tcp_output.c 108 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes: Pedro Roque : Retransmit queue handled by TCP.
  22. * : Fragmentation on mtu decrease
  23. * : Segment collapse on retransmit
  24. * : AF independence
  25. *
  26. * Linus Torvalds : send_delayed_ack
  27. * David S. Miller : Charge memory using the right skb
  28. * during syn/ack processing.
  29. * David S. Miller : Output engine completely rewritten.
  30. * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
  31. * Cacophonix Gaul : draft-minshall-nagle-01
  32. * J Hadi Salim : ECN support
  33. *
  34. */
  35. #define pr_fmt(fmt) "TCP: " fmt
  36. #include <net/tcp.h>
  37. #include <linux/compiler.h>
  38. #include <linux/gfp.h>
  39. #include <linux/module.h>
  40. #include <linux/static_key.h>
  41. #include <trace/events/tcp.h>
  42. /* Refresh clocks of a TCP socket,
  43. * ensuring monotically increasing values.
  44. */
  45. void tcp_mstamp_refresh(struct tcp_sock *tp)
  46. {
  47. u64 val = tcp_clock_ns();
  48. if (val > tp->tcp_clock_cache)
  49. tp->tcp_clock_cache = val;
  50. val = div_u64(val, NSEC_PER_USEC);
  51. if (val > tp->tcp_mstamp)
  52. tp->tcp_mstamp = val;
  53. }
  54. static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  55. int push_one, gfp_t gfp);
  56. /* Account for new data that has been sent to the network. */
  57. static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
  58. {
  59. struct inet_connection_sock *icsk = inet_csk(sk);
  60. struct tcp_sock *tp = tcp_sk(sk);
  61. unsigned int prior_packets = tp->packets_out;
  62. tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
  63. __skb_unlink(skb, &sk->sk_write_queue);
  64. tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
  65. tp->packets_out += tcp_skb_pcount(skb);
  66. if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  67. tcp_rearm_rto(sk);
  68. NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
  69. tcp_skb_pcount(skb));
  70. }
  71. /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
  72. * window scaling factor due to loss of precision.
  73. * If window has been shrunk, what should we make? It is not clear at all.
  74. * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
  75. * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
  76. * invalid. OK, let's make this for now:
  77. */
  78. static inline __u32 tcp_acceptable_seq(const struct sock *sk)
  79. {
  80. const struct tcp_sock *tp = tcp_sk(sk);
  81. if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
  82. (tp->rx_opt.wscale_ok &&
  83. ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
  84. return tp->snd_nxt;
  85. else
  86. return tcp_wnd_end(tp);
  87. }
  88. /* Calculate mss to advertise in SYN segment.
  89. * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
  90. *
  91. * 1. It is independent of path mtu.
  92. * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
  93. * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
  94. * attached devices, because some buggy hosts are confused by
  95. * large MSS.
  96. * 4. We do not make 3, we advertise MSS, calculated from first
  97. * hop device mtu, but allow to raise it to ip_rt_min_advmss.
  98. * This may be overridden via information stored in routing table.
  99. * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
  100. * probably even Jumbo".
  101. */
  102. static __u16 tcp_advertise_mss(struct sock *sk)
  103. {
  104. struct tcp_sock *tp = tcp_sk(sk);
  105. const struct dst_entry *dst = __sk_dst_get(sk);
  106. int mss = tp->advmss;
  107. if (dst) {
  108. unsigned int metric = dst_metric_advmss(dst);
  109. if (metric < mss) {
  110. mss = metric;
  111. tp->advmss = mss;
  112. }
  113. }
  114. return (__u16)mss;
  115. }
  116. /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
  117. * This is the first part of cwnd validation mechanism.
  118. */
  119. void tcp_cwnd_restart(struct sock *sk, s32 delta)
  120. {
  121. struct tcp_sock *tp = tcp_sk(sk);
  122. u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
  123. u32 cwnd = tp->snd_cwnd;
  124. tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
  125. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  126. restart_cwnd = min(restart_cwnd, cwnd);
  127. while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
  128. cwnd >>= 1;
  129. tp->snd_cwnd = max(cwnd, restart_cwnd);
  130. tp->snd_cwnd_stamp = tcp_jiffies32;
  131. tp->snd_cwnd_used = 0;
  132. }
  133. /* Congestion state accounting after a packet has been sent. */
  134. static void tcp_event_data_sent(struct tcp_sock *tp,
  135. struct sock *sk)
  136. {
  137. struct inet_connection_sock *icsk = inet_csk(sk);
  138. const u32 now = tcp_jiffies32;
  139. if (tcp_packets_in_flight(tp) == 0)
  140. tcp_ca_event(sk, CA_EVENT_TX_START);
  141. tp->lsndtime = now;
  142. /* If it is a reply for ato after last received
  143. * packet, enter pingpong mode.
  144. */
  145. if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
  146. icsk->icsk_ack.pingpong = 1;
  147. }
  148. /* Account for an ACK we sent. */
  149. static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
  150. u32 rcv_nxt)
  151. {
  152. struct tcp_sock *tp = tcp_sk(sk);
  153. if (unlikely(tp->compressed_ack)) {
  154. NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
  155. tp->compressed_ack);
  156. tp->compressed_ack = 0;
  157. if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
  158. __sock_put(sk);
  159. }
  160. if (unlikely(rcv_nxt != tp->rcv_nxt))
  161. return; /* Special ACK sent by DCTCP to reflect ECN */
  162. tcp_dec_quickack_mode(sk, pkts);
  163. inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
  164. }
  165. /* Determine a window scaling and initial window to offer.
  166. * Based on the assumption that the given amount of space
  167. * will be offered. Store the results in the tp structure.
  168. * NOTE: for smooth operation initial space offering should
  169. * be a multiple of mss if possible. We assume here that mss >= 1.
  170. * This MUST be enforced by all callers.
  171. */
  172. void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
  173. __u32 *rcv_wnd, __u32 *window_clamp,
  174. int wscale_ok, __u8 *rcv_wscale,
  175. __u32 init_rcv_wnd)
  176. {
  177. unsigned int space = (__space < 0 ? 0 : __space);
  178. /* If no clamp set the clamp to the max possible scaled window */
  179. if (*window_clamp == 0)
  180. (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
  181. space = min(*window_clamp, space);
  182. /* Quantize space offering to a multiple of mss if possible. */
  183. if (space > mss)
  184. space = rounddown(space, mss);
  185. /* NOTE: offering an initial window larger than 32767
  186. * will break some buggy TCP stacks. If the admin tells us
  187. * it is likely we could be speaking with such a buggy stack
  188. * we will truncate our initial window offering to 32K-1
  189. * unless the remote has sent us a window scaling option,
  190. * which we interpret as a sign the remote TCP is not
  191. * misinterpreting the window field as a signed quantity.
  192. */
  193. if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
  194. (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
  195. else
  196. (*rcv_wnd) = min_t(u32, space, U16_MAX);
  197. if (init_rcv_wnd)
  198. *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
  199. (*rcv_wscale) = 0;
  200. if (wscale_ok) {
  201. /* Set window scaling on max possible window */
  202. space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
  203. space = max_t(u32, space, sysctl_rmem_max);
  204. space = min_t(u32, space, *window_clamp);
  205. while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
  206. space >>= 1;
  207. (*rcv_wscale)++;
  208. }
  209. }
  210. /* Set the clamp no higher than max representable value */
  211. (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
  212. }
  213. EXPORT_SYMBOL(tcp_select_initial_window);
  214. /* Chose a new window to advertise, update state in tcp_sock for the
  215. * socket, and return result with RFC1323 scaling applied. The return
  216. * value can be stuffed directly into th->window for an outgoing
  217. * frame.
  218. */
  219. static u16 tcp_select_window(struct sock *sk)
  220. {
  221. struct tcp_sock *tp = tcp_sk(sk);
  222. u32 old_win = tp->rcv_wnd;
  223. u32 cur_win = tcp_receive_window(tp);
  224. u32 new_win = __tcp_select_window(sk);
  225. /* Never shrink the offered window */
  226. if (new_win < cur_win) {
  227. /* Danger Will Robinson!
  228. * Don't update rcv_wup/rcv_wnd here or else
  229. * we will not be able to advertise a zero
  230. * window in time. --DaveM
  231. *
  232. * Relax Will Robinson.
  233. */
  234. if (new_win == 0)
  235. NET_INC_STATS(sock_net(sk),
  236. LINUX_MIB_TCPWANTZEROWINDOWADV);
  237. new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
  238. }
  239. tp->rcv_wnd = new_win;
  240. tp->rcv_wup = tp->rcv_nxt;
  241. /* Make sure we do not exceed the maximum possible
  242. * scaled window.
  243. */
  244. if (!tp->rx_opt.rcv_wscale &&
  245. sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
  246. new_win = min(new_win, MAX_TCP_WINDOW);
  247. else
  248. new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
  249. /* RFC1323 scaling applied */
  250. new_win >>= tp->rx_opt.rcv_wscale;
  251. /* If we advertise zero window, disable fast path. */
  252. if (new_win == 0) {
  253. tp->pred_flags = 0;
  254. if (old_win)
  255. NET_INC_STATS(sock_net(sk),
  256. LINUX_MIB_TCPTOZEROWINDOWADV);
  257. } else if (old_win == 0) {
  258. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
  259. }
  260. return new_win;
  261. }
  262. /* Packet ECN state for a SYN-ACK */
  263. static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
  264. {
  265. const struct tcp_sock *tp = tcp_sk(sk);
  266. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
  267. if (!(tp->ecn_flags & TCP_ECN_OK))
  268. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
  269. else if (tcp_ca_needs_ecn(sk) ||
  270. tcp_bpf_ca_needs_ecn(sk))
  271. INET_ECN_xmit(sk);
  272. }
  273. /* Packet ECN state for a SYN. */
  274. static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
  275. {
  276. struct tcp_sock *tp = tcp_sk(sk);
  277. bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
  278. bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
  279. tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
  280. if (!use_ecn) {
  281. const struct dst_entry *dst = __sk_dst_get(sk);
  282. if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
  283. use_ecn = true;
  284. }
  285. tp->ecn_flags = 0;
  286. if (use_ecn) {
  287. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
  288. tp->ecn_flags = TCP_ECN_OK;
  289. if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
  290. INET_ECN_xmit(sk);
  291. }
  292. }
  293. static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
  294. {
  295. if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
  296. /* tp->ecn_flags are cleared at a later point in time when
  297. * SYN ACK is ultimatively being received.
  298. */
  299. TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
  300. }
  301. static void
  302. tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
  303. {
  304. if (inet_rsk(req)->ecn_ok)
  305. th->ece = 1;
  306. }
  307. /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
  308. * be sent.
  309. */
  310. static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
  311. struct tcphdr *th, int tcp_header_len)
  312. {
  313. struct tcp_sock *tp = tcp_sk(sk);
  314. if (tp->ecn_flags & TCP_ECN_OK) {
  315. /* Not-retransmitted data segment: set ECT and inject CWR. */
  316. if (skb->len != tcp_header_len &&
  317. !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
  318. INET_ECN_xmit(sk);
  319. if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
  320. tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
  321. th->cwr = 1;
  322. skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
  323. }
  324. } else if (!tcp_ca_needs_ecn(sk)) {
  325. /* ACK or retransmitted segment: clear ECT|CE */
  326. INET_ECN_dontxmit(sk);
  327. }
  328. if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
  329. th->ece = 1;
  330. }
  331. }
  332. /* Constructs common control bits of non-data skb. If SYN/FIN is present,
  333. * auto increment end seqno.
  334. */
  335. static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
  336. {
  337. skb->ip_summed = CHECKSUM_PARTIAL;
  338. TCP_SKB_CB(skb)->tcp_flags = flags;
  339. TCP_SKB_CB(skb)->sacked = 0;
  340. tcp_skb_pcount_set(skb, 1);
  341. TCP_SKB_CB(skb)->seq = seq;
  342. if (flags & (TCPHDR_SYN | TCPHDR_FIN))
  343. seq++;
  344. TCP_SKB_CB(skb)->end_seq = seq;
  345. }
  346. static inline bool tcp_urg_mode(const struct tcp_sock *tp)
  347. {
  348. return tp->snd_una != tp->snd_up;
  349. }
  350. #define OPTION_SACK_ADVERTISE (1 << 0)
  351. #define OPTION_TS (1 << 1)
  352. #define OPTION_MD5 (1 << 2)
  353. #define OPTION_WSCALE (1 << 3)
  354. #define OPTION_FAST_OPEN_COOKIE (1 << 8)
  355. #define OPTION_SMC (1 << 9)
  356. static void smc_options_write(__be32 *ptr, u16 *options)
  357. {
  358. #if IS_ENABLED(CONFIG_SMC)
  359. if (static_branch_unlikely(&tcp_have_smc)) {
  360. if (unlikely(OPTION_SMC & *options)) {
  361. *ptr++ = htonl((TCPOPT_NOP << 24) |
  362. (TCPOPT_NOP << 16) |
  363. (TCPOPT_EXP << 8) |
  364. (TCPOLEN_EXP_SMC_BASE));
  365. *ptr++ = htonl(TCPOPT_SMC_MAGIC);
  366. }
  367. }
  368. #endif
  369. }
  370. struct tcp_out_options {
  371. u16 options; /* bit field of OPTION_* */
  372. u16 mss; /* 0 to disable */
  373. u8 ws; /* window scale, 0 to disable */
  374. u8 num_sack_blocks; /* number of SACK blocks to include */
  375. u8 hash_size; /* bytes in hash_location */
  376. __u8 *hash_location; /* temporary pointer, overloaded */
  377. __u32 tsval, tsecr; /* need to include OPTION_TS */
  378. struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
  379. };
  380. /* Write previously computed TCP options to the packet.
  381. *
  382. * Beware: Something in the Internet is very sensitive to the ordering of
  383. * TCP options, we learned this through the hard way, so be careful here.
  384. * Luckily we can at least blame others for their non-compliance but from
  385. * inter-operability perspective it seems that we're somewhat stuck with
  386. * the ordering which we have been using if we want to keep working with
  387. * those broken things (not that it currently hurts anybody as there isn't
  388. * particular reason why the ordering would need to be changed).
  389. *
  390. * At least SACK_PERM as the first option is known to lead to a disaster
  391. * (but it may well be that other scenarios fail similarly).
  392. */
  393. static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
  394. struct tcp_out_options *opts)
  395. {
  396. u16 options = opts->options; /* mungable copy */
  397. if (unlikely(OPTION_MD5 & options)) {
  398. *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
  399. (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
  400. /* overload cookie hash location */
  401. opts->hash_location = (__u8 *)ptr;
  402. ptr += 4;
  403. }
  404. if (unlikely(opts->mss)) {
  405. *ptr++ = htonl((TCPOPT_MSS << 24) |
  406. (TCPOLEN_MSS << 16) |
  407. opts->mss);
  408. }
  409. if (likely(OPTION_TS & options)) {
  410. if (unlikely(OPTION_SACK_ADVERTISE & options)) {
  411. *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
  412. (TCPOLEN_SACK_PERM << 16) |
  413. (TCPOPT_TIMESTAMP << 8) |
  414. TCPOLEN_TIMESTAMP);
  415. options &= ~OPTION_SACK_ADVERTISE;
  416. } else {
  417. *ptr++ = htonl((TCPOPT_NOP << 24) |
  418. (TCPOPT_NOP << 16) |
  419. (TCPOPT_TIMESTAMP << 8) |
  420. TCPOLEN_TIMESTAMP);
  421. }
  422. *ptr++ = htonl(opts->tsval);
  423. *ptr++ = htonl(opts->tsecr);
  424. }
  425. if (unlikely(OPTION_SACK_ADVERTISE & options)) {
  426. *ptr++ = htonl((TCPOPT_NOP << 24) |
  427. (TCPOPT_NOP << 16) |
  428. (TCPOPT_SACK_PERM << 8) |
  429. TCPOLEN_SACK_PERM);
  430. }
  431. if (unlikely(OPTION_WSCALE & options)) {
  432. *ptr++ = htonl((TCPOPT_NOP << 24) |
  433. (TCPOPT_WINDOW << 16) |
  434. (TCPOLEN_WINDOW << 8) |
  435. opts->ws);
  436. }
  437. if (unlikely(opts->num_sack_blocks)) {
  438. struct tcp_sack_block *sp = tp->rx_opt.dsack ?
  439. tp->duplicate_sack : tp->selective_acks;
  440. int this_sack;
  441. *ptr++ = htonl((TCPOPT_NOP << 24) |
  442. (TCPOPT_NOP << 16) |
  443. (TCPOPT_SACK << 8) |
  444. (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
  445. TCPOLEN_SACK_PERBLOCK)));
  446. for (this_sack = 0; this_sack < opts->num_sack_blocks;
  447. ++this_sack) {
  448. *ptr++ = htonl(sp[this_sack].start_seq);
  449. *ptr++ = htonl(sp[this_sack].end_seq);
  450. }
  451. tp->rx_opt.dsack = 0;
  452. }
  453. if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
  454. struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
  455. u8 *p = (u8 *)ptr;
  456. u32 len; /* Fast Open option length */
  457. if (foc->exp) {
  458. len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
  459. *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
  460. TCPOPT_FASTOPEN_MAGIC);
  461. p += TCPOLEN_EXP_FASTOPEN_BASE;
  462. } else {
  463. len = TCPOLEN_FASTOPEN_BASE + foc->len;
  464. *p++ = TCPOPT_FASTOPEN;
  465. *p++ = len;
  466. }
  467. memcpy(p, foc->val, foc->len);
  468. if ((len & 3) == 2) {
  469. p[foc->len] = TCPOPT_NOP;
  470. p[foc->len + 1] = TCPOPT_NOP;
  471. }
  472. ptr += (len + 3) >> 2;
  473. }
  474. smc_options_write(ptr, &options);
  475. }
  476. static void smc_set_option(const struct tcp_sock *tp,
  477. struct tcp_out_options *opts,
  478. unsigned int *remaining)
  479. {
  480. #if IS_ENABLED(CONFIG_SMC)
  481. if (static_branch_unlikely(&tcp_have_smc)) {
  482. if (tp->syn_smc) {
  483. if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
  484. opts->options |= OPTION_SMC;
  485. *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
  486. }
  487. }
  488. }
  489. #endif
  490. }
  491. static void smc_set_option_cond(const struct tcp_sock *tp,
  492. const struct inet_request_sock *ireq,
  493. struct tcp_out_options *opts,
  494. unsigned int *remaining)
  495. {
  496. #if IS_ENABLED(CONFIG_SMC)
  497. if (static_branch_unlikely(&tcp_have_smc)) {
  498. if (tp->syn_smc && ireq->smc_ok) {
  499. if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
  500. opts->options |= OPTION_SMC;
  501. *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
  502. }
  503. }
  504. }
  505. #endif
  506. }
  507. /* Compute TCP options for SYN packets. This is not the final
  508. * network wire format yet.
  509. */
  510. static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
  511. struct tcp_out_options *opts,
  512. struct tcp_md5sig_key **md5)
  513. {
  514. struct tcp_sock *tp = tcp_sk(sk);
  515. unsigned int remaining = MAX_TCP_OPTION_SPACE;
  516. struct tcp_fastopen_request *fastopen = tp->fastopen_req;
  517. *md5 = NULL;
  518. #ifdef CONFIG_TCP_MD5SIG
  519. if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
  520. *md5 = tp->af_specific->md5_lookup(sk, sk);
  521. if (*md5) {
  522. opts->options |= OPTION_MD5;
  523. remaining -= TCPOLEN_MD5SIG_ALIGNED;
  524. }
  525. }
  526. #endif
  527. /* We always get an MSS option. The option bytes which will be seen in
  528. * normal data packets should timestamps be used, must be in the MSS
  529. * advertised. But we subtract them from tp->mss_cache so that
  530. * calculations in tcp_sendmsg are simpler etc. So account for this
  531. * fact here if necessary. If we don't do this correctly, as a
  532. * receiver we won't recognize data packets as being full sized when we
  533. * should, and thus we won't abide by the delayed ACK rules correctly.
  534. * SACKs don't matter, we never delay an ACK when we have any of those
  535. * going out. */
  536. opts->mss = tcp_advertise_mss(sk);
  537. remaining -= TCPOLEN_MSS_ALIGNED;
  538. if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
  539. opts->options |= OPTION_TS;
  540. opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
  541. opts->tsecr = tp->rx_opt.ts_recent;
  542. remaining -= TCPOLEN_TSTAMP_ALIGNED;
  543. }
  544. if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
  545. opts->ws = tp->rx_opt.rcv_wscale;
  546. opts->options |= OPTION_WSCALE;
  547. remaining -= TCPOLEN_WSCALE_ALIGNED;
  548. }
  549. if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
  550. opts->options |= OPTION_SACK_ADVERTISE;
  551. if (unlikely(!(OPTION_TS & opts->options)))
  552. remaining -= TCPOLEN_SACKPERM_ALIGNED;
  553. }
  554. if (fastopen && fastopen->cookie.len >= 0) {
  555. u32 need = fastopen->cookie.len;
  556. need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
  557. TCPOLEN_FASTOPEN_BASE;
  558. need = (need + 3) & ~3U; /* Align to 32 bits */
  559. if (remaining >= need) {
  560. opts->options |= OPTION_FAST_OPEN_COOKIE;
  561. opts->fastopen_cookie = &fastopen->cookie;
  562. remaining -= need;
  563. tp->syn_fastopen = 1;
  564. tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
  565. }
  566. }
  567. smc_set_option(tp, opts, &remaining);
  568. return MAX_TCP_OPTION_SPACE - remaining;
  569. }
  570. /* Set up TCP options for SYN-ACKs. */
  571. static unsigned int tcp_synack_options(const struct sock *sk,
  572. struct request_sock *req,
  573. unsigned int mss, struct sk_buff *skb,
  574. struct tcp_out_options *opts,
  575. const struct tcp_md5sig_key *md5,
  576. struct tcp_fastopen_cookie *foc)
  577. {
  578. struct inet_request_sock *ireq = inet_rsk(req);
  579. unsigned int remaining = MAX_TCP_OPTION_SPACE;
  580. #ifdef CONFIG_TCP_MD5SIG
  581. if (md5) {
  582. opts->options |= OPTION_MD5;
  583. remaining -= TCPOLEN_MD5SIG_ALIGNED;
  584. /* We can't fit any SACK blocks in a packet with MD5 + TS
  585. * options. There was discussion about disabling SACK
  586. * rather than TS in order to fit in better with old,
  587. * buggy kernels, but that was deemed to be unnecessary.
  588. */
  589. ireq->tstamp_ok &= !ireq->sack_ok;
  590. }
  591. #endif
  592. /* We always send an MSS option. */
  593. opts->mss = mss;
  594. remaining -= TCPOLEN_MSS_ALIGNED;
  595. if (likely(ireq->wscale_ok)) {
  596. opts->ws = ireq->rcv_wscale;
  597. opts->options |= OPTION_WSCALE;
  598. remaining -= TCPOLEN_WSCALE_ALIGNED;
  599. }
  600. if (likely(ireq->tstamp_ok)) {
  601. opts->options |= OPTION_TS;
  602. opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
  603. opts->tsecr = req->ts_recent;
  604. remaining -= TCPOLEN_TSTAMP_ALIGNED;
  605. }
  606. if (likely(ireq->sack_ok)) {
  607. opts->options |= OPTION_SACK_ADVERTISE;
  608. if (unlikely(!ireq->tstamp_ok))
  609. remaining -= TCPOLEN_SACKPERM_ALIGNED;
  610. }
  611. if (foc != NULL && foc->len >= 0) {
  612. u32 need = foc->len;
  613. need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
  614. TCPOLEN_FASTOPEN_BASE;
  615. need = (need + 3) & ~3U; /* Align to 32 bits */
  616. if (remaining >= need) {
  617. opts->options |= OPTION_FAST_OPEN_COOKIE;
  618. opts->fastopen_cookie = foc;
  619. remaining -= need;
  620. }
  621. }
  622. smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
  623. return MAX_TCP_OPTION_SPACE - remaining;
  624. }
  625. /* Compute TCP options for ESTABLISHED sockets. This is not the
  626. * final wire format yet.
  627. */
  628. static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
  629. struct tcp_out_options *opts,
  630. struct tcp_md5sig_key **md5)
  631. {
  632. struct tcp_sock *tp = tcp_sk(sk);
  633. unsigned int size = 0;
  634. unsigned int eff_sacks;
  635. opts->options = 0;
  636. *md5 = NULL;
  637. #ifdef CONFIG_TCP_MD5SIG
  638. if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
  639. *md5 = tp->af_specific->md5_lookup(sk, sk);
  640. if (*md5) {
  641. opts->options |= OPTION_MD5;
  642. size += TCPOLEN_MD5SIG_ALIGNED;
  643. }
  644. }
  645. #endif
  646. if (likely(tp->rx_opt.tstamp_ok)) {
  647. opts->options |= OPTION_TS;
  648. opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
  649. opts->tsecr = tp->rx_opt.ts_recent;
  650. size += TCPOLEN_TSTAMP_ALIGNED;
  651. }
  652. eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
  653. if (unlikely(eff_sacks)) {
  654. const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
  655. opts->num_sack_blocks =
  656. min_t(unsigned int, eff_sacks,
  657. (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
  658. TCPOLEN_SACK_PERBLOCK);
  659. size += TCPOLEN_SACK_BASE_ALIGNED +
  660. opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
  661. }
  662. return size;
  663. }
  664. /* TCP SMALL QUEUES (TSQ)
  665. *
  666. * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
  667. * to reduce RTT and bufferbloat.
  668. * We do this using a special skb destructor (tcp_wfree).
  669. *
  670. * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
  671. * needs to be reallocated in a driver.
  672. * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
  673. *
  674. * Since transmit from skb destructor is forbidden, we use a tasklet
  675. * to process all sockets that eventually need to send more skbs.
  676. * We use one tasklet per cpu, with its own queue of sockets.
  677. */
  678. struct tsq_tasklet {
  679. struct tasklet_struct tasklet;
  680. struct list_head head; /* queue of tcp sockets */
  681. };
  682. static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
  683. static void tcp_tsq_write(struct sock *sk)
  684. {
  685. if ((1 << sk->sk_state) &
  686. (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
  687. TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
  688. struct tcp_sock *tp = tcp_sk(sk);
  689. if (tp->lost_out > tp->retrans_out &&
  690. tp->snd_cwnd > tcp_packets_in_flight(tp)) {
  691. tcp_mstamp_refresh(tp);
  692. tcp_xmit_retransmit_queue(sk);
  693. }
  694. tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
  695. 0, GFP_ATOMIC);
  696. }
  697. }
  698. static void tcp_tsq_handler(struct sock *sk)
  699. {
  700. bh_lock_sock(sk);
  701. if (!sock_owned_by_user(sk))
  702. tcp_tsq_write(sk);
  703. else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
  704. sock_hold(sk);
  705. bh_unlock_sock(sk);
  706. }
  707. /*
  708. * One tasklet per cpu tries to send more skbs.
  709. * We run in tasklet context but need to disable irqs when
  710. * transferring tsq->head because tcp_wfree() might
  711. * interrupt us (non NAPI drivers)
  712. */
  713. static void tcp_tasklet_func(unsigned long data)
  714. {
  715. struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
  716. LIST_HEAD(list);
  717. unsigned long flags;
  718. struct list_head *q, *n;
  719. struct tcp_sock *tp;
  720. struct sock *sk;
  721. local_irq_save(flags);
  722. list_splice_init(&tsq->head, &list);
  723. local_irq_restore(flags);
  724. list_for_each_safe(q, n, &list) {
  725. tp = list_entry(q, struct tcp_sock, tsq_node);
  726. list_del(&tp->tsq_node);
  727. sk = (struct sock *)tp;
  728. smp_mb__before_atomic();
  729. clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
  730. tcp_tsq_handler(sk);
  731. sk_free(sk);
  732. }
  733. }
  734. #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
  735. TCPF_WRITE_TIMER_DEFERRED | \
  736. TCPF_DELACK_TIMER_DEFERRED | \
  737. TCPF_MTU_REDUCED_DEFERRED)
  738. /**
  739. * tcp_release_cb - tcp release_sock() callback
  740. * @sk: socket
  741. *
  742. * called from release_sock() to perform protocol dependent
  743. * actions before socket release.
  744. */
  745. void tcp_release_cb(struct sock *sk)
  746. {
  747. unsigned long flags, nflags;
  748. /* perform an atomic operation only if at least one flag is set */
  749. do {
  750. flags = sk->sk_tsq_flags;
  751. if (!(flags & TCP_DEFERRED_ALL))
  752. return;
  753. nflags = flags & ~TCP_DEFERRED_ALL;
  754. } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
  755. if (flags & TCPF_TSQ_DEFERRED) {
  756. tcp_tsq_write(sk);
  757. __sock_put(sk);
  758. }
  759. /* Here begins the tricky part :
  760. * We are called from release_sock() with :
  761. * 1) BH disabled
  762. * 2) sk_lock.slock spinlock held
  763. * 3) socket owned by us (sk->sk_lock.owned == 1)
  764. *
  765. * But following code is meant to be called from BH handlers,
  766. * so we should keep BH disabled, but early release socket ownership
  767. */
  768. sock_release_ownership(sk);
  769. if (flags & TCPF_WRITE_TIMER_DEFERRED) {
  770. tcp_write_timer_handler(sk);
  771. __sock_put(sk);
  772. }
  773. if (flags & TCPF_DELACK_TIMER_DEFERRED) {
  774. tcp_delack_timer_handler(sk);
  775. __sock_put(sk);
  776. }
  777. if (flags & TCPF_MTU_REDUCED_DEFERRED) {
  778. inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
  779. __sock_put(sk);
  780. }
  781. }
  782. EXPORT_SYMBOL(tcp_release_cb);
  783. void __init tcp_tasklet_init(void)
  784. {
  785. int i;
  786. for_each_possible_cpu(i) {
  787. struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
  788. INIT_LIST_HEAD(&tsq->head);
  789. tasklet_init(&tsq->tasklet,
  790. tcp_tasklet_func,
  791. (unsigned long)tsq);
  792. }
  793. }
  794. /*
  795. * Write buffer destructor automatically called from kfree_skb.
  796. * We can't xmit new skbs from this context, as we might already
  797. * hold qdisc lock.
  798. */
  799. void tcp_wfree(struct sk_buff *skb)
  800. {
  801. struct sock *sk = skb->sk;
  802. struct tcp_sock *tp = tcp_sk(sk);
  803. unsigned long flags, nval, oval;
  804. /* Keep one reference on sk_wmem_alloc.
  805. * Will be released by sk_free() from here or tcp_tasklet_func()
  806. */
  807. WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
  808. /* If this softirq is serviced by ksoftirqd, we are likely under stress.
  809. * Wait until our queues (qdisc + devices) are drained.
  810. * This gives :
  811. * - less callbacks to tcp_write_xmit(), reducing stress (batches)
  812. * - chance for incoming ACK (processed by another cpu maybe)
  813. * to migrate this flow (skb->ooo_okay will be eventually set)
  814. */
  815. if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
  816. goto out;
  817. for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
  818. struct tsq_tasklet *tsq;
  819. bool empty;
  820. if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
  821. goto out;
  822. nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
  823. nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
  824. if (nval != oval)
  825. continue;
  826. /* queue this socket to tasklet queue */
  827. local_irq_save(flags);
  828. tsq = this_cpu_ptr(&tsq_tasklet);
  829. empty = list_empty(&tsq->head);
  830. list_add(&tp->tsq_node, &tsq->head);
  831. if (empty)
  832. tasklet_schedule(&tsq->tasklet);
  833. local_irq_restore(flags);
  834. return;
  835. }
  836. out:
  837. sk_free(sk);
  838. }
  839. /* Note: Called under soft irq.
  840. * We can call TCP stack right away, unless socket is owned by user.
  841. */
  842. enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
  843. {
  844. struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
  845. struct sock *sk = (struct sock *)tp;
  846. tcp_tsq_handler(sk);
  847. sock_put(sk);
  848. return HRTIMER_NORESTART;
  849. }
  850. static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
  851. u64 prior_wstamp)
  852. {
  853. struct tcp_sock *tp = tcp_sk(sk);
  854. skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
  855. if (sk->sk_pacing_status != SK_PACING_NONE) {
  856. unsigned long rate = sk->sk_pacing_rate;
  857. /* Original sch_fq does not pace first 10 MSS
  858. * Note that tp->data_segs_out overflows after 2^32 packets,
  859. * this is a minor annoyance.
  860. */
  861. if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
  862. u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
  863. u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
  864. /* take into account OS jitter */
  865. len_ns -= min_t(u64, len_ns / 2, credit);
  866. tp->tcp_wstamp_ns += len_ns;
  867. }
  868. }
  869. list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
  870. }
  871. /* This routine actually transmits TCP packets queued in by
  872. * tcp_do_sendmsg(). This is used by both the initial
  873. * transmission and possible later retransmissions.
  874. * All SKB's seen here are completely headerless. It is our
  875. * job to build the TCP header, and pass the packet down to
  876. * IP so it can do the same plus pass the packet off to the
  877. * device.
  878. *
  879. * We are working here with either a clone of the original
  880. * SKB, or a fresh unique copy made by the retransmit engine.
  881. */
  882. static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
  883. int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
  884. {
  885. const struct inet_connection_sock *icsk = inet_csk(sk);
  886. struct inet_sock *inet;
  887. struct tcp_sock *tp;
  888. struct tcp_skb_cb *tcb;
  889. struct tcp_out_options opts;
  890. unsigned int tcp_options_size, tcp_header_size;
  891. struct sk_buff *oskb = NULL;
  892. struct tcp_md5sig_key *md5;
  893. struct tcphdr *th;
  894. u64 prior_wstamp;
  895. int err;
  896. BUG_ON(!skb || !tcp_skb_pcount(skb));
  897. tp = tcp_sk(sk);
  898. if (clone_it) {
  899. TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
  900. - tp->snd_una;
  901. oskb = skb;
  902. tcp_skb_tsorted_save(oskb) {
  903. if (unlikely(skb_cloned(oskb)))
  904. skb = pskb_copy(oskb, gfp_mask);
  905. else
  906. skb = skb_clone(oskb, gfp_mask);
  907. } tcp_skb_tsorted_restore(oskb);
  908. if (unlikely(!skb))
  909. return -ENOBUFS;
  910. }
  911. prior_wstamp = tp->tcp_wstamp_ns;
  912. tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
  913. skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
  914. inet = inet_sk(sk);
  915. tcb = TCP_SKB_CB(skb);
  916. memset(&opts, 0, sizeof(opts));
  917. if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
  918. tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
  919. else
  920. tcp_options_size = tcp_established_options(sk, skb, &opts,
  921. &md5);
  922. tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
  923. /* if no packet is in qdisc/device queue, then allow XPS to select
  924. * another queue. We can be called from tcp_tsq_handler()
  925. * which holds one reference to sk.
  926. *
  927. * TODO: Ideally, in-flight pure ACK packets should not matter here.
  928. * One way to get this would be to set skb->truesize = 2 on them.
  929. */
  930. skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
  931. /* If we had to use memory reserve to allocate this skb,
  932. * this might cause drops if packet is looped back :
  933. * Other socket might not have SOCK_MEMALLOC.
  934. * Packets not looped back do not care about pfmemalloc.
  935. */
  936. skb->pfmemalloc = 0;
  937. skb_push(skb, tcp_header_size);
  938. skb_reset_transport_header(skb);
  939. skb_orphan(skb);
  940. skb->sk = sk;
  941. skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
  942. skb_set_hash_from_sk(skb, sk);
  943. refcount_add(skb->truesize, &sk->sk_wmem_alloc);
  944. skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
  945. /* Build TCP header and checksum it. */
  946. th = (struct tcphdr *)skb->data;
  947. th->source = inet->inet_sport;
  948. th->dest = inet->inet_dport;
  949. th->seq = htonl(tcb->seq);
  950. th->ack_seq = htonl(rcv_nxt);
  951. *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
  952. tcb->tcp_flags);
  953. th->check = 0;
  954. th->urg_ptr = 0;
  955. /* The urg_mode check is necessary during a below snd_una win probe */
  956. if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
  957. if (before(tp->snd_up, tcb->seq + 0x10000)) {
  958. th->urg_ptr = htons(tp->snd_up - tcb->seq);
  959. th->urg = 1;
  960. } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
  961. th->urg_ptr = htons(0xFFFF);
  962. th->urg = 1;
  963. }
  964. }
  965. tcp_options_write((__be32 *)(th + 1), tp, &opts);
  966. skb_shinfo(skb)->gso_type = sk->sk_gso_type;
  967. if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
  968. th->window = htons(tcp_select_window(sk));
  969. tcp_ecn_send(sk, skb, th, tcp_header_size);
  970. } else {
  971. /* RFC1323: The window in SYN & SYN/ACK segments
  972. * is never scaled.
  973. */
  974. th->window = htons(min(tp->rcv_wnd, 65535U));
  975. }
  976. #ifdef CONFIG_TCP_MD5SIG
  977. /* Calculate the MD5 hash, as we have all we need now */
  978. if (md5) {
  979. sk_nocaps_add(sk, NETIF_F_GSO_MASK);
  980. tp->af_specific->calc_md5_hash(opts.hash_location,
  981. md5, sk, skb);
  982. }
  983. #endif
  984. icsk->icsk_af_ops->send_check(sk, skb);
  985. if (likely(tcb->tcp_flags & TCPHDR_ACK))
  986. tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
  987. if (skb->len != tcp_header_size) {
  988. tcp_event_data_sent(tp, sk);
  989. tp->data_segs_out += tcp_skb_pcount(skb);
  990. tp->bytes_sent += skb->len - tcp_header_size;
  991. }
  992. if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
  993. TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
  994. tcp_skb_pcount(skb));
  995. tp->segs_out += tcp_skb_pcount(skb);
  996. /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
  997. skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
  998. skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
  999. /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
  1000. /* Cleanup our debris for IP stacks */
  1001. memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
  1002. sizeof(struct inet6_skb_parm)));
  1003. err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
  1004. if (unlikely(err > 0)) {
  1005. tcp_enter_cwr(sk);
  1006. err = net_xmit_eval(err);
  1007. }
  1008. if (!err && oskb) {
  1009. tcp_update_skb_after_send(sk, oskb, prior_wstamp);
  1010. tcp_rate_skb_sent(sk, oskb);
  1011. }
  1012. return err;
  1013. }
  1014. static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
  1015. gfp_t gfp_mask)
  1016. {
  1017. return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
  1018. tcp_sk(sk)->rcv_nxt);
  1019. }
  1020. /* This routine just queues the buffer for sending.
  1021. *
  1022. * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
  1023. * otherwise socket can stall.
  1024. */
  1025. static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
  1026. {
  1027. struct tcp_sock *tp = tcp_sk(sk);
  1028. /* Advance write_seq and place onto the write_queue. */
  1029. tp->write_seq = TCP_SKB_CB(skb)->end_seq;
  1030. __skb_header_release(skb);
  1031. tcp_add_write_queue_tail(sk, skb);
  1032. sk->sk_wmem_queued += skb->truesize;
  1033. sk_mem_charge(sk, skb->truesize);
  1034. }
  1035. /* Initialize TSO segments for a packet. */
  1036. static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
  1037. {
  1038. if (skb->len <= mss_now) {
  1039. /* Avoid the costly divide in the normal
  1040. * non-TSO case.
  1041. */
  1042. tcp_skb_pcount_set(skb, 1);
  1043. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1044. } else {
  1045. tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
  1046. TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
  1047. }
  1048. }
  1049. /* Pcount in the middle of the write queue got changed, we need to do various
  1050. * tweaks to fix counters
  1051. */
  1052. static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
  1053. {
  1054. struct tcp_sock *tp = tcp_sk(sk);
  1055. tp->packets_out -= decr;
  1056. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  1057. tp->sacked_out -= decr;
  1058. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1059. tp->retrans_out -= decr;
  1060. if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
  1061. tp->lost_out -= decr;
  1062. /* Reno case is special. Sigh... */
  1063. if (tcp_is_reno(tp) && decr > 0)
  1064. tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
  1065. if (tp->lost_skb_hint &&
  1066. before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
  1067. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1068. tp->lost_cnt_hint -= decr;
  1069. tcp_verify_left_out(tp);
  1070. }
  1071. static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
  1072. {
  1073. return TCP_SKB_CB(skb)->txstamp_ack ||
  1074. (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
  1075. }
  1076. static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
  1077. {
  1078. struct skb_shared_info *shinfo = skb_shinfo(skb);
  1079. if (unlikely(tcp_has_tx_tstamp(skb)) &&
  1080. !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
  1081. struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
  1082. u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
  1083. shinfo->tx_flags &= ~tsflags;
  1084. shinfo2->tx_flags |= tsflags;
  1085. swap(shinfo->tskey, shinfo2->tskey);
  1086. TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
  1087. TCP_SKB_CB(skb)->txstamp_ack = 0;
  1088. }
  1089. }
  1090. static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
  1091. {
  1092. TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
  1093. TCP_SKB_CB(skb)->eor = 0;
  1094. }
  1095. /* Insert buff after skb on the write or rtx queue of sk. */
  1096. static void tcp_insert_write_queue_after(struct sk_buff *skb,
  1097. struct sk_buff *buff,
  1098. struct sock *sk,
  1099. enum tcp_queue tcp_queue)
  1100. {
  1101. if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
  1102. __skb_queue_after(&sk->sk_write_queue, skb, buff);
  1103. else
  1104. tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
  1105. }
  1106. /* Function to create two new TCP segments. Shrinks the given segment
  1107. * to the specified size and appends a new segment with the rest of the
  1108. * packet to the list. This won't be called frequently, I hope.
  1109. * Remember, these are still headerless SKBs at this point.
  1110. */
  1111. int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
  1112. struct sk_buff *skb, u32 len,
  1113. unsigned int mss_now, gfp_t gfp)
  1114. {
  1115. struct tcp_sock *tp = tcp_sk(sk);
  1116. struct sk_buff *buff;
  1117. int nsize, old_factor;
  1118. int nlen;
  1119. u8 flags;
  1120. if (WARN_ON(len > skb->len))
  1121. return -EINVAL;
  1122. nsize = skb_headlen(skb) - len;
  1123. if (nsize < 0)
  1124. nsize = 0;
  1125. if (skb_unclone(skb, gfp))
  1126. return -ENOMEM;
  1127. /* Get a new skb... force flag on. */
  1128. buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
  1129. if (!buff)
  1130. return -ENOMEM; /* We'll just try again later. */
  1131. sk->sk_wmem_queued += buff->truesize;
  1132. sk_mem_charge(sk, buff->truesize);
  1133. nlen = skb->len - len - nsize;
  1134. buff->truesize += nlen;
  1135. skb->truesize -= nlen;
  1136. /* Correct the sequence numbers. */
  1137. TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
  1138. TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
  1139. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
  1140. /* PSH and FIN should only be set in the second packet. */
  1141. flags = TCP_SKB_CB(skb)->tcp_flags;
  1142. TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
  1143. TCP_SKB_CB(buff)->tcp_flags = flags;
  1144. TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
  1145. tcp_skb_fragment_eor(skb, buff);
  1146. skb_split(skb, buff, len);
  1147. buff->ip_summed = CHECKSUM_PARTIAL;
  1148. buff->tstamp = skb->tstamp;
  1149. tcp_fragment_tstamp(skb, buff);
  1150. old_factor = tcp_skb_pcount(skb);
  1151. /* Fix up tso_factor for both original and new SKB. */
  1152. tcp_set_skb_tso_segs(skb, mss_now);
  1153. tcp_set_skb_tso_segs(buff, mss_now);
  1154. /* Update delivered info for the new segment */
  1155. TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
  1156. /* If this packet has been sent out already, we must
  1157. * adjust the various packet counters.
  1158. */
  1159. if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
  1160. int diff = old_factor - tcp_skb_pcount(skb) -
  1161. tcp_skb_pcount(buff);
  1162. if (diff)
  1163. tcp_adjust_pcount(sk, skb, diff);
  1164. }
  1165. /* Link BUFF into the send queue. */
  1166. __skb_header_release(buff);
  1167. tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
  1168. if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
  1169. list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
  1170. return 0;
  1171. }
  1172. /* This is similar to __pskb_pull_tail(). The difference is that pulled
  1173. * data is not copied, but immediately discarded.
  1174. */
  1175. static int __pskb_trim_head(struct sk_buff *skb, int len)
  1176. {
  1177. struct skb_shared_info *shinfo;
  1178. int i, k, eat;
  1179. eat = min_t(int, len, skb_headlen(skb));
  1180. if (eat) {
  1181. __skb_pull(skb, eat);
  1182. len -= eat;
  1183. if (!len)
  1184. return 0;
  1185. }
  1186. eat = len;
  1187. k = 0;
  1188. shinfo = skb_shinfo(skb);
  1189. for (i = 0; i < shinfo->nr_frags; i++) {
  1190. int size = skb_frag_size(&shinfo->frags[i]);
  1191. if (size <= eat) {
  1192. skb_frag_unref(skb, i);
  1193. eat -= size;
  1194. } else {
  1195. shinfo->frags[k] = shinfo->frags[i];
  1196. if (eat) {
  1197. shinfo->frags[k].page_offset += eat;
  1198. skb_frag_size_sub(&shinfo->frags[k], eat);
  1199. eat = 0;
  1200. }
  1201. k++;
  1202. }
  1203. }
  1204. shinfo->nr_frags = k;
  1205. skb->data_len -= len;
  1206. skb->len = skb->data_len;
  1207. return len;
  1208. }
  1209. /* Remove acked data from a packet in the transmit queue. */
  1210. int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
  1211. {
  1212. u32 delta_truesize;
  1213. if (skb_unclone(skb, GFP_ATOMIC))
  1214. return -ENOMEM;
  1215. delta_truesize = __pskb_trim_head(skb, len);
  1216. TCP_SKB_CB(skb)->seq += len;
  1217. skb->ip_summed = CHECKSUM_PARTIAL;
  1218. if (delta_truesize) {
  1219. skb->truesize -= delta_truesize;
  1220. sk->sk_wmem_queued -= delta_truesize;
  1221. sk_mem_uncharge(sk, delta_truesize);
  1222. sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
  1223. }
  1224. /* Any change of skb->len requires recalculation of tso factor. */
  1225. if (tcp_skb_pcount(skb) > 1)
  1226. tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
  1227. return 0;
  1228. }
  1229. /* Calculate MSS not accounting any TCP options. */
  1230. static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
  1231. {
  1232. const struct tcp_sock *tp = tcp_sk(sk);
  1233. const struct inet_connection_sock *icsk = inet_csk(sk);
  1234. int mss_now;
  1235. /* Calculate base mss without TCP options:
  1236. It is MMS_S - sizeof(tcphdr) of rfc1122
  1237. */
  1238. mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
  1239. /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
  1240. if (icsk->icsk_af_ops->net_frag_header_len) {
  1241. const struct dst_entry *dst = __sk_dst_get(sk);
  1242. if (dst && dst_allfrag(dst))
  1243. mss_now -= icsk->icsk_af_ops->net_frag_header_len;
  1244. }
  1245. /* Clamp it (mss_clamp does not include tcp options) */
  1246. if (mss_now > tp->rx_opt.mss_clamp)
  1247. mss_now = tp->rx_opt.mss_clamp;
  1248. /* Now subtract optional transport overhead */
  1249. mss_now -= icsk->icsk_ext_hdr_len;
  1250. /* Then reserve room for full set of TCP options and 8 bytes of data */
  1251. if (mss_now < 48)
  1252. mss_now = 48;
  1253. return mss_now;
  1254. }
  1255. /* Calculate MSS. Not accounting for SACKs here. */
  1256. int tcp_mtu_to_mss(struct sock *sk, int pmtu)
  1257. {
  1258. /* Subtract TCP options size, not including SACKs */
  1259. return __tcp_mtu_to_mss(sk, pmtu) -
  1260. (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
  1261. }
  1262. /* Inverse of above */
  1263. int tcp_mss_to_mtu(struct sock *sk, int mss)
  1264. {
  1265. const struct tcp_sock *tp = tcp_sk(sk);
  1266. const struct inet_connection_sock *icsk = inet_csk(sk);
  1267. int mtu;
  1268. mtu = mss +
  1269. tp->tcp_header_len +
  1270. icsk->icsk_ext_hdr_len +
  1271. icsk->icsk_af_ops->net_header_len;
  1272. /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
  1273. if (icsk->icsk_af_ops->net_frag_header_len) {
  1274. const struct dst_entry *dst = __sk_dst_get(sk);
  1275. if (dst && dst_allfrag(dst))
  1276. mtu += icsk->icsk_af_ops->net_frag_header_len;
  1277. }
  1278. return mtu;
  1279. }
  1280. EXPORT_SYMBOL(tcp_mss_to_mtu);
  1281. /* MTU probing init per socket */
  1282. void tcp_mtup_init(struct sock *sk)
  1283. {
  1284. struct tcp_sock *tp = tcp_sk(sk);
  1285. struct inet_connection_sock *icsk = inet_csk(sk);
  1286. struct net *net = sock_net(sk);
  1287. icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
  1288. icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
  1289. icsk->icsk_af_ops->net_header_len;
  1290. icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
  1291. icsk->icsk_mtup.probe_size = 0;
  1292. if (icsk->icsk_mtup.enabled)
  1293. icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
  1294. }
  1295. EXPORT_SYMBOL(tcp_mtup_init);
  1296. /* This function synchronize snd mss to current pmtu/exthdr set.
  1297. tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
  1298. for TCP options, but includes only bare TCP header.
  1299. tp->rx_opt.mss_clamp is mss negotiated at connection setup.
  1300. It is minimum of user_mss and mss received with SYN.
  1301. It also does not include TCP options.
  1302. inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
  1303. tp->mss_cache is current effective sending mss, including
  1304. all tcp options except for SACKs. It is evaluated,
  1305. taking into account current pmtu, but never exceeds
  1306. tp->rx_opt.mss_clamp.
  1307. NOTE1. rfc1122 clearly states that advertised MSS
  1308. DOES NOT include either tcp or ip options.
  1309. NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
  1310. are READ ONLY outside this function. --ANK (980731)
  1311. */
  1312. unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
  1313. {
  1314. struct tcp_sock *tp = tcp_sk(sk);
  1315. struct inet_connection_sock *icsk = inet_csk(sk);
  1316. int mss_now;
  1317. if (icsk->icsk_mtup.search_high > pmtu)
  1318. icsk->icsk_mtup.search_high = pmtu;
  1319. mss_now = tcp_mtu_to_mss(sk, pmtu);
  1320. mss_now = tcp_bound_to_half_wnd(tp, mss_now);
  1321. /* And store cached results */
  1322. icsk->icsk_pmtu_cookie = pmtu;
  1323. if (icsk->icsk_mtup.enabled)
  1324. mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
  1325. tp->mss_cache = mss_now;
  1326. return mss_now;
  1327. }
  1328. EXPORT_SYMBOL(tcp_sync_mss);
  1329. /* Compute the current effective MSS, taking SACKs and IP options,
  1330. * and even PMTU discovery events into account.
  1331. */
  1332. unsigned int tcp_current_mss(struct sock *sk)
  1333. {
  1334. const struct tcp_sock *tp = tcp_sk(sk);
  1335. const struct dst_entry *dst = __sk_dst_get(sk);
  1336. u32 mss_now;
  1337. unsigned int header_len;
  1338. struct tcp_out_options opts;
  1339. struct tcp_md5sig_key *md5;
  1340. mss_now = tp->mss_cache;
  1341. if (dst) {
  1342. u32 mtu = dst_mtu(dst);
  1343. if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
  1344. mss_now = tcp_sync_mss(sk, mtu);
  1345. }
  1346. header_len = tcp_established_options(sk, NULL, &opts, &md5) +
  1347. sizeof(struct tcphdr);
  1348. /* The mss_cache is sized based on tp->tcp_header_len, which assumes
  1349. * some common options. If this is an odd packet (because we have SACK
  1350. * blocks etc) then our calculated header_len will be different, and
  1351. * we have to adjust mss_now correspondingly */
  1352. if (header_len != tp->tcp_header_len) {
  1353. int delta = (int) header_len - tp->tcp_header_len;
  1354. mss_now -= delta;
  1355. }
  1356. return mss_now;
  1357. }
  1358. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  1359. * As additional protections, we do not touch cwnd in retransmission phases,
  1360. * and if application hit its sndbuf limit recently.
  1361. */
  1362. static void tcp_cwnd_application_limited(struct sock *sk)
  1363. {
  1364. struct tcp_sock *tp = tcp_sk(sk);
  1365. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  1366. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  1367. /* Limited by application or receiver window. */
  1368. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  1369. u32 win_used = max(tp->snd_cwnd_used, init_win);
  1370. if (win_used < tp->snd_cwnd) {
  1371. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  1372. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  1373. }
  1374. tp->snd_cwnd_used = 0;
  1375. }
  1376. tp->snd_cwnd_stamp = tcp_jiffies32;
  1377. }
  1378. static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
  1379. {
  1380. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  1381. struct tcp_sock *tp = tcp_sk(sk);
  1382. /* Track the maximum number of outstanding packets in each
  1383. * window, and remember whether we were cwnd-limited then.
  1384. */
  1385. if (!before(tp->snd_una, tp->max_packets_seq) ||
  1386. tp->packets_out > tp->max_packets_out) {
  1387. tp->max_packets_out = tp->packets_out;
  1388. tp->max_packets_seq = tp->snd_nxt;
  1389. tp->is_cwnd_limited = is_cwnd_limited;
  1390. }
  1391. if (tcp_is_cwnd_limited(sk)) {
  1392. /* Network is feed fully. */
  1393. tp->snd_cwnd_used = 0;
  1394. tp->snd_cwnd_stamp = tcp_jiffies32;
  1395. } else {
  1396. /* Network starves. */
  1397. if (tp->packets_out > tp->snd_cwnd_used)
  1398. tp->snd_cwnd_used = tp->packets_out;
  1399. if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
  1400. (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
  1401. !ca_ops->cong_control)
  1402. tcp_cwnd_application_limited(sk);
  1403. /* The following conditions together indicate the starvation
  1404. * is caused by insufficient sender buffer:
  1405. * 1) just sent some data (see tcp_write_xmit)
  1406. * 2) not cwnd limited (this else condition)
  1407. * 3) no more data to send (tcp_write_queue_empty())
  1408. * 4) application is hitting buffer limit (SOCK_NOSPACE)
  1409. */
  1410. if (tcp_write_queue_empty(sk) && sk->sk_socket &&
  1411. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
  1412. (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
  1413. tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
  1414. }
  1415. }
  1416. /* Minshall's variant of the Nagle send check. */
  1417. static bool tcp_minshall_check(const struct tcp_sock *tp)
  1418. {
  1419. return after(tp->snd_sml, tp->snd_una) &&
  1420. !after(tp->snd_sml, tp->snd_nxt);
  1421. }
  1422. /* Update snd_sml if this skb is under mss
  1423. * Note that a TSO packet might end with a sub-mss segment
  1424. * The test is really :
  1425. * if ((skb->len % mss) != 0)
  1426. * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
  1427. * But we can avoid doing the divide again given we already have
  1428. * skb_pcount = skb->len / mss_now
  1429. */
  1430. static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
  1431. const struct sk_buff *skb)
  1432. {
  1433. if (skb->len < tcp_skb_pcount(skb) * mss_now)
  1434. tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
  1435. }
  1436. /* Return false, if packet can be sent now without violation Nagle's rules:
  1437. * 1. It is full sized. (provided by caller in %partial bool)
  1438. * 2. Or it contains FIN. (already checked by caller)
  1439. * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
  1440. * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
  1441. * With Minshall's modification: all sent small packets are ACKed.
  1442. */
  1443. static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
  1444. int nonagle)
  1445. {
  1446. return partial &&
  1447. ((nonagle & TCP_NAGLE_CORK) ||
  1448. (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
  1449. }
  1450. /* Return how many segs we'd like on a TSO packet,
  1451. * to send one TSO packet per ms
  1452. */
  1453. static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
  1454. int min_tso_segs)
  1455. {
  1456. u32 bytes, segs;
  1457. bytes = min_t(unsigned long,
  1458. sk->sk_pacing_rate >> sk->sk_pacing_shift,
  1459. sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
  1460. /* Goal is to send at least one packet per ms,
  1461. * not one big TSO packet every 100 ms.
  1462. * This preserves ACK clocking and is consistent
  1463. * with tcp_tso_should_defer() heuristic.
  1464. */
  1465. segs = max_t(u32, bytes / mss_now, min_tso_segs);
  1466. return segs;
  1467. }
  1468. /* Return the number of segments we want in the skb we are transmitting.
  1469. * See if congestion control module wants to decide; otherwise, autosize.
  1470. */
  1471. static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
  1472. {
  1473. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  1474. u32 min_tso, tso_segs;
  1475. min_tso = ca_ops->min_tso_segs ?
  1476. ca_ops->min_tso_segs(sk) :
  1477. sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
  1478. tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
  1479. return min_t(u32, tso_segs, sk->sk_gso_max_segs);
  1480. }
  1481. /* Returns the portion of skb which can be sent right away */
  1482. static unsigned int tcp_mss_split_point(const struct sock *sk,
  1483. const struct sk_buff *skb,
  1484. unsigned int mss_now,
  1485. unsigned int max_segs,
  1486. int nonagle)
  1487. {
  1488. const struct tcp_sock *tp = tcp_sk(sk);
  1489. u32 partial, needed, window, max_len;
  1490. window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  1491. max_len = mss_now * max_segs;
  1492. if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
  1493. return max_len;
  1494. needed = min(skb->len, window);
  1495. if (max_len <= needed)
  1496. return max_len;
  1497. partial = needed % mss_now;
  1498. /* If last segment is not a full MSS, check if Nagle rules allow us
  1499. * to include this last segment in this skb.
  1500. * Otherwise, we'll split the skb at last MSS boundary
  1501. */
  1502. if (tcp_nagle_check(partial != 0, tp, nonagle))
  1503. return needed - partial;
  1504. return needed;
  1505. }
  1506. /* Can at least one segment of SKB be sent right now, according to the
  1507. * congestion window rules? If so, return how many segments are allowed.
  1508. */
  1509. static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
  1510. const struct sk_buff *skb)
  1511. {
  1512. u32 in_flight, cwnd, halfcwnd;
  1513. /* Don't be strict about the congestion window for the final FIN. */
  1514. if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
  1515. tcp_skb_pcount(skb) == 1)
  1516. return 1;
  1517. in_flight = tcp_packets_in_flight(tp);
  1518. cwnd = tp->snd_cwnd;
  1519. if (in_flight >= cwnd)
  1520. return 0;
  1521. /* For better scheduling, ensure we have at least
  1522. * 2 GSO packets in flight.
  1523. */
  1524. halfcwnd = max(cwnd >> 1, 1U);
  1525. return min(halfcwnd, cwnd - in_flight);
  1526. }
  1527. /* Initialize TSO state of a skb.
  1528. * This must be invoked the first time we consider transmitting
  1529. * SKB onto the wire.
  1530. */
  1531. static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
  1532. {
  1533. int tso_segs = tcp_skb_pcount(skb);
  1534. if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
  1535. tcp_set_skb_tso_segs(skb, mss_now);
  1536. tso_segs = tcp_skb_pcount(skb);
  1537. }
  1538. return tso_segs;
  1539. }
  1540. /* Return true if the Nagle test allows this packet to be
  1541. * sent now.
  1542. */
  1543. static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
  1544. unsigned int cur_mss, int nonagle)
  1545. {
  1546. /* Nagle rule does not apply to frames, which sit in the middle of the
  1547. * write_queue (they have no chances to get new data).
  1548. *
  1549. * This is implemented in the callers, where they modify the 'nonagle'
  1550. * argument based upon the location of SKB in the send queue.
  1551. */
  1552. if (nonagle & TCP_NAGLE_PUSH)
  1553. return true;
  1554. /* Don't use the nagle rule for urgent data (or for the final FIN). */
  1555. if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
  1556. return true;
  1557. if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
  1558. return true;
  1559. return false;
  1560. }
  1561. /* Does at least the first segment of SKB fit into the send window? */
  1562. static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
  1563. const struct sk_buff *skb,
  1564. unsigned int cur_mss)
  1565. {
  1566. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  1567. if (skb->len > cur_mss)
  1568. end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
  1569. return !after(end_seq, tcp_wnd_end(tp));
  1570. }
  1571. /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
  1572. * which is put after SKB on the list. It is very much like
  1573. * tcp_fragment() except that it may make several kinds of assumptions
  1574. * in order to speed up the splitting operation. In particular, we
  1575. * know that all the data is in scatter-gather pages, and that the
  1576. * packet has never been sent out before (and thus is not cloned).
  1577. */
  1578. static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
  1579. struct sk_buff *skb, unsigned int len,
  1580. unsigned int mss_now, gfp_t gfp)
  1581. {
  1582. struct sk_buff *buff;
  1583. int nlen = skb->len - len;
  1584. u8 flags;
  1585. /* All of a TSO frame must be composed of paged data. */
  1586. if (skb->len != skb->data_len)
  1587. return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
  1588. buff = sk_stream_alloc_skb(sk, 0, gfp, true);
  1589. if (unlikely(!buff))
  1590. return -ENOMEM;
  1591. sk->sk_wmem_queued += buff->truesize;
  1592. sk_mem_charge(sk, buff->truesize);
  1593. buff->truesize += nlen;
  1594. skb->truesize -= nlen;
  1595. /* Correct the sequence numbers. */
  1596. TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
  1597. TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
  1598. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
  1599. /* PSH and FIN should only be set in the second packet. */
  1600. flags = TCP_SKB_CB(skb)->tcp_flags;
  1601. TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
  1602. TCP_SKB_CB(buff)->tcp_flags = flags;
  1603. /* This packet was never sent out yet, so no SACK bits. */
  1604. TCP_SKB_CB(buff)->sacked = 0;
  1605. tcp_skb_fragment_eor(skb, buff);
  1606. buff->ip_summed = CHECKSUM_PARTIAL;
  1607. skb_split(skb, buff, len);
  1608. tcp_fragment_tstamp(skb, buff);
  1609. /* Fix up tso_factor for both original and new SKB. */
  1610. tcp_set_skb_tso_segs(skb, mss_now);
  1611. tcp_set_skb_tso_segs(buff, mss_now);
  1612. /* Link BUFF into the send queue. */
  1613. __skb_header_release(buff);
  1614. tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
  1615. return 0;
  1616. }
  1617. /* Try to defer sending, if possible, in order to minimize the amount
  1618. * of TSO splitting we do. View it as a kind of TSO Nagle test.
  1619. *
  1620. * This algorithm is from John Heffner.
  1621. */
  1622. static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
  1623. bool *is_cwnd_limited, u32 max_segs)
  1624. {
  1625. const struct inet_connection_sock *icsk = inet_csk(sk);
  1626. u32 age, send_win, cong_win, limit, in_flight;
  1627. struct tcp_sock *tp = tcp_sk(sk);
  1628. struct sk_buff *head;
  1629. int win_divisor;
  1630. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1631. goto send_now;
  1632. if (icsk->icsk_ca_state >= TCP_CA_Recovery)
  1633. goto send_now;
  1634. /* Avoid bursty behavior by allowing defer
  1635. * only if the last write was recent.
  1636. */
  1637. if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
  1638. goto send_now;
  1639. in_flight = tcp_packets_in_flight(tp);
  1640. BUG_ON(tcp_skb_pcount(skb) <= 1);
  1641. BUG_ON(tp->snd_cwnd <= in_flight);
  1642. send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  1643. /* From in_flight test above, we know that cwnd > in_flight. */
  1644. cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
  1645. limit = min(send_win, cong_win);
  1646. /* If a full-sized TSO skb can be sent, do it. */
  1647. if (limit >= max_segs * tp->mss_cache)
  1648. goto send_now;
  1649. /* Middle in queue won't get any more data, full sendable already? */
  1650. if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
  1651. goto send_now;
  1652. win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
  1653. if (win_divisor) {
  1654. u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
  1655. /* If at least some fraction of a window is available,
  1656. * just use it.
  1657. */
  1658. chunk /= win_divisor;
  1659. if (limit >= chunk)
  1660. goto send_now;
  1661. } else {
  1662. /* Different approach, try not to defer past a single
  1663. * ACK. Receiver should ACK every other full sized
  1664. * frame, so if we have space for more than 3 frames
  1665. * then send now.
  1666. */
  1667. if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
  1668. goto send_now;
  1669. }
  1670. /* TODO : use tsorted_sent_queue ? */
  1671. head = tcp_rtx_queue_head(sk);
  1672. if (!head)
  1673. goto send_now;
  1674. age = tcp_stamp_us_delta(tp->tcp_mstamp, tcp_skb_timestamp_us(head));
  1675. /* If next ACK is likely to come too late (half srtt), do not defer */
  1676. if (age < (tp->srtt_us >> 4))
  1677. goto send_now;
  1678. /* Ok, it looks like it is advisable to defer. */
  1679. if (cong_win < send_win && cong_win <= skb->len)
  1680. *is_cwnd_limited = true;
  1681. return true;
  1682. send_now:
  1683. return false;
  1684. }
  1685. static inline void tcp_mtu_check_reprobe(struct sock *sk)
  1686. {
  1687. struct inet_connection_sock *icsk = inet_csk(sk);
  1688. struct tcp_sock *tp = tcp_sk(sk);
  1689. struct net *net = sock_net(sk);
  1690. u32 interval;
  1691. s32 delta;
  1692. interval = net->ipv4.sysctl_tcp_probe_interval;
  1693. delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
  1694. if (unlikely(delta >= interval * HZ)) {
  1695. int mss = tcp_current_mss(sk);
  1696. /* Update current search range */
  1697. icsk->icsk_mtup.probe_size = 0;
  1698. icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
  1699. sizeof(struct tcphdr) +
  1700. icsk->icsk_af_ops->net_header_len;
  1701. icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
  1702. /* Update probe time stamp */
  1703. icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
  1704. }
  1705. }
  1706. static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
  1707. {
  1708. struct sk_buff *skb, *next;
  1709. skb = tcp_send_head(sk);
  1710. tcp_for_write_queue_from_safe(skb, next, sk) {
  1711. if (len <= skb->len)
  1712. break;
  1713. if (unlikely(TCP_SKB_CB(skb)->eor))
  1714. return false;
  1715. len -= skb->len;
  1716. }
  1717. return true;
  1718. }
  1719. /* Create a new MTU probe if we are ready.
  1720. * MTU probe is regularly attempting to increase the path MTU by
  1721. * deliberately sending larger packets. This discovers routing
  1722. * changes resulting in larger path MTUs.
  1723. *
  1724. * Returns 0 if we should wait to probe (no cwnd available),
  1725. * 1 if a probe was sent,
  1726. * -1 otherwise
  1727. */
  1728. static int tcp_mtu_probe(struct sock *sk)
  1729. {
  1730. struct inet_connection_sock *icsk = inet_csk(sk);
  1731. struct tcp_sock *tp = tcp_sk(sk);
  1732. struct sk_buff *skb, *nskb, *next;
  1733. struct net *net = sock_net(sk);
  1734. int probe_size;
  1735. int size_needed;
  1736. int copy, len;
  1737. int mss_now;
  1738. int interval;
  1739. /* Not currently probing/verifying,
  1740. * not in recovery,
  1741. * have enough cwnd, and
  1742. * not SACKing (the variable headers throw things off)
  1743. */
  1744. if (likely(!icsk->icsk_mtup.enabled ||
  1745. icsk->icsk_mtup.probe_size ||
  1746. inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
  1747. tp->snd_cwnd < 11 ||
  1748. tp->rx_opt.num_sacks || tp->rx_opt.dsack))
  1749. return -1;
  1750. /* Use binary search for probe_size between tcp_mss_base,
  1751. * and current mss_clamp. if (search_high - search_low)
  1752. * smaller than a threshold, backoff from probing.
  1753. */
  1754. mss_now = tcp_current_mss(sk);
  1755. probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
  1756. icsk->icsk_mtup.search_low) >> 1);
  1757. size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
  1758. interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
  1759. /* When misfortune happens, we are reprobing actively,
  1760. * and then reprobe timer has expired. We stick with current
  1761. * probing process by not resetting search range to its orignal.
  1762. */
  1763. if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
  1764. interval < net->ipv4.sysctl_tcp_probe_threshold) {
  1765. /* Check whether enough time has elaplased for
  1766. * another round of probing.
  1767. */
  1768. tcp_mtu_check_reprobe(sk);
  1769. return -1;
  1770. }
  1771. /* Have enough data in the send queue to probe? */
  1772. if (tp->write_seq - tp->snd_nxt < size_needed)
  1773. return -1;
  1774. if (tp->snd_wnd < size_needed)
  1775. return -1;
  1776. if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
  1777. return 0;
  1778. /* Do we need to wait to drain cwnd? With none in flight, don't stall */
  1779. if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
  1780. if (!tcp_packets_in_flight(tp))
  1781. return -1;
  1782. else
  1783. return 0;
  1784. }
  1785. if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
  1786. return -1;
  1787. /* We're allowed to probe. Build it now. */
  1788. nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
  1789. if (!nskb)
  1790. return -1;
  1791. sk->sk_wmem_queued += nskb->truesize;
  1792. sk_mem_charge(sk, nskb->truesize);
  1793. skb = tcp_send_head(sk);
  1794. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
  1795. TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
  1796. TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
  1797. TCP_SKB_CB(nskb)->sacked = 0;
  1798. nskb->csum = 0;
  1799. nskb->ip_summed = CHECKSUM_PARTIAL;
  1800. tcp_insert_write_queue_before(nskb, skb, sk);
  1801. tcp_highest_sack_replace(sk, skb, nskb);
  1802. len = 0;
  1803. tcp_for_write_queue_from_safe(skb, next, sk) {
  1804. copy = min_t(int, skb->len, probe_size - len);
  1805. skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
  1806. if (skb->len <= copy) {
  1807. /* We've eaten all the data from this skb.
  1808. * Throw it away. */
  1809. TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1810. /* If this is the last SKB we copy and eor is set
  1811. * we need to propagate it to the new skb.
  1812. */
  1813. TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
  1814. tcp_unlink_write_queue(skb, sk);
  1815. sk_wmem_free_skb(sk, skb);
  1816. } else {
  1817. TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
  1818. ~(TCPHDR_FIN|TCPHDR_PSH);
  1819. if (!skb_shinfo(skb)->nr_frags) {
  1820. skb_pull(skb, copy);
  1821. } else {
  1822. __pskb_trim_head(skb, copy);
  1823. tcp_set_skb_tso_segs(skb, mss_now);
  1824. }
  1825. TCP_SKB_CB(skb)->seq += copy;
  1826. }
  1827. len += copy;
  1828. if (len >= probe_size)
  1829. break;
  1830. }
  1831. tcp_init_tso_segs(nskb, nskb->len);
  1832. /* We're ready to send. If this fails, the probe will
  1833. * be resegmented into mss-sized pieces by tcp_write_xmit().
  1834. */
  1835. if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
  1836. /* Decrement cwnd here because we are sending
  1837. * effectively two packets. */
  1838. tp->snd_cwnd--;
  1839. tcp_event_new_data_sent(sk, nskb);
  1840. icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
  1841. tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
  1842. tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
  1843. return 1;
  1844. }
  1845. return -1;
  1846. }
  1847. static bool tcp_pacing_check(struct sock *sk)
  1848. {
  1849. struct tcp_sock *tp = tcp_sk(sk);
  1850. if (!tcp_needs_internal_pacing(sk))
  1851. return false;
  1852. if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
  1853. return false;
  1854. if (!hrtimer_is_queued(&tp->pacing_timer)) {
  1855. hrtimer_start(&tp->pacing_timer,
  1856. ns_to_ktime(tp->tcp_wstamp_ns),
  1857. HRTIMER_MODE_ABS_PINNED_SOFT);
  1858. sock_hold(sk);
  1859. }
  1860. return true;
  1861. }
  1862. /* TCP Small Queues :
  1863. * Control number of packets in qdisc/devices to two packets / or ~1 ms.
  1864. * (These limits are doubled for retransmits)
  1865. * This allows for :
  1866. * - better RTT estimation and ACK scheduling
  1867. * - faster recovery
  1868. * - high rates
  1869. * Alas, some drivers / subsystems require a fair amount
  1870. * of queued bytes to ensure line rate.
  1871. * One example is wifi aggregation (802.11 AMPDU)
  1872. */
  1873. static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
  1874. unsigned int factor)
  1875. {
  1876. unsigned long limit;
  1877. limit = max_t(unsigned long,
  1878. 2 * skb->truesize,
  1879. sk->sk_pacing_rate >> sk->sk_pacing_shift);
  1880. limit = min_t(unsigned long, limit,
  1881. sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
  1882. limit <<= factor;
  1883. if (refcount_read(&sk->sk_wmem_alloc) > limit) {
  1884. /* Always send skb if rtx queue is empty.
  1885. * No need to wait for TX completion to call us back,
  1886. * after softirq/tasklet schedule.
  1887. * This helps when TX completions are delayed too much.
  1888. */
  1889. if (tcp_rtx_queue_empty(sk))
  1890. return false;
  1891. set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
  1892. /* It is possible TX completion already happened
  1893. * before we set TSQ_THROTTLED, so we must
  1894. * test again the condition.
  1895. */
  1896. smp_mb__after_atomic();
  1897. if (refcount_read(&sk->sk_wmem_alloc) > limit)
  1898. return true;
  1899. }
  1900. return false;
  1901. }
  1902. static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
  1903. {
  1904. const u32 now = tcp_jiffies32;
  1905. enum tcp_chrono old = tp->chrono_type;
  1906. if (old > TCP_CHRONO_UNSPEC)
  1907. tp->chrono_stat[old - 1] += now - tp->chrono_start;
  1908. tp->chrono_start = now;
  1909. tp->chrono_type = new;
  1910. }
  1911. void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
  1912. {
  1913. struct tcp_sock *tp = tcp_sk(sk);
  1914. /* If there are multiple conditions worthy of tracking in a
  1915. * chronograph then the highest priority enum takes precedence
  1916. * over the other conditions. So that if something "more interesting"
  1917. * starts happening, stop the previous chrono and start a new one.
  1918. */
  1919. if (type > tp->chrono_type)
  1920. tcp_chrono_set(tp, type);
  1921. }
  1922. void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
  1923. {
  1924. struct tcp_sock *tp = tcp_sk(sk);
  1925. /* There are multiple conditions worthy of tracking in a
  1926. * chronograph, so that the highest priority enum takes
  1927. * precedence over the other conditions (see tcp_chrono_start).
  1928. * If a condition stops, we only stop chrono tracking if
  1929. * it's the "most interesting" or current chrono we are
  1930. * tracking and starts busy chrono if we have pending data.
  1931. */
  1932. if (tcp_rtx_and_write_queues_empty(sk))
  1933. tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
  1934. else if (type == tp->chrono_type)
  1935. tcp_chrono_set(tp, TCP_CHRONO_BUSY);
  1936. }
  1937. /* This routine writes packets to the network. It advances the
  1938. * send_head. This happens as incoming acks open up the remote
  1939. * window for us.
  1940. *
  1941. * LARGESEND note: !tcp_urg_mode is overkill, only frames between
  1942. * snd_up-64k-mss .. snd_up cannot be large. However, taking into
  1943. * account rare use of URG, this is not a big flaw.
  1944. *
  1945. * Send at most one packet when push_one > 0. Temporarily ignore
  1946. * cwnd limit to force at most one packet out when push_one == 2.
  1947. * Returns true, if no segments are in flight and we have queued segments,
  1948. * but cannot send anything now because of SWS or another problem.
  1949. */
  1950. static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  1951. int push_one, gfp_t gfp)
  1952. {
  1953. struct tcp_sock *tp = tcp_sk(sk);
  1954. struct sk_buff *skb;
  1955. unsigned int tso_segs, sent_pkts;
  1956. int cwnd_quota;
  1957. int result;
  1958. bool is_cwnd_limited = false, is_rwnd_limited = false;
  1959. u32 max_segs;
  1960. sent_pkts = 0;
  1961. tcp_mstamp_refresh(tp);
  1962. if (!push_one) {
  1963. /* Do MTU probing. */
  1964. result = tcp_mtu_probe(sk);
  1965. if (!result) {
  1966. return false;
  1967. } else if (result > 0) {
  1968. sent_pkts = 1;
  1969. }
  1970. }
  1971. max_segs = tcp_tso_segs(sk, mss_now);
  1972. while ((skb = tcp_send_head(sk))) {
  1973. unsigned int limit;
  1974. if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
  1975. /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
  1976. skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
  1977. list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
  1978. goto repair; /* Skip network transmission */
  1979. }
  1980. if (tcp_pacing_check(sk))
  1981. break;
  1982. tso_segs = tcp_init_tso_segs(skb, mss_now);
  1983. BUG_ON(!tso_segs);
  1984. cwnd_quota = tcp_cwnd_test(tp, skb);
  1985. if (!cwnd_quota) {
  1986. if (push_one == 2)
  1987. /* Force out a loss probe pkt. */
  1988. cwnd_quota = 1;
  1989. else
  1990. break;
  1991. }
  1992. if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
  1993. is_rwnd_limited = true;
  1994. break;
  1995. }
  1996. if (tso_segs == 1) {
  1997. if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
  1998. (tcp_skb_is_last(sk, skb) ?
  1999. nonagle : TCP_NAGLE_PUSH))))
  2000. break;
  2001. } else {
  2002. if (!push_one &&
  2003. tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
  2004. max_segs))
  2005. break;
  2006. }
  2007. limit = mss_now;
  2008. if (tso_segs > 1 && !tcp_urg_mode(tp))
  2009. limit = tcp_mss_split_point(sk, skb, mss_now,
  2010. min_t(unsigned int,
  2011. cwnd_quota,
  2012. max_segs),
  2013. nonagle);
  2014. if (skb->len > limit &&
  2015. unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
  2016. skb, limit, mss_now, gfp)))
  2017. break;
  2018. if (tcp_small_queue_check(sk, skb, 0))
  2019. break;
  2020. if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
  2021. break;
  2022. repair:
  2023. /* Advance the send_head. This one is sent out.
  2024. * This call will increment packets_out.
  2025. */
  2026. tcp_event_new_data_sent(sk, skb);
  2027. tcp_minshall_update(tp, mss_now, skb);
  2028. sent_pkts += tcp_skb_pcount(skb);
  2029. if (push_one)
  2030. break;
  2031. }
  2032. if (is_rwnd_limited)
  2033. tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
  2034. else
  2035. tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
  2036. if (likely(sent_pkts)) {
  2037. if (tcp_in_cwnd_reduction(sk))
  2038. tp->prr_out += sent_pkts;
  2039. /* Send one loss probe per tail loss episode. */
  2040. if (push_one != 2)
  2041. tcp_schedule_loss_probe(sk, false);
  2042. is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
  2043. tcp_cwnd_validate(sk, is_cwnd_limited);
  2044. return false;
  2045. }
  2046. return !tp->packets_out && !tcp_write_queue_empty(sk);
  2047. }
  2048. bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
  2049. {
  2050. struct inet_connection_sock *icsk = inet_csk(sk);
  2051. struct tcp_sock *tp = tcp_sk(sk);
  2052. u32 timeout, rto_delta_us;
  2053. int early_retrans;
  2054. /* Don't do any loss probe on a Fast Open connection before 3WHS
  2055. * finishes.
  2056. */
  2057. if (tp->fastopen_rsk)
  2058. return false;
  2059. early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
  2060. /* Schedule a loss probe in 2*RTT for SACK capable connections
  2061. * not in loss recovery, that are either limited by cwnd or application.
  2062. */
  2063. if ((early_retrans != 3 && early_retrans != 4) ||
  2064. !tp->packets_out || !tcp_is_sack(tp) ||
  2065. (icsk->icsk_ca_state != TCP_CA_Open &&
  2066. icsk->icsk_ca_state != TCP_CA_CWR))
  2067. return false;
  2068. /* Probe timeout is 2*rtt. Add minimum RTO to account
  2069. * for delayed ack when there's one outstanding packet. If no RTT
  2070. * sample is available then probe after TCP_TIMEOUT_INIT.
  2071. */
  2072. if (tp->srtt_us) {
  2073. timeout = usecs_to_jiffies(tp->srtt_us >> 2);
  2074. if (tp->packets_out == 1)
  2075. timeout += TCP_RTO_MIN;
  2076. else
  2077. timeout += TCP_TIMEOUT_MIN;
  2078. } else {
  2079. timeout = TCP_TIMEOUT_INIT;
  2080. }
  2081. /* If the RTO formula yields an earlier time, then use that time. */
  2082. rto_delta_us = advancing_rto ?
  2083. jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
  2084. tcp_rto_delta_us(sk); /* How far in future is RTO? */
  2085. if (rto_delta_us > 0)
  2086. timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
  2087. tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
  2088. TCP_RTO_MAX, NULL);
  2089. return true;
  2090. }
  2091. /* Thanks to skb fast clones, we can detect if a prior transmit of
  2092. * a packet is still in a qdisc or driver queue.
  2093. * In this case, there is very little point doing a retransmit !
  2094. */
  2095. static bool skb_still_in_host_queue(const struct sock *sk,
  2096. const struct sk_buff *skb)
  2097. {
  2098. if (unlikely(skb_fclone_busy(sk, skb))) {
  2099. NET_INC_STATS(sock_net(sk),
  2100. LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
  2101. return true;
  2102. }
  2103. return false;
  2104. }
  2105. /* When probe timeout (PTO) fires, try send a new segment if possible, else
  2106. * retransmit the last segment.
  2107. */
  2108. void tcp_send_loss_probe(struct sock *sk)
  2109. {
  2110. struct tcp_sock *tp = tcp_sk(sk);
  2111. struct sk_buff *skb;
  2112. int pcount;
  2113. int mss = tcp_current_mss(sk);
  2114. skb = tcp_send_head(sk);
  2115. if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
  2116. pcount = tp->packets_out;
  2117. tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
  2118. if (tp->packets_out > pcount)
  2119. goto probe_sent;
  2120. goto rearm_timer;
  2121. }
  2122. skb = skb_rb_last(&sk->tcp_rtx_queue);
  2123. /* At most one outstanding TLP retransmission. */
  2124. if (tp->tlp_high_seq)
  2125. goto rearm_timer;
  2126. /* Retransmit last segment. */
  2127. if (WARN_ON(!skb))
  2128. goto rearm_timer;
  2129. if (skb_still_in_host_queue(sk, skb))
  2130. goto rearm_timer;
  2131. pcount = tcp_skb_pcount(skb);
  2132. if (WARN_ON(!pcount))
  2133. goto rearm_timer;
  2134. if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
  2135. if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
  2136. (pcount - 1) * mss, mss,
  2137. GFP_ATOMIC)))
  2138. goto rearm_timer;
  2139. skb = skb_rb_next(skb);
  2140. }
  2141. if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
  2142. goto rearm_timer;
  2143. if (__tcp_retransmit_skb(sk, skb, 1))
  2144. goto rearm_timer;
  2145. /* Record snd_nxt for loss detection. */
  2146. tp->tlp_high_seq = tp->snd_nxt;
  2147. probe_sent:
  2148. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
  2149. /* Reset s.t. tcp_rearm_rto will restart timer from now */
  2150. inet_csk(sk)->icsk_pending = 0;
  2151. rearm_timer:
  2152. tcp_rearm_rto(sk);
  2153. }
  2154. /* Push out any pending frames which were held back due to
  2155. * TCP_CORK or attempt at coalescing tiny packets.
  2156. * The socket must be locked by the caller.
  2157. */
  2158. void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
  2159. int nonagle)
  2160. {
  2161. /* If we are closed, the bytes will have to remain here.
  2162. * In time closedown will finish, we empty the write queue and
  2163. * all will be happy.
  2164. */
  2165. if (unlikely(sk->sk_state == TCP_CLOSE))
  2166. return;
  2167. if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
  2168. sk_gfp_mask(sk, GFP_ATOMIC)))
  2169. tcp_check_probe_timer(sk);
  2170. }
  2171. /* Send _single_ skb sitting at the send head. This function requires
  2172. * true push pending frames to setup probe timer etc.
  2173. */
  2174. void tcp_push_one(struct sock *sk, unsigned int mss_now)
  2175. {
  2176. struct sk_buff *skb = tcp_send_head(sk);
  2177. BUG_ON(!skb || skb->len < mss_now);
  2178. tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
  2179. }
  2180. /* This function returns the amount that we can raise the
  2181. * usable window based on the following constraints
  2182. *
  2183. * 1. The window can never be shrunk once it is offered (RFC 793)
  2184. * 2. We limit memory per socket
  2185. *
  2186. * RFC 1122:
  2187. * "the suggested [SWS] avoidance algorithm for the receiver is to keep
  2188. * RECV.NEXT + RCV.WIN fixed until:
  2189. * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
  2190. *
  2191. * i.e. don't raise the right edge of the window until you can raise
  2192. * it at least MSS bytes.
  2193. *
  2194. * Unfortunately, the recommended algorithm breaks header prediction,
  2195. * since header prediction assumes th->window stays fixed.
  2196. *
  2197. * Strictly speaking, keeping th->window fixed violates the receiver
  2198. * side SWS prevention criteria. The problem is that under this rule
  2199. * a stream of single byte packets will cause the right side of the
  2200. * window to always advance by a single byte.
  2201. *
  2202. * Of course, if the sender implements sender side SWS prevention
  2203. * then this will not be a problem.
  2204. *
  2205. * BSD seems to make the following compromise:
  2206. *
  2207. * If the free space is less than the 1/4 of the maximum
  2208. * space available and the free space is less than 1/2 mss,
  2209. * then set the window to 0.
  2210. * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
  2211. * Otherwise, just prevent the window from shrinking
  2212. * and from being larger than the largest representable value.
  2213. *
  2214. * This prevents incremental opening of the window in the regime
  2215. * where TCP is limited by the speed of the reader side taking
  2216. * data out of the TCP receive queue. It does nothing about
  2217. * those cases where the window is constrained on the sender side
  2218. * because the pipeline is full.
  2219. *
  2220. * BSD also seems to "accidentally" limit itself to windows that are a
  2221. * multiple of MSS, at least until the free space gets quite small.
  2222. * This would appear to be a side effect of the mbuf implementation.
  2223. * Combining these two algorithms results in the observed behavior
  2224. * of having a fixed window size at almost all times.
  2225. *
  2226. * Below we obtain similar behavior by forcing the offered window to
  2227. * a multiple of the mss when it is feasible to do so.
  2228. *
  2229. * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
  2230. * Regular options like TIMESTAMP are taken into account.
  2231. */
  2232. u32 __tcp_select_window(struct sock *sk)
  2233. {
  2234. struct inet_connection_sock *icsk = inet_csk(sk);
  2235. struct tcp_sock *tp = tcp_sk(sk);
  2236. /* MSS for the peer's data. Previous versions used mss_clamp
  2237. * here. I don't know if the value based on our guesses
  2238. * of peer's MSS is better for the performance. It's more correct
  2239. * but may be worse for the performance because of rcv_mss
  2240. * fluctuations. --SAW 1998/11/1
  2241. */
  2242. int mss = icsk->icsk_ack.rcv_mss;
  2243. int free_space = tcp_space(sk);
  2244. int allowed_space = tcp_full_space(sk);
  2245. int full_space = min_t(int, tp->window_clamp, allowed_space);
  2246. int window;
  2247. if (unlikely(mss > full_space)) {
  2248. mss = full_space;
  2249. if (mss <= 0)
  2250. return 0;
  2251. }
  2252. if (free_space < (full_space >> 1)) {
  2253. icsk->icsk_ack.quick = 0;
  2254. if (tcp_under_memory_pressure(sk))
  2255. tp->rcv_ssthresh = min(tp->rcv_ssthresh,
  2256. 4U * tp->advmss);
  2257. /* free_space might become our new window, make sure we don't
  2258. * increase it due to wscale.
  2259. */
  2260. free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
  2261. /* if free space is less than mss estimate, or is below 1/16th
  2262. * of the maximum allowed, try to move to zero-window, else
  2263. * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
  2264. * new incoming data is dropped due to memory limits.
  2265. * With large window, mss test triggers way too late in order
  2266. * to announce zero window in time before rmem limit kicks in.
  2267. */
  2268. if (free_space < (allowed_space >> 4) || free_space < mss)
  2269. return 0;
  2270. }
  2271. if (free_space > tp->rcv_ssthresh)
  2272. free_space = tp->rcv_ssthresh;
  2273. /* Don't do rounding if we are using window scaling, since the
  2274. * scaled window will not line up with the MSS boundary anyway.
  2275. */
  2276. if (tp->rx_opt.rcv_wscale) {
  2277. window = free_space;
  2278. /* Advertise enough space so that it won't get scaled away.
  2279. * Import case: prevent zero window announcement if
  2280. * 1<<rcv_wscale > mss.
  2281. */
  2282. window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
  2283. } else {
  2284. window = tp->rcv_wnd;
  2285. /* Get the largest window that is a nice multiple of mss.
  2286. * Window clamp already applied above.
  2287. * If our current window offering is within 1 mss of the
  2288. * free space we just keep it. This prevents the divide
  2289. * and multiply from happening most of the time.
  2290. * We also don't do any window rounding when the free space
  2291. * is too small.
  2292. */
  2293. if (window <= free_space - mss || window > free_space)
  2294. window = rounddown(free_space, mss);
  2295. else if (mss == full_space &&
  2296. free_space > window + (full_space >> 1))
  2297. window = free_space;
  2298. }
  2299. return window;
  2300. }
  2301. void tcp_skb_collapse_tstamp(struct sk_buff *skb,
  2302. const struct sk_buff *next_skb)
  2303. {
  2304. if (unlikely(tcp_has_tx_tstamp(next_skb))) {
  2305. const struct skb_shared_info *next_shinfo =
  2306. skb_shinfo(next_skb);
  2307. struct skb_shared_info *shinfo = skb_shinfo(skb);
  2308. shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
  2309. shinfo->tskey = next_shinfo->tskey;
  2310. TCP_SKB_CB(skb)->txstamp_ack |=
  2311. TCP_SKB_CB(next_skb)->txstamp_ack;
  2312. }
  2313. }
  2314. /* Collapses two adjacent SKB's during retransmission. */
  2315. static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
  2316. {
  2317. struct tcp_sock *tp = tcp_sk(sk);
  2318. struct sk_buff *next_skb = skb_rb_next(skb);
  2319. int next_skb_size;
  2320. next_skb_size = next_skb->len;
  2321. BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
  2322. if (next_skb_size) {
  2323. if (next_skb_size <= skb_availroom(skb))
  2324. skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
  2325. next_skb_size);
  2326. else if (!skb_shift(skb, next_skb, next_skb_size))
  2327. return false;
  2328. }
  2329. tcp_highest_sack_replace(sk, next_skb, skb);
  2330. /* Update sequence range on original skb. */
  2331. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
  2332. /* Merge over control information. This moves PSH/FIN etc. over */
  2333. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
  2334. /* All done, get rid of second SKB and account for it so
  2335. * packet counting does not break.
  2336. */
  2337. TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
  2338. TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
  2339. /* changed transmit queue under us so clear hints */
  2340. tcp_clear_retrans_hints_partial(tp);
  2341. if (next_skb == tp->retransmit_skb_hint)
  2342. tp->retransmit_skb_hint = skb;
  2343. tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
  2344. tcp_skb_collapse_tstamp(skb, next_skb);
  2345. tcp_rtx_queue_unlink_and_free(next_skb, sk);
  2346. return true;
  2347. }
  2348. /* Check if coalescing SKBs is legal. */
  2349. static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
  2350. {
  2351. if (tcp_skb_pcount(skb) > 1)
  2352. return false;
  2353. if (skb_cloned(skb))
  2354. return false;
  2355. /* Some heuristics for collapsing over SACK'd could be invented */
  2356. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  2357. return false;
  2358. return true;
  2359. }
  2360. /* Collapse packets in the retransmit queue to make to create
  2361. * less packets on the wire. This is only done on retransmission.
  2362. */
  2363. static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
  2364. int space)
  2365. {
  2366. struct tcp_sock *tp = tcp_sk(sk);
  2367. struct sk_buff *skb = to, *tmp;
  2368. bool first = true;
  2369. if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
  2370. return;
  2371. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
  2372. return;
  2373. skb_rbtree_walk_from_safe(skb, tmp) {
  2374. if (!tcp_can_collapse(sk, skb))
  2375. break;
  2376. if (!tcp_skb_can_collapse_to(to))
  2377. break;
  2378. space -= skb->len;
  2379. if (first) {
  2380. first = false;
  2381. continue;
  2382. }
  2383. if (space < 0)
  2384. break;
  2385. if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
  2386. break;
  2387. if (!tcp_collapse_retrans(sk, to))
  2388. break;
  2389. }
  2390. }
  2391. /* This retransmits one SKB. Policy decisions and retransmit queue
  2392. * state updates are done by the caller. Returns non-zero if an
  2393. * error occurred which prevented the send.
  2394. */
  2395. int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
  2396. {
  2397. struct inet_connection_sock *icsk = inet_csk(sk);
  2398. struct tcp_sock *tp = tcp_sk(sk);
  2399. unsigned int cur_mss;
  2400. int diff, len, err;
  2401. /* Inconclusive MTU probe */
  2402. if (icsk->icsk_mtup.probe_size)
  2403. icsk->icsk_mtup.probe_size = 0;
  2404. /* Do not sent more than we queued. 1/4 is reserved for possible
  2405. * copying overhead: fragmentation, tunneling, mangling etc.
  2406. */
  2407. if (refcount_read(&sk->sk_wmem_alloc) >
  2408. min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
  2409. sk->sk_sndbuf))
  2410. return -EAGAIN;
  2411. if (skb_still_in_host_queue(sk, skb))
  2412. return -EBUSY;
  2413. if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
  2414. if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
  2415. WARN_ON_ONCE(1);
  2416. return -EINVAL;
  2417. }
  2418. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2419. return -ENOMEM;
  2420. }
  2421. if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
  2422. return -EHOSTUNREACH; /* Routing failure or similar. */
  2423. cur_mss = tcp_current_mss(sk);
  2424. /* If receiver has shrunk his window, and skb is out of
  2425. * new window, do not retransmit it. The exception is the
  2426. * case, when window is shrunk to zero. In this case
  2427. * our retransmit serves as a zero window probe.
  2428. */
  2429. if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
  2430. TCP_SKB_CB(skb)->seq != tp->snd_una)
  2431. return -EAGAIN;
  2432. len = cur_mss * segs;
  2433. if (skb->len > len) {
  2434. if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
  2435. cur_mss, GFP_ATOMIC))
  2436. return -ENOMEM; /* We'll try again later. */
  2437. } else {
  2438. if (skb_unclone(skb, GFP_ATOMIC))
  2439. return -ENOMEM;
  2440. diff = tcp_skb_pcount(skb);
  2441. tcp_set_skb_tso_segs(skb, cur_mss);
  2442. diff -= tcp_skb_pcount(skb);
  2443. if (diff)
  2444. tcp_adjust_pcount(sk, skb, diff);
  2445. if (skb->len < cur_mss)
  2446. tcp_retrans_try_collapse(sk, skb, cur_mss);
  2447. }
  2448. /* RFC3168, section 6.1.1.1. ECN fallback */
  2449. if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
  2450. tcp_ecn_clear_syn(sk, skb);
  2451. /* Update global and local TCP statistics. */
  2452. segs = tcp_skb_pcount(skb);
  2453. TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
  2454. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
  2455. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
  2456. tp->total_retrans += segs;
  2457. tp->bytes_retrans += skb->len;
  2458. /* make sure skb->data is aligned on arches that require it
  2459. * and check if ack-trimming & collapsing extended the headroom
  2460. * beyond what csum_start can cover.
  2461. */
  2462. if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
  2463. skb_headroom(skb) >= 0xFFFF)) {
  2464. struct sk_buff *nskb;
  2465. tcp_skb_tsorted_save(skb) {
  2466. nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
  2467. err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
  2468. -ENOBUFS;
  2469. } tcp_skb_tsorted_restore(skb);
  2470. if (!err) {
  2471. tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
  2472. tcp_rate_skb_sent(sk, skb);
  2473. }
  2474. } else {
  2475. err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  2476. }
  2477. if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
  2478. tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
  2479. TCP_SKB_CB(skb)->seq, segs, err);
  2480. if (likely(!err)) {
  2481. TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
  2482. trace_tcp_retransmit_skb(sk, skb);
  2483. } else if (err != -EBUSY) {
  2484. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
  2485. }
  2486. return err;
  2487. }
  2488. int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
  2489. {
  2490. struct tcp_sock *tp = tcp_sk(sk);
  2491. int err = __tcp_retransmit_skb(sk, skb, segs);
  2492. if (err == 0) {
  2493. #if FASTRETRANS_DEBUG > 0
  2494. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2495. net_dbg_ratelimited("retrans_out leaked\n");
  2496. }
  2497. #endif
  2498. TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
  2499. tp->retrans_out += tcp_skb_pcount(skb);
  2500. /* Save stamp of the first retransmit. */
  2501. if (!tp->retrans_stamp)
  2502. tp->retrans_stamp = tcp_skb_timestamp(skb);
  2503. }
  2504. if (tp->undo_retrans < 0)
  2505. tp->undo_retrans = 0;
  2506. tp->undo_retrans += tcp_skb_pcount(skb);
  2507. return err;
  2508. }
  2509. /* This gets called after a retransmit timeout, and the initially
  2510. * retransmitted data is acknowledged. It tries to continue
  2511. * resending the rest of the retransmit queue, until either
  2512. * we've sent it all or the congestion window limit is reached.
  2513. */
  2514. void tcp_xmit_retransmit_queue(struct sock *sk)
  2515. {
  2516. const struct inet_connection_sock *icsk = inet_csk(sk);
  2517. struct sk_buff *skb, *rtx_head, *hole = NULL;
  2518. struct tcp_sock *tp = tcp_sk(sk);
  2519. u32 max_segs;
  2520. int mib_idx;
  2521. if (!tp->packets_out)
  2522. return;
  2523. rtx_head = tcp_rtx_queue_head(sk);
  2524. skb = tp->retransmit_skb_hint ?: rtx_head;
  2525. max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
  2526. skb_rbtree_walk_from(skb) {
  2527. __u8 sacked;
  2528. int segs;
  2529. if (tcp_pacing_check(sk))
  2530. break;
  2531. /* we could do better than to assign each time */
  2532. if (!hole)
  2533. tp->retransmit_skb_hint = skb;
  2534. segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
  2535. if (segs <= 0)
  2536. return;
  2537. sacked = TCP_SKB_CB(skb)->sacked;
  2538. /* In case tcp_shift_skb_data() have aggregated large skbs,
  2539. * we need to make sure not sending too bigs TSO packets
  2540. */
  2541. segs = min_t(int, segs, max_segs);
  2542. if (tp->retrans_out >= tp->lost_out) {
  2543. break;
  2544. } else if (!(sacked & TCPCB_LOST)) {
  2545. if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
  2546. hole = skb;
  2547. continue;
  2548. } else {
  2549. if (icsk->icsk_ca_state != TCP_CA_Loss)
  2550. mib_idx = LINUX_MIB_TCPFASTRETRANS;
  2551. else
  2552. mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
  2553. }
  2554. if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
  2555. continue;
  2556. if (tcp_small_queue_check(sk, skb, 1))
  2557. return;
  2558. if (tcp_retransmit_skb(sk, skb, segs))
  2559. return;
  2560. NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
  2561. if (tcp_in_cwnd_reduction(sk))
  2562. tp->prr_out += tcp_skb_pcount(skb);
  2563. if (skb == rtx_head &&
  2564. icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
  2565. tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2566. inet_csk(sk)->icsk_rto,
  2567. TCP_RTO_MAX,
  2568. skb);
  2569. }
  2570. }
  2571. /* We allow to exceed memory limits for FIN packets to expedite
  2572. * connection tear down and (memory) recovery.
  2573. * Otherwise tcp_send_fin() could be tempted to either delay FIN
  2574. * or even be forced to close flow without any FIN.
  2575. * In general, we want to allow one skb per socket to avoid hangs
  2576. * with edge trigger epoll()
  2577. */
  2578. void sk_forced_mem_schedule(struct sock *sk, int size)
  2579. {
  2580. int amt;
  2581. if (size <= sk->sk_forward_alloc)
  2582. return;
  2583. amt = sk_mem_pages(size);
  2584. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  2585. sk_memory_allocated_add(sk, amt);
  2586. if (mem_cgroup_sockets_enabled && sk->sk_memcg)
  2587. mem_cgroup_charge_skmem(sk->sk_memcg, amt);
  2588. }
  2589. /* Send a FIN. The caller locks the socket for us.
  2590. * We should try to send a FIN packet really hard, but eventually give up.
  2591. */
  2592. void tcp_send_fin(struct sock *sk)
  2593. {
  2594. struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
  2595. struct tcp_sock *tp = tcp_sk(sk);
  2596. /* Optimization, tack on the FIN if we have one skb in write queue and
  2597. * this skb was not yet sent, or we are under memory pressure.
  2598. * Note: in the latter case, FIN packet will be sent after a timeout,
  2599. * as TCP stack thinks it has already been transmitted.
  2600. */
  2601. if (!tskb && tcp_under_memory_pressure(sk))
  2602. tskb = skb_rb_last(&sk->tcp_rtx_queue);
  2603. if (tskb) {
  2604. coalesce:
  2605. TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
  2606. TCP_SKB_CB(tskb)->end_seq++;
  2607. tp->write_seq++;
  2608. if (tcp_write_queue_empty(sk)) {
  2609. /* This means tskb was already sent.
  2610. * Pretend we included the FIN on previous transmit.
  2611. * We need to set tp->snd_nxt to the value it would have
  2612. * if FIN had been sent. This is because retransmit path
  2613. * does not change tp->snd_nxt.
  2614. */
  2615. tp->snd_nxt++;
  2616. return;
  2617. }
  2618. } else {
  2619. skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
  2620. if (unlikely(!skb)) {
  2621. if (tskb)
  2622. goto coalesce;
  2623. return;
  2624. }
  2625. INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
  2626. skb_reserve(skb, MAX_TCP_HEADER);
  2627. sk_forced_mem_schedule(sk, skb->truesize);
  2628. /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
  2629. tcp_init_nondata_skb(skb, tp->write_seq,
  2630. TCPHDR_ACK | TCPHDR_FIN);
  2631. tcp_queue_skb(sk, skb);
  2632. }
  2633. __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
  2634. }
  2635. /* We get here when a process closes a file descriptor (either due to
  2636. * an explicit close() or as a byproduct of exit()'ing) and there
  2637. * was unread data in the receive queue. This behavior is recommended
  2638. * by RFC 2525, section 2.17. -DaveM
  2639. */
  2640. void tcp_send_active_reset(struct sock *sk, gfp_t priority)
  2641. {
  2642. struct sk_buff *skb;
  2643. TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
  2644. /* NOTE: No TCP options attached and we never retransmit this. */
  2645. skb = alloc_skb(MAX_TCP_HEADER, priority);
  2646. if (!skb) {
  2647. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
  2648. return;
  2649. }
  2650. /* Reserve space for headers and prepare control bits. */
  2651. skb_reserve(skb, MAX_TCP_HEADER);
  2652. tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
  2653. TCPHDR_ACK | TCPHDR_RST);
  2654. tcp_mstamp_refresh(tcp_sk(sk));
  2655. /* Send it off. */
  2656. if (tcp_transmit_skb(sk, skb, 0, priority))
  2657. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
  2658. /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
  2659. * skb here is different to the troublesome skb, so use NULL
  2660. */
  2661. trace_tcp_send_reset(sk, NULL);
  2662. }
  2663. /* Send a crossed SYN-ACK during socket establishment.
  2664. * WARNING: This routine must only be called when we have already sent
  2665. * a SYN packet that crossed the incoming SYN that caused this routine
  2666. * to get called. If this assumption fails then the initial rcv_wnd
  2667. * and rcv_wscale values will not be correct.
  2668. */
  2669. int tcp_send_synack(struct sock *sk)
  2670. {
  2671. struct sk_buff *skb;
  2672. skb = tcp_rtx_queue_head(sk);
  2673. if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
  2674. pr_err("%s: wrong queue state\n", __func__);
  2675. return -EFAULT;
  2676. }
  2677. if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
  2678. if (skb_cloned(skb)) {
  2679. struct sk_buff *nskb;
  2680. tcp_skb_tsorted_save(skb) {
  2681. nskb = skb_copy(skb, GFP_ATOMIC);
  2682. } tcp_skb_tsorted_restore(skb);
  2683. if (!nskb)
  2684. return -ENOMEM;
  2685. INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
  2686. tcp_rtx_queue_unlink_and_free(skb, sk);
  2687. __skb_header_release(nskb);
  2688. tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
  2689. sk->sk_wmem_queued += nskb->truesize;
  2690. sk_mem_charge(sk, nskb->truesize);
  2691. skb = nskb;
  2692. }
  2693. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
  2694. tcp_ecn_send_synack(sk, skb);
  2695. }
  2696. return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  2697. }
  2698. /**
  2699. * tcp_make_synack - Prepare a SYN-ACK.
  2700. * sk: listener socket
  2701. * dst: dst entry attached to the SYNACK
  2702. * req: request_sock pointer
  2703. *
  2704. * Allocate one skb and build a SYNACK packet.
  2705. * @dst is consumed : Caller should not use it again.
  2706. */
  2707. struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
  2708. struct request_sock *req,
  2709. struct tcp_fastopen_cookie *foc,
  2710. enum tcp_synack_type synack_type)
  2711. {
  2712. struct inet_request_sock *ireq = inet_rsk(req);
  2713. const struct tcp_sock *tp = tcp_sk(sk);
  2714. struct tcp_md5sig_key *md5 = NULL;
  2715. struct tcp_out_options opts;
  2716. struct sk_buff *skb;
  2717. int tcp_header_size;
  2718. struct tcphdr *th;
  2719. int mss;
  2720. skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
  2721. if (unlikely(!skb)) {
  2722. dst_release(dst);
  2723. return NULL;
  2724. }
  2725. /* Reserve space for headers. */
  2726. skb_reserve(skb, MAX_TCP_HEADER);
  2727. switch (synack_type) {
  2728. case TCP_SYNACK_NORMAL:
  2729. skb_set_owner_w(skb, req_to_sk(req));
  2730. break;
  2731. case TCP_SYNACK_COOKIE:
  2732. /* Under synflood, we do not attach skb to a socket,
  2733. * to avoid false sharing.
  2734. */
  2735. break;
  2736. case TCP_SYNACK_FASTOPEN:
  2737. /* sk is a const pointer, because we want to express multiple
  2738. * cpu might call us concurrently.
  2739. * sk->sk_wmem_alloc in an atomic, we can promote to rw.
  2740. */
  2741. skb_set_owner_w(skb, (struct sock *)sk);
  2742. break;
  2743. }
  2744. skb_dst_set(skb, dst);
  2745. mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
  2746. memset(&opts, 0, sizeof(opts));
  2747. #ifdef CONFIG_SYN_COOKIES
  2748. if (unlikely(req->cookie_ts))
  2749. skb->skb_mstamp_ns = cookie_init_timestamp(req);
  2750. else
  2751. #endif
  2752. skb->skb_mstamp_ns = tcp_clock_ns();
  2753. #ifdef CONFIG_TCP_MD5SIG
  2754. rcu_read_lock();
  2755. md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
  2756. #endif
  2757. skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
  2758. tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
  2759. foc) + sizeof(*th);
  2760. skb_push(skb, tcp_header_size);
  2761. skb_reset_transport_header(skb);
  2762. th = (struct tcphdr *)skb->data;
  2763. memset(th, 0, sizeof(struct tcphdr));
  2764. th->syn = 1;
  2765. th->ack = 1;
  2766. tcp_ecn_make_synack(req, th);
  2767. th->source = htons(ireq->ir_num);
  2768. th->dest = ireq->ir_rmt_port;
  2769. skb->mark = ireq->ir_mark;
  2770. skb->ip_summed = CHECKSUM_PARTIAL;
  2771. th->seq = htonl(tcp_rsk(req)->snt_isn);
  2772. /* XXX data is queued and acked as is. No buffer/window check */
  2773. th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
  2774. /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
  2775. th->window = htons(min(req->rsk_rcv_wnd, 65535U));
  2776. tcp_options_write((__be32 *)(th + 1), NULL, &opts);
  2777. th->doff = (tcp_header_size >> 2);
  2778. __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
  2779. #ifdef CONFIG_TCP_MD5SIG
  2780. /* Okay, we have all we need - do the md5 hash if needed */
  2781. if (md5)
  2782. tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
  2783. md5, req_to_sk(req), skb);
  2784. rcu_read_unlock();
  2785. #endif
  2786. /* Do not fool tcpdump (if any), clean our debris */
  2787. skb->tstamp = 0;
  2788. return skb;
  2789. }
  2790. EXPORT_SYMBOL(tcp_make_synack);
  2791. static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
  2792. {
  2793. struct inet_connection_sock *icsk = inet_csk(sk);
  2794. const struct tcp_congestion_ops *ca;
  2795. u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
  2796. if (ca_key == TCP_CA_UNSPEC)
  2797. return;
  2798. rcu_read_lock();
  2799. ca = tcp_ca_find_key(ca_key);
  2800. if (likely(ca && try_module_get(ca->owner))) {
  2801. module_put(icsk->icsk_ca_ops->owner);
  2802. icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
  2803. icsk->icsk_ca_ops = ca;
  2804. }
  2805. rcu_read_unlock();
  2806. }
  2807. /* Do all connect socket setups that can be done AF independent. */
  2808. static void tcp_connect_init(struct sock *sk)
  2809. {
  2810. const struct dst_entry *dst = __sk_dst_get(sk);
  2811. struct tcp_sock *tp = tcp_sk(sk);
  2812. __u8 rcv_wscale;
  2813. u32 rcv_wnd;
  2814. /* We'll fix this up when we get a response from the other end.
  2815. * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
  2816. */
  2817. tp->tcp_header_len = sizeof(struct tcphdr);
  2818. if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
  2819. tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
  2820. #ifdef CONFIG_TCP_MD5SIG
  2821. if (tp->af_specific->md5_lookup(sk, sk))
  2822. tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
  2823. #endif
  2824. /* If user gave his TCP_MAXSEG, record it to clamp */
  2825. if (tp->rx_opt.user_mss)
  2826. tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
  2827. tp->max_window = 0;
  2828. tcp_mtup_init(sk);
  2829. tcp_sync_mss(sk, dst_mtu(dst));
  2830. tcp_ca_dst_init(sk, dst);
  2831. if (!tp->window_clamp)
  2832. tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
  2833. tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
  2834. tcp_initialize_rcv_mss(sk);
  2835. /* limit the window selection if the user enforce a smaller rx buffer */
  2836. if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
  2837. (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
  2838. tp->window_clamp = tcp_full_space(sk);
  2839. rcv_wnd = tcp_rwnd_init_bpf(sk);
  2840. if (rcv_wnd == 0)
  2841. rcv_wnd = dst_metric(dst, RTAX_INITRWND);
  2842. tcp_select_initial_window(sk, tcp_full_space(sk),
  2843. tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
  2844. &tp->rcv_wnd,
  2845. &tp->window_clamp,
  2846. sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
  2847. &rcv_wscale,
  2848. rcv_wnd);
  2849. tp->rx_opt.rcv_wscale = rcv_wscale;
  2850. tp->rcv_ssthresh = tp->rcv_wnd;
  2851. sk->sk_err = 0;
  2852. sock_reset_flag(sk, SOCK_DONE);
  2853. tp->snd_wnd = 0;
  2854. tcp_init_wl(tp, 0);
  2855. tcp_write_queue_purge(sk);
  2856. tp->snd_una = tp->write_seq;
  2857. tp->snd_sml = tp->write_seq;
  2858. tp->snd_up = tp->write_seq;
  2859. tp->snd_nxt = tp->write_seq;
  2860. if (likely(!tp->repair))
  2861. tp->rcv_nxt = 0;
  2862. else
  2863. tp->rcv_tstamp = tcp_jiffies32;
  2864. tp->rcv_wup = tp->rcv_nxt;
  2865. tp->copied_seq = tp->rcv_nxt;
  2866. inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
  2867. inet_csk(sk)->icsk_retransmits = 0;
  2868. tcp_clear_retrans(tp);
  2869. }
  2870. static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
  2871. {
  2872. struct tcp_sock *tp = tcp_sk(sk);
  2873. struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
  2874. tcb->end_seq += skb->len;
  2875. __skb_header_release(skb);
  2876. sk->sk_wmem_queued += skb->truesize;
  2877. sk_mem_charge(sk, skb->truesize);
  2878. tp->write_seq = tcb->end_seq;
  2879. tp->packets_out += tcp_skb_pcount(skb);
  2880. }
  2881. /* Build and send a SYN with data and (cached) Fast Open cookie. However,
  2882. * queue a data-only packet after the regular SYN, such that regular SYNs
  2883. * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
  2884. * only the SYN sequence, the data are retransmitted in the first ACK.
  2885. * If cookie is not cached or other error occurs, falls back to send a
  2886. * regular SYN with Fast Open cookie request option.
  2887. */
  2888. static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
  2889. {
  2890. struct tcp_sock *tp = tcp_sk(sk);
  2891. struct tcp_fastopen_request *fo = tp->fastopen_req;
  2892. int space, err = 0;
  2893. struct sk_buff *syn_data;
  2894. tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
  2895. if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
  2896. goto fallback;
  2897. /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
  2898. * user-MSS. Reserve maximum option space for middleboxes that add
  2899. * private TCP options. The cost is reduced data space in SYN :(
  2900. */
  2901. tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
  2902. space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
  2903. MAX_TCP_OPTION_SPACE;
  2904. space = min_t(size_t, space, fo->size);
  2905. /* limit to order-0 allocations */
  2906. space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
  2907. syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
  2908. if (!syn_data)
  2909. goto fallback;
  2910. syn_data->ip_summed = CHECKSUM_PARTIAL;
  2911. memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
  2912. if (space) {
  2913. int copied = copy_from_iter(skb_put(syn_data, space), space,
  2914. &fo->data->msg_iter);
  2915. if (unlikely(!copied)) {
  2916. tcp_skb_tsorted_anchor_cleanup(syn_data);
  2917. kfree_skb(syn_data);
  2918. goto fallback;
  2919. }
  2920. if (copied != space) {
  2921. skb_trim(syn_data, copied);
  2922. space = copied;
  2923. }
  2924. }
  2925. /* No more data pending in inet_wait_for_connect() */
  2926. if (space == fo->size)
  2927. fo->data = NULL;
  2928. fo->copied = space;
  2929. tcp_connect_queue_skb(sk, syn_data);
  2930. if (syn_data->len)
  2931. tcp_chrono_start(sk, TCP_CHRONO_BUSY);
  2932. err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
  2933. syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
  2934. /* Now full SYN+DATA was cloned and sent (or not),
  2935. * remove the SYN from the original skb (syn_data)
  2936. * we keep in write queue in case of a retransmit, as we
  2937. * also have the SYN packet (with no data) in the same queue.
  2938. */
  2939. TCP_SKB_CB(syn_data)->seq++;
  2940. TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
  2941. if (!err) {
  2942. tp->syn_data = (fo->copied > 0);
  2943. tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
  2944. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
  2945. goto done;
  2946. }
  2947. /* data was not sent, put it in write_queue */
  2948. __skb_queue_tail(&sk->sk_write_queue, syn_data);
  2949. tp->packets_out -= tcp_skb_pcount(syn_data);
  2950. fallback:
  2951. /* Send a regular SYN with Fast Open cookie request option */
  2952. if (fo->cookie.len > 0)
  2953. fo->cookie.len = 0;
  2954. err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
  2955. if (err)
  2956. tp->syn_fastopen = 0;
  2957. done:
  2958. fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
  2959. return err;
  2960. }
  2961. /* Build a SYN and send it off. */
  2962. int tcp_connect(struct sock *sk)
  2963. {
  2964. struct tcp_sock *tp = tcp_sk(sk);
  2965. struct sk_buff *buff;
  2966. int err;
  2967. tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
  2968. if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
  2969. return -EHOSTUNREACH; /* Routing failure or similar. */
  2970. tcp_connect_init(sk);
  2971. if (unlikely(tp->repair)) {
  2972. tcp_finish_connect(sk, NULL);
  2973. return 0;
  2974. }
  2975. buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
  2976. if (unlikely(!buff))
  2977. return -ENOBUFS;
  2978. tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
  2979. tcp_mstamp_refresh(tp);
  2980. tp->retrans_stamp = tcp_time_stamp(tp);
  2981. tcp_connect_queue_skb(sk, buff);
  2982. tcp_ecn_send_syn(sk, buff);
  2983. tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
  2984. /* Send off SYN; include data in Fast Open. */
  2985. err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
  2986. tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
  2987. if (err == -ECONNREFUSED)
  2988. return err;
  2989. /* We change tp->snd_nxt after the tcp_transmit_skb() call
  2990. * in order to make this packet get counted in tcpOutSegs.
  2991. */
  2992. tp->snd_nxt = tp->write_seq;
  2993. tp->pushed_seq = tp->write_seq;
  2994. buff = tcp_send_head(sk);
  2995. if (unlikely(buff)) {
  2996. tp->snd_nxt = TCP_SKB_CB(buff)->seq;
  2997. tp->pushed_seq = TCP_SKB_CB(buff)->seq;
  2998. }
  2999. TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
  3000. /* Timer for repeating the SYN until an answer. */
  3001. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  3002. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  3003. return 0;
  3004. }
  3005. EXPORT_SYMBOL(tcp_connect);
  3006. /* Send out a delayed ack, the caller does the policy checking
  3007. * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
  3008. * for details.
  3009. */
  3010. void tcp_send_delayed_ack(struct sock *sk)
  3011. {
  3012. struct inet_connection_sock *icsk = inet_csk(sk);
  3013. int ato = icsk->icsk_ack.ato;
  3014. unsigned long timeout;
  3015. if (ato > TCP_DELACK_MIN) {
  3016. const struct tcp_sock *tp = tcp_sk(sk);
  3017. int max_ato = HZ / 2;
  3018. if (icsk->icsk_ack.pingpong ||
  3019. (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
  3020. max_ato = TCP_DELACK_MAX;
  3021. /* Slow path, intersegment interval is "high". */
  3022. /* If some rtt estimate is known, use it to bound delayed ack.
  3023. * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
  3024. * directly.
  3025. */
  3026. if (tp->srtt_us) {
  3027. int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
  3028. TCP_DELACK_MIN);
  3029. if (rtt < max_ato)
  3030. max_ato = rtt;
  3031. }
  3032. ato = min(ato, max_ato);
  3033. }
  3034. /* Stay within the limit we were given */
  3035. timeout = jiffies + ato;
  3036. /* Use new timeout only if there wasn't a older one earlier. */
  3037. if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
  3038. /* If delack timer was blocked or is about to expire,
  3039. * send ACK now.
  3040. */
  3041. if (icsk->icsk_ack.blocked ||
  3042. time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
  3043. tcp_send_ack(sk);
  3044. return;
  3045. }
  3046. if (!time_before(timeout, icsk->icsk_ack.timeout))
  3047. timeout = icsk->icsk_ack.timeout;
  3048. }
  3049. icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
  3050. icsk->icsk_ack.timeout = timeout;
  3051. sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
  3052. }
  3053. /* This routine sends an ack and also updates the window. */
  3054. void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
  3055. {
  3056. struct sk_buff *buff;
  3057. /* If we have been reset, we may not send again. */
  3058. if (sk->sk_state == TCP_CLOSE)
  3059. return;
  3060. /* We are not putting this on the write queue, so
  3061. * tcp_transmit_skb() will set the ownership to this
  3062. * sock.
  3063. */
  3064. buff = alloc_skb(MAX_TCP_HEADER,
  3065. sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
  3066. if (unlikely(!buff)) {
  3067. inet_csk_schedule_ack(sk);
  3068. inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
  3069. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  3070. TCP_DELACK_MAX, TCP_RTO_MAX);
  3071. return;
  3072. }
  3073. /* Reserve space for headers and prepare control bits. */
  3074. skb_reserve(buff, MAX_TCP_HEADER);
  3075. tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
  3076. /* We do not want pure acks influencing TCP Small Queues or fq/pacing
  3077. * too much.
  3078. * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
  3079. */
  3080. skb_set_tcp_pure_ack(buff);
  3081. /* Send it off, this clears delayed acks for us. */
  3082. __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
  3083. }
  3084. EXPORT_SYMBOL_GPL(__tcp_send_ack);
  3085. void tcp_send_ack(struct sock *sk)
  3086. {
  3087. __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
  3088. }
  3089. /* This routine sends a packet with an out of date sequence
  3090. * number. It assumes the other end will try to ack it.
  3091. *
  3092. * Question: what should we make while urgent mode?
  3093. * 4.4BSD forces sending single byte of data. We cannot send
  3094. * out of window data, because we have SND.NXT==SND.MAX...
  3095. *
  3096. * Current solution: to send TWO zero-length segments in urgent mode:
  3097. * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
  3098. * out-of-date with SND.UNA-1 to probe window.
  3099. */
  3100. static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
  3101. {
  3102. struct tcp_sock *tp = tcp_sk(sk);
  3103. struct sk_buff *skb;
  3104. /* We don't queue it, tcp_transmit_skb() sets ownership. */
  3105. skb = alloc_skb(MAX_TCP_HEADER,
  3106. sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
  3107. if (!skb)
  3108. return -1;
  3109. /* Reserve space for headers and set control bits. */
  3110. skb_reserve(skb, MAX_TCP_HEADER);
  3111. /* Use a previous sequence. This should cause the other
  3112. * end to send an ack. Don't queue or clone SKB, just
  3113. * send it.
  3114. */
  3115. tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
  3116. NET_INC_STATS(sock_net(sk), mib);
  3117. return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
  3118. }
  3119. /* Called from setsockopt( ... TCP_REPAIR ) */
  3120. void tcp_send_window_probe(struct sock *sk)
  3121. {
  3122. if (sk->sk_state == TCP_ESTABLISHED) {
  3123. tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
  3124. tcp_mstamp_refresh(tcp_sk(sk));
  3125. tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
  3126. }
  3127. }
  3128. /* Initiate keepalive or window probe from timer. */
  3129. int tcp_write_wakeup(struct sock *sk, int mib)
  3130. {
  3131. struct tcp_sock *tp = tcp_sk(sk);
  3132. struct sk_buff *skb;
  3133. if (sk->sk_state == TCP_CLOSE)
  3134. return -1;
  3135. skb = tcp_send_head(sk);
  3136. if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
  3137. int err;
  3138. unsigned int mss = tcp_current_mss(sk);
  3139. unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  3140. if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
  3141. tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
  3142. /* We are probing the opening of a window
  3143. * but the window size is != 0
  3144. * must have been a result SWS avoidance ( sender )
  3145. */
  3146. if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
  3147. skb->len > mss) {
  3148. seg_size = min(seg_size, mss);
  3149. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
  3150. if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
  3151. skb, seg_size, mss, GFP_ATOMIC))
  3152. return -1;
  3153. } else if (!tcp_skb_pcount(skb))
  3154. tcp_set_skb_tso_segs(skb, mss);
  3155. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
  3156. err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  3157. if (!err)
  3158. tcp_event_new_data_sent(sk, skb);
  3159. return err;
  3160. } else {
  3161. if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
  3162. tcp_xmit_probe_skb(sk, 1, mib);
  3163. return tcp_xmit_probe_skb(sk, 0, mib);
  3164. }
  3165. }
  3166. /* A window probe timeout has occurred. If window is not closed send
  3167. * a partial packet else a zero probe.
  3168. */
  3169. void tcp_send_probe0(struct sock *sk)
  3170. {
  3171. struct inet_connection_sock *icsk = inet_csk(sk);
  3172. struct tcp_sock *tp = tcp_sk(sk);
  3173. struct net *net = sock_net(sk);
  3174. unsigned long probe_max;
  3175. int err;
  3176. err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
  3177. if (tp->packets_out || tcp_write_queue_empty(sk)) {
  3178. /* Cancel probe timer, if it is not required. */
  3179. icsk->icsk_probes_out = 0;
  3180. icsk->icsk_backoff = 0;
  3181. return;
  3182. }
  3183. if (err <= 0) {
  3184. if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
  3185. icsk->icsk_backoff++;
  3186. icsk->icsk_probes_out++;
  3187. probe_max = TCP_RTO_MAX;
  3188. } else {
  3189. /* If packet was not sent due to local congestion,
  3190. * do not backoff and do not remember icsk_probes_out.
  3191. * Let local senders to fight for local resources.
  3192. *
  3193. * Use accumulated backoff yet.
  3194. */
  3195. if (!icsk->icsk_probes_out)
  3196. icsk->icsk_probes_out = 1;
  3197. probe_max = TCP_RESOURCE_PROBE_INTERVAL;
  3198. }
  3199. tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  3200. tcp_probe0_when(sk, probe_max),
  3201. TCP_RTO_MAX,
  3202. NULL);
  3203. }
  3204. int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
  3205. {
  3206. const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
  3207. struct flowi fl;
  3208. int res;
  3209. tcp_rsk(req)->txhash = net_tx_rndhash();
  3210. res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
  3211. if (!res) {
  3212. __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
  3213. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
  3214. if (unlikely(tcp_passive_fastopen(sk)))
  3215. tcp_sk(sk)->total_retrans++;
  3216. trace_tcp_retransmit_synack(sk, req);
  3217. }
  3218. return res;
  3219. }
  3220. EXPORT_SYMBOL(tcp_rtx_synack);