nand-controller.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565
  1. /*
  2. * Copyright 2017 ATMEL
  3. * Copyright 2017 Free Electrons
  4. *
  5. * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
  6. *
  7. * Derived from the atmel_nand.c driver which contained the following
  8. * copyrights:
  9. *
  10. * Copyright 2003 Rick Bronson
  11. *
  12. * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
  13. * Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
  14. *
  15. * Derived from drivers/mtd/spia.c (removed in v3.8)
  16. * Copyright 2000 Steven J. Hill (sjhill@cotw.com)
  17. *
  18. *
  19. * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
  20. * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
  21. *
  22. * Derived from Das U-Boot source code
  23. * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
  24. * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
  25. *
  26. * Add Programmable Multibit ECC support for various AT91 SoC
  27. * Copyright 2012 ATMEL, Hong Xu
  28. *
  29. * Add Nand Flash Controller support for SAMA5 SoC
  30. * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
  31. *
  32. * This program is free software; you can redistribute it and/or modify
  33. * it under the terms of the GNU General Public License version 2 as
  34. * published by the Free Software Foundation.
  35. *
  36. * A few words about the naming convention in this file. This convention
  37. * applies to structure and function names.
  38. *
  39. * Prefixes:
  40. *
  41. * - atmel_nand_: all generic structures/functions
  42. * - atmel_smc_nand_: all structures/functions specific to the SMC interface
  43. * (at91sam9 and avr32 SoCs)
  44. * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
  45. * (sama5 SoCs and later)
  46. * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
  47. * that is available in the HSMC block
  48. * - <soc>_nand_: all SoC specific structures/functions
  49. */
  50. #include <linux/clk.h>
  51. #include <linux/dma-mapping.h>
  52. #include <linux/dmaengine.h>
  53. #include <linux/genalloc.h>
  54. #include <linux/gpio.h>
  55. #include <linux/gpio/consumer.h>
  56. #include <linux/interrupt.h>
  57. #include <linux/mfd/syscon.h>
  58. #include <linux/mfd/syscon/atmel-matrix.h>
  59. #include <linux/mfd/syscon/atmel-smc.h>
  60. #include <linux/module.h>
  61. #include <linux/mtd/rawnand.h>
  62. #include <linux/of_address.h>
  63. #include <linux/of_irq.h>
  64. #include <linux/of_platform.h>
  65. #include <linux/iopoll.h>
  66. #include <linux/platform_device.h>
  67. #include <linux/regmap.h>
  68. #include "pmecc.h"
  69. #define ATMEL_HSMC_NFC_CFG 0x0
  70. #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24)
  71. #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24)
  72. #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20))
  73. #define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16)
  74. #define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13)
  75. #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12)
  76. #define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9)
  77. #define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8)
  78. #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0)
  79. #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1)
  80. #define ATMEL_HSMC_NFC_CTRL 0x4
  81. #define ATMEL_HSMC_NFC_CTRL_EN BIT(0)
  82. #define ATMEL_HSMC_NFC_CTRL_DIS BIT(1)
  83. #define ATMEL_HSMC_NFC_SR 0x8
  84. #define ATMEL_HSMC_NFC_IER 0xc
  85. #define ATMEL_HSMC_NFC_IDR 0x10
  86. #define ATMEL_HSMC_NFC_IMR 0x14
  87. #define ATMEL_HSMC_NFC_SR_ENABLED BIT(1)
  88. #define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4)
  89. #define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5)
  90. #define ATMEL_HSMC_NFC_SR_BUSY BIT(8)
  91. #define ATMEL_HSMC_NFC_SR_WR BIT(11)
  92. #define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12)
  93. #define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16)
  94. #define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17)
  95. #define ATMEL_HSMC_NFC_SR_DTOE BIT(20)
  96. #define ATMEL_HSMC_NFC_SR_UNDEF BIT(21)
  97. #define ATMEL_HSMC_NFC_SR_AWB BIT(22)
  98. #define ATMEL_HSMC_NFC_SR_NFCASE BIT(23)
  99. #define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \
  100. ATMEL_HSMC_NFC_SR_UNDEF | \
  101. ATMEL_HSMC_NFC_SR_AWB | \
  102. ATMEL_HSMC_NFC_SR_NFCASE)
  103. #define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24)
  104. #define ATMEL_HSMC_NFC_ADDR 0x18
  105. #define ATMEL_HSMC_NFC_BANK 0x1c
  106. #define ATMEL_NFC_MAX_RB_ID 7
  107. #define ATMEL_NFC_SRAM_SIZE 0x2400
  108. #define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2))
  109. #define ATMEL_NFC_VCMD2 BIT(18)
  110. #define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19)
  111. #define ATMEL_NFC_CSID(cs) ((cs) << 22)
  112. #define ATMEL_NFC_DATAEN BIT(25)
  113. #define ATMEL_NFC_NFCWR BIT(26)
  114. #define ATMEL_NFC_MAX_ADDR_CYCLES 5
  115. #define ATMEL_NAND_ALE_OFFSET BIT(21)
  116. #define ATMEL_NAND_CLE_OFFSET BIT(22)
  117. #define DEFAULT_TIMEOUT_MS 1000
  118. #define MIN_DMA_LEN 128
  119. enum atmel_nand_rb_type {
  120. ATMEL_NAND_NO_RB,
  121. ATMEL_NAND_NATIVE_RB,
  122. ATMEL_NAND_GPIO_RB,
  123. };
  124. struct atmel_nand_rb {
  125. enum atmel_nand_rb_type type;
  126. union {
  127. struct gpio_desc *gpio;
  128. int id;
  129. };
  130. };
  131. struct atmel_nand_cs {
  132. int id;
  133. struct atmel_nand_rb rb;
  134. struct gpio_desc *csgpio;
  135. struct {
  136. void __iomem *virt;
  137. dma_addr_t dma;
  138. } io;
  139. struct atmel_smc_cs_conf smcconf;
  140. };
  141. struct atmel_nand {
  142. struct list_head node;
  143. struct device *dev;
  144. struct nand_chip base;
  145. struct atmel_nand_cs *activecs;
  146. struct atmel_pmecc_user *pmecc;
  147. struct gpio_desc *cdgpio;
  148. int numcs;
  149. struct atmel_nand_cs cs[];
  150. };
  151. static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
  152. {
  153. return container_of(chip, struct atmel_nand, base);
  154. }
  155. enum atmel_nfc_data_xfer {
  156. ATMEL_NFC_NO_DATA,
  157. ATMEL_NFC_READ_DATA,
  158. ATMEL_NFC_WRITE_DATA,
  159. };
  160. struct atmel_nfc_op {
  161. u8 cs;
  162. u8 ncmds;
  163. u8 cmds[2];
  164. u8 naddrs;
  165. u8 addrs[5];
  166. enum atmel_nfc_data_xfer data;
  167. u32 wait;
  168. u32 errors;
  169. };
  170. struct atmel_nand_controller;
  171. struct atmel_nand_controller_caps;
  172. struct atmel_nand_controller_ops {
  173. int (*probe)(struct platform_device *pdev,
  174. const struct atmel_nand_controller_caps *caps);
  175. int (*remove)(struct atmel_nand_controller *nc);
  176. void (*nand_init)(struct atmel_nand_controller *nc,
  177. struct atmel_nand *nand);
  178. int (*ecc_init)(struct atmel_nand *nand);
  179. int (*setup_data_interface)(struct atmel_nand *nand, int csline,
  180. const struct nand_data_interface *conf);
  181. };
  182. struct atmel_nand_controller_caps {
  183. bool has_dma;
  184. bool legacy_of_bindings;
  185. u32 ale_offs;
  186. u32 cle_offs;
  187. const struct atmel_nand_controller_ops *ops;
  188. };
  189. struct atmel_nand_controller {
  190. struct nand_hw_control base;
  191. const struct atmel_nand_controller_caps *caps;
  192. struct device *dev;
  193. struct regmap *smc;
  194. struct dma_chan *dmac;
  195. struct atmel_pmecc *pmecc;
  196. struct list_head chips;
  197. struct clk *mck;
  198. };
  199. static inline struct atmel_nand_controller *
  200. to_nand_controller(struct nand_hw_control *ctl)
  201. {
  202. return container_of(ctl, struct atmel_nand_controller, base);
  203. }
  204. struct atmel_smc_nand_controller {
  205. struct atmel_nand_controller base;
  206. struct regmap *matrix;
  207. unsigned int ebi_csa_offs;
  208. };
  209. static inline struct atmel_smc_nand_controller *
  210. to_smc_nand_controller(struct nand_hw_control *ctl)
  211. {
  212. return container_of(to_nand_controller(ctl),
  213. struct atmel_smc_nand_controller, base);
  214. }
  215. struct atmel_hsmc_nand_controller {
  216. struct atmel_nand_controller base;
  217. struct {
  218. struct gen_pool *pool;
  219. void __iomem *virt;
  220. dma_addr_t dma;
  221. } sram;
  222. const struct atmel_hsmc_reg_layout *hsmc_layout;
  223. struct regmap *io;
  224. struct atmel_nfc_op op;
  225. struct completion complete;
  226. int irq;
  227. /* Only used when instantiating from legacy DT bindings. */
  228. struct clk *clk;
  229. };
  230. static inline struct atmel_hsmc_nand_controller *
  231. to_hsmc_nand_controller(struct nand_hw_control *ctl)
  232. {
  233. return container_of(to_nand_controller(ctl),
  234. struct atmel_hsmc_nand_controller, base);
  235. }
  236. static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
  237. {
  238. op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
  239. op->wait ^= status & op->wait;
  240. return !op->wait || op->errors;
  241. }
  242. static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
  243. {
  244. struct atmel_hsmc_nand_controller *nc = data;
  245. u32 sr, rcvd;
  246. bool done;
  247. regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
  248. rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
  249. done = atmel_nfc_op_done(&nc->op, sr);
  250. if (rcvd)
  251. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
  252. if (done)
  253. complete(&nc->complete);
  254. return rcvd ? IRQ_HANDLED : IRQ_NONE;
  255. }
  256. static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
  257. unsigned int timeout_ms)
  258. {
  259. int ret;
  260. if (!timeout_ms)
  261. timeout_ms = DEFAULT_TIMEOUT_MS;
  262. if (poll) {
  263. u32 status;
  264. ret = regmap_read_poll_timeout(nc->base.smc,
  265. ATMEL_HSMC_NFC_SR, status,
  266. atmel_nfc_op_done(&nc->op,
  267. status),
  268. 0, timeout_ms * 1000);
  269. } else {
  270. init_completion(&nc->complete);
  271. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
  272. nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
  273. ret = wait_for_completion_timeout(&nc->complete,
  274. msecs_to_jiffies(timeout_ms));
  275. if (!ret)
  276. ret = -ETIMEDOUT;
  277. else
  278. ret = 0;
  279. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
  280. }
  281. if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
  282. dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
  283. ret = -ETIMEDOUT;
  284. }
  285. if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
  286. dev_err(nc->base.dev, "Access to an undefined area\n");
  287. ret = -EIO;
  288. }
  289. if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
  290. dev_err(nc->base.dev, "Access while busy\n");
  291. ret = -EIO;
  292. }
  293. if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
  294. dev_err(nc->base.dev, "Wrong access size\n");
  295. ret = -EIO;
  296. }
  297. return ret;
  298. }
  299. static void atmel_nand_dma_transfer_finished(void *data)
  300. {
  301. struct completion *finished = data;
  302. complete(finished);
  303. }
  304. static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
  305. void *buf, dma_addr_t dev_dma, size_t len,
  306. enum dma_data_direction dir)
  307. {
  308. DECLARE_COMPLETION_ONSTACK(finished);
  309. dma_addr_t src_dma, dst_dma, buf_dma;
  310. struct dma_async_tx_descriptor *tx;
  311. dma_cookie_t cookie;
  312. buf_dma = dma_map_single(nc->dev, buf, len, dir);
  313. if (dma_mapping_error(nc->dev, dev_dma)) {
  314. dev_err(nc->dev,
  315. "Failed to prepare a buffer for DMA access\n");
  316. goto err;
  317. }
  318. if (dir == DMA_FROM_DEVICE) {
  319. src_dma = dev_dma;
  320. dst_dma = buf_dma;
  321. } else {
  322. src_dma = buf_dma;
  323. dst_dma = dev_dma;
  324. }
  325. tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
  326. DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
  327. if (!tx) {
  328. dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
  329. goto err_unmap;
  330. }
  331. tx->callback = atmel_nand_dma_transfer_finished;
  332. tx->callback_param = &finished;
  333. cookie = dmaengine_submit(tx);
  334. if (dma_submit_error(cookie)) {
  335. dev_err(nc->dev, "Failed to do DMA tx_submit\n");
  336. goto err_unmap;
  337. }
  338. dma_async_issue_pending(nc->dmac);
  339. wait_for_completion(&finished);
  340. return 0;
  341. err_unmap:
  342. dma_unmap_single(nc->dev, buf_dma, len, dir);
  343. err:
  344. dev_dbg(nc->dev, "Fall back to CPU I/O\n");
  345. return -EIO;
  346. }
  347. static u8 atmel_nand_read_byte(struct mtd_info *mtd)
  348. {
  349. struct nand_chip *chip = mtd_to_nand(mtd);
  350. struct atmel_nand *nand = to_atmel_nand(chip);
  351. return ioread8(nand->activecs->io.virt);
  352. }
  353. static u16 atmel_nand_read_word(struct mtd_info *mtd)
  354. {
  355. struct nand_chip *chip = mtd_to_nand(mtd);
  356. struct atmel_nand *nand = to_atmel_nand(chip);
  357. return ioread16(nand->activecs->io.virt);
  358. }
  359. static void atmel_nand_write_byte(struct mtd_info *mtd, u8 byte)
  360. {
  361. struct nand_chip *chip = mtd_to_nand(mtd);
  362. struct atmel_nand *nand = to_atmel_nand(chip);
  363. if (chip->options & NAND_BUSWIDTH_16)
  364. iowrite16(byte | (byte << 8), nand->activecs->io.virt);
  365. else
  366. iowrite8(byte, nand->activecs->io.virt);
  367. }
  368. static void atmel_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
  369. {
  370. struct nand_chip *chip = mtd_to_nand(mtd);
  371. struct atmel_nand *nand = to_atmel_nand(chip);
  372. struct atmel_nand_controller *nc;
  373. nc = to_nand_controller(chip->controller);
  374. /*
  375. * If the controller supports DMA, the buffer address is DMA-able and
  376. * len is long enough to make DMA transfers profitable, let's trigger
  377. * a DMA transfer. If it fails, fallback to PIO mode.
  378. */
  379. if (nc->dmac && virt_addr_valid(buf) &&
  380. len >= MIN_DMA_LEN &&
  381. !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
  382. DMA_FROM_DEVICE))
  383. return;
  384. if (chip->options & NAND_BUSWIDTH_16)
  385. ioread16_rep(nand->activecs->io.virt, buf, len / 2);
  386. else
  387. ioread8_rep(nand->activecs->io.virt, buf, len);
  388. }
  389. static void atmel_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
  390. {
  391. struct nand_chip *chip = mtd_to_nand(mtd);
  392. struct atmel_nand *nand = to_atmel_nand(chip);
  393. struct atmel_nand_controller *nc;
  394. nc = to_nand_controller(chip->controller);
  395. /*
  396. * If the controller supports DMA, the buffer address is DMA-able and
  397. * len is long enough to make DMA transfers profitable, let's trigger
  398. * a DMA transfer. If it fails, fallback to PIO mode.
  399. */
  400. if (nc->dmac && virt_addr_valid(buf) &&
  401. len >= MIN_DMA_LEN &&
  402. !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
  403. len, DMA_TO_DEVICE))
  404. return;
  405. if (chip->options & NAND_BUSWIDTH_16)
  406. iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
  407. else
  408. iowrite8_rep(nand->activecs->io.virt, buf, len);
  409. }
  410. static int atmel_nand_dev_ready(struct mtd_info *mtd)
  411. {
  412. struct nand_chip *chip = mtd_to_nand(mtd);
  413. struct atmel_nand *nand = to_atmel_nand(chip);
  414. return gpiod_get_value(nand->activecs->rb.gpio);
  415. }
  416. static void atmel_nand_select_chip(struct mtd_info *mtd, int cs)
  417. {
  418. struct nand_chip *chip = mtd_to_nand(mtd);
  419. struct atmel_nand *nand = to_atmel_nand(chip);
  420. if (cs < 0 || cs >= nand->numcs) {
  421. nand->activecs = NULL;
  422. chip->dev_ready = NULL;
  423. return;
  424. }
  425. nand->activecs = &nand->cs[cs];
  426. if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB)
  427. chip->dev_ready = atmel_nand_dev_ready;
  428. }
  429. static int atmel_hsmc_nand_dev_ready(struct mtd_info *mtd)
  430. {
  431. struct nand_chip *chip = mtd_to_nand(mtd);
  432. struct atmel_nand *nand = to_atmel_nand(chip);
  433. struct atmel_hsmc_nand_controller *nc;
  434. u32 status;
  435. nc = to_hsmc_nand_controller(chip->controller);
  436. regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status);
  437. return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
  438. }
  439. static void atmel_hsmc_nand_select_chip(struct mtd_info *mtd, int cs)
  440. {
  441. struct nand_chip *chip = mtd_to_nand(mtd);
  442. struct atmel_nand *nand = to_atmel_nand(chip);
  443. struct atmel_hsmc_nand_controller *nc;
  444. nc = to_hsmc_nand_controller(chip->controller);
  445. atmel_nand_select_chip(mtd, cs);
  446. if (!nand->activecs) {
  447. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
  448. ATMEL_HSMC_NFC_CTRL_DIS);
  449. return;
  450. }
  451. if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB)
  452. chip->dev_ready = atmel_hsmc_nand_dev_ready;
  453. regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
  454. ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
  455. ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
  456. ATMEL_HSMC_NFC_CFG_RSPARE |
  457. ATMEL_HSMC_NFC_CFG_WSPARE,
  458. ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
  459. ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
  460. ATMEL_HSMC_NFC_CFG_RSPARE);
  461. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
  462. ATMEL_HSMC_NFC_CTRL_EN);
  463. }
  464. static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
  465. {
  466. u8 *addrs = nc->op.addrs;
  467. unsigned int op = 0;
  468. u32 addr, val;
  469. int i, ret;
  470. nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
  471. for (i = 0; i < nc->op.ncmds; i++)
  472. op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
  473. if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
  474. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
  475. op |= ATMEL_NFC_CSID(nc->op.cs) |
  476. ATMEL_NFC_ACYCLE(nc->op.naddrs);
  477. if (nc->op.ncmds > 1)
  478. op |= ATMEL_NFC_VCMD2;
  479. addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
  480. (addrs[3] << 24);
  481. if (nc->op.data != ATMEL_NFC_NO_DATA) {
  482. op |= ATMEL_NFC_DATAEN;
  483. nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
  484. if (nc->op.data == ATMEL_NFC_WRITE_DATA)
  485. op |= ATMEL_NFC_NFCWR;
  486. }
  487. /* Clear all flags. */
  488. regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
  489. /* Send the command. */
  490. regmap_write(nc->io, op, addr);
  491. ret = atmel_nfc_wait(nc, poll, 0);
  492. if (ret)
  493. dev_err(nc->base.dev,
  494. "Failed to send NAND command (err = %d)!",
  495. ret);
  496. /* Reset the op state. */
  497. memset(&nc->op, 0, sizeof(nc->op));
  498. return ret;
  499. }
  500. static void atmel_hsmc_nand_cmd_ctrl(struct mtd_info *mtd, int dat,
  501. unsigned int ctrl)
  502. {
  503. struct nand_chip *chip = mtd_to_nand(mtd);
  504. struct atmel_nand *nand = to_atmel_nand(chip);
  505. struct atmel_hsmc_nand_controller *nc;
  506. nc = to_hsmc_nand_controller(chip->controller);
  507. if (ctrl & NAND_ALE) {
  508. if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
  509. return;
  510. nc->op.addrs[nc->op.naddrs++] = dat;
  511. } else if (ctrl & NAND_CLE) {
  512. if (nc->op.ncmds > 1)
  513. return;
  514. nc->op.cmds[nc->op.ncmds++] = dat;
  515. }
  516. if (dat == NAND_CMD_NONE) {
  517. nc->op.cs = nand->activecs->id;
  518. atmel_nfc_exec_op(nc, true);
  519. }
  520. }
  521. static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
  522. unsigned int ctrl)
  523. {
  524. struct nand_chip *chip = mtd_to_nand(mtd);
  525. struct atmel_nand *nand = to_atmel_nand(chip);
  526. struct atmel_nand_controller *nc;
  527. nc = to_nand_controller(chip->controller);
  528. if ((ctrl & NAND_CTRL_CHANGE) && nand->activecs->csgpio) {
  529. if (ctrl & NAND_NCE)
  530. gpiod_set_value(nand->activecs->csgpio, 0);
  531. else
  532. gpiod_set_value(nand->activecs->csgpio, 1);
  533. }
  534. if (ctrl & NAND_ALE)
  535. writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs);
  536. else if (ctrl & NAND_CLE)
  537. writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs);
  538. }
  539. static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
  540. bool oob_required)
  541. {
  542. struct mtd_info *mtd = nand_to_mtd(chip);
  543. struct atmel_hsmc_nand_controller *nc;
  544. int ret = -EIO;
  545. nc = to_hsmc_nand_controller(chip->controller);
  546. if (nc->base.dmac)
  547. ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
  548. nc->sram.dma, mtd->writesize,
  549. DMA_TO_DEVICE);
  550. /* Falling back to CPU copy. */
  551. if (ret)
  552. memcpy_toio(nc->sram.virt, buf, mtd->writesize);
  553. if (oob_required)
  554. memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
  555. mtd->oobsize);
  556. }
  557. static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
  558. bool oob_required)
  559. {
  560. struct mtd_info *mtd = nand_to_mtd(chip);
  561. struct atmel_hsmc_nand_controller *nc;
  562. int ret = -EIO;
  563. nc = to_hsmc_nand_controller(chip->controller);
  564. if (nc->base.dmac)
  565. ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
  566. mtd->writesize, DMA_FROM_DEVICE);
  567. /* Falling back to CPU copy. */
  568. if (ret)
  569. memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
  570. if (oob_required)
  571. memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
  572. mtd->oobsize);
  573. }
  574. static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
  575. {
  576. struct mtd_info *mtd = nand_to_mtd(chip);
  577. struct atmel_hsmc_nand_controller *nc;
  578. nc = to_hsmc_nand_controller(chip->controller);
  579. if (column >= 0) {
  580. nc->op.addrs[nc->op.naddrs++] = column;
  581. /*
  582. * 2 address cycles for the column offset on large page NANDs.
  583. */
  584. if (mtd->writesize > 512)
  585. nc->op.addrs[nc->op.naddrs++] = column >> 8;
  586. }
  587. if (page >= 0) {
  588. nc->op.addrs[nc->op.naddrs++] = page;
  589. nc->op.addrs[nc->op.naddrs++] = page >> 8;
  590. if (chip->options & NAND_ROW_ADDR_3)
  591. nc->op.addrs[nc->op.naddrs++] = page >> 16;
  592. }
  593. }
  594. static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
  595. {
  596. struct atmel_nand *nand = to_atmel_nand(chip);
  597. struct atmel_nand_controller *nc;
  598. int ret;
  599. nc = to_nand_controller(chip->controller);
  600. if (raw)
  601. return 0;
  602. ret = atmel_pmecc_enable(nand->pmecc, op);
  603. if (ret)
  604. dev_err(nc->dev,
  605. "Failed to enable ECC engine (err = %d)\n", ret);
  606. return ret;
  607. }
  608. static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
  609. {
  610. struct atmel_nand *nand = to_atmel_nand(chip);
  611. if (!raw)
  612. atmel_pmecc_disable(nand->pmecc);
  613. }
  614. static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
  615. {
  616. struct atmel_nand *nand = to_atmel_nand(chip);
  617. struct mtd_info *mtd = nand_to_mtd(chip);
  618. struct atmel_nand_controller *nc;
  619. struct mtd_oob_region oobregion;
  620. void *eccbuf;
  621. int ret, i;
  622. nc = to_nand_controller(chip->controller);
  623. if (raw)
  624. return 0;
  625. ret = atmel_pmecc_wait_rdy(nand->pmecc);
  626. if (ret) {
  627. dev_err(nc->dev,
  628. "Failed to transfer NAND page data (err = %d)\n",
  629. ret);
  630. return ret;
  631. }
  632. mtd_ooblayout_ecc(mtd, 0, &oobregion);
  633. eccbuf = chip->oob_poi + oobregion.offset;
  634. for (i = 0; i < chip->ecc.steps; i++) {
  635. atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
  636. eccbuf);
  637. eccbuf += chip->ecc.bytes;
  638. }
  639. return 0;
  640. }
  641. static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
  642. bool raw)
  643. {
  644. struct atmel_nand *nand = to_atmel_nand(chip);
  645. struct mtd_info *mtd = nand_to_mtd(chip);
  646. struct atmel_nand_controller *nc;
  647. struct mtd_oob_region oobregion;
  648. int ret, i, max_bitflips = 0;
  649. void *databuf, *eccbuf;
  650. nc = to_nand_controller(chip->controller);
  651. if (raw)
  652. return 0;
  653. ret = atmel_pmecc_wait_rdy(nand->pmecc);
  654. if (ret) {
  655. dev_err(nc->dev,
  656. "Failed to read NAND page data (err = %d)\n",
  657. ret);
  658. return ret;
  659. }
  660. mtd_ooblayout_ecc(mtd, 0, &oobregion);
  661. eccbuf = chip->oob_poi + oobregion.offset;
  662. databuf = buf;
  663. for (i = 0; i < chip->ecc.steps; i++) {
  664. ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
  665. eccbuf);
  666. if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
  667. ret = nand_check_erased_ecc_chunk(databuf,
  668. chip->ecc.size,
  669. eccbuf,
  670. chip->ecc.bytes,
  671. NULL, 0,
  672. chip->ecc.strength);
  673. if (ret >= 0)
  674. max_bitflips = max(ret, max_bitflips);
  675. else
  676. mtd->ecc_stats.failed++;
  677. databuf += chip->ecc.size;
  678. eccbuf += chip->ecc.bytes;
  679. }
  680. return max_bitflips;
  681. }
  682. static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
  683. bool oob_required, int page, bool raw)
  684. {
  685. struct mtd_info *mtd = nand_to_mtd(chip);
  686. struct atmel_nand *nand = to_atmel_nand(chip);
  687. int ret;
  688. nand_prog_page_begin_op(chip, page, 0, NULL, 0);
  689. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
  690. if (ret)
  691. return ret;
  692. atmel_nand_write_buf(mtd, buf, mtd->writesize);
  693. ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
  694. if (ret) {
  695. atmel_pmecc_disable(nand->pmecc);
  696. return ret;
  697. }
  698. atmel_nand_pmecc_disable(chip, raw);
  699. atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
  700. return nand_prog_page_end_op(chip);
  701. }
  702. static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
  703. struct nand_chip *chip, const u8 *buf,
  704. int oob_required, int page)
  705. {
  706. return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
  707. }
  708. static int atmel_nand_pmecc_write_page_raw(struct mtd_info *mtd,
  709. struct nand_chip *chip,
  710. const u8 *buf, int oob_required,
  711. int page)
  712. {
  713. return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
  714. }
  715. static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
  716. bool oob_required, int page, bool raw)
  717. {
  718. struct mtd_info *mtd = nand_to_mtd(chip);
  719. int ret;
  720. nand_read_page_op(chip, page, 0, NULL, 0);
  721. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
  722. if (ret)
  723. return ret;
  724. atmel_nand_read_buf(mtd, buf, mtd->writesize);
  725. atmel_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
  726. ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
  727. atmel_nand_pmecc_disable(chip, raw);
  728. return ret;
  729. }
  730. static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
  731. struct nand_chip *chip, u8 *buf,
  732. int oob_required, int page)
  733. {
  734. return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
  735. }
  736. static int atmel_nand_pmecc_read_page_raw(struct mtd_info *mtd,
  737. struct nand_chip *chip, u8 *buf,
  738. int oob_required, int page)
  739. {
  740. return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
  741. }
  742. static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
  743. const u8 *buf, bool oob_required,
  744. int page, bool raw)
  745. {
  746. struct mtd_info *mtd = nand_to_mtd(chip);
  747. struct atmel_nand *nand = to_atmel_nand(chip);
  748. struct atmel_hsmc_nand_controller *nc;
  749. int ret, status;
  750. nc = to_hsmc_nand_controller(chip->controller);
  751. atmel_nfc_copy_to_sram(chip, buf, false);
  752. nc->op.cmds[0] = NAND_CMD_SEQIN;
  753. nc->op.ncmds = 1;
  754. atmel_nfc_set_op_addr(chip, page, 0x0);
  755. nc->op.cs = nand->activecs->id;
  756. nc->op.data = ATMEL_NFC_WRITE_DATA;
  757. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
  758. if (ret)
  759. return ret;
  760. ret = atmel_nfc_exec_op(nc, false);
  761. if (ret) {
  762. atmel_nand_pmecc_disable(chip, raw);
  763. dev_err(nc->base.dev,
  764. "Failed to transfer NAND page data (err = %d)\n",
  765. ret);
  766. return ret;
  767. }
  768. ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
  769. atmel_nand_pmecc_disable(chip, raw);
  770. if (ret)
  771. return ret;
  772. atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
  773. nc->op.cmds[0] = NAND_CMD_PAGEPROG;
  774. nc->op.ncmds = 1;
  775. nc->op.cs = nand->activecs->id;
  776. ret = atmel_nfc_exec_op(nc, false);
  777. if (ret)
  778. dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
  779. ret);
  780. status = chip->waitfunc(mtd, chip);
  781. if (status & NAND_STATUS_FAIL)
  782. return -EIO;
  783. return ret;
  784. }
  785. static int atmel_hsmc_nand_pmecc_write_page(struct mtd_info *mtd,
  786. struct nand_chip *chip,
  787. const u8 *buf, int oob_required,
  788. int page)
  789. {
  790. return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
  791. false);
  792. }
  793. static int atmel_hsmc_nand_pmecc_write_page_raw(struct mtd_info *mtd,
  794. struct nand_chip *chip,
  795. const u8 *buf,
  796. int oob_required, int page)
  797. {
  798. return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
  799. true);
  800. }
  801. static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
  802. bool oob_required, int page,
  803. bool raw)
  804. {
  805. struct mtd_info *mtd = nand_to_mtd(chip);
  806. struct atmel_nand *nand = to_atmel_nand(chip);
  807. struct atmel_hsmc_nand_controller *nc;
  808. int ret;
  809. nc = to_hsmc_nand_controller(chip->controller);
  810. /*
  811. * Optimized read page accessors only work when the NAND R/B pin is
  812. * connected to a native SoC R/B pin. If that's not the case, fallback
  813. * to the non-optimized one.
  814. */
  815. if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) {
  816. nand_read_page_op(chip, page, 0, NULL, 0);
  817. return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
  818. raw);
  819. }
  820. nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
  821. if (mtd->writesize > 512)
  822. nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
  823. atmel_nfc_set_op_addr(chip, page, 0x0);
  824. nc->op.cs = nand->activecs->id;
  825. nc->op.data = ATMEL_NFC_READ_DATA;
  826. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
  827. if (ret)
  828. return ret;
  829. ret = atmel_nfc_exec_op(nc, false);
  830. if (ret) {
  831. atmel_nand_pmecc_disable(chip, raw);
  832. dev_err(nc->base.dev,
  833. "Failed to load NAND page data (err = %d)\n",
  834. ret);
  835. return ret;
  836. }
  837. atmel_nfc_copy_from_sram(chip, buf, true);
  838. ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
  839. atmel_nand_pmecc_disable(chip, raw);
  840. return ret;
  841. }
  842. static int atmel_hsmc_nand_pmecc_read_page(struct mtd_info *mtd,
  843. struct nand_chip *chip, u8 *buf,
  844. int oob_required, int page)
  845. {
  846. return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
  847. false);
  848. }
  849. static int atmel_hsmc_nand_pmecc_read_page_raw(struct mtd_info *mtd,
  850. struct nand_chip *chip,
  851. u8 *buf, int oob_required,
  852. int page)
  853. {
  854. return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
  855. true);
  856. }
  857. static int atmel_nand_pmecc_init(struct nand_chip *chip)
  858. {
  859. struct mtd_info *mtd = nand_to_mtd(chip);
  860. struct atmel_nand *nand = to_atmel_nand(chip);
  861. struct atmel_nand_controller *nc;
  862. struct atmel_pmecc_user_req req;
  863. nc = to_nand_controller(chip->controller);
  864. if (!nc->pmecc) {
  865. dev_err(nc->dev, "HW ECC not supported\n");
  866. return -ENOTSUPP;
  867. }
  868. if (nc->caps->legacy_of_bindings) {
  869. u32 val;
  870. if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
  871. &val))
  872. chip->ecc.strength = val;
  873. if (!of_property_read_u32(nc->dev->of_node,
  874. "atmel,pmecc-sector-size",
  875. &val))
  876. chip->ecc.size = val;
  877. }
  878. if (chip->ecc.options & NAND_ECC_MAXIMIZE)
  879. req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
  880. else if (chip->ecc.strength)
  881. req.ecc.strength = chip->ecc.strength;
  882. else if (chip->ecc_strength_ds)
  883. req.ecc.strength = chip->ecc_strength_ds;
  884. else
  885. req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
  886. if (chip->ecc.size)
  887. req.ecc.sectorsize = chip->ecc.size;
  888. else if (chip->ecc_step_ds)
  889. req.ecc.sectorsize = chip->ecc_step_ds;
  890. else
  891. req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
  892. req.pagesize = mtd->writesize;
  893. req.oobsize = mtd->oobsize;
  894. if (mtd->writesize <= 512) {
  895. req.ecc.bytes = 4;
  896. req.ecc.ooboffset = 0;
  897. } else {
  898. req.ecc.bytes = mtd->oobsize - 2;
  899. req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
  900. }
  901. nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
  902. if (IS_ERR(nand->pmecc))
  903. return PTR_ERR(nand->pmecc);
  904. chip->ecc.algo = NAND_ECC_BCH;
  905. chip->ecc.size = req.ecc.sectorsize;
  906. chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
  907. chip->ecc.strength = req.ecc.strength;
  908. chip->options |= NAND_NO_SUBPAGE_WRITE;
  909. mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
  910. return 0;
  911. }
  912. static int atmel_nand_ecc_init(struct atmel_nand *nand)
  913. {
  914. struct nand_chip *chip = &nand->base;
  915. struct atmel_nand_controller *nc;
  916. int ret;
  917. nc = to_nand_controller(chip->controller);
  918. switch (chip->ecc.mode) {
  919. case NAND_ECC_NONE:
  920. case NAND_ECC_SOFT:
  921. /*
  922. * Nothing to do, the core will initialize everything for us.
  923. */
  924. break;
  925. case NAND_ECC_HW:
  926. ret = atmel_nand_pmecc_init(chip);
  927. if (ret)
  928. return ret;
  929. chip->ecc.read_page = atmel_nand_pmecc_read_page;
  930. chip->ecc.write_page = atmel_nand_pmecc_write_page;
  931. chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
  932. chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
  933. break;
  934. default:
  935. /* Other modes are not supported. */
  936. dev_err(nc->dev, "Unsupported ECC mode: %d\n",
  937. chip->ecc.mode);
  938. return -ENOTSUPP;
  939. }
  940. return 0;
  941. }
  942. static int atmel_hsmc_nand_ecc_init(struct atmel_nand *nand)
  943. {
  944. struct nand_chip *chip = &nand->base;
  945. int ret;
  946. ret = atmel_nand_ecc_init(nand);
  947. if (ret)
  948. return ret;
  949. if (chip->ecc.mode != NAND_ECC_HW)
  950. return 0;
  951. /* Adjust the ECC operations for the HSMC IP. */
  952. chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
  953. chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
  954. chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
  955. chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
  956. return 0;
  957. }
  958. static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
  959. const struct nand_data_interface *conf,
  960. struct atmel_smc_cs_conf *smcconf)
  961. {
  962. u32 ncycles, totalcycles, timeps, mckperiodps;
  963. struct atmel_nand_controller *nc;
  964. int ret;
  965. nc = to_nand_controller(nand->base.controller);
  966. /* DDR interface not supported. */
  967. if (conf->type != NAND_SDR_IFACE)
  968. return -ENOTSUPP;
  969. /*
  970. * tRC < 30ns implies EDO mode. This controller does not support this
  971. * mode.
  972. */
  973. if (conf->timings.sdr.tRC_min < 30000)
  974. return -ENOTSUPP;
  975. atmel_smc_cs_conf_init(smcconf);
  976. mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
  977. mckperiodps *= 1000;
  978. /*
  979. * Set write pulse timing. This one is easy to extract:
  980. *
  981. * NWE_PULSE = tWP
  982. */
  983. ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
  984. totalcycles = ncycles;
  985. ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
  986. ncycles);
  987. if (ret)
  988. return ret;
  989. /*
  990. * The write setup timing depends on the operation done on the NAND.
  991. * All operations goes through the same data bus, but the operation
  992. * type depends on the address we are writing to (ALE/CLE address
  993. * lines).
  994. * Since we have no way to differentiate the different operations at
  995. * the SMC level, we must consider the worst case (the biggest setup
  996. * time among all operation types):
  997. *
  998. * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
  999. */
  1000. timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
  1001. conf->timings.sdr.tALS_min);
  1002. timeps = max(timeps, conf->timings.sdr.tDS_min);
  1003. ncycles = DIV_ROUND_UP(timeps, mckperiodps);
  1004. ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
  1005. totalcycles += ncycles;
  1006. ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
  1007. ncycles);
  1008. if (ret)
  1009. return ret;
  1010. /*
  1011. * As for the write setup timing, the write hold timing depends on the
  1012. * operation done on the NAND:
  1013. *
  1014. * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
  1015. */
  1016. timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
  1017. conf->timings.sdr.tALH_min);
  1018. timeps = max3(timeps, conf->timings.sdr.tDH_min,
  1019. conf->timings.sdr.tWH_min);
  1020. ncycles = DIV_ROUND_UP(timeps, mckperiodps);
  1021. totalcycles += ncycles;
  1022. /*
  1023. * The write cycle timing is directly matching tWC, but is also
  1024. * dependent on the other timings on the setup and hold timings we
  1025. * calculated earlier, which gives:
  1026. *
  1027. * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
  1028. */
  1029. ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
  1030. ncycles = max(totalcycles, ncycles);
  1031. ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
  1032. ncycles);
  1033. if (ret)
  1034. return ret;
  1035. /*
  1036. * We don't want the CS line to be toggled between each byte/word
  1037. * transfer to the NAND. The only way to guarantee that is to have the
  1038. * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
  1039. *
  1040. * NCS_WR_PULSE = NWE_CYCLE
  1041. */
  1042. ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
  1043. ncycles);
  1044. if (ret)
  1045. return ret;
  1046. /*
  1047. * As for the write setup timing, the read hold timing depends on the
  1048. * operation done on the NAND:
  1049. *
  1050. * NRD_HOLD = max(tREH, tRHOH)
  1051. */
  1052. timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
  1053. ncycles = DIV_ROUND_UP(timeps, mckperiodps);
  1054. totalcycles = ncycles;
  1055. /*
  1056. * TDF = tRHZ - NRD_HOLD
  1057. */
  1058. ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
  1059. ncycles -= totalcycles;
  1060. /*
  1061. * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
  1062. * we might end up with a config that does not fit in the TDF field.
  1063. * Just take the max value in this case and hope that the NAND is more
  1064. * tolerant than advertised.
  1065. */
  1066. if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
  1067. ncycles = ATMEL_SMC_MODE_TDF_MAX;
  1068. else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
  1069. ncycles = ATMEL_SMC_MODE_TDF_MIN;
  1070. smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
  1071. ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
  1072. /*
  1073. * Read pulse timing directly matches tRP:
  1074. *
  1075. * NRD_PULSE = tRP
  1076. */
  1077. ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
  1078. totalcycles += ncycles;
  1079. ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
  1080. ncycles);
  1081. if (ret)
  1082. return ret;
  1083. /*
  1084. * The write cycle timing is directly matching tWC, but is also
  1085. * dependent on the setup and hold timings we calculated earlier,
  1086. * which gives:
  1087. *
  1088. * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
  1089. *
  1090. * NRD_SETUP is always 0.
  1091. */
  1092. ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
  1093. ncycles = max(totalcycles, ncycles);
  1094. ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
  1095. ncycles);
  1096. if (ret)
  1097. return ret;
  1098. /*
  1099. * We don't want the CS line to be toggled between each byte/word
  1100. * transfer from the NAND. The only way to guarantee that is to have
  1101. * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
  1102. *
  1103. * NCS_RD_PULSE = NRD_CYCLE
  1104. */
  1105. ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
  1106. ncycles);
  1107. if (ret)
  1108. return ret;
  1109. /* Txxx timings are directly matching tXXX ones. */
  1110. ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
  1111. ret = atmel_smc_cs_conf_set_timing(smcconf,
  1112. ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
  1113. ncycles);
  1114. if (ret)
  1115. return ret;
  1116. ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
  1117. ret = atmel_smc_cs_conf_set_timing(smcconf,
  1118. ATMEL_HSMC_TIMINGS_TADL_SHIFT,
  1119. ncycles);
  1120. /*
  1121. * Version 4 of the ONFI spec mandates that tADL be at least 400
  1122. * nanoseconds, but, depending on the master clock rate, 400 ns may not
  1123. * fit in the tADL field of the SMC reg. We need to relax the check and
  1124. * accept the -ERANGE return code.
  1125. *
  1126. * Note that previous versions of the ONFI spec had a lower tADL_min
  1127. * (100 or 200 ns). It's not clear why this timing constraint got
  1128. * increased but it seems most NANDs are fine with values lower than
  1129. * 400ns, so we should be safe.
  1130. */
  1131. if (ret && ret != -ERANGE)
  1132. return ret;
  1133. ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
  1134. ret = atmel_smc_cs_conf_set_timing(smcconf,
  1135. ATMEL_HSMC_TIMINGS_TAR_SHIFT,
  1136. ncycles);
  1137. if (ret)
  1138. return ret;
  1139. ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
  1140. ret = atmel_smc_cs_conf_set_timing(smcconf,
  1141. ATMEL_HSMC_TIMINGS_TRR_SHIFT,
  1142. ncycles);
  1143. if (ret)
  1144. return ret;
  1145. ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
  1146. ret = atmel_smc_cs_conf_set_timing(smcconf,
  1147. ATMEL_HSMC_TIMINGS_TWB_SHIFT,
  1148. ncycles);
  1149. if (ret)
  1150. return ret;
  1151. /* Attach the CS line to the NFC logic. */
  1152. smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
  1153. /* Set the appropriate data bus width. */
  1154. if (nand->base.options & NAND_BUSWIDTH_16)
  1155. smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
  1156. /* Operate in NRD/NWE READ/WRITEMODE. */
  1157. smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
  1158. ATMEL_SMC_MODE_WRITEMODE_NWE;
  1159. return 0;
  1160. }
  1161. static int atmel_smc_nand_setup_data_interface(struct atmel_nand *nand,
  1162. int csline,
  1163. const struct nand_data_interface *conf)
  1164. {
  1165. struct atmel_nand_controller *nc;
  1166. struct atmel_smc_cs_conf smcconf;
  1167. struct atmel_nand_cs *cs;
  1168. int ret;
  1169. nc = to_nand_controller(nand->base.controller);
  1170. ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
  1171. if (ret)
  1172. return ret;
  1173. if (csline == NAND_DATA_IFACE_CHECK_ONLY)
  1174. return 0;
  1175. cs = &nand->cs[csline];
  1176. cs->smcconf = smcconf;
  1177. atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
  1178. return 0;
  1179. }
  1180. static int atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand,
  1181. int csline,
  1182. const struct nand_data_interface *conf)
  1183. {
  1184. struct atmel_hsmc_nand_controller *nc;
  1185. struct atmel_smc_cs_conf smcconf;
  1186. struct atmel_nand_cs *cs;
  1187. int ret;
  1188. nc = to_hsmc_nand_controller(nand->base.controller);
  1189. ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
  1190. if (ret)
  1191. return ret;
  1192. if (csline == NAND_DATA_IFACE_CHECK_ONLY)
  1193. return 0;
  1194. cs = &nand->cs[csline];
  1195. cs->smcconf = smcconf;
  1196. if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
  1197. cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
  1198. atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
  1199. &cs->smcconf);
  1200. return 0;
  1201. }
  1202. static int atmel_nand_setup_data_interface(struct mtd_info *mtd, int csline,
  1203. const struct nand_data_interface *conf)
  1204. {
  1205. struct nand_chip *chip = mtd_to_nand(mtd);
  1206. struct atmel_nand *nand = to_atmel_nand(chip);
  1207. struct atmel_nand_controller *nc;
  1208. nc = to_nand_controller(nand->base.controller);
  1209. if (csline >= nand->numcs ||
  1210. (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
  1211. return -EINVAL;
  1212. return nc->caps->ops->setup_data_interface(nand, csline, conf);
  1213. }
  1214. static void atmel_nand_init(struct atmel_nand_controller *nc,
  1215. struct atmel_nand *nand)
  1216. {
  1217. struct nand_chip *chip = &nand->base;
  1218. struct mtd_info *mtd = nand_to_mtd(chip);
  1219. mtd->dev.parent = nc->dev;
  1220. nand->base.controller = &nc->base;
  1221. chip->cmd_ctrl = atmel_nand_cmd_ctrl;
  1222. chip->read_byte = atmel_nand_read_byte;
  1223. chip->read_word = atmel_nand_read_word;
  1224. chip->write_byte = atmel_nand_write_byte;
  1225. chip->read_buf = atmel_nand_read_buf;
  1226. chip->write_buf = atmel_nand_write_buf;
  1227. chip->select_chip = atmel_nand_select_chip;
  1228. if (nc->mck && nc->caps->ops->setup_data_interface)
  1229. chip->setup_data_interface = atmel_nand_setup_data_interface;
  1230. /* Some NANDs require a longer delay than the default one (20us). */
  1231. chip->chip_delay = 40;
  1232. /*
  1233. * Use a bounce buffer when the buffer passed by the MTD user is not
  1234. * suitable for DMA.
  1235. */
  1236. if (nc->dmac)
  1237. chip->options |= NAND_USE_BOUNCE_BUFFER;
  1238. /* Default to HW ECC if pmecc is available. */
  1239. if (nc->pmecc)
  1240. chip->ecc.mode = NAND_ECC_HW;
  1241. }
  1242. static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
  1243. struct atmel_nand *nand)
  1244. {
  1245. struct nand_chip *chip = &nand->base;
  1246. struct atmel_smc_nand_controller *smc_nc;
  1247. int i;
  1248. atmel_nand_init(nc, nand);
  1249. smc_nc = to_smc_nand_controller(chip->controller);
  1250. if (!smc_nc->matrix)
  1251. return;
  1252. /* Attach the CS to the NAND Flash logic. */
  1253. for (i = 0; i < nand->numcs; i++)
  1254. regmap_update_bits(smc_nc->matrix, smc_nc->ebi_csa_offs,
  1255. BIT(nand->cs[i].id), BIT(nand->cs[i].id));
  1256. }
  1257. static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc,
  1258. struct atmel_nand *nand)
  1259. {
  1260. struct nand_chip *chip = &nand->base;
  1261. atmel_nand_init(nc, nand);
  1262. /* Overload some methods for the HSMC controller. */
  1263. chip->cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
  1264. chip->select_chip = atmel_hsmc_nand_select_chip;
  1265. }
  1266. static int atmel_nand_detect(struct atmel_nand *nand)
  1267. {
  1268. struct nand_chip *chip = &nand->base;
  1269. struct mtd_info *mtd = nand_to_mtd(chip);
  1270. struct atmel_nand_controller *nc;
  1271. int ret;
  1272. nc = to_nand_controller(chip->controller);
  1273. ret = nand_scan_ident(mtd, nand->numcs, NULL);
  1274. if (ret)
  1275. dev_err(nc->dev, "nand_scan_ident() failed: %d\n", ret);
  1276. return ret;
  1277. }
  1278. static int atmel_nand_unregister(struct atmel_nand *nand)
  1279. {
  1280. struct nand_chip *chip = &nand->base;
  1281. struct mtd_info *mtd = nand_to_mtd(chip);
  1282. int ret;
  1283. ret = mtd_device_unregister(mtd);
  1284. if (ret)
  1285. return ret;
  1286. nand_cleanup(chip);
  1287. list_del(&nand->node);
  1288. return 0;
  1289. }
  1290. static int atmel_nand_register(struct atmel_nand *nand)
  1291. {
  1292. struct nand_chip *chip = &nand->base;
  1293. struct mtd_info *mtd = nand_to_mtd(chip);
  1294. struct atmel_nand_controller *nc;
  1295. int ret;
  1296. nc = to_nand_controller(chip->controller);
  1297. if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
  1298. /*
  1299. * We keep the MTD name unchanged to avoid breaking platforms
  1300. * where the MTD cmdline parser is used and the bootloader
  1301. * has not been updated to use the new naming scheme.
  1302. */
  1303. mtd->name = "atmel_nand";
  1304. } else if (!mtd->name) {
  1305. /*
  1306. * If the new bindings are used and the bootloader has not been
  1307. * updated to pass a new mtdparts parameter on the cmdline, you
  1308. * should define the following property in your nand node:
  1309. *
  1310. * label = "atmel_nand";
  1311. *
  1312. * This way, mtd->name will be set by the core when
  1313. * nand_set_flash_node() is called.
  1314. */
  1315. mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
  1316. "%s:nand.%d", dev_name(nc->dev),
  1317. nand->cs[0].id);
  1318. if (!mtd->name) {
  1319. dev_err(nc->dev, "Failed to allocate mtd->name\n");
  1320. return -ENOMEM;
  1321. }
  1322. }
  1323. ret = nand_scan_tail(mtd);
  1324. if (ret) {
  1325. dev_err(nc->dev, "nand_scan_tail() failed: %d\n", ret);
  1326. return ret;
  1327. }
  1328. ret = mtd_device_register(mtd, NULL, 0);
  1329. if (ret) {
  1330. dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
  1331. nand_cleanup(chip);
  1332. return ret;
  1333. }
  1334. list_add_tail(&nand->node, &nc->chips);
  1335. return 0;
  1336. }
  1337. static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
  1338. struct device_node *np,
  1339. int reg_cells)
  1340. {
  1341. struct atmel_nand *nand;
  1342. struct gpio_desc *gpio;
  1343. int numcs, ret, i;
  1344. numcs = of_property_count_elems_of_size(np, "reg",
  1345. reg_cells * sizeof(u32));
  1346. if (numcs < 1) {
  1347. dev_err(nc->dev, "Missing or invalid reg property\n");
  1348. return ERR_PTR(-EINVAL);
  1349. }
  1350. nand = devm_kzalloc(nc->dev,
  1351. sizeof(*nand) + (numcs * sizeof(*nand->cs)),
  1352. GFP_KERNEL);
  1353. if (!nand) {
  1354. dev_err(nc->dev, "Failed to allocate NAND object\n");
  1355. return ERR_PTR(-ENOMEM);
  1356. }
  1357. nand->numcs = numcs;
  1358. gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "det", 0,
  1359. &np->fwnode, GPIOD_IN,
  1360. "nand-det");
  1361. if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
  1362. dev_err(nc->dev,
  1363. "Failed to get detect gpio (err = %ld)\n",
  1364. PTR_ERR(gpio));
  1365. return ERR_CAST(gpio);
  1366. }
  1367. if (!IS_ERR(gpio))
  1368. nand->cdgpio = gpio;
  1369. for (i = 0; i < numcs; i++) {
  1370. struct resource res;
  1371. u32 val;
  1372. ret = of_address_to_resource(np, 0, &res);
  1373. if (ret) {
  1374. dev_err(nc->dev, "Invalid reg property (err = %d)\n",
  1375. ret);
  1376. return ERR_PTR(ret);
  1377. }
  1378. ret = of_property_read_u32_index(np, "reg", i * reg_cells,
  1379. &val);
  1380. if (ret) {
  1381. dev_err(nc->dev, "Invalid reg property (err = %d)\n",
  1382. ret);
  1383. return ERR_PTR(ret);
  1384. }
  1385. nand->cs[i].id = val;
  1386. nand->cs[i].io.dma = res.start;
  1387. nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
  1388. if (IS_ERR(nand->cs[i].io.virt))
  1389. return ERR_CAST(nand->cs[i].io.virt);
  1390. if (!of_property_read_u32(np, "atmel,rb", &val)) {
  1391. if (val > ATMEL_NFC_MAX_RB_ID)
  1392. return ERR_PTR(-EINVAL);
  1393. nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
  1394. nand->cs[i].rb.id = val;
  1395. } else {
  1396. gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev,
  1397. "rb", i, &np->fwnode,
  1398. GPIOD_IN, "nand-rb");
  1399. if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
  1400. dev_err(nc->dev,
  1401. "Failed to get R/B gpio (err = %ld)\n",
  1402. PTR_ERR(gpio));
  1403. return ERR_CAST(gpio);
  1404. }
  1405. if (!IS_ERR(gpio)) {
  1406. nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
  1407. nand->cs[i].rb.gpio = gpio;
  1408. }
  1409. }
  1410. gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "cs",
  1411. i, &np->fwnode,
  1412. GPIOD_OUT_HIGH,
  1413. "nand-cs");
  1414. if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
  1415. dev_err(nc->dev,
  1416. "Failed to get CS gpio (err = %ld)\n",
  1417. PTR_ERR(gpio));
  1418. return ERR_CAST(gpio);
  1419. }
  1420. if (!IS_ERR(gpio))
  1421. nand->cs[i].csgpio = gpio;
  1422. }
  1423. nand_set_flash_node(&nand->base, np);
  1424. return nand;
  1425. }
  1426. static int
  1427. atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
  1428. struct atmel_nand *nand)
  1429. {
  1430. int ret;
  1431. /* No card inserted, skip this NAND. */
  1432. if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
  1433. dev_info(nc->dev, "No SmartMedia card inserted.\n");
  1434. return 0;
  1435. }
  1436. nc->caps->ops->nand_init(nc, nand);
  1437. ret = atmel_nand_detect(nand);
  1438. if (ret)
  1439. return ret;
  1440. ret = nc->caps->ops->ecc_init(nand);
  1441. if (ret)
  1442. return ret;
  1443. return atmel_nand_register(nand);
  1444. }
  1445. static int
  1446. atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
  1447. {
  1448. struct atmel_nand *nand, *tmp;
  1449. int ret;
  1450. list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
  1451. ret = atmel_nand_unregister(nand);
  1452. if (ret)
  1453. return ret;
  1454. }
  1455. return 0;
  1456. }
  1457. static int
  1458. atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
  1459. {
  1460. struct device *dev = nc->dev;
  1461. struct platform_device *pdev = to_platform_device(dev);
  1462. struct atmel_nand *nand;
  1463. struct gpio_desc *gpio;
  1464. struct resource *res;
  1465. /*
  1466. * Legacy bindings only allow connecting a single NAND with a unique CS
  1467. * line to the controller.
  1468. */
  1469. nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
  1470. GFP_KERNEL);
  1471. if (!nand)
  1472. return -ENOMEM;
  1473. nand->numcs = 1;
  1474. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1475. nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
  1476. if (IS_ERR(nand->cs[0].io.virt))
  1477. return PTR_ERR(nand->cs[0].io.virt);
  1478. nand->cs[0].io.dma = res->start;
  1479. /*
  1480. * The old driver was hardcoding the CS id to 3 for all sama5
  1481. * controllers. Since this id is only meaningful for the sama5
  1482. * controller we can safely assign this id to 3 no matter the
  1483. * controller.
  1484. * If one wants to connect a NAND to a different CS line, he will
  1485. * have to use the new bindings.
  1486. */
  1487. nand->cs[0].id = 3;
  1488. /* R/B GPIO. */
  1489. gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN);
  1490. if (IS_ERR(gpio)) {
  1491. dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
  1492. PTR_ERR(gpio));
  1493. return PTR_ERR(gpio);
  1494. }
  1495. if (gpio) {
  1496. nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
  1497. nand->cs[0].rb.gpio = gpio;
  1498. }
  1499. /* CS GPIO. */
  1500. gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
  1501. if (IS_ERR(gpio)) {
  1502. dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
  1503. PTR_ERR(gpio));
  1504. return PTR_ERR(gpio);
  1505. }
  1506. nand->cs[0].csgpio = gpio;
  1507. /* Card detect GPIO. */
  1508. gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
  1509. if (IS_ERR(gpio)) {
  1510. dev_err(dev,
  1511. "Failed to get detect gpio (err = %ld)\n",
  1512. PTR_ERR(gpio));
  1513. return PTR_ERR(gpio);
  1514. }
  1515. nand->cdgpio = gpio;
  1516. nand_set_flash_node(&nand->base, nc->dev->of_node);
  1517. return atmel_nand_controller_add_nand(nc, nand);
  1518. }
  1519. static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
  1520. {
  1521. struct device_node *np, *nand_np;
  1522. struct device *dev = nc->dev;
  1523. int ret, reg_cells;
  1524. u32 val;
  1525. /* We do not retrieve the SMC syscon when parsing old DTs. */
  1526. if (nc->caps->legacy_of_bindings)
  1527. return atmel_nand_controller_legacy_add_nands(nc);
  1528. np = dev->of_node;
  1529. ret = of_property_read_u32(np, "#address-cells", &val);
  1530. if (ret) {
  1531. dev_err(dev, "missing #address-cells property\n");
  1532. return ret;
  1533. }
  1534. reg_cells = val;
  1535. ret = of_property_read_u32(np, "#size-cells", &val);
  1536. if (ret) {
  1537. dev_err(dev, "missing #address-cells property\n");
  1538. return ret;
  1539. }
  1540. reg_cells += val;
  1541. for_each_child_of_node(np, nand_np) {
  1542. struct atmel_nand *nand;
  1543. nand = atmel_nand_create(nc, nand_np, reg_cells);
  1544. if (IS_ERR(nand)) {
  1545. ret = PTR_ERR(nand);
  1546. goto err;
  1547. }
  1548. ret = atmel_nand_controller_add_nand(nc, nand);
  1549. if (ret)
  1550. goto err;
  1551. }
  1552. return 0;
  1553. err:
  1554. atmel_nand_controller_remove_nands(nc);
  1555. return ret;
  1556. }
  1557. static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
  1558. {
  1559. if (nc->dmac)
  1560. dma_release_channel(nc->dmac);
  1561. clk_put(nc->mck);
  1562. }
  1563. static const struct of_device_id atmel_matrix_of_ids[] = {
  1564. {
  1565. .compatible = "atmel,at91sam9260-matrix",
  1566. .data = (void *)AT91SAM9260_MATRIX_EBICSA,
  1567. },
  1568. {
  1569. .compatible = "atmel,at91sam9261-matrix",
  1570. .data = (void *)AT91SAM9261_MATRIX_EBICSA,
  1571. },
  1572. {
  1573. .compatible = "atmel,at91sam9263-matrix",
  1574. .data = (void *)AT91SAM9263_MATRIX_EBI0CSA,
  1575. },
  1576. {
  1577. .compatible = "atmel,at91sam9rl-matrix",
  1578. .data = (void *)AT91SAM9RL_MATRIX_EBICSA,
  1579. },
  1580. {
  1581. .compatible = "atmel,at91sam9g45-matrix",
  1582. .data = (void *)AT91SAM9G45_MATRIX_EBICSA,
  1583. },
  1584. {
  1585. .compatible = "atmel,at91sam9n12-matrix",
  1586. .data = (void *)AT91SAM9N12_MATRIX_EBICSA,
  1587. },
  1588. {
  1589. .compatible = "atmel,at91sam9x5-matrix",
  1590. .data = (void *)AT91SAM9X5_MATRIX_EBICSA,
  1591. },
  1592. { /* sentinel */ },
  1593. };
  1594. static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
  1595. struct platform_device *pdev,
  1596. const struct atmel_nand_controller_caps *caps)
  1597. {
  1598. struct device *dev = &pdev->dev;
  1599. struct device_node *np = dev->of_node;
  1600. int ret;
  1601. nand_hw_control_init(&nc->base);
  1602. INIT_LIST_HEAD(&nc->chips);
  1603. nc->dev = dev;
  1604. nc->caps = caps;
  1605. platform_set_drvdata(pdev, nc);
  1606. nc->pmecc = devm_atmel_pmecc_get(dev);
  1607. if (IS_ERR(nc->pmecc)) {
  1608. ret = PTR_ERR(nc->pmecc);
  1609. if (ret != -EPROBE_DEFER)
  1610. dev_err(dev, "Could not get PMECC object (err = %d)\n",
  1611. ret);
  1612. return ret;
  1613. }
  1614. if (nc->caps->has_dma) {
  1615. dma_cap_mask_t mask;
  1616. dma_cap_zero(mask);
  1617. dma_cap_set(DMA_MEMCPY, mask);
  1618. nc->dmac = dma_request_channel(mask, NULL, NULL);
  1619. if (!nc->dmac)
  1620. dev_err(nc->dev, "Failed to request DMA channel\n");
  1621. }
  1622. /* We do not retrieve the SMC syscon when parsing old DTs. */
  1623. if (nc->caps->legacy_of_bindings)
  1624. return 0;
  1625. nc->mck = of_clk_get(dev->parent->of_node, 0);
  1626. if (IS_ERR(nc->mck)) {
  1627. dev_err(dev, "Failed to retrieve MCK clk\n");
  1628. return PTR_ERR(nc->mck);
  1629. }
  1630. np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
  1631. if (!np) {
  1632. dev_err(dev, "Missing or invalid atmel,smc property\n");
  1633. return -EINVAL;
  1634. }
  1635. nc->smc = syscon_node_to_regmap(np);
  1636. of_node_put(np);
  1637. if (IS_ERR(nc->smc)) {
  1638. ret = PTR_ERR(nc->smc);
  1639. dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
  1640. return ret;
  1641. }
  1642. return 0;
  1643. }
  1644. static int
  1645. atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
  1646. {
  1647. struct device *dev = nc->base.dev;
  1648. const struct of_device_id *match;
  1649. struct device_node *np;
  1650. int ret;
  1651. /* We do not retrieve the matrix syscon when parsing old DTs. */
  1652. if (nc->base.caps->legacy_of_bindings)
  1653. return 0;
  1654. np = of_parse_phandle(dev->parent->of_node, "atmel,matrix", 0);
  1655. if (!np)
  1656. return 0;
  1657. match = of_match_node(atmel_matrix_of_ids, np);
  1658. if (!match) {
  1659. of_node_put(np);
  1660. return 0;
  1661. }
  1662. nc->matrix = syscon_node_to_regmap(np);
  1663. of_node_put(np);
  1664. if (IS_ERR(nc->matrix)) {
  1665. ret = PTR_ERR(nc->matrix);
  1666. dev_err(dev, "Could not get Matrix regmap (err = %d)\n", ret);
  1667. return ret;
  1668. }
  1669. nc->ebi_csa_offs = (unsigned int)match->data;
  1670. /*
  1671. * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
  1672. * add 4 to ->ebi_csa_offs.
  1673. */
  1674. if (of_device_is_compatible(dev->parent->of_node,
  1675. "atmel,at91sam9263-ebi1"))
  1676. nc->ebi_csa_offs += 4;
  1677. return 0;
  1678. }
  1679. static int
  1680. atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
  1681. {
  1682. struct regmap_config regmap_conf = {
  1683. .reg_bits = 32,
  1684. .val_bits = 32,
  1685. .reg_stride = 4,
  1686. };
  1687. struct device *dev = nc->base.dev;
  1688. struct device_node *nand_np, *nfc_np;
  1689. void __iomem *iomem;
  1690. struct resource res;
  1691. int ret;
  1692. nand_np = dev->of_node;
  1693. nfc_np = of_find_compatible_node(dev->of_node, NULL,
  1694. "atmel,sama5d3-nfc");
  1695. nc->clk = of_clk_get(nfc_np, 0);
  1696. if (IS_ERR(nc->clk)) {
  1697. ret = PTR_ERR(nc->clk);
  1698. dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
  1699. ret);
  1700. goto out;
  1701. }
  1702. ret = clk_prepare_enable(nc->clk);
  1703. if (ret) {
  1704. dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
  1705. ret);
  1706. goto out;
  1707. }
  1708. nc->irq = of_irq_get(nand_np, 0);
  1709. if (nc->irq <= 0) {
  1710. ret = nc->irq ?: -ENXIO;
  1711. if (ret != -EPROBE_DEFER)
  1712. dev_err(dev, "Failed to get IRQ number (err = %d)\n",
  1713. ret);
  1714. goto out;
  1715. }
  1716. ret = of_address_to_resource(nfc_np, 0, &res);
  1717. if (ret) {
  1718. dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
  1719. ret);
  1720. goto out;
  1721. }
  1722. iomem = devm_ioremap_resource(dev, &res);
  1723. if (IS_ERR(iomem)) {
  1724. ret = PTR_ERR(iomem);
  1725. goto out;
  1726. }
  1727. regmap_conf.name = "nfc-io";
  1728. regmap_conf.max_register = resource_size(&res) - 4;
  1729. nc->io = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
  1730. if (IS_ERR(nc->io)) {
  1731. ret = PTR_ERR(nc->io);
  1732. dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
  1733. ret);
  1734. goto out;
  1735. }
  1736. ret = of_address_to_resource(nfc_np, 1, &res);
  1737. if (ret) {
  1738. dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
  1739. ret);
  1740. goto out;
  1741. }
  1742. iomem = devm_ioremap_resource(dev, &res);
  1743. if (IS_ERR(iomem)) {
  1744. ret = PTR_ERR(iomem);
  1745. goto out;
  1746. }
  1747. regmap_conf.name = "smc";
  1748. regmap_conf.max_register = resource_size(&res) - 4;
  1749. nc->base.smc = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
  1750. if (IS_ERR(nc->base.smc)) {
  1751. ret = PTR_ERR(nc->base.smc);
  1752. dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
  1753. ret);
  1754. goto out;
  1755. }
  1756. ret = of_address_to_resource(nfc_np, 2, &res);
  1757. if (ret) {
  1758. dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
  1759. ret);
  1760. goto out;
  1761. }
  1762. nc->sram.virt = devm_ioremap_resource(dev, &res);
  1763. if (IS_ERR(nc->sram.virt)) {
  1764. ret = PTR_ERR(nc->sram.virt);
  1765. goto out;
  1766. }
  1767. nc->sram.dma = res.start;
  1768. out:
  1769. of_node_put(nfc_np);
  1770. return ret;
  1771. }
  1772. static int
  1773. atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
  1774. {
  1775. struct device *dev = nc->base.dev;
  1776. struct device_node *np;
  1777. int ret;
  1778. np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
  1779. if (!np) {
  1780. dev_err(dev, "Missing or invalid atmel,smc property\n");
  1781. return -EINVAL;
  1782. }
  1783. nc->hsmc_layout = atmel_hsmc_get_reg_layout(np);
  1784. nc->irq = of_irq_get(np, 0);
  1785. of_node_put(np);
  1786. if (nc->irq <= 0) {
  1787. ret = nc->irq ?: -ENXIO;
  1788. if (ret != -EPROBE_DEFER)
  1789. dev_err(dev, "Failed to get IRQ number (err = %d)\n",
  1790. ret);
  1791. return ret;
  1792. }
  1793. np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
  1794. if (!np) {
  1795. dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
  1796. return -EINVAL;
  1797. }
  1798. nc->io = syscon_node_to_regmap(np);
  1799. of_node_put(np);
  1800. if (IS_ERR(nc->io)) {
  1801. ret = PTR_ERR(nc->io);
  1802. dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
  1803. return ret;
  1804. }
  1805. nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
  1806. "atmel,nfc-sram", 0);
  1807. if (!nc->sram.pool) {
  1808. dev_err(nc->base.dev, "Missing SRAM\n");
  1809. return -ENOMEM;
  1810. }
  1811. nc->sram.virt = gen_pool_dma_alloc(nc->sram.pool,
  1812. ATMEL_NFC_SRAM_SIZE,
  1813. &nc->sram.dma);
  1814. if (!nc->sram.virt) {
  1815. dev_err(nc->base.dev,
  1816. "Could not allocate memory from the NFC SRAM pool\n");
  1817. return -ENOMEM;
  1818. }
  1819. return 0;
  1820. }
  1821. static int
  1822. atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
  1823. {
  1824. struct atmel_hsmc_nand_controller *hsmc_nc;
  1825. int ret;
  1826. ret = atmel_nand_controller_remove_nands(nc);
  1827. if (ret)
  1828. return ret;
  1829. hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
  1830. if (hsmc_nc->sram.pool)
  1831. gen_pool_free(hsmc_nc->sram.pool,
  1832. (unsigned long)hsmc_nc->sram.virt,
  1833. ATMEL_NFC_SRAM_SIZE);
  1834. if (hsmc_nc->clk) {
  1835. clk_disable_unprepare(hsmc_nc->clk);
  1836. clk_put(hsmc_nc->clk);
  1837. }
  1838. atmel_nand_controller_cleanup(nc);
  1839. return 0;
  1840. }
  1841. static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
  1842. const struct atmel_nand_controller_caps *caps)
  1843. {
  1844. struct device *dev = &pdev->dev;
  1845. struct atmel_hsmc_nand_controller *nc;
  1846. int ret;
  1847. nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
  1848. if (!nc)
  1849. return -ENOMEM;
  1850. ret = atmel_nand_controller_init(&nc->base, pdev, caps);
  1851. if (ret)
  1852. return ret;
  1853. if (caps->legacy_of_bindings)
  1854. ret = atmel_hsmc_nand_controller_legacy_init(nc);
  1855. else
  1856. ret = atmel_hsmc_nand_controller_init(nc);
  1857. if (ret)
  1858. return ret;
  1859. /* Make sure all irqs are masked before registering our IRQ handler. */
  1860. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
  1861. ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
  1862. IRQF_SHARED, "nfc", nc);
  1863. if (ret) {
  1864. dev_err(dev,
  1865. "Could not get register NFC interrupt handler (err = %d)\n",
  1866. ret);
  1867. goto err;
  1868. }
  1869. /* Initial NFC configuration. */
  1870. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
  1871. ATMEL_HSMC_NFC_CFG_DTO_MAX);
  1872. ret = atmel_nand_controller_add_nands(&nc->base);
  1873. if (ret)
  1874. goto err;
  1875. return 0;
  1876. err:
  1877. atmel_hsmc_nand_controller_remove(&nc->base);
  1878. return ret;
  1879. }
  1880. static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
  1881. .probe = atmel_hsmc_nand_controller_probe,
  1882. .remove = atmel_hsmc_nand_controller_remove,
  1883. .ecc_init = atmel_hsmc_nand_ecc_init,
  1884. .nand_init = atmel_hsmc_nand_init,
  1885. .setup_data_interface = atmel_hsmc_nand_setup_data_interface,
  1886. };
  1887. static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
  1888. .has_dma = true,
  1889. .ale_offs = BIT(21),
  1890. .cle_offs = BIT(22),
  1891. .ops = &atmel_hsmc_nc_ops,
  1892. };
  1893. /* Only used to parse old bindings. */
  1894. static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
  1895. .has_dma = true,
  1896. .ale_offs = BIT(21),
  1897. .cle_offs = BIT(22),
  1898. .ops = &atmel_hsmc_nc_ops,
  1899. .legacy_of_bindings = true,
  1900. };
  1901. static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
  1902. const struct atmel_nand_controller_caps *caps)
  1903. {
  1904. struct device *dev = &pdev->dev;
  1905. struct atmel_smc_nand_controller *nc;
  1906. int ret;
  1907. nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
  1908. if (!nc)
  1909. return -ENOMEM;
  1910. ret = atmel_nand_controller_init(&nc->base, pdev, caps);
  1911. if (ret)
  1912. return ret;
  1913. ret = atmel_smc_nand_controller_init(nc);
  1914. if (ret)
  1915. return ret;
  1916. return atmel_nand_controller_add_nands(&nc->base);
  1917. }
  1918. static int
  1919. atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
  1920. {
  1921. int ret;
  1922. ret = atmel_nand_controller_remove_nands(nc);
  1923. if (ret)
  1924. return ret;
  1925. atmel_nand_controller_cleanup(nc);
  1926. return 0;
  1927. }
  1928. /*
  1929. * The SMC reg layout of at91rm9200 is completely different which prevents us
  1930. * from re-using atmel_smc_nand_setup_data_interface() for the
  1931. * ->setup_data_interface() hook.
  1932. * At this point, there's no support for the at91rm9200 SMC IP, so we leave
  1933. * ->setup_data_interface() unassigned.
  1934. */
  1935. static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
  1936. .probe = atmel_smc_nand_controller_probe,
  1937. .remove = atmel_smc_nand_controller_remove,
  1938. .ecc_init = atmel_nand_ecc_init,
  1939. .nand_init = atmel_smc_nand_init,
  1940. };
  1941. static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
  1942. .ale_offs = BIT(21),
  1943. .cle_offs = BIT(22),
  1944. .ops = &at91rm9200_nc_ops,
  1945. };
  1946. static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
  1947. .probe = atmel_smc_nand_controller_probe,
  1948. .remove = atmel_smc_nand_controller_remove,
  1949. .ecc_init = atmel_nand_ecc_init,
  1950. .nand_init = atmel_smc_nand_init,
  1951. .setup_data_interface = atmel_smc_nand_setup_data_interface,
  1952. };
  1953. static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
  1954. .ale_offs = BIT(21),
  1955. .cle_offs = BIT(22),
  1956. .ops = &atmel_smc_nc_ops,
  1957. };
  1958. static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
  1959. .ale_offs = BIT(22),
  1960. .cle_offs = BIT(21),
  1961. .ops = &atmel_smc_nc_ops,
  1962. };
  1963. static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
  1964. .has_dma = true,
  1965. .ale_offs = BIT(21),
  1966. .cle_offs = BIT(22),
  1967. .ops = &atmel_smc_nc_ops,
  1968. };
  1969. /* Only used to parse old bindings. */
  1970. static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
  1971. .ale_offs = BIT(21),
  1972. .cle_offs = BIT(22),
  1973. .ops = &atmel_smc_nc_ops,
  1974. .legacy_of_bindings = true,
  1975. };
  1976. static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
  1977. .ale_offs = BIT(22),
  1978. .cle_offs = BIT(21),
  1979. .ops = &atmel_smc_nc_ops,
  1980. .legacy_of_bindings = true,
  1981. };
  1982. static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
  1983. .has_dma = true,
  1984. .ale_offs = BIT(21),
  1985. .cle_offs = BIT(22),
  1986. .ops = &atmel_smc_nc_ops,
  1987. .legacy_of_bindings = true,
  1988. };
  1989. static const struct of_device_id atmel_nand_controller_of_ids[] = {
  1990. {
  1991. .compatible = "atmel,at91rm9200-nand-controller",
  1992. .data = &atmel_rm9200_nc_caps,
  1993. },
  1994. {
  1995. .compatible = "atmel,at91sam9260-nand-controller",
  1996. .data = &atmel_sam9260_nc_caps,
  1997. },
  1998. {
  1999. .compatible = "atmel,at91sam9261-nand-controller",
  2000. .data = &atmel_sam9261_nc_caps,
  2001. },
  2002. {
  2003. .compatible = "atmel,at91sam9g45-nand-controller",
  2004. .data = &atmel_sam9g45_nc_caps,
  2005. },
  2006. {
  2007. .compatible = "atmel,sama5d3-nand-controller",
  2008. .data = &atmel_sama5_nc_caps,
  2009. },
  2010. /* Support for old/deprecated bindings: */
  2011. {
  2012. .compatible = "atmel,at91rm9200-nand",
  2013. .data = &atmel_rm9200_nand_caps,
  2014. },
  2015. {
  2016. .compatible = "atmel,sama5d4-nand",
  2017. .data = &atmel_rm9200_nand_caps,
  2018. },
  2019. {
  2020. .compatible = "atmel,sama5d2-nand",
  2021. .data = &atmel_rm9200_nand_caps,
  2022. },
  2023. { /* sentinel */ },
  2024. };
  2025. MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
  2026. static int atmel_nand_controller_probe(struct platform_device *pdev)
  2027. {
  2028. const struct atmel_nand_controller_caps *caps;
  2029. if (pdev->id_entry)
  2030. caps = (void *)pdev->id_entry->driver_data;
  2031. else
  2032. caps = of_device_get_match_data(&pdev->dev);
  2033. if (!caps) {
  2034. dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
  2035. return -EINVAL;
  2036. }
  2037. if (caps->legacy_of_bindings) {
  2038. u32 ale_offs = 21;
  2039. /*
  2040. * If we are parsing legacy DT props and the DT contains a
  2041. * valid NFC node, forward the request to the sama5 logic.
  2042. */
  2043. if (of_find_compatible_node(pdev->dev.of_node, NULL,
  2044. "atmel,sama5d3-nfc"))
  2045. caps = &atmel_sama5_nand_caps;
  2046. /*
  2047. * Even if the compatible says we are dealing with an
  2048. * at91rm9200 controller, the atmel,nand-has-dma specify that
  2049. * this controller supports DMA, which means we are in fact
  2050. * dealing with an at91sam9g45+ controller.
  2051. */
  2052. if (!caps->has_dma &&
  2053. of_property_read_bool(pdev->dev.of_node,
  2054. "atmel,nand-has-dma"))
  2055. caps = &atmel_sam9g45_nand_caps;
  2056. /*
  2057. * All SoCs except the at91sam9261 are assigning ALE to A21 and
  2058. * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
  2059. * actually dealing with an at91sam9261 controller.
  2060. */
  2061. of_property_read_u32(pdev->dev.of_node,
  2062. "atmel,nand-addr-offset", &ale_offs);
  2063. if (ale_offs != 21)
  2064. caps = &atmel_sam9261_nand_caps;
  2065. }
  2066. return caps->ops->probe(pdev, caps);
  2067. }
  2068. static int atmel_nand_controller_remove(struct platform_device *pdev)
  2069. {
  2070. struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
  2071. return nc->caps->ops->remove(nc);
  2072. }
  2073. static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
  2074. {
  2075. struct atmel_nand_controller *nc = dev_get_drvdata(dev);
  2076. struct atmel_nand *nand;
  2077. if (nc->pmecc)
  2078. atmel_pmecc_reset(nc->pmecc);
  2079. list_for_each_entry(nand, &nc->chips, node) {
  2080. int i;
  2081. for (i = 0; i < nand->numcs; i++)
  2082. nand_reset(&nand->base, i);
  2083. }
  2084. return 0;
  2085. }
  2086. static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
  2087. atmel_nand_controller_resume);
  2088. static struct platform_driver atmel_nand_controller_driver = {
  2089. .driver = {
  2090. .name = "atmel-nand-controller",
  2091. .of_match_table = of_match_ptr(atmel_nand_controller_of_ids),
  2092. .pm = &atmel_nand_controller_pm_ops,
  2093. },
  2094. .probe = atmel_nand_controller_probe,
  2095. .remove = atmel_nand_controller_remove,
  2096. };
  2097. module_platform_driver(atmel_nand_controller_driver);
  2098. MODULE_LICENSE("GPL");
  2099. MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
  2100. MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
  2101. MODULE_ALIAS("platform:atmel-nand-controller");