mtdpart.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  5. * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  6. * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. #include <linux/module.h>
  24. #include <linux/types.h>
  25. #include <linux/kernel.h>
  26. #include <linux/slab.h>
  27. #include <linux/list.h>
  28. #include <linux/kmod.h>
  29. #include <linux/mtd/mtd.h>
  30. #include <linux/mtd/partitions.h>
  31. #include <linux/err.h>
  32. #include <linux/of.h>
  33. #include "mtdcore.h"
  34. /* Our partition linked list */
  35. static LIST_HEAD(mtd_partitions);
  36. static DEFINE_MUTEX(mtd_partitions_mutex);
  37. /**
  38. * struct mtd_part - our partition node structure
  39. *
  40. * @mtd: struct holding partition details
  41. * @parent: parent mtd - flash device or another partition
  42. * @offset: partition offset relative to the *flash device*
  43. */
  44. struct mtd_part {
  45. struct mtd_info mtd;
  46. struct mtd_info *parent;
  47. uint64_t offset;
  48. struct list_head list;
  49. };
  50. /*
  51. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  52. * the pointer to that structure.
  53. */
  54. static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
  55. {
  56. return container_of(mtd, struct mtd_part, mtd);
  57. }
  58. /*
  59. * MTD methods which simply translate the effective address and pass through
  60. * to the _real_ device.
  61. */
  62. static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  63. size_t *retlen, u_char *buf)
  64. {
  65. struct mtd_part *part = mtd_to_part(mtd);
  66. struct mtd_ecc_stats stats;
  67. int res;
  68. stats = part->parent->ecc_stats;
  69. res = part->parent->_read(part->parent, from + part->offset, len,
  70. retlen, buf);
  71. if (unlikely(mtd_is_eccerr(res)))
  72. mtd->ecc_stats.failed +=
  73. part->parent->ecc_stats.failed - stats.failed;
  74. else
  75. mtd->ecc_stats.corrected +=
  76. part->parent->ecc_stats.corrected - stats.corrected;
  77. return res;
  78. }
  79. static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  80. size_t *retlen, void **virt, resource_size_t *phys)
  81. {
  82. struct mtd_part *part = mtd_to_part(mtd);
  83. return part->parent->_point(part->parent, from + part->offset, len,
  84. retlen, virt, phys);
  85. }
  86. static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  87. {
  88. struct mtd_part *part = mtd_to_part(mtd);
  89. return part->parent->_unpoint(part->parent, from + part->offset, len);
  90. }
  91. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  92. struct mtd_oob_ops *ops)
  93. {
  94. struct mtd_part *part = mtd_to_part(mtd);
  95. struct mtd_ecc_stats stats;
  96. int res;
  97. stats = part->parent->ecc_stats;
  98. res = part->parent->_read_oob(part->parent, from + part->offset, ops);
  99. if (unlikely(mtd_is_eccerr(res)))
  100. mtd->ecc_stats.failed +=
  101. part->parent->ecc_stats.failed - stats.failed;
  102. else
  103. mtd->ecc_stats.corrected +=
  104. part->parent->ecc_stats.corrected - stats.corrected;
  105. return res;
  106. }
  107. static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
  108. size_t len, size_t *retlen, u_char *buf)
  109. {
  110. struct mtd_part *part = mtd_to_part(mtd);
  111. return part->parent->_read_user_prot_reg(part->parent, from, len,
  112. retlen, buf);
  113. }
  114. static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
  115. size_t *retlen, struct otp_info *buf)
  116. {
  117. struct mtd_part *part = mtd_to_part(mtd);
  118. return part->parent->_get_user_prot_info(part->parent, len, retlen,
  119. buf);
  120. }
  121. static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
  122. size_t len, size_t *retlen, u_char *buf)
  123. {
  124. struct mtd_part *part = mtd_to_part(mtd);
  125. return part->parent->_read_fact_prot_reg(part->parent, from, len,
  126. retlen, buf);
  127. }
  128. static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
  129. size_t *retlen, struct otp_info *buf)
  130. {
  131. struct mtd_part *part = mtd_to_part(mtd);
  132. return part->parent->_get_fact_prot_info(part->parent, len, retlen,
  133. buf);
  134. }
  135. static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
  136. size_t *retlen, const u_char *buf)
  137. {
  138. struct mtd_part *part = mtd_to_part(mtd);
  139. return part->parent->_write(part->parent, to + part->offset, len,
  140. retlen, buf);
  141. }
  142. static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  143. size_t *retlen, const u_char *buf)
  144. {
  145. struct mtd_part *part = mtd_to_part(mtd);
  146. return part->parent->_panic_write(part->parent, to + part->offset, len,
  147. retlen, buf);
  148. }
  149. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  150. struct mtd_oob_ops *ops)
  151. {
  152. struct mtd_part *part = mtd_to_part(mtd);
  153. return part->parent->_write_oob(part->parent, to + part->offset, ops);
  154. }
  155. static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
  156. size_t len, size_t *retlen, u_char *buf)
  157. {
  158. struct mtd_part *part = mtd_to_part(mtd);
  159. return part->parent->_write_user_prot_reg(part->parent, from, len,
  160. retlen, buf);
  161. }
  162. static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
  163. size_t len)
  164. {
  165. struct mtd_part *part = mtd_to_part(mtd);
  166. return part->parent->_lock_user_prot_reg(part->parent, from, len);
  167. }
  168. static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
  169. unsigned long count, loff_t to, size_t *retlen)
  170. {
  171. struct mtd_part *part = mtd_to_part(mtd);
  172. return part->parent->_writev(part->parent, vecs, count,
  173. to + part->offset, retlen);
  174. }
  175. static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
  176. {
  177. struct mtd_part *part = mtd_to_part(mtd);
  178. int ret;
  179. instr->addr += part->offset;
  180. ret = part->parent->_erase(part->parent, instr);
  181. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  182. instr->fail_addr -= part->offset;
  183. instr->addr -= part->offset;
  184. return ret;
  185. }
  186. static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  187. {
  188. struct mtd_part *part = mtd_to_part(mtd);
  189. return part->parent->_lock(part->parent, ofs + part->offset, len);
  190. }
  191. static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  192. {
  193. struct mtd_part *part = mtd_to_part(mtd);
  194. return part->parent->_unlock(part->parent, ofs + part->offset, len);
  195. }
  196. static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  197. {
  198. struct mtd_part *part = mtd_to_part(mtd);
  199. return part->parent->_is_locked(part->parent, ofs + part->offset, len);
  200. }
  201. static void part_sync(struct mtd_info *mtd)
  202. {
  203. struct mtd_part *part = mtd_to_part(mtd);
  204. part->parent->_sync(part->parent);
  205. }
  206. static int part_suspend(struct mtd_info *mtd)
  207. {
  208. struct mtd_part *part = mtd_to_part(mtd);
  209. return part->parent->_suspend(part->parent);
  210. }
  211. static void part_resume(struct mtd_info *mtd)
  212. {
  213. struct mtd_part *part = mtd_to_part(mtd);
  214. part->parent->_resume(part->parent);
  215. }
  216. static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
  217. {
  218. struct mtd_part *part = mtd_to_part(mtd);
  219. ofs += part->offset;
  220. return part->parent->_block_isreserved(part->parent, ofs);
  221. }
  222. static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
  223. {
  224. struct mtd_part *part = mtd_to_part(mtd);
  225. ofs += part->offset;
  226. return part->parent->_block_isbad(part->parent, ofs);
  227. }
  228. static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
  229. {
  230. struct mtd_part *part = mtd_to_part(mtd);
  231. int res;
  232. ofs += part->offset;
  233. res = part->parent->_block_markbad(part->parent, ofs);
  234. if (!res)
  235. mtd->ecc_stats.badblocks++;
  236. return res;
  237. }
  238. static int part_get_device(struct mtd_info *mtd)
  239. {
  240. struct mtd_part *part = mtd_to_part(mtd);
  241. return part->parent->_get_device(part->parent);
  242. }
  243. static void part_put_device(struct mtd_info *mtd)
  244. {
  245. struct mtd_part *part = mtd_to_part(mtd);
  246. part->parent->_put_device(part->parent);
  247. }
  248. static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
  249. struct mtd_oob_region *oobregion)
  250. {
  251. struct mtd_part *part = mtd_to_part(mtd);
  252. return mtd_ooblayout_ecc(part->parent, section, oobregion);
  253. }
  254. static int part_ooblayout_free(struct mtd_info *mtd, int section,
  255. struct mtd_oob_region *oobregion)
  256. {
  257. struct mtd_part *part = mtd_to_part(mtd);
  258. return mtd_ooblayout_free(part->parent, section, oobregion);
  259. }
  260. static const struct mtd_ooblayout_ops part_ooblayout_ops = {
  261. .ecc = part_ooblayout_ecc,
  262. .free = part_ooblayout_free,
  263. };
  264. static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
  265. {
  266. struct mtd_part *part = mtd_to_part(mtd);
  267. return part->parent->_max_bad_blocks(part->parent,
  268. ofs + part->offset, len);
  269. }
  270. static inline void free_partition(struct mtd_part *p)
  271. {
  272. kfree(p->mtd.name);
  273. kfree(p);
  274. }
  275. /**
  276. * mtd_parse_part - parse MTD partition looking for subpartitions
  277. *
  278. * @slave: part that is supposed to be a container and should be parsed
  279. * @types: NULL-terminated array with names of partition parsers to try
  280. *
  281. * Some partitions are kind of containers with extra subpartitions (volumes).
  282. * There can be various formats of such containers. This function tries to use
  283. * specified parsers to analyze given partition and registers found
  284. * subpartitions on success.
  285. */
  286. static int mtd_parse_part(struct mtd_part *slave, const char *const *types)
  287. {
  288. struct mtd_partitions parsed;
  289. int err;
  290. err = parse_mtd_partitions(&slave->mtd, types, &parsed, NULL);
  291. if (err)
  292. return err;
  293. else if (!parsed.nr_parts)
  294. return -ENOENT;
  295. err = add_mtd_partitions(&slave->mtd, parsed.parts, parsed.nr_parts);
  296. mtd_part_parser_cleanup(&parsed);
  297. return err;
  298. }
  299. static struct mtd_part *allocate_partition(struct mtd_info *parent,
  300. const struct mtd_partition *part, int partno,
  301. uint64_t cur_offset)
  302. {
  303. int wr_alignment = (parent->flags & MTD_NO_ERASE) ? parent->writesize :
  304. parent->erasesize;
  305. struct mtd_part *slave;
  306. u32 remainder;
  307. char *name;
  308. u64 tmp;
  309. /* allocate the partition structure */
  310. slave = kzalloc(sizeof(*slave), GFP_KERNEL);
  311. name = kstrdup(part->name, GFP_KERNEL);
  312. if (!name || !slave) {
  313. printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
  314. parent->name);
  315. kfree(name);
  316. kfree(slave);
  317. return ERR_PTR(-ENOMEM);
  318. }
  319. /* set up the MTD object for this partition */
  320. slave->mtd.type = parent->type;
  321. slave->mtd.flags = parent->flags & ~part->mask_flags;
  322. slave->mtd.size = part->size;
  323. slave->mtd.writesize = parent->writesize;
  324. slave->mtd.writebufsize = parent->writebufsize;
  325. slave->mtd.oobsize = parent->oobsize;
  326. slave->mtd.oobavail = parent->oobavail;
  327. slave->mtd.subpage_sft = parent->subpage_sft;
  328. slave->mtd.pairing = parent->pairing;
  329. slave->mtd.name = name;
  330. slave->mtd.owner = parent->owner;
  331. /* NOTE: Historically, we didn't arrange MTDs as a tree out of
  332. * concern for showing the same data in multiple partitions.
  333. * However, it is very useful to have the master node present,
  334. * so the MTD_PARTITIONED_MASTER option allows that. The master
  335. * will have device nodes etc only if this is set, so make the
  336. * parent conditional on that option. Note, this is a way to
  337. * distinguish between the master and the partition in sysfs.
  338. */
  339. slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ?
  340. &parent->dev :
  341. parent->dev.parent;
  342. slave->mtd.dev.of_node = part->of_node;
  343. if (parent->_read)
  344. slave->mtd._read = part_read;
  345. if (parent->_write)
  346. slave->mtd._write = part_write;
  347. if (parent->_panic_write)
  348. slave->mtd._panic_write = part_panic_write;
  349. if (parent->_point && parent->_unpoint) {
  350. slave->mtd._point = part_point;
  351. slave->mtd._unpoint = part_unpoint;
  352. }
  353. if (parent->_read_oob)
  354. slave->mtd._read_oob = part_read_oob;
  355. if (parent->_write_oob)
  356. slave->mtd._write_oob = part_write_oob;
  357. if (parent->_read_user_prot_reg)
  358. slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
  359. if (parent->_read_fact_prot_reg)
  360. slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
  361. if (parent->_write_user_prot_reg)
  362. slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
  363. if (parent->_lock_user_prot_reg)
  364. slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
  365. if (parent->_get_user_prot_info)
  366. slave->mtd._get_user_prot_info = part_get_user_prot_info;
  367. if (parent->_get_fact_prot_info)
  368. slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
  369. if (parent->_sync)
  370. slave->mtd._sync = part_sync;
  371. if (!partno && !parent->dev.class && parent->_suspend &&
  372. parent->_resume) {
  373. slave->mtd._suspend = part_suspend;
  374. slave->mtd._resume = part_resume;
  375. }
  376. if (parent->_writev)
  377. slave->mtd._writev = part_writev;
  378. if (parent->_lock)
  379. slave->mtd._lock = part_lock;
  380. if (parent->_unlock)
  381. slave->mtd._unlock = part_unlock;
  382. if (parent->_is_locked)
  383. slave->mtd._is_locked = part_is_locked;
  384. if (parent->_block_isreserved)
  385. slave->mtd._block_isreserved = part_block_isreserved;
  386. if (parent->_block_isbad)
  387. slave->mtd._block_isbad = part_block_isbad;
  388. if (parent->_block_markbad)
  389. slave->mtd._block_markbad = part_block_markbad;
  390. if (parent->_max_bad_blocks)
  391. slave->mtd._max_bad_blocks = part_max_bad_blocks;
  392. if (parent->_get_device)
  393. slave->mtd._get_device = part_get_device;
  394. if (parent->_put_device)
  395. slave->mtd._put_device = part_put_device;
  396. slave->mtd._erase = part_erase;
  397. slave->parent = parent;
  398. slave->offset = part->offset;
  399. if (slave->offset == MTDPART_OFS_APPEND)
  400. slave->offset = cur_offset;
  401. if (slave->offset == MTDPART_OFS_NXTBLK) {
  402. tmp = cur_offset;
  403. slave->offset = cur_offset;
  404. remainder = do_div(tmp, wr_alignment);
  405. if (remainder) {
  406. slave->offset += wr_alignment - remainder;
  407. printk(KERN_NOTICE "Moving partition %d: "
  408. "0x%012llx -> 0x%012llx\n", partno,
  409. (unsigned long long)cur_offset, (unsigned long long)slave->offset);
  410. }
  411. }
  412. if (slave->offset == MTDPART_OFS_RETAIN) {
  413. slave->offset = cur_offset;
  414. if (parent->size - slave->offset >= slave->mtd.size) {
  415. slave->mtd.size = parent->size - slave->offset
  416. - slave->mtd.size;
  417. } else {
  418. printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
  419. part->name, parent->size - slave->offset,
  420. slave->mtd.size);
  421. /* register to preserve ordering */
  422. goto out_register;
  423. }
  424. }
  425. if (slave->mtd.size == MTDPART_SIZ_FULL)
  426. slave->mtd.size = parent->size - slave->offset;
  427. printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
  428. (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
  429. /* let's do some sanity checks */
  430. if (slave->offset >= parent->size) {
  431. /* let's register it anyway to preserve ordering */
  432. slave->offset = 0;
  433. slave->mtd.size = 0;
  434. printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
  435. part->name);
  436. goto out_register;
  437. }
  438. if (slave->offset + slave->mtd.size > parent->size) {
  439. slave->mtd.size = parent->size - slave->offset;
  440. printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
  441. part->name, parent->name, (unsigned long long)slave->mtd.size);
  442. }
  443. if (parent->numeraseregions > 1) {
  444. /* Deal with variable erase size stuff */
  445. int i, max = parent->numeraseregions;
  446. u64 end = slave->offset + slave->mtd.size;
  447. struct mtd_erase_region_info *regions = parent->eraseregions;
  448. /* Find the first erase regions which is part of this
  449. * partition. */
  450. for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
  451. ;
  452. /* The loop searched for the region _behind_ the first one */
  453. if (i > 0)
  454. i--;
  455. /* Pick biggest erasesize */
  456. for (; i < max && regions[i].offset < end; i++) {
  457. if (slave->mtd.erasesize < regions[i].erasesize) {
  458. slave->mtd.erasesize = regions[i].erasesize;
  459. }
  460. }
  461. BUG_ON(slave->mtd.erasesize == 0);
  462. } else {
  463. /* Single erase size */
  464. slave->mtd.erasesize = parent->erasesize;
  465. }
  466. /*
  467. * Slave erasesize might differ from the master one if the master
  468. * exposes several regions with different erasesize. Adjust
  469. * wr_alignment accordingly.
  470. */
  471. if (!(slave->mtd.flags & MTD_NO_ERASE))
  472. wr_alignment = slave->mtd.erasesize;
  473. tmp = slave->offset;
  474. remainder = do_div(tmp, wr_alignment);
  475. if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
  476. /* Doesn't start on a boundary of major erase size */
  477. /* FIXME: Let it be writable if it is on a boundary of
  478. * _minor_ erase size though */
  479. slave->mtd.flags &= ~MTD_WRITEABLE;
  480. printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n",
  481. part->name);
  482. }
  483. tmp = slave->mtd.size;
  484. remainder = do_div(tmp, wr_alignment);
  485. if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
  486. slave->mtd.flags &= ~MTD_WRITEABLE;
  487. printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n",
  488. part->name);
  489. }
  490. mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
  491. slave->mtd.ecc_step_size = parent->ecc_step_size;
  492. slave->mtd.ecc_strength = parent->ecc_strength;
  493. slave->mtd.bitflip_threshold = parent->bitflip_threshold;
  494. if (parent->_block_isbad) {
  495. uint64_t offs = 0;
  496. while (offs < slave->mtd.size) {
  497. if (mtd_block_isreserved(parent, offs + slave->offset))
  498. slave->mtd.ecc_stats.bbtblocks++;
  499. else if (mtd_block_isbad(parent, offs + slave->offset))
  500. slave->mtd.ecc_stats.badblocks++;
  501. offs += slave->mtd.erasesize;
  502. }
  503. }
  504. out_register:
  505. return slave;
  506. }
  507. static ssize_t mtd_partition_offset_show(struct device *dev,
  508. struct device_attribute *attr, char *buf)
  509. {
  510. struct mtd_info *mtd = dev_get_drvdata(dev);
  511. struct mtd_part *part = mtd_to_part(mtd);
  512. return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
  513. }
  514. static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
  515. static const struct attribute *mtd_partition_attrs[] = {
  516. &dev_attr_offset.attr,
  517. NULL
  518. };
  519. static int mtd_add_partition_attrs(struct mtd_part *new)
  520. {
  521. int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
  522. if (ret)
  523. printk(KERN_WARNING
  524. "mtd: failed to create partition attrs, err=%d\n", ret);
  525. return ret;
  526. }
  527. int mtd_add_partition(struct mtd_info *parent, const char *name,
  528. long long offset, long long length)
  529. {
  530. struct mtd_partition part;
  531. struct mtd_part *new;
  532. int ret = 0;
  533. /* the direct offset is expected */
  534. if (offset == MTDPART_OFS_APPEND ||
  535. offset == MTDPART_OFS_NXTBLK)
  536. return -EINVAL;
  537. if (length == MTDPART_SIZ_FULL)
  538. length = parent->size - offset;
  539. if (length <= 0)
  540. return -EINVAL;
  541. memset(&part, 0, sizeof(part));
  542. part.name = name;
  543. part.size = length;
  544. part.offset = offset;
  545. new = allocate_partition(parent, &part, -1, offset);
  546. if (IS_ERR(new))
  547. return PTR_ERR(new);
  548. mutex_lock(&mtd_partitions_mutex);
  549. list_add(&new->list, &mtd_partitions);
  550. mutex_unlock(&mtd_partitions_mutex);
  551. add_mtd_device(&new->mtd);
  552. mtd_add_partition_attrs(new);
  553. return ret;
  554. }
  555. EXPORT_SYMBOL_GPL(mtd_add_partition);
  556. /**
  557. * __mtd_del_partition - delete MTD partition
  558. *
  559. * @priv: internal MTD struct for partition to be deleted
  560. *
  561. * This function must be called with the partitions mutex locked.
  562. */
  563. static int __mtd_del_partition(struct mtd_part *priv)
  564. {
  565. struct mtd_part *child, *next;
  566. int err;
  567. list_for_each_entry_safe(child, next, &mtd_partitions, list) {
  568. if (child->parent == &priv->mtd) {
  569. err = __mtd_del_partition(child);
  570. if (err)
  571. return err;
  572. }
  573. }
  574. sysfs_remove_files(&priv->mtd.dev.kobj, mtd_partition_attrs);
  575. err = del_mtd_device(&priv->mtd);
  576. if (err)
  577. return err;
  578. list_del(&priv->list);
  579. free_partition(priv);
  580. return 0;
  581. }
  582. /*
  583. * This function unregisters and destroy all slave MTD objects which are
  584. * attached to the given MTD object.
  585. */
  586. int del_mtd_partitions(struct mtd_info *mtd)
  587. {
  588. struct mtd_part *slave, *next;
  589. int ret, err = 0;
  590. mutex_lock(&mtd_partitions_mutex);
  591. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  592. if (slave->parent == mtd) {
  593. ret = __mtd_del_partition(slave);
  594. if (ret < 0)
  595. err = ret;
  596. }
  597. mutex_unlock(&mtd_partitions_mutex);
  598. return err;
  599. }
  600. int mtd_del_partition(struct mtd_info *mtd, int partno)
  601. {
  602. struct mtd_part *slave, *next;
  603. int ret = -EINVAL;
  604. mutex_lock(&mtd_partitions_mutex);
  605. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  606. if ((slave->parent == mtd) &&
  607. (slave->mtd.index == partno)) {
  608. ret = __mtd_del_partition(slave);
  609. break;
  610. }
  611. mutex_unlock(&mtd_partitions_mutex);
  612. return ret;
  613. }
  614. EXPORT_SYMBOL_GPL(mtd_del_partition);
  615. /*
  616. * This function, given a master MTD object and a partition table, creates
  617. * and registers slave MTD objects which are bound to the master according to
  618. * the partition definitions.
  619. *
  620. * For historical reasons, this function's caller only registers the master
  621. * if the MTD_PARTITIONED_MASTER config option is set.
  622. */
  623. int add_mtd_partitions(struct mtd_info *master,
  624. const struct mtd_partition *parts,
  625. int nbparts)
  626. {
  627. struct mtd_part *slave;
  628. uint64_t cur_offset = 0;
  629. int i;
  630. printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  631. for (i = 0; i < nbparts; i++) {
  632. slave = allocate_partition(master, parts + i, i, cur_offset);
  633. if (IS_ERR(slave)) {
  634. del_mtd_partitions(master);
  635. return PTR_ERR(slave);
  636. }
  637. mutex_lock(&mtd_partitions_mutex);
  638. list_add(&slave->list, &mtd_partitions);
  639. mutex_unlock(&mtd_partitions_mutex);
  640. add_mtd_device(&slave->mtd);
  641. mtd_add_partition_attrs(slave);
  642. if (parts[i].types)
  643. mtd_parse_part(slave, parts[i].types);
  644. cur_offset = slave->offset + slave->mtd.size;
  645. }
  646. return 0;
  647. }
  648. static DEFINE_SPINLOCK(part_parser_lock);
  649. static LIST_HEAD(part_parsers);
  650. static struct mtd_part_parser *mtd_part_parser_get(const char *name)
  651. {
  652. struct mtd_part_parser *p, *ret = NULL;
  653. spin_lock(&part_parser_lock);
  654. list_for_each_entry(p, &part_parsers, list)
  655. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  656. ret = p;
  657. break;
  658. }
  659. spin_unlock(&part_parser_lock);
  660. return ret;
  661. }
  662. static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
  663. {
  664. module_put(p->owner);
  665. }
  666. /*
  667. * Many partition parsers just expected the core to kfree() all their data in
  668. * one chunk. Do that by default.
  669. */
  670. static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
  671. int nr_parts)
  672. {
  673. kfree(pparts);
  674. }
  675. int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
  676. {
  677. p->owner = owner;
  678. if (!p->cleanup)
  679. p->cleanup = &mtd_part_parser_cleanup_default;
  680. spin_lock(&part_parser_lock);
  681. list_add(&p->list, &part_parsers);
  682. spin_unlock(&part_parser_lock);
  683. return 0;
  684. }
  685. EXPORT_SYMBOL_GPL(__register_mtd_parser);
  686. void deregister_mtd_parser(struct mtd_part_parser *p)
  687. {
  688. spin_lock(&part_parser_lock);
  689. list_del(&p->list);
  690. spin_unlock(&part_parser_lock);
  691. }
  692. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  693. /*
  694. * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
  695. * are changing this array!
  696. */
  697. static const char * const default_mtd_part_types[] = {
  698. "cmdlinepart",
  699. "ofpart",
  700. NULL
  701. };
  702. static int mtd_part_do_parse(struct mtd_part_parser *parser,
  703. struct mtd_info *master,
  704. struct mtd_partitions *pparts,
  705. struct mtd_part_parser_data *data)
  706. {
  707. int ret;
  708. ret = (*parser->parse_fn)(master, &pparts->parts, data);
  709. pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret);
  710. if (ret <= 0)
  711. return ret;
  712. pr_notice("%d %s partitions found on MTD device %s\n", ret,
  713. parser->name, master->name);
  714. pparts->nr_parts = ret;
  715. pparts->parser = parser;
  716. return ret;
  717. }
  718. /**
  719. * mtd_part_get_compatible_parser - find MTD parser by a compatible string
  720. *
  721. * @compat: compatible string describing partitions in a device tree
  722. *
  723. * MTD parsers can specify supported partitions by providing a table of
  724. * compatibility strings. This function finds a parser that advertises support
  725. * for a passed value of "compatible".
  726. */
  727. static struct mtd_part_parser *mtd_part_get_compatible_parser(const char *compat)
  728. {
  729. struct mtd_part_parser *p, *ret = NULL;
  730. spin_lock(&part_parser_lock);
  731. list_for_each_entry(p, &part_parsers, list) {
  732. const struct of_device_id *matches;
  733. matches = p->of_match_table;
  734. if (!matches)
  735. continue;
  736. for (; matches->compatible[0]; matches++) {
  737. if (!strcmp(matches->compatible, compat) &&
  738. try_module_get(p->owner)) {
  739. ret = p;
  740. break;
  741. }
  742. }
  743. if (ret)
  744. break;
  745. }
  746. spin_unlock(&part_parser_lock);
  747. return ret;
  748. }
  749. static int mtd_part_of_parse(struct mtd_info *master,
  750. struct mtd_partitions *pparts)
  751. {
  752. struct mtd_part_parser *parser;
  753. struct device_node *np;
  754. struct property *prop;
  755. const char *compat;
  756. const char *fixed = "fixed-partitions";
  757. int ret, err = 0;
  758. np = of_get_child_by_name(mtd_get_of_node(master), "partitions");
  759. of_property_for_each_string(np, "compatible", prop, compat) {
  760. parser = mtd_part_get_compatible_parser(compat);
  761. if (!parser)
  762. continue;
  763. ret = mtd_part_do_parse(parser, master, pparts, NULL);
  764. if (ret > 0) {
  765. of_node_put(np);
  766. return ret;
  767. }
  768. mtd_part_parser_put(parser);
  769. if (ret < 0 && !err)
  770. err = ret;
  771. }
  772. of_node_put(np);
  773. /*
  774. * For backward compatibility we have to try the "fixed-partitions"
  775. * parser. It supports old DT format with partitions specified as a
  776. * direct subnodes of a flash device DT node without any compatibility
  777. * specified we could match.
  778. */
  779. parser = mtd_part_parser_get(fixed);
  780. if (!parser && !request_module("%s", fixed))
  781. parser = mtd_part_parser_get(fixed);
  782. if (parser) {
  783. ret = mtd_part_do_parse(parser, master, pparts, NULL);
  784. if (ret > 0)
  785. return ret;
  786. mtd_part_parser_put(parser);
  787. if (ret < 0 && !err)
  788. err = ret;
  789. }
  790. return err;
  791. }
  792. /**
  793. * parse_mtd_partitions - parse MTD partitions
  794. * @master: the master partition (describes whole MTD device)
  795. * @types: names of partition parsers to try or %NULL
  796. * @pparts: info about partitions found is returned here
  797. * @data: MTD partition parser-specific data
  798. *
  799. * This function tries to find partition on MTD device @master. It uses MTD
  800. * partition parsers, specified in @types. However, if @types is %NULL, then
  801. * the default list of parsers is used. The default list contains only the
  802. * "cmdlinepart" and "ofpart" parsers ATM.
  803. * Note: If there are more then one parser in @types, the kernel only takes the
  804. * partitions parsed out by the first parser.
  805. *
  806. * This function may return:
  807. * o a negative error code in case of failure
  808. * o zero otherwise, and @pparts will describe the partitions, number of
  809. * partitions, and the parser which parsed them. Caller must release
  810. * resources with mtd_part_parser_cleanup() when finished with the returned
  811. * data.
  812. */
  813. int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
  814. struct mtd_partitions *pparts,
  815. struct mtd_part_parser_data *data)
  816. {
  817. struct mtd_part_parser *parser;
  818. int ret, err = 0;
  819. if (!types)
  820. types = default_mtd_part_types;
  821. for ( ; *types; types++) {
  822. /*
  823. * ofpart is a special type that means OF partitioning info
  824. * should be used. It requires a bit different logic so it is
  825. * handled in a separated function.
  826. */
  827. if (!strcmp(*types, "ofpart")) {
  828. ret = mtd_part_of_parse(master, pparts);
  829. } else {
  830. pr_debug("%s: parsing partitions %s\n", master->name,
  831. *types);
  832. parser = mtd_part_parser_get(*types);
  833. if (!parser && !request_module("%s", *types))
  834. parser = mtd_part_parser_get(*types);
  835. pr_debug("%s: got parser %s\n", master->name,
  836. parser ? parser->name : NULL);
  837. if (!parser)
  838. continue;
  839. ret = mtd_part_do_parse(parser, master, pparts, data);
  840. if (ret <= 0)
  841. mtd_part_parser_put(parser);
  842. }
  843. /* Found partitions! */
  844. if (ret > 0)
  845. return 0;
  846. /*
  847. * Stash the first error we see; only report it if no parser
  848. * succeeds
  849. */
  850. if (ret < 0 && !err)
  851. err = ret;
  852. }
  853. return err;
  854. }
  855. void mtd_part_parser_cleanup(struct mtd_partitions *parts)
  856. {
  857. const struct mtd_part_parser *parser;
  858. if (!parts)
  859. return;
  860. parser = parts->parser;
  861. if (parser) {
  862. if (parser->cleanup)
  863. parser->cleanup(parts->parts, parts->nr_parts);
  864. mtd_part_parser_put(parser);
  865. }
  866. }
  867. int mtd_is_partition(const struct mtd_info *mtd)
  868. {
  869. struct mtd_part *part;
  870. int ispart = 0;
  871. mutex_lock(&mtd_partitions_mutex);
  872. list_for_each_entry(part, &mtd_partitions, list)
  873. if (&part->mtd == mtd) {
  874. ispart = 1;
  875. break;
  876. }
  877. mutex_unlock(&mtd_partitions_mutex);
  878. return ispart;
  879. }
  880. EXPORT_SYMBOL_GPL(mtd_is_partition);
  881. /* Returns the size of the entire flash chip */
  882. uint64_t mtd_get_device_size(const struct mtd_info *mtd)
  883. {
  884. if (!mtd_is_partition(mtd))
  885. return mtd->size;
  886. return mtd_get_device_size(mtd_to_part(mtd)->parent);
  887. }
  888. EXPORT_SYMBOL_GPL(mtd_get_device_size);