security.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/dcache.h>
  15. #include <linux/module.h>
  16. #include <linux/init.h>
  17. #include <linux/kernel.h>
  18. #include <linux/security.h>
  19. #include <linux/integrity.h>
  20. #include <linux/ima.h>
  21. #include <linux/evm.h>
  22. #include <linux/fsnotify.h>
  23. #include <linux/mman.h>
  24. #include <linux/mount.h>
  25. #include <linux/personality.h>
  26. #include <linux/backing-dev.h>
  27. #include <net/flow.h>
  28. #define MAX_LSM_EVM_XATTR 2
  29. /* Boot-time LSM user choice */
  30. static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  31. CONFIG_DEFAULT_SECURITY;
  32. static struct security_operations *security_ops;
  33. static struct security_operations default_security_ops = {
  34. .name = "default",
  35. };
  36. static inline int __init verify(struct security_operations *ops)
  37. {
  38. /* verify the security_operations structure exists */
  39. if (!ops)
  40. return -EINVAL;
  41. security_fixup_ops(ops);
  42. return 0;
  43. }
  44. static void __init do_security_initcalls(void)
  45. {
  46. initcall_t *call;
  47. call = __security_initcall_start;
  48. while (call < __security_initcall_end) {
  49. (*call) ();
  50. call++;
  51. }
  52. }
  53. /**
  54. * security_init - initializes the security framework
  55. *
  56. * This should be called early in the kernel initialization sequence.
  57. */
  58. int __init security_init(void)
  59. {
  60. printk(KERN_INFO "Security Framework initialized\n");
  61. security_fixup_ops(&default_security_ops);
  62. security_ops = &default_security_ops;
  63. do_security_initcalls();
  64. return 0;
  65. }
  66. void reset_security_ops(void)
  67. {
  68. security_ops = &default_security_ops;
  69. }
  70. /* Save user chosen LSM */
  71. static int __init choose_lsm(char *str)
  72. {
  73. strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  74. return 1;
  75. }
  76. __setup("security=", choose_lsm);
  77. /**
  78. * security_module_enable - Load given security module on boot ?
  79. * @ops: a pointer to the struct security_operations that is to be checked.
  80. *
  81. * Each LSM must pass this method before registering its own operations
  82. * to avoid security registration races. This method may also be used
  83. * to check if your LSM is currently loaded during kernel initialization.
  84. *
  85. * Return true if:
  86. * -The passed LSM is the one chosen by user at boot time,
  87. * -or the passed LSM is configured as the default and the user did not
  88. * choose an alternate LSM at boot time.
  89. * Otherwise, return false.
  90. */
  91. int __init security_module_enable(struct security_operations *ops)
  92. {
  93. return !strcmp(ops->name, chosen_lsm);
  94. }
  95. /**
  96. * register_security - registers a security framework with the kernel
  97. * @ops: a pointer to the struct security_options that is to be registered
  98. *
  99. * This function allows a security module to register itself with the
  100. * kernel security subsystem. Some rudimentary checking is done on the @ops
  101. * value passed to this function. You'll need to check first if your LSM
  102. * is allowed to register its @ops by calling security_module_enable(@ops).
  103. *
  104. * If there is already a security module registered with the kernel,
  105. * an error will be returned. Otherwise %0 is returned on success.
  106. */
  107. int __init register_security(struct security_operations *ops)
  108. {
  109. if (verify(ops)) {
  110. printk(KERN_DEBUG "%s could not verify "
  111. "security_operations structure.\n", __func__);
  112. return -EINVAL;
  113. }
  114. if (security_ops != &default_security_ops)
  115. return -EAGAIN;
  116. security_ops = ops;
  117. return 0;
  118. }
  119. /* Security operations */
  120. int security_binder_set_context_mgr(struct task_struct *mgr)
  121. {
  122. return security_ops->binder_set_context_mgr(mgr);
  123. }
  124. int security_binder_transaction(struct task_struct *from,
  125. struct task_struct *to)
  126. {
  127. return security_ops->binder_transaction(from, to);
  128. }
  129. int security_binder_transfer_binder(struct task_struct *from,
  130. struct task_struct *to)
  131. {
  132. return security_ops->binder_transfer_binder(from, to);
  133. }
  134. int security_binder_transfer_file(struct task_struct *from,
  135. struct task_struct *to, struct file *file)
  136. {
  137. return security_ops->binder_transfer_file(from, to, file);
  138. }
  139. int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
  140. {
  141. #ifdef CONFIG_SECURITY_YAMA_STACKED
  142. int rc;
  143. rc = yama_ptrace_access_check(child, mode);
  144. if (rc)
  145. return rc;
  146. #endif
  147. return security_ops->ptrace_access_check(child, mode);
  148. }
  149. int security_ptrace_traceme(struct task_struct *parent)
  150. {
  151. #ifdef CONFIG_SECURITY_YAMA_STACKED
  152. int rc;
  153. rc = yama_ptrace_traceme(parent);
  154. if (rc)
  155. return rc;
  156. #endif
  157. return security_ops->ptrace_traceme(parent);
  158. }
  159. int security_capget(struct task_struct *target,
  160. kernel_cap_t *effective,
  161. kernel_cap_t *inheritable,
  162. kernel_cap_t *permitted)
  163. {
  164. return security_ops->capget(target, effective, inheritable, permitted);
  165. }
  166. int security_capset(struct cred *new, const struct cred *old,
  167. const kernel_cap_t *effective,
  168. const kernel_cap_t *inheritable,
  169. const kernel_cap_t *permitted)
  170. {
  171. return security_ops->capset(new, old,
  172. effective, inheritable, permitted);
  173. }
  174. int security_capable(const struct cred *cred, struct user_namespace *ns,
  175. int cap)
  176. {
  177. return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
  178. }
  179. int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
  180. int cap)
  181. {
  182. return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
  183. }
  184. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  185. {
  186. return security_ops->quotactl(cmds, type, id, sb);
  187. }
  188. int security_quota_on(struct dentry *dentry)
  189. {
  190. return security_ops->quota_on(dentry);
  191. }
  192. int security_syslog(int type)
  193. {
  194. return security_ops->syslog(type);
  195. }
  196. int security_settime(const struct timespec *ts, const struct timezone *tz)
  197. {
  198. return security_ops->settime(ts, tz);
  199. }
  200. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  201. {
  202. return security_ops->vm_enough_memory(mm, pages);
  203. }
  204. int security_bprm_set_creds(struct linux_binprm *bprm)
  205. {
  206. return security_ops->bprm_set_creds(bprm);
  207. }
  208. int security_bprm_check(struct linux_binprm *bprm)
  209. {
  210. int ret;
  211. ret = security_ops->bprm_check_security(bprm);
  212. if (ret)
  213. return ret;
  214. return ima_bprm_check(bprm);
  215. }
  216. void security_bprm_committing_creds(struct linux_binprm *bprm)
  217. {
  218. security_ops->bprm_committing_creds(bprm);
  219. }
  220. void security_bprm_committed_creds(struct linux_binprm *bprm)
  221. {
  222. security_ops->bprm_committed_creds(bprm);
  223. }
  224. int security_bprm_secureexec(struct linux_binprm *bprm)
  225. {
  226. return security_ops->bprm_secureexec(bprm);
  227. }
  228. int security_sb_alloc(struct super_block *sb)
  229. {
  230. return security_ops->sb_alloc_security(sb);
  231. }
  232. void security_sb_free(struct super_block *sb)
  233. {
  234. security_ops->sb_free_security(sb);
  235. }
  236. int security_sb_copy_data(char *orig, char *copy)
  237. {
  238. return security_ops->sb_copy_data(orig, copy);
  239. }
  240. EXPORT_SYMBOL(security_sb_copy_data);
  241. int security_sb_remount(struct super_block *sb, void *data)
  242. {
  243. return security_ops->sb_remount(sb, data);
  244. }
  245. int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
  246. {
  247. return security_ops->sb_kern_mount(sb, flags, data);
  248. }
  249. int security_sb_show_options(struct seq_file *m, struct super_block *sb)
  250. {
  251. return security_ops->sb_show_options(m, sb);
  252. }
  253. int security_sb_statfs(struct dentry *dentry)
  254. {
  255. return security_ops->sb_statfs(dentry);
  256. }
  257. int security_sb_mount(const char *dev_name, struct path *path,
  258. const char *type, unsigned long flags, void *data)
  259. {
  260. return security_ops->sb_mount(dev_name, path, type, flags, data);
  261. }
  262. int security_sb_umount(struct vfsmount *mnt, int flags)
  263. {
  264. return security_ops->sb_umount(mnt, flags);
  265. }
  266. int security_sb_pivotroot(struct path *old_path, struct path *new_path)
  267. {
  268. return security_ops->sb_pivotroot(old_path, new_path);
  269. }
  270. int security_sb_set_mnt_opts(struct super_block *sb,
  271. struct security_mnt_opts *opts,
  272. unsigned long kern_flags,
  273. unsigned long *set_kern_flags)
  274. {
  275. return security_ops->sb_set_mnt_opts(sb, opts, kern_flags,
  276. set_kern_flags);
  277. }
  278. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  279. int security_sb_clone_mnt_opts(const struct super_block *oldsb,
  280. struct super_block *newsb)
  281. {
  282. return security_ops->sb_clone_mnt_opts(oldsb, newsb);
  283. }
  284. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  285. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  286. {
  287. return security_ops->sb_parse_opts_str(options, opts);
  288. }
  289. EXPORT_SYMBOL(security_sb_parse_opts_str);
  290. int security_inode_alloc(struct inode *inode)
  291. {
  292. inode->i_security = NULL;
  293. return security_ops->inode_alloc_security(inode);
  294. }
  295. void security_inode_free(struct inode *inode)
  296. {
  297. integrity_inode_free(inode);
  298. security_ops->inode_free_security(inode);
  299. }
  300. int security_dentry_init_security(struct dentry *dentry, int mode,
  301. struct qstr *name, void **ctx,
  302. u32 *ctxlen)
  303. {
  304. return security_ops->dentry_init_security(dentry, mode, name,
  305. ctx, ctxlen);
  306. }
  307. EXPORT_SYMBOL(security_dentry_init_security);
  308. int security_inode_init_security(struct inode *inode, struct inode *dir,
  309. const struct qstr *qstr,
  310. const initxattrs initxattrs, void *fs_data)
  311. {
  312. struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
  313. struct xattr *lsm_xattr, *evm_xattr, *xattr;
  314. int ret;
  315. if (unlikely(IS_PRIVATE(inode)))
  316. return 0;
  317. if (!initxattrs)
  318. return security_ops->inode_init_security(inode, dir, qstr,
  319. NULL, NULL, NULL);
  320. memset(new_xattrs, 0, sizeof(new_xattrs));
  321. lsm_xattr = new_xattrs;
  322. ret = security_ops->inode_init_security(inode, dir, qstr,
  323. &lsm_xattr->name,
  324. &lsm_xattr->value,
  325. &lsm_xattr->value_len);
  326. if (ret)
  327. goto out;
  328. evm_xattr = lsm_xattr + 1;
  329. ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
  330. if (ret)
  331. goto out;
  332. ret = initxattrs(inode, new_xattrs, fs_data);
  333. out:
  334. for (xattr = new_xattrs; xattr->value != NULL; xattr++)
  335. kfree(xattr->value);
  336. return (ret == -EOPNOTSUPP) ? 0 : ret;
  337. }
  338. EXPORT_SYMBOL(security_inode_init_security);
  339. int security_old_inode_init_security(struct inode *inode, struct inode *dir,
  340. const struct qstr *qstr, const char **name,
  341. void **value, size_t *len)
  342. {
  343. if (unlikely(IS_PRIVATE(inode)))
  344. return -EOPNOTSUPP;
  345. return security_ops->inode_init_security(inode, dir, qstr, name, value,
  346. len);
  347. }
  348. EXPORT_SYMBOL(security_old_inode_init_security);
  349. #ifdef CONFIG_SECURITY_PATH
  350. int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
  351. unsigned int dev)
  352. {
  353. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  354. return 0;
  355. return security_ops->path_mknod(dir, dentry, mode, dev);
  356. }
  357. EXPORT_SYMBOL(security_path_mknod);
  358. int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
  359. {
  360. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  361. return 0;
  362. return security_ops->path_mkdir(dir, dentry, mode);
  363. }
  364. EXPORT_SYMBOL(security_path_mkdir);
  365. int security_path_rmdir(struct path *dir, struct dentry *dentry)
  366. {
  367. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  368. return 0;
  369. return security_ops->path_rmdir(dir, dentry);
  370. }
  371. int security_path_unlink(struct path *dir, struct dentry *dentry)
  372. {
  373. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  374. return 0;
  375. return security_ops->path_unlink(dir, dentry);
  376. }
  377. EXPORT_SYMBOL(security_path_unlink);
  378. int security_path_symlink(struct path *dir, struct dentry *dentry,
  379. const char *old_name)
  380. {
  381. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  382. return 0;
  383. return security_ops->path_symlink(dir, dentry, old_name);
  384. }
  385. int security_path_link(struct dentry *old_dentry, struct path *new_dir,
  386. struct dentry *new_dentry)
  387. {
  388. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  389. return 0;
  390. return security_ops->path_link(old_dentry, new_dir, new_dentry);
  391. }
  392. int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
  393. struct path *new_dir, struct dentry *new_dentry,
  394. unsigned int flags)
  395. {
  396. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  397. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  398. return 0;
  399. if (flags & RENAME_EXCHANGE) {
  400. int err = security_ops->path_rename(new_dir, new_dentry,
  401. old_dir, old_dentry);
  402. if (err)
  403. return err;
  404. }
  405. return security_ops->path_rename(old_dir, old_dentry, new_dir,
  406. new_dentry);
  407. }
  408. EXPORT_SYMBOL(security_path_rename);
  409. int security_path_truncate(struct path *path)
  410. {
  411. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  412. return 0;
  413. return security_ops->path_truncate(path);
  414. }
  415. int security_path_chmod(struct path *path, umode_t mode)
  416. {
  417. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  418. return 0;
  419. return security_ops->path_chmod(path, mode);
  420. }
  421. int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
  422. {
  423. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  424. return 0;
  425. return security_ops->path_chown(path, uid, gid);
  426. }
  427. int security_path_chroot(struct path *path)
  428. {
  429. return security_ops->path_chroot(path);
  430. }
  431. #endif
  432. int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
  433. {
  434. if (unlikely(IS_PRIVATE(dir)))
  435. return 0;
  436. return security_ops->inode_create(dir, dentry, mode);
  437. }
  438. EXPORT_SYMBOL_GPL(security_inode_create);
  439. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  440. struct dentry *new_dentry)
  441. {
  442. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  443. return 0;
  444. return security_ops->inode_link(old_dentry, dir, new_dentry);
  445. }
  446. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  447. {
  448. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  449. return 0;
  450. return security_ops->inode_unlink(dir, dentry);
  451. }
  452. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  453. const char *old_name)
  454. {
  455. if (unlikely(IS_PRIVATE(dir)))
  456. return 0;
  457. return security_ops->inode_symlink(dir, dentry, old_name);
  458. }
  459. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
  460. {
  461. if (unlikely(IS_PRIVATE(dir)))
  462. return 0;
  463. return security_ops->inode_mkdir(dir, dentry, mode);
  464. }
  465. EXPORT_SYMBOL_GPL(security_inode_mkdir);
  466. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  467. {
  468. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  469. return 0;
  470. return security_ops->inode_rmdir(dir, dentry);
  471. }
  472. int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
  473. {
  474. if (unlikely(IS_PRIVATE(dir)))
  475. return 0;
  476. return security_ops->inode_mknod(dir, dentry, mode, dev);
  477. }
  478. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  479. struct inode *new_dir, struct dentry *new_dentry,
  480. unsigned int flags)
  481. {
  482. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  483. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  484. return 0;
  485. if (flags & RENAME_EXCHANGE) {
  486. int err = security_ops->inode_rename(new_dir, new_dentry,
  487. old_dir, old_dentry);
  488. if (err)
  489. return err;
  490. }
  491. return security_ops->inode_rename(old_dir, old_dentry,
  492. new_dir, new_dentry);
  493. }
  494. int security_inode_readlink(struct dentry *dentry)
  495. {
  496. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  497. return 0;
  498. return security_ops->inode_readlink(dentry);
  499. }
  500. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  501. {
  502. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  503. return 0;
  504. return security_ops->inode_follow_link(dentry, nd);
  505. }
  506. int security_inode_permission(struct inode *inode, int mask)
  507. {
  508. if (unlikely(IS_PRIVATE(inode)))
  509. return 0;
  510. return security_ops->inode_permission(inode, mask);
  511. }
  512. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  513. {
  514. int ret;
  515. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  516. return 0;
  517. ret = security_ops->inode_setattr(dentry, attr);
  518. if (ret)
  519. return ret;
  520. return evm_inode_setattr(dentry, attr);
  521. }
  522. EXPORT_SYMBOL_GPL(security_inode_setattr);
  523. int security_inode_getattr(const struct path *path)
  524. {
  525. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  526. return 0;
  527. return security_ops->inode_getattr(path);
  528. }
  529. int security_inode_setxattr(struct dentry *dentry, const char *name,
  530. const void *value, size_t size, int flags)
  531. {
  532. int ret;
  533. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  534. return 0;
  535. ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
  536. if (ret)
  537. return ret;
  538. ret = ima_inode_setxattr(dentry, name, value, size);
  539. if (ret)
  540. return ret;
  541. return evm_inode_setxattr(dentry, name, value, size);
  542. }
  543. void security_inode_post_setxattr(struct dentry *dentry, const char *name,
  544. const void *value, size_t size, int flags)
  545. {
  546. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  547. return;
  548. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  549. evm_inode_post_setxattr(dentry, name, value, size);
  550. }
  551. int security_inode_getxattr(struct dentry *dentry, const char *name)
  552. {
  553. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  554. return 0;
  555. return security_ops->inode_getxattr(dentry, name);
  556. }
  557. int security_inode_listxattr(struct dentry *dentry)
  558. {
  559. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  560. return 0;
  561. return security_ops->inode_listxattr(dentry);
  562. }
  563. int security_inode_removexattr(struct dentry *dentry, const char *name)
  564. {
  565. int ret;
  566. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  567. return 0;
  568. ret = security_ops->inode_removexattr(dentry, name);
  569. if (ret)
  570. return ret;
  571. ret = ima_inode_removexattr(dentry, name);
  572. if (ret)
  573. return ret;
  574. return evm_inode_removexattr(dentry, name);
  575. }
  576. int security_inode_need_killpriv(struct dentry *dentry)
  577. {
  578. return security_ops->inode_need_killpriv(dentry);
  579. }
  580. int security_inode_killpriv(struct dentry *dentry)
  581. {
  582. return security_ops->inode_killpriv(dentry);
  583. }
  584. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  585. {
  586. if (unlikely(IS_PRIVATE(inode)))
  587. return -EOPNOTSUPP;
  588. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  589. }
  590. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  591. {
  592. if (unlikely(IS_PRIVATE(inode)))
  593. return -EOPNOTSUPP;
  594. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  595. }
  596. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  597. {
  598. if (unlikely(IS_PRIVATE(inode)))
  599. return 0;
  600. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  601. }
  602. EXPORT_SYMBOL(security_inode_listsecurity);
  603. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  604. {
  605. security_ops->inode_getsecid(inode, secid);
  606. }
  607. int security_file_permission(struct file *file, int mask)
  608. {
  609. int ret;
  610. ret = security_ops->file_permission(file, mask);
  611. if (ret)
  612. return ret;
  613. return fsnotify_perm(file, mask);
  614. }
  615. int security_file_alloc(struct file *file)
  616. {
  617. return security_ops->file_alloc_security(file);
  618. }
  619. void security_file_free(struct file *file)
  620. {
  621. security_ops->file_free_security(file);
  622. }
  623. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  624. {
  625. return security_ops->file_ioctl(file, cmd, arg);
  626. }
  627. static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
  628. {
  629. /*
  630. * Does we have PROT_READ and does the application expect
  631. * it to imply PROT_EXEC? If not, nothing to talk about...
  632. */
  633. if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
  634. return prot;
  635. if (!(current->personality & READ_IMPLIES_EXEC))
  636. return prot;
  637. /*
  638. * if that's an anonymous mapping, let it.
  639. */
  640. if (!file)
  641. return prot | PROT_EXEC;
  642. /*
  643. * ditto if it's not on noexec mount, except that on !MMU we need
  644. * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
  645. */
  646. if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
  647. #ifndef CONFIG_MMU
  648. if (file->f_op->mmap_capabilities) {
  649. unsigned caps = file->f_op->mmap_capabilities(file);
  650. if (!(caps & NOMMU_MAP_EXEC))
  651. return prot;
  652. }
  653. #endif
  654. return prot | PROT_EXEC;
  655. }
  656. /* anything on noexec mount won't get PROT_EXEC */
  657. return prot;
  658. }
  659. int security_mmap_file(struct file *file, unsigned long prot,
  660. unsigned long flags)
  661. {
  662. int ret;
  663. ret = security_ops->mmap_file(file, prot,
  664. mmap_prot(file, prot), flags);
  665. if (ret)
  666. return ret;
  667. return ima_file_mmap(file, prot);
  668. }
  669. int security_mmap_addr(unsigned long addr)
  670. {
  671. return security_ops->mmap_addr(addr);
  672. }
  673. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  674. unsigned long prot)
  675. {
  676. return security_ops->file_mprotect(vma, reqprot, prot);
  677. }
  678. int security_file_lock(struct file *file, unsigned int cmd)
  679. {
  680. return security_ops->file_lock(file, cmd);
  681. }
  682. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  683. {
  684. return security_ops->file_fcntl(file, cmd, arg);
  685. }
  686. void security_file_set_fowner(struct file *file)
  687. {
  688. security_ops->file_set_fowner(file);
  689. }
  690. int security_file_send_sigiotask(struct task_struct *tsk,
  691. struct fown_struct *fown, int sig)
  692. {
  693. return security_ops->file_send_sigiotask(tsk, fown, sig);
  694. }
  695. int security_file_receive(struct file *file)
  696. {
  697. return security_ops->file_receive(file);
  698. }
  699. int security_file_open(struct file *file, const struct cred *cred)
  700. {
  701. int ret;
  702. ret = security_ops->file_open(file, cred);
  703. if (ret)
  704. return ret;
  705. return fsnotify_perm(file, MAY_OPEN);
  706. }
  707. int security_task_create(unsigned long clone_flags)
  708. {
  709. return security_ops->task_create(clone_flags);
  710. }
  711. void security_task_free(struct task_struct *task)
  712. {
  713. #ifdef CONFIG_SECURITY_YAMA_STACKED
  714. yama_task_free(task);
  715. #endif
  716. security_ops->task_free(task);
  717. }
  718. int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
  719. {
  720. return security_ops->cred_alloc_blank(cred, gfp);
  721. }
  722. void security_cred_free(struct cred *cred)
  723. {
  724. security_ops->cred_free(cred);
  725. }
  726. int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
  727. {
  728. return security_ops->cred_prepare(new, old, gfp);
  729. }
  730. void security_transfer_creds(struct cred *new, const struct cred *old)
  731. {
  732. security_ops->cred_transfer(new, old);
  733. }
  734. int security_kernel_act_as(struct cred *new, u32 secid)
  735. {
  736. return security_ops->kernel_act_as(new, secid);
  737. }
  738. int security_kernel_create_files_as(struct cred *new, struct inode *inode)
  739. {
  740. return security_ops->kernel_create_files_as(new, inode);
  741. }
  742. int security_kernel_fw_from_file(struct file *file, char *buf, size_t size)
  743. {
  744. int ret;
  745. ret = security_ops->kernel_fw_from_file(file, buf, size);
  746. if (ret)
  747. return ret;
  748. return ima_fw_from_file(file, buf, size);
  749. }
  750. EXPORT_SYMBOL_GPL(security_kernel_fw_from_file);
  751. int security_kernel_module_request(char *kmod_name)
  752. {
  753. return security_ops->kernel_module_request(kmod_name);
  754. }
  755. int security_kernel_module_from_file(struct file *file)
  756. {
  757. int ret;
  758. ret = security_ops->kernel_module_from_file(file);
  759. if (ret)
  760. return ret;
  761. return ima_module_check(file);
  762. }
  763. int security_task_fix_setuid(struct cred *new, const struct cred *old,
  764. int flags)
  765. {
  766. return security_ops->task_fix_setuid(new, old, flags);
  767. }
  768. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  769. {
  770. return security_ops->task_setpgid(p, pgid);
  771. }
  772. int security_task_getpgid(struct task_struct *p)
  773. {
  774. return security_ops->task_getpgid(p);
  775. }
  776. int security_task_getsid(struct task_struct *p)
  777. {
  778. return security_ops->task_getsid(p);
  779. }
  780. void security_task_getsecid(struct task_struct *p, u32 *secid)
  781. {
  782. security_ops->task_getsecid(p, secid);
  783. }
  784. EXPORT_SYMBOL(security_task_getsecid);
  785. int security_task_setnice(struct task_struct *p, int nice)
  786. {
  787. return security_ops->task_setnice(p, nice);
  788. }
  789. int security_task_setioprio(struct task_struct *p, int ioprio)
  790. {
  791. return security_ops->task_setioprio(p, ioprio);
  792. }
  793. int security_task_getioprio(struct task_struct *p)
  794. {
  795. return security_ops->task_getioprio(p);
  796. }
  797. int security_task_setrlimit(struct task_struct *p, unsigned int resource,
  798. struct rlimit *new_rlim)
  799. {
  800. return security_ops->task_setrlimit(p, resource, new_rlim);
  801. }
  802. int security_task_setscheduler(struct task_struct *p)
  803. {
  804. return security_ops->task_setscheduler(p);
  805. }
  806. int security_task_getscheduler(struct task_struct *p)
  807. {
  808. return security_ops->task_getscheduler(p);
  809. }
  810. int security_task_movememory(struct task_struct *p)
  811. {
  812. return security_ops->task_movememory(p);
  813. }
  814. int security_task_kill(struct task_struct *p, struct siginfo *info,
  815. int sig, u32 secid)
  816. {
  817. return security_ops->task_kill(p, info, sig, secid);
  818. }
  819. int security_task_wait(struct task_struct *p)
  820. {
  821. return security_ops->task_wait(p);
  822. }
  823. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  824. unsigned long arg4, unsigned long arg5)
  825. {
  826. #ifdef CONFIG_SECURITY_YAMA_STACKED
  827. int rc;
  828. rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
  829. if (rc != -ENOSYS)
  830. return rc;
  831. #endif
  832. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
  833. }
  834. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  835. {
  836. security_ops->task_to_inode(p, inode);
  837. }
  838. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  839. {
  840. return security_ops->ipc_permission(ipcp, flag);
  841. }
  842. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  843. {
  844. security_ops->ipc_getsecid(ipcp, secid);
  845. }
  846. int security_msg_msg_alloc(struct msg_msg *msg)
  847. {
  848. return security_ops->msg_msg_alloc_security(msg);
  849. }
  850. void security_msg_msg_free(struct msg_msg *msg)
  851. {
  852. security_ops->msg_msg_free_security(msg);
  853. }
  854. int security_msg_queue_alloc(struct msg_queue *msq)
  855. {
  856. return security_ops->msg_queue_alloc_security(msq);
  857. }
  858. void security_msg_queue_free(struct msg_queue *msq)
  859. {
  860. security_ops->msg_queue_free_security(msq);
  861. }
  862. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  863. {
  864. return security_ops->msg_queue_associate(msq, msqflg);
  865. }
  866. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  867. {
  868. return security_ops->msg_queue_msgctl(msq, cmd);
  869. }
  870. int security_msg_queue_msgsnd(struct msg_queue *msq,
  871. struct msg_msg *msg, int msqflg)
  872. {
  873. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  874. }
  875. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  876. struct task_struct *target, long type, int mode)
  877. {
  878. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  879. }
  880. int security_shm_alloc(struct shmid_kernel *shp)
  881. {
  882. return security_ops->shm_alloc_security(shp);
  883. }
  884. void security_shm_free(struct shmid_kernel *shp)
  885. {
  886. security_ops->shm_free_security(shp);
  887. }
  888. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  889. {
  890. return security_ops->shm_associate(shp, shmflg);
  891. }
  892. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  893. {
  894. return security_ops->shm_shmctl(shp, cmd);
  895. }
  896. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  897. {
  898. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  899. }
  900. int security_sem_alloc(struct sem_array *sma)
  901. {
  902. return security_ops->sem_alloc_security(sma);
  903. }
  904. void security_sem_free(struct sem_array *sma)
  905. {
  906. security_ops->sem_free_security(sma);
  907. }
  908. int security_sem_associate(struct sem_array *sma, int semflg)
  909. {
  910. return security_ops->sem_associate(sma, semflg);
  911. }
  912. int security_sem_semctl(struct sem_array *sma, int cmd)
  913. {
  914. return security_ops->sem_semctl(sma, cmd);
  915. }
  916. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  917. unsigned nsops, int alter)
  918. {
  919. return security_ops->sem_semop(sma, sops, nsops, alter);
  920. }
  921. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  922. {
  923. if (unlikely(inode && IS_PRIVATE(inode)))
  924. return;
  925. security_ops->d_instantiate(dentry, inode);
  926. }
  927. EXPORT_SYMBOL(security_d_instantiate);
  928. int security_getprocattr(struct task_struct *p, char *name, char **value)
  929. {
  930. return security_ops->getprocattr(p, name, value);
  931. }
  932. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  933. {
  934. return security_ops->setprocattr(p, name, value, size);
  935. }
  936. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  937. {
  938. return security_ops->netlink_send(sk, skb);
  939. }
  940. int security_ismaclabel(const char *name)
  941. {
  942. return security_ops->ismaclabel(name);
  943. }
  944. EXPORT_SYMBOL(security_ismaclabel);
  945. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  946. {
  947. return security_ops->secid_to_secctx(secid, secdata, seclen);
  948. }
  949. EXPORT_SYMBOL(security_secid_to_secctx);
  950. int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
  951. {
  952. return security_ops->secctx_to_secid(secdata, seclen, secid);
  953. }
  954. EXPORT_SYMBOL(security_secctx_to_secid);
  955. void security_release_secctx(char *secdata, u32 seclen)
  956. {
  957. security_ops->release_secctx(secdata, seclen);
  958. }
  959. EXPORT_SYMBOL(security_release_secctx);
  960. int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
  961. {
  962. return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
  963. }
  964. EXPORT_SYMBOL(security_inode_notifysecctx);
  965. int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
  966. {
  967. return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
  968. }
  969. EXPORT_SYMBOL(security_inode_setsecctx);
  970. int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
  971. {
  972. return security_ops->inode_getsecctx(inode, ctx, ctxlen);
  973. }
  974. EXPORT_SYMBOL(security_inode_getsecctx);
  975. #ifdef CONFIG_SECURITY_NETWORK
  976. int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
  977. {
  978. return security_ops->unix_stream_connect(sock, other, newsk);
  979. }
  980. EXPORT_SYMBOL(security_unix_stream_connect);
  981. int security_unix_may_send(struct socket *sock, struct socket *other)
  982. {
  983. return security_ops->unix_may_send(sock, other);
  984. }
  985. EXPORT_SYMBOL(security_unix_may_send);
  986. int security_socket_create(int family, int type, int protocol, int kern)
  987. {
  988. return security_ops->socket_create(family, type, protocol, kern);
  989. }
  990. int security_socket_post_create(struct socket *sock, int family,
  991. int type, int protocol, int kern)
  992. {
  993. return security_ops->socket_post_create(sock, family, type,
  994. protocol, kern);
  995. }
  996. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  997. {
  998. return security_ops->socket_bind(sock, address, addrlen);
  999. }
  1000. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  1001. {
  1002. return security_ops->socket_connect(sock, address, addrlen);
  1003. }
  1004. int security_socket_listen(struct socket *sock, int backlog)
  1005. {
  1006. return security_ops->socket_listen(sock, backlog);
  1007. }
  1008. int security_socket_accept(struct socket *sock, struct socket *newsock)
  1009. {
  1010. return security_ops->socket_accept(sock, newsock);
  1011. }
  1012. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  1013. {
  1014. return security_ops->socket_sendmsg(sock, msg, size);
  1015. }
  1016. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  1017. int size, int flags)
  1018. {
  1019. return security_ops->socket_recvmsg(sock, msg, size, flags);
  1020. }
  1021. int security_socket_getsockname(struct socket *sock)
  1022. {
  1023. return security_ops->socket_getsockname(sock);
  1024. }
  1025. int security_socket_getpeername(struct socket *sock)
  1026. {
  1027. return security_ops->socket_getpeername(sock);
  1028. }
  1029. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  1030. {
  1031. return security_ops->socket_getsockopt(sock, level, optname);
  1032. }
  1033. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  1034. {
  1035. return security_ops->socket_setsockopt(sock, level, optname);
  1036. }
  1037. int security_socket_shutdown(struct socket *sock, int how)
  1038. {
  1039. return security_ops->socket_shutdown(sock, how);
  1040. }
  1041. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  1042. {
  1043. return security_ops->socket_sock_rcv_skb(sk, skb);
  1044. }
  1045. EXPORT_SYMBOL(security_sock_rcv_skb);
  1046. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  1047. int __user *optlen, unsigned len)
  1048. {
  1049. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  1050. }
  1051. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  1052. {
  1053. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  1054. }
  1055. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  1056. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  1057. {
  1058. return security_ops->sk_alloc_security(sk, family, priority);
  1059. }
  1060. void security_sk_free(struct sock *sk)
  1061. {
  1062. security_ops->sk_free_security(sk);
  1063. }
  1064. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  1065. {
  1066. security_ops->sk_clone_security(sk, newsk);
  1067. }
  1068. EXPORT_SYMBOL(security_sk_clone);
  1069. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  1070. {
  1071. security_ops->sk_getsecid(sk, &fl->flowi_secid);
  1072. }
  1073. EXPORT_SYMBOL(security_sk_classify_flow);
  1074. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  1075. {
  1076. security_ops->req_classify_flow(req, fl);
  1077. }
  1078. EXPORT_SYMBOL(security_req_classify_flow);
  1079. void security_sock_graft(struct sock *sk, struct socket *parent)
  1080. {
  1081. security_ops->sock_graft(sk, parent);
  1082. }
  1083. EXPORT_SYMBOL(security_sock_graft);
  1084. int security_inet_conn_request(struct sock *sk,
  1085. struct sk_buff *skb, struct request_sock *req)
  1086. {
  1087. return security_ops->inet_conn_request(sk, skb, req);
  1088. }
  1089. EXPORT_SYMBOL(security_inet_conn_request);
  1090. void security_inet_csk_clone(struct sock *newsk,
  1091. const struct request_sock *req)
  1092. {
  1093. security_ops->inet_csk_clone(newsk, req);
  1094. }
  1095. void security_inet_conn_established(struct sock *sk,
  1096. struct sk_buff *skb)
  1097. {
  1098. security_ops->inet_conn_established(sk, skb);
  1099. }
  1100. int security_secmark_relabel_packet(u32 secid)
  1101. {
  1102. return security_ops->secmark_relabel_packet(secid);
  1103. }
  1104. EXPORT_SYMBOL(security_secmark_relabel_packet);
  1105. void security_secmark_refcount_inc(void)
  1106. {
  1107. security_ops->secmark_refcount_inc();
  1108. }
  1109. EXPORT_SYMBOL(security_secmark_refcount_inc);
  1110. void security_secmark_refcount_dec(void)
  1111. {
  1112. security_ops->secmark_refcount_dec();
  1113. }
  1114. EXPORT_SYMBOL(security_secmark_refcount_dec);
  1115. int security_tun_dev_alloc_security(void **security)
  1116. {
  1117. return security_ops->tun_dev_alloc_security(security);
  1118. }
  1119. EXPORT_SYMBOL(security_tun_dev_alloc_security);
  1120. void security_tun_dev_free_security(void *security)
  1121. {
  1122. security_ops->tun_dev_free_security(security);
  1123. }
  1124. EXPORT_SYMBOL(security_tun_dev_free_security);
  1125. int security_tun_dev_create(void)
  1126. {
  1127. return security_ops->tun_dev_create();
  1128. }
  1129. EXPORT_SYMBOL(security_tun_dev_create);
  1130. int security_tun_dev_attach_queue(void *security)
  1131. {
  1132. return security_ops->tun_dev_attach_queue(security);
  1133. }
  1134. EXPORT_SYMBOL(security_tun_dev_attach_queue);
  1135. int security_tun_dev_attach(struct sock *sk, void *security)
  1136. {
  1137. return security_ops->tun_dev_attach(sk, security);
  1138. }
  1139. EXPORT_SYMBOL(security_tun_dev_attach);
  1140. int security_tun_dev_open(void *security)
  1141. {
  1142. return security_ops->tun_dev_open(security);
  1143. }
  1144. EXPORT_SYMBOL(security_tun_dev_open);
  1145. void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
  1146. {
  1147. security_ops->skb_owned_by(skb, sk);
  1148. }
  1149. #endif /* CONFIG_SECURITY_NETWORK */
  1150. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  1151. int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
  1152. struct xfrm_user_sec_ctx *sec_ctx,
  1153. gfp_t gfp)
  1154. {
  1155. return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx, gfp);
  1156. }
  1157. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  1158. int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
  1159. struct xfrm_sec_ctx **new_ctxp)
  1160. {
  1161. return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
  1162. }
  1163. void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
  1164. {
  1165. security_ops->xfrm_policy_free_security(ctx);
  1166. }
  1167. EXPORT_SYMBOL(security_xfrm_policy_free);
  1168. int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
  1169. {
  1170. return security_ops->xfrm_policy_delete_security(ctx);
  1171. }
  1172. int security_xfrm_state_alloc(struct xfrm_state *x,
  1173. struct xfrm_user_sec_ctx *sec_ctx)
  1174. {
  1175. return security_ops->xfrm_state_alloc(x, sec_ctx);
  1176. }
  1177. EXPORT_SYMBOL(security_xfrm_state_alloc);
  1178. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  1179. struct xfrm_sec_ctx *polsec, u32 secid)
  1180. {
  1181. return security_ops->xfrm_state_alloc_acquire(x, polsec, secid);
  1182. }
  1183. int security_xfrm_state_delete(struct xfrm_state *x)
  1184. {
  1185. return security_ops->xfrm_state_delete_security(x);
  1186. }
  1187. EXPORT_SYMBOL(security_xfrm_state_delete);
  1188. void security_xfrm_state_free(struct xfrm_state *x)
  1189. {
  1190. security_ops->xfrm_state_free_security(x);
  1191. }
  1192. int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
  1193. {
  1194. return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
  1195. }
  1196. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  1197. struct xfrm_policy *xp,
  1198. const struct flowi *fl)
  1199. {
  1200. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  1201. }
  1202. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  1203. {
  1204. return security_ops->xfrm_decode_session(skb, secid, 1);
  1205. }
  1206. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  1207. {
  1208. int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
  1209. BUG_ON(rc);
  1210. }
  1211. EXPORT_SYMBOL(security_skb_classify_flow);
  1212. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  1213. #ifdef CONFIG_KEYS
  1214. int security_key_alloc(struct key *key, const struct cred *cred,
  1215. unsigned long flags)
  1216. {
  1217. return security_ops->key_alloc(key, cred, flags);
  1218. }
  1219. void security_key_free(struct key *key)
  1220. {
  1221. security_ops->key_free(key);
  1222. }
  1223. int security_key_permission(key_ref_t key_ref,
  1224. const struct cred *cred, unsigned perm)
  1225. {
  1226. return security_ops->key_permission(key_ref, cred, perm);
  1227. }
  1228. int security_key_getsecurity(struct key *key, char **_buffer)
  1229. {
  1230. return security_ops->key_getsecurity(key, _buffer);
  1231. }
  1232. #endif /* CONFIG_KEYS */
  1233. #ifdef CONFIG_AUDIT
  1234. int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
  1235. {
  1236. return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
  1237. }
  1238. int security_audit_rule_known(struct audit_krule *krule)
  1239. {
  1240. return security_ops->audit_rule_known(krule);
  1241. }
  1242. void security_audit_rule_free(void *lsmrule)
  1243. {
  1244. security_ops->audit_rule_free(lsmrule);
  1245. }
  1246. int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
  1247. struct audit_context *actx)
  1248. {
  1249. return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
  1250. }
  1251. #endif /* CONFIG_AUDIT */