }
  598. return ret;
  599. }
  600. static void fsl_qspi_write(struct spi_nor *nor, loff_t to,
  601. size_t len, size_t *retlen, const u_char *buf)
  602. {
  603. struct fsl_qspi *q = nor->priv;
  604. fsl_qspi_nor_write(q, nor, nor->program_opcode, to,
  605. (u32 *)buf, len, retlen);
  606. /* invalid the data in the AHB buffer. */
  607. fsl_qspi_invalid(q);
  608. }
  609. static int fsl_qspi_read(struct spi_nor *nor, loff_t from,
  610. size_t len, size_t *retlen, u_char *buf)
  611. {
  612. struct fsl_qspi *q = nor->priv;
  613. u8 cmd = nor->read_opcode;
  614. dev_dbg(q->dev, "cmd [%x],read from (0x%p, 0x%.8x, 0x%.8x),len:%d\n",
  615. cmd, q->ahb_base, q->chip_base_addr, (unsigned int)from, len);
  616. /* Read out the data directly from the AHB buffer.*/
  617. memcpy(buf, q->ahb_base + q->chip_base_addr + from, len);
  618. *retlen += len;
  619. return 0;
  620. }
  621. static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs)
  622. {
  623. struct fsl_qspi *q = nor->priv;
  624. int ret;
  625. dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
  626. nor->mtd->erasesize / 1024, q->chip_base_addr, (u32)offs);
  627. ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0);
  628. if (ret)
  629. return ret;
  630. fsl_qspi_invalid(q);
  631. return 0;
  632. }
  633. static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
  634. {
  635. struct fsl_qspi *q = nor->priv;
  636. int ret;
  637. ret = clk_enable(q->clk_en);
  638. if (ret)
  639. return ret;
  640. ret = clk_enable(q->clk);
  641. if (ret) {
  642. clk_disable(q->clk_en);
  643. return ret;
  644. }
  645. fsl_qspi_set_base_addr(q, nor);
  646. return 0;
  647. }
  648. static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
  649. {
  650. struct fsl_qspi *q = nor->priv;
  651. clk_disable(q->clk);
  652. clk_disable(q->clk_en);
  653. }
  654. static int fsl_qspi_probe(struct platform_device *pdev)
  655. {
  656. struct device_node *np = pdev->dev.of_node;
  657. struct mtd_part_parser_data ppdata;
  658. struct device *dev = &pdev->dev;
  659. struct fsl_qspi *q;
  660. struct resource *res;
  661. struct spi_nor *nor;
  662. struct mtd_info *mtd;
  663. int ret, i = 0;
  664. const struct of_device_id *of_id =
  665. of_match_device(fsl_qspi_dt_ids, &pdev->dev);
  666. q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL);
  667. if (!q)
  668. return -ENOMEM;
  669. q->nor_num = of_get_child_count(dev->of_node);
  670. if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP)
  671. return -ENODEV;
  672. /* find the resources */
  673. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
  674. q->iobase = devm_ioremap_resource(dev, res);
  675. if (IS_ERR(q->iobase))
  676. return PTR_ERR(q->iobase);
  677. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  678. "QuadSPI-memory");
  679. q->ahb_base = devm_ioremap_resource(dev, res);
  680. if (IS_ERR(q->ahb_base))
  681. return PTR_ERR(q->ahb_base);
  682. q->memmap_phy = res->start;
  683. /* find the clocks */
  684. q->clk_en = devm_clk_get(dev, "qspi_en");
  685. if (IS_ERR(q->clk_en))
  686. return PTR_ERR(q->clk_en);
  687. q->clk = devm_clk_get(dev, "qspi");
  688. if (IS_ERR(q->clk))
  689. return PTR_ERR(q->clk);
  690. ret = clk_prepare_enable(q->clk_en);
  691. if (ret) {
  692. dev_err(dev, "can not enable the qspi_en clock\n");
  693. return ret;
  694. }
  695. ret = clk_prepare_enable(q->clk);
  696. if (ret) {
  697. dev_err(dev, "can not enable the qspi clock\n");
  698. goto clk_failed;
  699. }
  700. /* find the irq */
  701. ret = platform_get_irq(pdev, 0);
  702. if (ret < 0) {
  703. dev_err(dev, "failed to get the irq\n");
  704. goto irq_failed;
  705. }
  706. ret = devm_request_irq(dev, ret,
  707. fsl_qspi_irq_handler, 0, pdev->name, q);
  708. if (ret) {
  709. dev_err(dev, "failed to request irq.\n");
  710. goto irq_failed;
  711. }
  712. q->dev = dev;
  713. q->devtype_data = (struct fsl_qspi_devtype_data *)of_id->data;
  714. platform_set_drvdata(pdev, q);
  715. ret = fsl_qspi_nor_setup(q);
  716. if (ret)
  717. goto irq_failed;
  718. if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
  719. q->has_second_chip = true;
  720. /* iterate the subnodes. */
  721. for_each_available_child_of_node(dev->of_node, np) {
  722. char modalias[40];
  723. /* skip the holes */
  724. if (!q->has_second_chip)
  725. i *= 2;
  726. nor = &q->nor[i];
  727. mtd = &q->mtd[i];
  728. nor->mtd = mtd;
  729. nor->dev = dev;
  730. nor->priv = q;
  731. mtd->priv = nor;
  732. /* fill the hooks */
  733. nor->read_reg = fsl_qspi_read_reg;
  734. nor->write_reg = fsl_qspi_write_reg;
  735. nor->read = fsl_qspi_read;
  736. nor->write = fsl_qspi_write;
  737. nor->erase = fsl_qspi_erase;
  738. nor->prepare = fsl_qspi_prep;
  739. nor->unprepare = fsl_qspi_unprep;
  740. ret = of_modalias_node(np, modalias, sizeof(modalias));
  741. if (ret < 0)
  742. goto irq_failed;
  743. ret = of_property_read_u32(np, "spi-max-frequency",
  744. &q->clk_rate);
  745. if (ret < 0)
  746. goto irq_failed;
  747. /* set the chip address for READID */
  748. fsl_qspi_set_base_addr(q, nor);
  749. ret = spi_nor_scan(nor, modalias, SPI_NOR_QUAD);
  750. if (ret)
  751. goto irq_failed;
  752. ppdata.of_node = np;
  753. ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
  754. if (ret)
  755. goto irq_failed;
  756. /* Set the correct NOR size now. */
  757. if (q->nor_size == 0) {
  758. q->nor_size = mtd->size;
  759. /* Map the SPI NOR to accessiable address */
  760. fsl_qspi_set_map_addr(q);
  761. }
  762. /*
  763. * The TX FIFO is 64 bytes in the Vybrid, but the Page Program
  764. * may writes 265 bytes per time. The write is working in the
  765. * unit of the TX FIFO, not in the unit of the SPI NOR's page
  766. * size.
  767. *
  768. * So shrink the spi_nor->page_size if it is larger then the
  769. * TX FIFO.
  770. */
  771. if (nor->page_size > q->devtype_data->txfifo)
  772. nor->page_size = q->devtype_data->txfifo;
  773. i++;
  774. }
  775. /* finish the rest init. */
  776. ret = fsl_qspi_nor_setup_last(q);
  777. if (ret)
  778. goto last_init_failed;
  779. clk_disable(q->clk);
  780. clk_disable(q->clk_en);
  781. return 0;
  782. last_init_failed:
  783. for (i = 0; i < q->nor_num; i++) {
  784. /* skip the holes */
  785. if (!q->has_second_chip)
  786. i *= 2;
  787. mtd_device_unregister(&q->mtd[i]);
  788. }
  789. irq_failed:
  790. clk_disable_unprepare(q->clk);
  791. clk_failed:
  792. clk_disable_unprepare(q->clk_en);
  793. return ret;
  794. }
  795. static int fsl_qspi_remove(struct platform_device *pdev)
  796. {
  797. struct fsl_qspi *q = platform_get_drvdata(pdev);
  798. int i;
  799. for (i = 0; i < q->nor_num; i++) {
  800. /* skip the holes */
  801. if (!q->has_second_chip)
  802. i *= 2;
  803. mtd_device_unregister(&q->mtd[i]);
  804. }
  805. /* disable the hardware */
  806. writel(QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
  807. writel(0x0, q->iobase + QUADSPI_RSER);
  808. clk_unprepare(q->clk);
  809. clk_unprepare(q->clk_en);
  810. return 0;
  811. }
  812. static int fsl_qspi_suspend(struct platform_device *pdev, pm_message_t state)
  813. {
  814. return 0;
  815. }
  816. static int fsl_qspi_resume(struct platform_device *pdev)
  817. {
  818. struct fsl_qspi *q = platform_get_drvdata(pdev);
  819. fsl_qspi_nor_setup(q);
  820. fsl_qspi_set_map_addr(q);
  821. fsl_qspi_nor_setup_last(q);
  822. return 0;
  823. }
  824. static struct platform_driver fsl_qspi_driver = {
  825. .driver = {
  826. .name = "fsl-quadspi",
  827. .bus = &platform_bus_type,
  828. .of_match_table = fsl_qspi_dt_ids,
  829. },
  830. .probe = fsl_qspi_probe,
  831. .remove = fsl_qspi_remove,
  832. .suspend = fsl_qspi_suspend,
  833. .resume = fsl_qspi_resume,
  834. };
  835. module_platform_driver(fsl_qspi_driver);
  836. MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
  837. MODULE_AUTHOR("Freescale Semiconductor Inc.");
  838. MODULE_LICENSE("GPL v2");