tlbex.c 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Synthesize TLB refill handlers at runtime.
  7. *
  8. * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
  9. * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
  10. * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
  11. * Copyright (C) 2008, 2009 Cavium Networks, Inc.
  12. * Copyright (C) 2011 MIPS Technologies, Inc.
  13. *
  14. * ... and the days got worse and worse and now you see
  15. * I've gone completly out of my mind.
  16. *
  17. * They're coming to take me a away haha
  18. * they're coming to take me a away hoho hihi haha
  19. * to the funny farm where code is beautiful all the time ...
  20. *
  21. * (Condolences to Napoleon XIV)
  22. */
  23. #include <linux/bug.h>
  24. #include <linux/kernel.h>
  25. #include <linux/types.h>
  26. #include <linux/smp.h>
  27. #include <linux/string.h>
  28. #include <linux/cache.h>
  29. #include <asm/cacheflush.h>
  30. #include <asm/cpu-type.h>
  31. #include <asm/pgtable.h>
  32. #include <asm/war.h>
  33. #include <asm/uasm.h>
  34. #include <asm/setup.h>
  35. /*
  36. * TLB load/store/modify handlers.
  37. *
  38. * Only the fastpath gets synthesized at runtime, the slowpath for
  39. * do_page_fault remains normal asm.
  40. */
  41. extern void tlb_do_page_fault_0(void);
  42. extern void tlb_do_page_fault_1(void);
  43. struct work_registers {
  44. int r1;
  45. int r2;
  46. int r3;
  47. };
  48. struct tlb_reg_save {
  49. unsigned long a;
  50. unsigned long b;
  51. } ____cacheline_aligned_in_smp;
  52. static struct tlb_reg_save handler_reg_save[NR_CPUS];
  53. static inline int r45k_bvahwbug(void)
  54. {
  55. /* XXX: We should probe for the presence of this bug, but we don't. */
  56. return 0;
  57. }
  58. static inline int r4k_250MHZhwbug(void)
  59. {
  60. /* XXX: We should probe for the presence of this bug, but we don't. */
  61. return 0;
  62. }
  63. static inline int __maybe_unused bcm1250_m3_war(void)
  64. {
  65. return BCM1250_M3_WAR;
  66. }
  67. static inline int __maybe_unused r10000_llsc_war(void)
  68. {
  69. return R10000_LLSC_WAR;
  70. }
  71. static int use_bbit_insns(void)
  72. {
  73. switch (current_cpu_type()) {
  74. case CPU_CAVIUM_OCTEON:
  75. case CPU_CAVIUM_OCTEON_PLUS:
  76. case CPU_CAVIUM_OCTEON2:
  77. case CPU_CAVIUM_OCTEON3:
  78. return 1;
  79. default:
  80. return 0;
  81. }
  82. }
  83. static int use_lwx_insns(void)
  84. {
  85. switch (current_cpu_type()) {
  86. case CPU_CAVIUM_OCTEON2:
  87. case CPU_CAVIUM_OCTEON3:
  88. return 1;
  89. default:
  90. return 0;
  91. }
  92. }
  93. #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
  94. CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
  95. static bool scratchpad_available(void)
  96. {
  97. return true;
  98. }
  99. static int scratchpad_offset(int i)
  100. {
  101. /*
  102. * CVMSEG starts at address -32768 and extends for
  103. * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
  104. */
  105. i += 1; /* Kernel use starts at the top and works down. */
  106. return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
  107. }
  108. #else
  109. static bool scratchpad_available(void)
  110. {
  111. return false;
  112. }
  113. static int scratchpad_offset(int i)
  114. {
  115. BUG();
  116. /* Really unreachable, but evidently some GCC want this. */
  117. return 0;
  118. }
  119. #endif
  120. /*
  121. * Found by experiment: At least some revisions of the 4kc throw under
  122. * some circumstances a machine check exception, triggered by invalid
  123. * values in the index register. Delaying the tlbp instruction until
  124. * after the next branch, plus adding an additional nop in front of
  125. * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
  126. * why; it's not an issue caused by the core RTL.
  127. *
  128. */
  129. static int m4kc_tlbp_war(void)
  130. {
  131. return (current_cpu_data.processor_id & 0xffff00) ==
  132. (PRID_COMP_MIPS | PRID_IMP_4KC);
  133. }
  134. /* Handle labels (which must be positive integers). */
  135. enum label_id {
  136. label_second_part = 1,
  137. label_leave,
  138. label_vmalloc,
  139. label_vmalloc_done,
  140. label_tlbw_hazard_0,
  141. label_split = label_tlbw_hazard_0 + 8,
  142. label_tlbl_goaround1,
  143. label_tlbl_goaround2,
  144. label_nopage_tlbl,
  145. label_nopage_tlbs,
  146. label_nopage_tlbm,
  147. label_smp_pgtable_change,
  148. label_r3000_write_probe_fail,
  149. label_large_segbits_fault,
  150. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  151. label_tlb_huge_update,
  152. #endif
  153. };
  154. UASM_L_LA(_second_part)
  155. UASM_L_LA(_leave)
  156. UASM_L_LA(_vmalloc)
  157. UASM_L_LA(_vmalloc_done)
  158. /* _tlbw_hazard_x is handled differently. */
  159. UASM_L_LA(_split)
  160. UASM_L_LA(_tlbl_goaround1)
  161. UASM_L_LA(_tlbl_goaround2)
  162. UASM_L_LA(_nopage_tlbl)
  163. UASM_L_LA(_nopage_tlbs)
  164. UASM_L_LA(_nopage_tlbm)
  165. UASM_L_LA(_smp_pgtable_change)
  166. UASM_L_LA(_r3000_write_probe_fail)
  167. UASM_L_LA(_large_segbits_fault)
  168. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  169. UASM_L_LA(_tlb_huge_update)
  170. #endif
  171. static int hazard_instance;
  172. static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
  173. {
  174. switch (instance) {
  175. case 0 ... 7:
  176. uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
  177. return;
  178. default:
  179. BUG();
  180. }
  181. }
  182. static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
  183. {
  184. switch (instance) {
  185. case 0 ... 7:
  186. uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
  187. break;
  188. default:
  189. BUG();
  190. }
  191. }
  192. /*
  193. * pgtable bits are assigned dynamically depending on processor feature
  194. * and statically based on kernel configuration. This spits out the actual
  195. * values the kernel is using. Required to make sense from disassembled
  196. * TLB exception handlers.
  197. */
  198. static void output_pgtable_bits_defines(void)
  199. {
  200. #define pr_define(fmt, ...) \
  201. pr_debug("#define " fmt, ##__VA_ARGS__)
  202. pr_debug("#include <asm/asm.h>\n");
  203. pr_debug("#include <asm/regdef.h>\n");
  204. pr_debug("\n");
  205. pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
  206. pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
  207. pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
  208. pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
  209. pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
  210. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  211. pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
  212. pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
  213. #endif
  214. if (cpu_has_rixi) {
  215. #ifdef _PAGE_NO_EXEC_SHIFT
  216. pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
  217. #endif
  218. #ifdef _PAGE_NO_READ_SHIFT
  219. pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
  220. #endif
  221. }
  222. pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
  223. pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
  224. pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
  225. pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
  226. pr_debug("\n");
  227. }
  228. static inline void dump_handler(const char *symbol, const u32 *handler, int count)
  229. {
  230. int i;
  231. pr_debug("LEAF(%s)\n", symbol);
  232. pr_debug("\t.set push\n");
  233. pr_debug("\t.set noreorder\n");
  234. for (i = 0; i < count; i++)
  235. pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
  236. pr_debug("\t.set\tpop\n");
  237. pr_debug("\tEND(%s)\n", symbol);
  238. }
  239. /* The only general purpose registers allowed in TLB handlers. */
  240. #define K0 26
  241. #define K1 27
  242. /* Some CP0 registers */
  243. #define C0_INDEX 0, 0
  244. #define C0_ENTRYLO0 2, 0
  245. #define C0_TCBIND 2, 2
  246. #define C0_ENTRYLO1 3, 0
  247. #define C0_CONTEXT 4, 0
  248. #define C0_PAGEMASK 5, 0
  249. #define C0_BADVADDR 8, 0
  250. #define C0_ENTRYHI 10, 0
  251. #define C0_EPC 14, 0
  252. #define C0_XCONTEXT 20, 0
  253. #ifdef CONFIG_64BIT
  254. # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
  255. #else
  256. # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
  257. #endif
  258. /* The worst case length of the handler is around 18 instructions for
  259. * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
  260. * Maximum space available is 32 instructions for R3000 and 64
  261. * instructions for R4000.
  262. *
  263. * We deliberately chose a buffer size of 128, so we won't scribble
  264. * over anything important on overflow before we panic.
  265. */
  266. static u32 tlb_handler[128];
  267. /* simply assume worst case size for labels and relocs */
  268. static struct uasm_label labels[128];
  269. static struct uasm_reloc relocs[128];
  270. static int check_for_high_segbits;
  271. static unsigned int kscratch_used_mask;
  272. static inline int __maybe_unused c0_kscratch(void)
  273. {
  274. switch (current_cpu_type()) {
  275. case CPU_XLP:
  276. case CPU_XLR:
  277. return 22;
  278. default:
  279. return 31;
  280. }
  281. }
  282. static int allocate_kscratch(void)
  283. {
  284. int r;
  285. unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
  286. r = ffs(a);
  287. if (r == 0)
  288. return -1;
  289. r--; /* make it zero based */
  290. kscratch_used_mask |= (1 << r);
  291. return r;
  292. }
  293. static int scratch_reg;
  294. static int pgd_reg;
  295. enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
  296. static struct work_registers build_get_work_registers(u32 **p)
  297. {
  298. struct work_registers r;
  299. if (scratch_reg >= 0) {
  300. /* Save in CPU local C0_KScratch? */
  301. UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
  302. r.r1 = K0;
  303. r.r2 = K1;
  304. r.r3 = 1;
  305. return r;
  306. }
  307. if (num_possible_cpus() > 1) {
  308. /* Get smp_processor_id */
  309. UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
  310. UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
  311. /* handler_reg_save index in K0 */
  312. UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
  313. UASM_i_LA(p, K1, (long)&handler_reg_save);
  314. UASM_i_ADDU(p, K0, K0, K1);
  315. } else {
  316. UASM_i_LA(p, K0, (long)&handler_reg_save);
  317. }
  318. /* K0 now points to save area, save $1 and $2 */
  319. UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
  320. UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
  321. r.r1 = K1;
  322. r.r2 = 1;
  323. r.r3 = 2;
  324. return r;
  325. }
  326. static void build_restore_work_registers(u32 **p)
  327. {
  328. if (scratch_reg >= 0) {
  329. UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
  330. return;
  331. }
  332. /* K0 already points to save area, restore $1 and $2 */
  333. UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
  334. UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
  335. }
  336. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  337. /*
  338. * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
  339. * we cannot do r3000 under these circumstances.
  340. *
  341. * Declare pgd_current here instead of including mmu_context.h to avoid type
  342. * conflicts for tlbmiss_handler_setup_pgd
  343. */
  344. extern unsigned long pgd_current[];
  345. /*
  346. * The R3000 TLB handler is simple.
  347. */
  348. static void build_r3000_tlb_refill_handler(void)
  349. {
  350. long pgdc = (long)pgd_current;
  351. u32 *p;
  352. memset(tlb_handler, 0, sizeof(tlb_handler));
  353. p = tlb_handler;
  354. uasm_i_mfc0(&p, K0, C0_BADVADDR);
  355. uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
  356. uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
  357. uasm_i_srl(&p, K0, K0, 22); /* load delay */
  358. uasm_i_sll(&p, K0, K0, 2);
  359. uasm_i_addu(&p, K1, K1, K0);
  360. uasm_i_mfc0(&p, K0, C0_CONTEXT);
  361. uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
  362. uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
  363. uasm_i_addu(&p, K1, K1, K0);
  364. uasm_i_lw(&p, K0, 0, K1);
  365. uasm_i_nop(&p); /* load delay */
  366. uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
  367. uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
  368. uasm_i_tlbwr(&p); /* cp0 delay */
  369. uasm_i_jr(&p, K1);
  370. uasm_i_rfe(&p); /* branch delay */
  371. if (p > tlb_handler + 32)
  372. panic("TLB refill handler space exceeded");
  373. pr_debug("Wrote TLB refill handler (%u instructions).\n",
  374. (unsigned int)(p - tlb_handler));
  375. memcpy((void *)ebase, tlb_handler, 0x80);
  376. local_flush_icache_range(ebase, ebase + 0x80);
  377. dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
  378. }
  379. #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
  380. /*
  381. * The R4000 TLB handler is much more complicated. We have two
  382. * consecutive handler areas with 32 instructions space each.
  383. * Since they aren't used at the same time, we can overflow in the
  384. * other one.To keep things simple, we first assume linear space,
  385. * then we relocate it to the final handler layout as needed.
  386. */
  387. static u32 final_handler[64];
  388. /*
  389. * Hazards
  390. *
  391. * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
  392. * 2. A timing hazard exists for the TLBP instruction.
  393. *
  394. * stalling_instruction
  395. * TLBP
  396. *
  397. * The JTLB is being read for the TLBP throughout the stall generated by the
  398. * previous instruction. This is not really correct as the stalling instruction
  399. * can modify the address used to access the JTLB. The failure symptom is that
  400. * the TLBP instruction will use an address created for the stalling instruction
  401. * and not the address held in C0_ENHI and thus report the wrong results.
  402. *
  403. * The software work-around is to not allow the instruction preceding the TLBP
  404. * to stall - make it an NOP or some other instruction guaranteed not to stall.
  405. *
  406. * Errata 2 will not be fixed. This errata is also on the R5000.
  407. *
  408. * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
  409. */
  410. static void __maybe_unused build_tlb_probe_entry(u32 **p)
  411. {
  412. switch (current_cpu_type()) {
  413. /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
  414. case CPU_R4600:
  415. case CPU_R4700:
  416. case CPU_R5000:
  417. case CPU_NEVADA:
  418. uasm_i_nop(p);
  419. uasm_i_tlbp(p);
  420. break;
  421. default:
  422. uasm_i_tlbp(p);
  423. break;
  424. }
  425. }
  426. /*
  427. * Write random or indexed TLB entry, and care about the hazards from
  428. * the preceding mtc0 and for the following eret.
  429. */
  430. enum tlb_write_entry { tlb_random, tlb_indexed };
  431. static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
  432. struct uasm_reloc **r,
  433. enum tlb_write_entry wmode)
  434. {
  435. void(*tlbw)(u32 **) = NULL;
  436. switch (wmode) {
  437. case tlb_random: tlbw = uasm_i_tlbwr; break;
  438. case tlb_indexed: tlbw = uasm_i_tlbwi; break;
  439. }
  440. if (cpu_has_mips_r2_exec_hazard) {
  441. /*
  442. * The architecture spec says an ehb is required here,
  443. * but a number of cores do not have the hazard and
  444. * using an ehb causes an expensive pipeline stall.
  445. */
  446. switch (current_cpu_type()) {
  447. case CPU_M14KC:
  448. case CPU_74K:
  449. case CPU_1074K:
  450. case CPU_PROAPTIV:
  451. case CPU_P5600:
  452. case CPU_M5150:
  453. case CPU_QEMU_GENERIC:
  454. break;
  455. default:
  456. uasm_i_ehb(p);
  457. break;
  458. }
  459. tlbw(p);
  460. return;
  461. }
  462. switch (current_cpu_type()) {
  463. case CPU_R4000PC:
  464. case CPU_R4000SC:
  465. case CPU_R4000MC:
  466. case CPU_R4400PC:
  467. case CPU_R4400SC:
  468. case CPU_R4400MC:
  469. /*
  470. * This branch uses up a mtc0 hazard nop slot and saves
  471. * two nops after the tlbw instruction.
  472. */
  473. uasm_bgezl_hazard(p, r, hazard_instance);
  474. tlbw(p);
  475. uasm_bgezl_label(l, p, hazard_instance);
  476. hazard_instance++;
  477. uasm_i_nop(p);
  478. break;
  479. case CPU_R4600:
  480. case CPU_R4700:
  481. uasm_i_nop(p);
  482. tlbw(p);
  483. uasm_i_nop(p);
  484. break;
  485. case CPU_R5000:
  486. case CPU_NEVADA:
  487. uasm_i_nop(p); /* QED specifies 2 nops hazard */
  488. uasm_i_nop(p); /* QED specifies 2 nops hazard */
  489. tlbw(p);
  490. break;
  491. case CPU_R4300:
  492. case CPU_5KC:
  493. case CPU_TX49XX:
  494. case CPU_PR4450:
  495. case CPU_XLR:
  496. uasm_i_nop(p);
  497. tlbw(p);
  498. break;
  499. case CPU_R10000:
  500. case CPU_R12000:
  501. case CPU_R14000:
  502. case CPU_4KC:
  503. case CPU_4KEC:
  504. case CPU_M14KC:
  505. case CPU_M14KEC:
  506. case CPU_SB1:
  507. case CPU_SB1A:
  508. case CPU_4KSC:
  509. case CPU_20KC:
  510. case CPU_25KF:
  511. case CPU_BMIPS32:
  512. case CPU_BMIPS3300:
  513. case CPU_BMIPS4350:
  514. case CPU_BMIPS4380:
  515. case CPU_BMIPS5000:
  516. case CPU_LOONGSON2:
  517. case CPU_LOONGSON3:
  518. case CPU_R5500:
  519. if (m4kc_tlbp_war())
  520. uasm_i_nop(p);
  521. case CPU_ALCHEMY:
  522. tlbw(p);
  523. break;
  524. case CPU_RM7000:
  525. uasm_i_nop(p);
  526. uasm_i_nop(p);
  527. uasm_i_nop(p);
  528. uasm_i_nop(p);
  529. tlbw(p);
  530. break;
  531. case CPU_VR4111:
  532. case CPU_VR4121:
  533. case CPU_VR4122:
  534. case CPU_VR4181:
  535. case CPU_VR4181A:
  536. uasm_i_nop(p);
  537. uasm_i_nop(p);
  538. tlbw(p);
  539. uasm_i_nop(p);
  540. uasm_i_nop(p);
  541. break;
  542. case CPU_VR4131:
  543. case CPU_VR4133:
  544. case CPU_R5432:
  545. uasm_i_nop(p);
  546. uasm_i_nop(p);
  547. tlbw(p);
  548. break;
  549. case CPU_JZRISC:
  550. tlbw(p);
  551. uasm_i_nop(p);
  552. break;
  553. default:
  554. panic("No TLB refill handler yet (CPU type: %d)",
  555. current_cpu_type());
  556. break;
  557. }
  558. }
  559. static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
  560. unsigned int reg)
  561. {
  562. if (cpu_has_rixi) {
  563. UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
  564. } else {
  565. #ifdef CONFIG_PHYS_ADDR_T_64BIT
  566. uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
  567. #else
  568. UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
  569. #endif
  570. }
  571. }
  572. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  573. static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
  574. unsigned int tmp, enum label_id lid,
  575. int restore_scratch)
  576. {
  577. if (restore_scratch) {
  578. /* Reset default page size */
  579. if (PM_DEFAULT_MASK >> 16) {
  580. uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
  581. uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
  582. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  583. uasm_il_b(p, r, lid);
  584. } else if (PM_DEFAULT_MASK) {
  585. uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
  586. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  587. uasm_il_b(p, r, lid);
  588. } else {
  589. uasm_i_mtc0(p, 0, C0_PAGEMASK);
  590. uasm_il_b(p, r, lid);
  591. }
  592. if (scratch_reg >= 0)
  593. UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
  594. else
  595. UASM_i_LW(p, 1, scratchpad_offset(0), 0);
  596. } else {
  597. /* Reset default page size */
  598. if (PM_DEFAULT_MASK >> 16) {
  599. uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
  600. uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
  601. uasm_il_b(p, r, lid);
  602. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  603. } else if (PM_DEFAULT_MASK) {
  604. uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
  605. uasm_il_b(p, r, lid);
  606. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  607. } else {
  608. uasm_il_b(p, r, lid);
  609. uasm_i_mtc0(p, 0, C0_PAGEMASK);
  610. }
  611. }
  612. }
  613. static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
  614. struct uasm_reloc **r,
  615. unsigned int tmp,
  616. enum tlb_write_entry wmode,
  617. int restore_scratch)
  618. {
  619. /* Set huge page tlb entry size */
  620. uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
  621. uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
  622. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  623. build_tlb_write_entry(p, l, r, wmode);
  624. build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
  625. }
  626. /*
  627. * Check if Huge PTE is present, if so then jump to LABEL.
  628. */
  629. static void
  630. build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
  631. unsigned int pmd, int lid)
  632. {
  633. UASM_i_LW(p, tmp, 0, pmd);
  634. if (use_bbit_insns()) {
  635. uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
  636. } else {
  637. uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
  638. uasm_il_bnez(p, r, tmp, lid);
  639. }
  640. }
  641. static void build_huge_update_entries(u32 **p, unsigned int pte,
  642. unsigned int tmp)
  643. {
  644. int small_sequence;
  645. /*
  646. * A huge PTE describes an area the size of the
  647. * configured huge page size. This is twice the
  648. * of the large TLB entry size we intend to use.
  649. * A TLB entry half the size of the configured
  650. * huge page size is configured into entrylo0
  651. * and entrylo1 to cover the contiguous huge PTE
  652. * address space.
  653. */
  654. small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
  655. /* We can clobber tmp. It isn't used after this.*/
  656. if (!small_sequence)
  657. uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
  658. build_convert_pte_to_entrylo(p, pte);
  659. UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
  660. /* convert to entrylo1 */
  661. if (small_sequence)
  662. UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
  663. else
  664. UASM_i_ADDU(p, pte, pte, tmp);
  665. UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
  666. }
  667. static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
  668. struct uasm_label **l,
  669. unsigned int pte,
  670. unsigned int ptr)
  671. {
  672. #ifdef CONFIG_SMP
  673. UASM_i_SC(p, pte, 0, ptr);
  674. uasm_il_beqz(p, r, pte, label_tlb_huge_update);
  675. UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
  676. #else
  677. UASM_i_SW(p, pte, 0, ptr);
  678. #endif
  679. build_huge_update_entries(p, pte, ptr);
  680. build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
  681. }
  682. #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
  683. #ifdef CONFIG_64BIT
  684. /*
  685. * TMP and PTR are scratch.
  686. * TMP will be clobbered, PTR will hold the pmd entry.
  687. */
  688. static void
  689. build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
  690. unsigned int tmp, unsigned int ptr)
  691. {
  692. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  693. long pgdc = (long)pgd_current;
  694. #endif
  695. /*
  696. * The vmalloc handling is not in the hotpath.
  697. */
  698. uasm_i_dmfc0(p, tmp, C0_BADVADDR);
  699. if (check_for_high_segbits) {
  700. /*
  701. * The kernel currently implicitely assumes that the
  702. * MIPS SEGBITS parameter for the processor is
  703. * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
  704. * allocate virtual addresses outside the maximum
  705. * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
  706. * that doesn't prevent user code from accessing the
  707. * higher xuseg addresses. Here, we make sure that
  708. * everything but the lower xuseg addresses goes down
  709. * the module_alloc/vmalloc path.
  710. */
  711. uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  712. uasm_il_bnez(p, r, ptr, label_vmalloc);
  713. } else {
  714. uasm_il_bltz(p, r, tmp, label_vmalloc);
  715. }
  716. /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
  717. if (pgd_reg != -1) {
  718. /* pgd is in pgd_reg */
  719. UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
  720. } else {
  721. #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
  722. /*
  723. * &pgd << 11 stored in CONTEXT [23..63].
  724. */
  725. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  726. /* Clear lower 23 bits of context. */
  727. uasm_i_dins(p, ptr, 0, 0, 23);
  728. /* 1 0 1 0 1 << 6 xkphys cached */
  729. uasm_i_ori(p, ptr, ptr, 0x540);
  730. uasm_i_drotr(p, ptr, ptr, 11);
  731. #elif defined(CONFIG_SMP)
  732. UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
  733. uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
  734. UASM_i_LA_mostly(p, tmp, pgdc);
  735. uasm_i_daddu(p, ptr, ptr, tmp);
  736. uasm_i_dmfc0(p, tmp, C0_BADVADDR);
  737. uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
  738. #else
  739. UASM_i_LA_mostly(p, ptr, pgdc);
  740. uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
  741. #endif
  742. }
  743. uasm_l_vmalloc_done(l, *p);
  744. /* get pgd offset in bytes */
  745. uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
  746. uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
  747. uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
  748. #ifndef __PAGETABLE_PMD_FOLDED
  749. uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  750. uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
  751. uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
  752. uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
  753. uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
  754. #endif
  755. }
  756. /*
  757. * BVADDR is the faulting address, PTR is scratch.
  758. * PTR will hold the pgd for vmalloc.
  759. */
  760. static void
  761. build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
  762. unsigned int bvaddr, unsigned int ptr,
  763. enum vmalloc64_mode mode)
  764. {
  765. long swpd = (long)swapper_pg_dir;
  766. int single_insn_swpd;
  767. int did_vmalloc_branch = 0;
  768. single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
  769. uasm_l_vmalloc(l, *p);
  770. if (mode != not_refill && check_for_high_segbits) {
  771. if (single_insn_swpd) {
  772. uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
  773. uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
  774. did_vmalloc_branch = 1;
  775. /* fall through */
  776. } else {
  777. uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
  778. }
  779. }
  780. if (!did_vmalloc_branch) {
  781. if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
  782. uasm_il_b(p, r, label_vmalloc_done);
  783. uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
  784. } else {
  785. UASM_i_LA_mostly(p, ptr, swpd);
  786. uasm_il_b(p, r, label_vmalloc_done);
  787. if (uasm_in_compat_space_p(swpd))
  788. uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
  789. else
  790. uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
  791. }
  792. }
  793. if (mode != not_refill && check_for_high_segbits) {
  794. uasm_l_large_segbits_fault(l, *p);
  795. /*
  796. * We get here if we are an xsseg address, or if we are
  797. * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
  798. *
  799. * Ignoring xsseg (assume disabled so would generate
  800. * (address errors?), the only remaining possibility
  801. * is the upper xuseg addresses. On processors with
  802. * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
  803. * addresses would have taken an address error. We try
  804. * to mimic that here by taking a load/istream page
  805. * fault.
  806. */
  807. UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
  808. uasm_i_jr(p, ptr);
  809. if (mode == refill_scratch) {
  810. if (scratch_reg >= 0)
  811. UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
  812. else
  813. UASM_i_LW(p, 1, scratchpad_offset(0), 0);
  814. } else {
  815. uasm_i_nop(p);
  816. }
  817. }
  818. }
  819. #else /* !CONFIG_64BIT */
  820. /*
  821. * TMP and PTR are scratch.
  822. * TMP will be clobbered, PTR will hold the pgd entry.
  823. */
  824. static void __maybe_unused
  825. build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
  826. {
  827. if (pgd_reg != -1) {
  828. /* pgd is in pgd_reg */
  829. uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
  830. uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  831. } else {
  832. long pgdc = (long)pgd_current;
  833. /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
  834. #ifdef CONFIG_SMP
  835. uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
  836. UASM_i_LA_mostly(p, tmp, pgdc);
  837. uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
  838. uasm_i_addu(p, ptr, tmp, ptr);
  839. #else
  840. UASM_i_LA_mostly(p, ptr, pgdc);
  841. #endif
  842. uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  843. uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
  844. }
  845. uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
  846. uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
  847. uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
  848. }
  849. #endif /* !CONFIG_64BIT */
  850. static void build_adjust_context(u32 **p, unsigned int ctx)
  851. {
  852. unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
  853. unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
  854. switch (current_cpu_type()) {
  855. case CPU_VR41XX:
  856. case CPU_VR4111:
  857. case CPU_VR4121:
  858. case CPU_VR4122:
  859. case CPU_VR4131:
  860. case CPU_VR4181:
  861. case CPU_VR4181A:
  862. case CPU_VR4133:
  863. shift += 2;
  864. break;
  865. default:
  866. break;
  867. }
  868. if (shift)
  869. UASM_i_SRL(p, ctx, ctx, shift);
  870. uasm_i_andi(p, ctx, ctx, mask);
  871. }
  872. static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
  873. {
  874. /*
  875. * Bug workaround for the Nevada. It seems as if under certain
  876. * circumstances the move from cp0_context might produce a
  877. * bogus result when the mfc0 instruction and its consumer are
  878. * in a different cacheline or a load instruction, probably any
  879. * memory reference, is between them.
  880. */
  881. switch (current_cpu_type()) {
  882. case CPU_NEVADA:
  883. UASM_i_LW(p, ptr, 0, ptr);
  884. GET_CONTEXT(p, tmp); /* get context reg */
  885. break;
  886. default:
  887. GET_CONTEXT(p, tmp); /* get context reg */
  888. UASM_i_LW(p, ptr, 0, ptr);
  889. break;
  890. }
  891. build_adjust_context(p, tmp);
  892. UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
  893. }
  894. static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
  895. {
  896. /*
  897. * 64bit address support (36bit on a 32bit CPU) in a 32bit
  898. * Kernel is a special case. Only a few CPUs use it.
  899. */
  900. #ifdef CONFIG_PHYS_ADDR_T_64BIT
  901. if (cpu_has_64bits) {
  902. uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
  903. uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  904. if (cpu_has_rixi) {
  905. UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
  906. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  907. UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
  908. } else {
  909. uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
  910. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  911. uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
  912. }
  913. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  914. } else {
  915. int pte_off_even = sizeof(pte_t) / 2;
  916. int pte_off_odd = pte_off_even + sizeof(pte_t);
  917. /* The pte entries are pre-shifted */
  918. uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
  919. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  920. uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
  921. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  922. }
  923. #else
  924. UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
  925. UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  926. if (r45k_bvahwbug())
  927. build_tlb_probe_entry(p);
  928. if (cpu_has_rixi) {
  929. UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
  930. if (r4k_250MHZhwbug())
  931. UASM_i_MTC0(p, 0, C0_ENTRYLO0);
  932. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  933. UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
  934. } else {
  935. UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
  936. if (r4k_250MHZhwbug())
  937. UASM_i_MTC0(p, 0, C0_ENTRYLO0);
  938. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  939. UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
  940. if (r45k_bvahwbug())
  941. uasm_i_mfc0(p, tmp, C0_INDEX);
  942. }
  943. if (r4k_250MHZhwbug())
  944. UASM_i_MTC0(p, 0, C0_ENTRYLO1);
  945. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  946. #endif
  947. }
  948. struct mips_huge_tlb_info {
  949. int huge_pte;
  950. int restore_scratch;
  951. bool need_reload_pte;
  952. };
  953. static struct mips_huge_tlb_info
  954. build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
  955. struct uasm_reloc **r, unsigned int tmp,
  956. unsigned int ptr, int c0_scratch_reg)
  957. {
  958. struct mips_huge_tlb_info rv;
  959. unsigned int even, odd;
  960. int vmalloc_branch_delay_filled = 0;
  961. const int scratch = 1; /* Our extra working register */
  962. rv.huge_pte = scratch;
  963. rv.restore_scratch = 0;
  964. rv.need_reload_pte = false;
  965. if (check_for_high_segbits) {
  966. UASM_i_MFC0(p, tmp, C0_BADVADDR);
  967. if (pgd_reg != -1)
  968. UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
  969. else
  970. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  971. if (c0_scratch_reg >= 0)
  972. UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
  973. else
  974. UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
  975. uasm_i_dsrl_safe(p, scratch, tmp,
  976. PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  977. uasm_il_bnez(p, r, scratch, label_vmalloc);
  978. if (pgd_reg == -1) {
  979. vmalloc_branch_delay_filled = 1;
  980. /* Clear lower 23 bits of context. */
  981. uasm_i_dins(p, ptr, 0, 0, 23);
  982. }
  983. } else {
  984. if (pgd_reg != -1)
  985. UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
  986. else
  987. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  988. UASM_i_MFC0(p, tmp, C0_BADVADDR);
  989. if (c0_scratch_reg >= 0)
  990. UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
  991. else
  992. UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
  993. if (pgd_reg == -1)
  994. /* Clear lower 23 bits of context. */
  995. uasm_i_dins(p, ptr, 0, 0, 23);
  996. uasm_il_bltz(p, r, tmp, label_vmalloc);
  997. }
  998. if (pgd_reg == -1) {
  999. vmalloc_branch_delay_filled = 1;
  1000. /* 1 0 1 0 1 << 6 xkphys cached */
  1001. uasm_i_ori(p, ptr, ptr, 0x540);
  1002. uasm_i_drotr(p, ptr, ptr, 11);
  1003. }
  1004. #ifdef __PAGETABLE_PMD_FOLDED
  1005. #define LOC_PTEP scratch
  1006. #else
  1007. #define LOC_PTEP ptr
  1008. #endif
  1009. if (!vmalloc_branch_delay_filled)
  1010. /* get pgd offset in bytes */
  1011. uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
  1012. uasm_l_vmalloc_done(l, *p);
  1013. /*
  1014. * tmp ptr
  1015. * fall-through case = badvaddr *pgd_current
  1016. * vmalloc case = badvaddr swapper_pg_dir
  1017. */
  1018. if (vmalloc_branch_delay_filled)
  1019. /* get pgd offset in bytes */
  1020. uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
  1021. #ifdef __PAGETABLE_PMD_FOLDED
  1022. GET_CONTEXT(p, tmp); /* get context reg */
  1023. #endif
  1024. uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
  1025. if (use_lwx_insns()) {
  1026. UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
  1027. } else {
  1028. uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
  1029. uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
  1030. }
  1031. #ifndef __PAGETABLE_PMD_FOLDED
  1032. /* get pmd offset in bytes */
  1033. uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
  1034. uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
  1035. GET_CONTEXT(p, tmp); /* get context reg */
  1036. if (use_lwx_insns()) {
  1037. UASM_i_LWX(p, scratch, scratch, ptr);
  1038. } else {
  1039. uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
  1040. UASM_i_LW(p, scratch, 0, ptr);
  1041. }
  1042. #endif
  1043. /* Adjust the context during the load latency. */
  1044. build_adjust_context(p, tmp);
  1045. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1046. uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
  1047. /*
  1048. * The in the LWX case we don't want to do the load in the
  1049. * delay slot. It cannot issue in the same cycle and may be
  1050. * speculative and unneeded.
  1051. */
  1052. if (use_lwx_insns())
  1053. uasm_i_nop(p);
  1054. #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
  1055. /* build_update_entries */
  1056. if (use_lwx_insns()) {
  1057. even = ptr;
  1058. odd = tmp;
  1059. UASM_i_LWX(p, even, scratch, tmp);
  1060. UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
  1061. UASM_i_LWX(p, odd, scratch, tmp);
  1062. } else {
  1063. UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
  1064. even = tmp;
  1065. odd = ptr;
  1066. UASM_i_LW(p, even, 0, ptr); /* get even pte */
  1067. UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
  1068. }
  1069. if (cpu_has_rixi) {
  1070. uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
  1071. UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
  1072. uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
  1073. } else {
  1074. uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
  1075. UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
  1076. uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
  1077. }
  1078. UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
  1079. if (c0_scratch_reg >= 0) {
  1080. UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
  1081. build_tlb_write_entry(p, l, r, tlb_random);
  1082. uasm_l_leave(l, *p);
  1083. rv.restore_scratch = 1;
  1084. } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
  1085. build_tlb_write_entry(p, l, r, tlb_random);
  1086. uasm_l_leave(l, *p);
  1087. UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
  1088. } else {
  1089. UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
  1090. build_tlb_write_entry(p, l, r, tlb_random);
  1091. uasm_l_leave(l, *p);
  1092. rv.restore_scratch = 1;
  1093. }
  1094. uasm_i_eret(p); /* return from trap */
  1095. return rv;
  1096. }
  1097. /*
  1098. * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
  1099. * because EXL == 0. If we wrap, we can also use the 32 instruction
  1100. * slots before the XTLB refill exception handler which belong to the
  1101. * unused TLB refill exception.
  1102. */
  1103. #define MIPS64_REFILL_INSNS 32
  1104. static void build_r4000_tlb_refill_handler(void)
  1105. {
  1106. u32 *p = tlb_handler;
  1107. struct uasm_label *l = labels;
  1108. struct uasm_reloc *r = relocs;
  1109. u32 *f;
  1110. unsigned int final_len;
  1111. struct mips_huge_tlb_info htlb_info __maybe_unused;
  1112. enum vmalloc64_mode vmalloc_mode __maybe_unused;
  1113. memset(tlb_handler, 0, sizeof(tlb_handler));
  1114. memset(labels, 0, sizeof(labels));
  1115. memset(relocs, 0, sizeof(relocs));
  1116. memset(final_handler, 0, sizeof(final_handler));
  1117. if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
  1118. htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
  1119. scratch_reg);
  1120. vmalloc_mode = refill_scratch;
  1121. } else {
  1122. htlb_info.huge_pte = K0;
  1123. htlb_info.restore_scratch = 0;
  1124. htlb_info.need_reload_pte = true;
  1125. vmalloc_mode = refill_noscratch;
  1126. /*
  1127. * create the plain linear handler
  1128. */
  1129. if (bcm1250_m3_war()) {
  1130. unsigned int segbits = 44;
  1131. uasm_i_dmfc0(&p, K0, C0_BADVADDR);
  1132. uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
  1133. uasm_i_xor(&p, K0, K0, K1);
  1134. uasm_i_dsrl_safe(&p, K1, K0, 62);
  1135. uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
  1136. uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
  1137. uasm_i_or(&p, K0, K0, K1);
  1138. uasm_il_bnez(&p, &r, K0, label_leave);
  1139. /* No need for uasm_i_nop */
  1140. }
  1141. #ifdef CONFIG_64BIT
  1142. build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
  1143. #else
  1144. build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
  1145. #endif
  1146. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1147. build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
  1148. #endif
  1149. build_get_ptep(&p, K0, K1);
  1150. build_update_entries(&p, K0, K1);
  1151. build_tlb_write_entry(&p, &l, &r, tlb_random);
  1152. uasm_l_leave(&l, p);
  1153. uasm_i_eret(&p); /* return from trap */
  1154. }
  1155. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1156. uasm_l_tlb_huge_update(&l, p);
  1157. if (htlb_info.need_reload_pte)
  1158. UASM_i_LW(&p, htlb_info.huge_pte, 0, K1);
  1159. build_huge_update_entries(&p, htlb_info.huge_pte, K1);
  1160. build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
  1161. htlb_info.restore_scratch);
  1162. #endif
  1163. #ifdef CONFIG_64BIT
  1164. build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
  1165. #endif
  1166. /*
  1167. * Overflow check: For the 64bit handler, we need at least one
  1168. * free instruction slot for the wrap-around branch. In worst
  1169. * case, if the intended insertion point is a delay slot, we
  1170. * need three, with the second nop'ed and the third being
  1171. * unused.
  1172. */
  1173. switch (boot_cpu_type()) {
  1174. default:
  1175. if (sizeof(long) == 4) {
  1176. case CPU_LOONGSON2:
  1177. /* Loongson2 ebase is different than r4k, we have more space */
  1178. if ((p - tlb_handler) > 64)
  1179. panic("TLB refill handler space exceeded");
  1180. /*
  1181. * Now fold the handler in the TLB refill handler space.
  1182. */
  1183. f = final_handler;
  1184. /* Simplest case, just copy the handler. */
  1185. uasm_copy_handler(relocs, labels, tlb_handler, p, f);
  1186. final_len = p - tlb_handler;
  1187. break;
  1188. } else {
  1189. if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
  1190. || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
  1191. && uasm_insn_has_bdelay(relocs,
  1192. tlb_handler + MIPS64_REFILL_INSNS - 3)))
  1193. panic("TLB refill handler space exceeded");
  1194. /*
  1195. * Now fold the handler in the TLB refill handler space.
  1196. */
  1197. f = final_handler + MIPS64_REFILL_INSNS;
  1198. if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
  1199. /* Just copy the handler. */
  1200. uasm_copy_handler(relocs, labels, tlb_handler, p, f);
  1201. final_len = p - tlb_handler;
  1202. } else {
  1203. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1204. const enum label_id ls = label_tlb_huge_update;
  1205. #else
  1206. const enum label_id ls = label_vmalloc;
  1207. #endif
  1208. u32 *split;
  1209. int ov = 0;
  1210. int i;
  1211. for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
  1212. ;
  1213. BUG_ON(i == ARRAY_SIZE(labels));
  1214. split = labels[i].addr;
  1215. /*
  1216. * See if we have overflown one way or the other.
  1217. */
  1218. if (split > tlb_handler + MIPS64_REFILL_INSNS ||
  1219. split < p - MIPS64_REFILL_INSNS)
  1220. ov = 1;
  1221. if (ov) {
  1222. /*
  1223. * Split two instructions before the end. One
  1224. * for the branch and one for the instruction
  1225. * in the delay slot.
  1226. */
  1227. split = tlb_handler + MIPS64_REFILL_INSNS - 2;
  1228. /*
  1229. * If the branch would fall in a delay slot,
  1230. * we must back up an additional instruction
  1231. * so that it is no longer in a delay slot.
  1232. */
  1233. if (uasm_insn_has_bdelay(relocs, split - 1))
  1234. split--;
  1235. }
  1236. /* Copy first part of the handler. */
  1237. uasm_copy_handler(relocs, labels, tlb_handler, split, f);
  1238. f += split - tlb_handler;
  1239. if (ov) {
  1240. /* Insert branch. */
  1241. uasm_l_split(&l, final_handler);
  1242. uasm_il_b(&f, &r, label_split);
  1243. if (uasm_insn_has_bdelay(relocs, split))
  1244. uasm_i_nop(&f);
  1245. else {
  1246. uasm_copy_handler(relocs, labels,
  1247. split, split + 1, f);
  1248. uasm_move_labels(labels, f, f + 1, -1);
  1249. f++;
  1250. split++;
  1251. }
  1252. }
  1253. /* Copy the rest of the handler. */
  1254. uasm_copy_handler(relocs, labels, split, p, final_handler);
  1255. final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
  1256. (p - split);
  1257. }
  1258. }
  1259. break;
  1260. }
  1261. uasm_resolve_relocs(relocs, labels);
  1262. pr_debug("Wrote TLB refill handler (%u instructions).\n",
  1263. final_len);
  1264. memcpy((void *)ebase, final_handler, 0x100);
  1265. local_flush_icache_range(ebase, ebase + 0x100);
  1266. dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
  1267. }
  1268. extern u32 handle_tlbl[], handle_tlbl_end[];
  1269. extern u32 handle_tlbs[], handle_tlbs_end[];
  1270. extern u32 handle_tlbm[], handle_tlbm_end[];
  1271. extern u32 tlbmiss_handler_setup_pgd_start[], tlbmiss_handler_setup_pgd[];
  1272. extern u32 tlbmiss_handler_setup_pgd_end[];
  1273. static void build_setup_pgd(void)
  1274. {
  1275. const int a0 = 4;
  1276. const int __maybe_unused a1 = 5;
  1277. const int __maybe_unused a2 = 6;
  1278. u32 *p = tlbmiss_handler_setup_pgd_start;
  1279. const int tlbmiss_handler_setup_pgd_size =
  1280. tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd_start;
  1281. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  1282. long pgdc = (long)pgd_current;
  1283. #endif
  1284. memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
  1285. sizeof(tlbmiss_handler_setup_pgd[0]));
  1286. memset(labels, 0, sizeof(labels));
  1287. memset(relocs, 0, sizeof(relocs));
  1288. pgd_reg = allocate_kscratch();
  1289. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  1290. if (pgd_reg == -1) {
  1291. struct uasm_label *l = labels;
  1292. struct uasm_reloc *r = relocs;
  1293. /* PGD << 11 in c0_Context */
  1294. /*
  1295. * If it is a ckseg0 address, convert to a physical
  1296. * address. Shifting right by 29 and adding 4 will
  1297. * result in zero for these addresses.
  1298. *
  1299. */
  1300. UASM_i_SRA(&p, a1, a0, 29);
  1301. UASM_i_ADDIU(&p, a1, a1, 4);
  1302. uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
  1303. uasm_i_nop(&p);
  1304. uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
  1305. uasm_l_tlbl_goaround1(&l, p);
  1306. UASM_i_SLL(&p, a0, a0, 11);
  1307. uasm_i_jr(&p, 31);
  1308. UASM_i_MTC0(&p, a0, C0_CONTEXT);
  1309. } else {
  1310. /* PGD in c0_KScratch */
  1311. uasm_i_jr(&p, 31);
  1312. UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
  1313. }
  1314. #else
  1315. #ifdef CONFIG_SMP
  1316. /* Save PGD to pgd_current[smp_processor_id()] */
  1317. UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
  1318. UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
  1319. UASM_i_LA_mostly(&p, a2, pgdc);
  1320. UASM_i_ADDU(&p, a2, a2, a1);
  1321. UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
  1322. #else
  1323. UASM_i_LA_mostly(&p, a2, pgdc);
  1324. UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
  1325. #endif /* SMP */
  1326. uasm_i_jr(&p, 31);
  1327. /* if pgd_reg is allocated, save PGD also to scratch register */
  1328. if (pgd_reg != -1)
  1329. UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
  1330. else
  1331. uasm_i_nop(&p);
  1332. #endif
  1333. if (p >= tlbmiss_handler_setup_pgd_end)
  1334. panic("tlbmiss_handler_setup_pgd space exceeded");
  1335. uasm_resolve_relocs(relocs, labels);
  1336. pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
  1337. (unsigned int)(p - tlbmiss_handler_setup_pgd));
  1338. dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
  1339. tlbmiss_handler_setup_pgd_size);
  1340. }
  1341. static void
  1342. iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
  1343. {
  1344. #ifdef CONFIG_SMP
  1345. # ifdef CONFIG_PHYS_ADDR_T_64BIT
  1346. if (cpu_has_64bits)
  1347. uasm_i_lld(p, pte, 0, ptr);
  1348. else
  1349. # endif
  1350. UASM_i_LL(p, pte, 0, ptr);
  1351. #else
  1352. # ifdef CONFIG_PHYS_ADDR_T_64BIT
  1353. if (cpu_has_64bits)
  1354. uasm_i_ld(p, pte, 0, ptr);
  1355. else
  1356. # endif
  1357. UASM_i_LW(p, pte, 0, ptr);
  1358. #endif
  1359. }
  1360. static void
  1361. iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
  1362. unsigned int mode)
  1363. {
  1364. #ifdef CONFIG_PHYS_ADDR_T_64BIT
  1365. unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
  1366. #endif
  1367. uasm_i_ori(p, pte, pte, mode);
  1368. #ifdef CONFIG_SMP
  1369. # ifdef CONFIG_PHYS_ADDR_T_64BIT
  1370. if (cpu_has_64bits)
  1371. uasm_i_scd(p, pte, 0, ptr);
  1372. else
  1373. # endif
  1374. UASM_i_SC(p, pte, 0, ptr);
  1375. if (r10000_llsc_war())
  1376. uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
  1377. else
  1378. uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
  1379. # ifdef CONFIG_PHYS_ADDR_T_64BIT
  1380. if (!cpu_has_64bits) {
  1381. /* no uasm_i_nop needed */
  1382. uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
  1383. uasm_i_ori(p, pte, pte, hwmode);
  1384. uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
  1385. uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
  1386. /* no uasm_i_nop needed */
  1387. uasm_i_lw(p, pte, 0, ptr);
  1388. } else
  1389. uasm_i_nop(p);
  1390. # else
  1391. uasm_i_nop(p);
  1392. # endif
  1393. #else
  1394. # ifdef CONFIG_PHYS_ADDR_T_64BIT
  1395. if (cpu_has_64bits)
  1396. uasm_i_sd(p, pte, 0, ptr);
  1397. else
  1398. # endif
  1399. UASM_i_SW(p, pte, 0, ptr);
  1400. # ifdef CONFIG_PHYS_ADDR_T_64BIT
  1401. if (!cpu_has_64bits) {
  1402. uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
  1403. uasm_i_ori(p, pte, pte, hwmode);
  1404. uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
  1405. uasm_i_lw(p, pte, 0, ptr);
  1406. }
  1407. # endif
  1408. #endif
  1409. }
  1410. /*
  1411. * Check if PTE is present, if not then jump to LABEL. PTR points to
  1412. * the page table where this PTE is located, PTE will be re-loaded
  1413. * with it's original value.
  1414. */
  1415. static void
  1416. build_pte_present(u32 **p, struct uasm_reloc **r,
  1417. int pte, int ptr, int scratch, enum label_id lid)
  1418. {
  1419. int t = scratch >= 0 ? scratch : pte;
  1420. if (cpu_has_rixi) {
  1421. if (use_bbit_insns()) {
  1422. uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
  1423. uasm_i_nop(p);
  1424. } else {
  1425. uasm_i_andi(p, t, pte, _PAGE_PRESENT);
  1426. uasm_il_beqz(p, r, t, lid);
  1427. if (pte == t)
  1428. /* You lose the SMP race :-(*/
  1429. iPTE_LW(p, pte, ptr);
  1430. }
  1431. } else {
  1432. uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
  1433. uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
  1434. uasm_il_bnez(p, r, t, lid);
  1435. if (pte == t)
  1436. /* You lose the SMP race :-(*/
  1437. iPTE_LW(p, pte, ptr);
  1438. }
  1439. }
  1440. /* Make PTE valid, store result in PTR. */
  1441. static void
  1442. build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
  1443. unsigned int ptr)
  1444. {
  1445. unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
  1446. iPTE_SW(p, r, pte, ptr, mode);
  1447. }
  1448. /*
  1449. * Check if PTE can be written to, if not branch to LABEL. Regardless
  1450. * restore PTE with value from PTR when done.
  1451. */
  1452. static void
  1453. build_pte_writable(u32 **p, struct uasm_reloc **r,
  1454. unsigned int pte, unsigned int ptr, int scratch,
  1455. enum label_id lid)
  1456. {
  1457. int t = scratch >= 0 ? scratch : pte;
  1458. uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
  1459. uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
  1460. uasm_il_bnez(p, r, t, lid);
  1461. if (pte == t)
  1462. /* You lose the SMP race :-(*/
  1463. iPTE_LW(p, pte, ptr);
  1464. else
  1465. uasm_i_nop(p);
  1466. }
  1467. /* Make PTE writable, update software status bits as well, then store
  1468. * at PTR.
  1469. */
  1470. static void
  1471. build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
  1472. unsigned int ptr)
  1473. {
  1474. unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
  1475. | _PAGE_DIRTY);
  1476. iPTE_SW(p, r, pte, ptr, mode);
  1477. }
  1478. /*
  1479. * Check if PTE can be modified, if not branch to LABEL. Regardless
  1480. * restore PTE with value from PTR when done.
  1481. */
  1482. static void
  1483. build_pte_modifiable(u32 **p, struct uasm_reloc **r,
  1484. unsigned int pte, unsigned int ptr, int scratch,
  1485. enum label_id lid)
  1486. {
  1487. if (use_bbit_insns()) {
  1488. uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
  1489. uasm_i_nop(p);
  1490. } else {
  1491. int t = scratch >= 0 ? scratch : pte;
  1492. uasm_i_andi(p, t, pte, _PAGE_WRITE);
  1493. uasm_il_beqz(p, r, t, lid);
  1494. if (pte == t)
  1495. /* You lose the SMP race :-(*/
  1496. iPTE_LW(p, pte, ptr);
  1497. }
  1498. }
  1499. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  1500. /*
  1501. * R3000 style TLB load/store/modify handlers.
  1502. */
  1503. /*
  1504. * This places the pte into ENTRYLO0 and writes it with tlbwi.
  1505. * Then it returns.
  1506. */
  1507. static void
  1508. build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
  1509. {
  1510. uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1511. uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
  1512. uasm_i_tlbwi(p);
  1513. uasm_i_jr(p, tmp);
  1514. uasm_i_rfe(p); /* branch delay */
  1515. }
  1516. /*
  1517. * This places the pte into ENTRYLO0 and writes it with tlbwi
  1518. * or tlbwr as appropriate. This is because the index register
  1519. * may have the probe fail bit set as a result of a trap on a
  1520. * kseg2 access, i.e. without refill. Then it returns.
  1521. */
  1522. static void
  1523. build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
  1524. struct uasm_reloc **r, unsigned int pte,
  1525. unsigned int tmp)
  1526. {
  1527. uasm_i_mfc0(p, tmp, C0_INDEX);
  1528. uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1529. uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
  1530. uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
  1531. uasm_i_tlbwi(p); /* cp0 delay */
  1532. uasm_i_jr(p, tmp);
  1533. uasm_i_rfe(p); /* branch delay */
  1534. uasm_l_r3000_write_probe_fail(l, *p);
  1535. uasm_i_tlbwr(p); /* cp0 delay */
  1536. uasm_i_jr(p, tmp);
  1537. uasm_i_rfe(p); /* branch delay */
  1538. }
  1539. static void
  1540. build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
  1541. unsigned int ptr)
  1542. {
  1543. long pgdc = (long)pgd_current;
  1544. uasm_i_mfc0(p, pte, C0_BADVADDR);
  1545. uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
  1546. uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
  1547. uasm_i_srl(p, pte, pte, 22); /* load delay */
  1548. uasm_i_sll(p, pte, pte, 2);
  1549. uasm_i_addu(p, ptr, ptr, pte);
  1550. uasm_i_mfc0(p, pte, C0_CONTEXT);
  1551. uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
  1552. uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
  1553. uasm_i_addu(p, ptr, ptr, pte);
  1554. uasm_i_lw(p, pte, 0, ptr);
  1555. uasm_i_tlbp(p); /* load delay */
  1556. }
  1557. static void build_r3000_tlb_load_handler(void)
  1558. {
  1559. u32 *p = handle_tlbl;
  1560. const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
  1561. struct uasm_label *l = labels;
  1562. struct uasm_reloc *r = relocs;
  1563. memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
  1564. memset(labels, 0, sizeof(labels));
  1565. memset(relocs, 0, sizeof(relocs));
  1566. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1567. build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
  1568. uasm_i_nop(&p); /* load delay */
  1569. build_make_valid(&p, &r, K0, K1);
  1570. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1571. uasm_l_nopage_tlbl(&l, p);
  1572. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1573. uasm_i_nop(&p);
  1574. if (p >= handle_tlbl_end)
  1575. panic("TLB load handler fastpath space exceeded");
  1576. uasm_resolve_relocs(relocs, labels);
  1577. pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
  1578. (unsigned int)(p - handle_tlbl));
  1579. dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
  1580. }
  1581. static void build_r3000_tlb_store_handler(void)
  1582. {
  1583. u32 *p = handle_tlbs;
  1584. const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
  1585. struct uasm_label *l = labels;
  1586. struct uasm_reloc *r = relocs;
  1587. memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
  1588. memset(labels, 0, sizeof(labels));
  1589. memset(relocs, 0, sizeof(relocs));
  1590. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1591. build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
  1592. uasm_i_nop(&p); /* load delay */
  1593. build_make_write(&p, &r, K0, K1);
  1594. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1595. uasm_l_nopage_tlbs(&l, p);
  1596. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1597. uasm_i_nop(&p);
  1598. if (p >= handle_tlbs_end)
  1599. panic("TLB store handler fastpath space exceeded");
  1600. uasm_resolve_relocs(relocs, labels);
  1601. pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
  1602. (unsigned int)(p - handle_tlbs));
  1603. dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
  1604. }
  1605. static void build_r3000_tlb_modify_handler(void)
  1606. {
  1607. u32 *p = handle_tlbm;
  1608. const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
  1609. struct uasm_label *l = labels;
  1610. struct uasm_reloc *r = relocs;
  1611. memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
  1612. memset(labels, 0, sizeof(labels));
  1613. memset(relocs, 0, sizeof(relocs));
  1614. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1615. build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
  1616. uasm_i_nop(&p); /* load delay */
  1617. build_make_write(&p, &r, K0, K1);
  1618. build_r3000_pte_reload_tlbwi(&p, K0, K1);
  1619. uasm_l_nopage_tlbm(&l, p);
  1620. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1621. uasm_i_nop(&p);
  1622. if (p >= handle_tlbm_end)
  1623. panic("TLB modify handler fastpath space exceeded");
  1624. uasm_resolve_relocs(relocs, labels);
  1625. pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
  1626. (unsigned int)(p - handle_tlbm));
  1627. dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
  1628. }
  1629. #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
  1630. /*
  1631. * R4000 style TLB load/store/modify handlers.
  1632. */
  1633. static struct work_registers
  1634. build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
  1635. struct uasm_reloc **r)
  1636. {
  1637. struct work_registers wr = build_get_work_registers(p);
  1638. #ifdef CONFIG_64BIT
  1639. build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
  1640. #else
  1641. build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
  1642. #endif
  1643. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1644. /*
  1645. * For huge tlb entries, pmd doesn't contain an address but
  1646. * instead contains the tlb pte. Check the PAGE_HUGE bit and
  1647. * see if we need to jump to huge tlb processing.
  1648. */
  1649. build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
  1650. #endif
  1651. UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
  1652. UASM_i_LW(p, wr.r2, 0, wr.r2);
  1653. UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
  1654. uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
  1655. UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
  1656. #ifdef CONFIG_SMP
  1657. uasm_l_smp_pgtable_change(l, *p);
  1658. #endif
  1659. iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
  1660. if (!m4kc_tlbp_war()) {
  1661. build_tlb_probe_entry(p);
  1662. if (cpu_has_htw) {
  1663. /* race condition happens, leaving */
  1664. uasm_i_ehb(p);
  1665. uasm_i_mfc0(p, wr.r3, C0_INDEX);
  1666. uasm_il_bltz(p, r, wr.r3, label_leave);
  1667. uasm_i_nop(p);
  1668. }
  1669. }
  1670. return wr;
  1671. }
  1672. static void
  1673. build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
  1674. struct uasm_reloc **r, unsigned int tmp,
  1675. unsigned int ptr)
  1676. {
  1677. uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
  1678. uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
  1679. build_update_entries(p, tmp, ptr);
  1680. build_tlb_write_entry(p, l, r, tlb_indexed);
  1681. uasm_l_leave(l, *p);
  1682. build_restore_work_registers(p);
  1683. uasm_i_eret(p); /* return from trap */
  1684. #ifdef CONFIG_64BIT
  1685. build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
  1686. #endif
  1687. }
  1688. static void build_r4000_tlb_load_handler(void)
  1689. {
  1690. u32 *p = handle_tlbl;
  1691. const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
  1692. struct uasm_label *l = labels;
  1693. struct uasm_reloc *r = relocs;
  1694. struct work_registers wr;
  1695. memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
  1696. memset(labels, 0, sizeof(labels));
  1697. memset(relocs, 0, sizeof(relocs));
  1698. if (bcm1250_m3_war()) {
  1699. unsigned int segbits = 44;
  1700. uasm_i_dmfc0(&p, K0, C0_BADVADDR);
  1701. uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
  1702. uasm_i_xor(&p, K0, K0, K1);
  1703. uasm_i_dsrl_safe(&p, K1, K0, 62);
  1704. uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
  1705. uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
  1706. uasm_i_or(&p, K0, K0, K1);
  1707. uasm_il_bnez(&p, &r, K0, label_leave);
  1708. /* No need for uasm_i_nop */
  1709. }
  1710. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1711. build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
  1712. if (m4kc_tlbp_war())
  1713. build_tlb_probe_entry(&p);
  1714. if (cpu_has_rixi && !cpu_has_rixiex) {
  1715. /*
  1716. * If the page is not _PAGE_VALID, RI or XI could not
  1717. * have triggered it. Skip the expensive test..
  1718. */
  1719. if (use_bbit_insns()) {
  1720. uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
  1721. label_tlbl_goaround1);
  1722. } else {
  1723. uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
  1724. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
  1725. }
  1726. uasm_i_nop(&p);
  1727. uasm_i_tlbr(&p);
  1728. switch (current_cpu_type()) {
  1729. default:
  1730. if (cpu_has_mips_r2_exec_hazard) {
  1731. uasm_i_ehb(&p);
  1732. case CPU_CAVIUM_OCTEON:
  1733. case CPU_CAVIUM_OCTEON_PLUS:
  1734. case CPU_CAVIUM_OCTEON2:
  1735. break;
  1736. }
  1737. }
  1738. /* Examine entrylo 0 or 1 based on ptr. */
  1739. if (use_bbit_insns()) {
  1740. uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
  1741. } else {
  1742. uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
  1743. uasm_i_beqz(&p, wr.r3, 8);
  1744. }
  1745. /* load it in the delay slot*/
  1746. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
  1747. /* load it if ptr is odd */
  1748. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
  1749. /*
  1750. * If the entryLo (now in wr.r3) is valid (bit 1), RI or
  1751. * XI must have triggered it.
  1752. */
  1753. if (use_bbit_insns()) {
  1754. uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
  1755. uasm_i_nop(&p);
  1756. uasm_l_tlbl_goaround1(&l, p);
  1757. } else {
  1758. uasm_i_andi(&p, wr.r3, wr.r3, 2);
  1759. uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
  1760. uasm_i_nop(&p);
  1761. }
  1762. uasm_l_tlbl_goaround1(&l, p);
  1763. }
  1764. build_make_valid(&p, &r, wr.r1, wr.r2);
  1765. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1766. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1767. /*
  1768. * This is the entry point when build_r4000_tlbchange_handler_head
  1769. * spots a huge page.
  1770. */
  1771. uasm_l_tlb_huge_update(&l, p);
  1772. iPTE_LW(&p, wr.r1, wr.r2);
  1773. build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
  1774. build_tlb_probe_entry(&p);
  1775. if (cpu_has_rixi && !cpu_has_rixiex) {
  1776. /*
  1777. * If the page is not _PAGE_VALID, RI or XI could not
  1778. * have triggered it. Skip the expensive test..
  1779. */
  1780. if (use_bbit_insns()) {
  1781. uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
  1782. label_tlbl_goaround2);
  1783. } else {
  1784. uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
  1785. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
  1786. }
  1787. uasm_i_nop(&p);
  1788. uasm_i_tlbr(&p);
  1789. switch (current_cpu_type()) {
  1790. default:
  1791. if (cpu_has_mips_r2_exec_hazard) {
  1792. uasm_i_ehb(&p);
  1793. case CPU_CAVIUM_OCTEON:
  1794. case CPU_CAVIUM_OCTEON_PLUS:
  1795. case CPU_CAVIUM_OCTEON2:
  1796. break;
  1797. }
  1798. }
  1799. /* Examine entrylo 0 or 1 based on ptr. */
  1800. if (use_bbit_insns()) {
  1801. uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
  1802. } else {
  1803. uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
  1804. uasm_i_beqz(&p, wr.r3, 8);
  1805. }
  1806. /* load it in the delay slot*/
  1807. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
  1808. /* load it if ptr is odd */
  1809. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
  1810. /*
  1811. * If the entryLo (now in wr.r3) is valid (bit 1), RI or
  1812. * XI must have triggered it.
  1813. */
  1814. if (use_bbit_insns()) {
  1815. uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
  1816. } else {
  1817. uasm_i_andi(&p, wr.r3, wr.r3, 2);
  1818. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
  1819. }
  1820. if (PM_DEFAULT_MASK == 0)
  1821. uasm_i_nop(&p);
  1822. /*
  1823. * We clobbered C0_PAGEMASK, restore it. On the other branch
  1824. * it is restored in build_huge_tlb_write_entry.
  1825. */
  1826. build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
  1827. uasm_l_tlbl_goaround2(&l, p);
  1828. }
  1829. uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
  1830. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1831. #endif
  1832. uasm_l_nopage_tlbl(&l, p);
  1833. build_restore_work_registers(&p);
  1834. #ifdef CONFIG_CPU_MICROMIPS
  1835. if ((unsigned long)tlb_do_page_fault_0 & 1) {
  1836. uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
  1837. uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
  1838. uasm_i_jr(&p, K0);
  1839. } else
  1840. #endif
  1841. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1842. uasm_i_nop(&p);
  1843. if (p >= handle_tlbl_end)
  1844. panic("TLB load handler fastpath space exceeded");
  1845. uasm_resolve_relocs(relocs, labels);
  1846. pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
  1847. (unsigned int)(p - handle_tlbl));
  1848. dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
  1849. }
  1850. static void build_r4000_tlb_store_handler(void)
  1851. {
  1852. u32 *p = handle_tlbs;
  1853. const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
  1854. struct uasm_label *l = labels;
  1855. struct uasm_reloc *r = relocs;
  1856. struct work_registers wr;
  1857. memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
  1858. memset(labels, 0, sizeof(labels));
  1859. memset(relocs, 0, sizeof(relocs));
  1860. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1861. build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
  1862. if (m4kc_tlbp_war())
  1863. build_tlb_probe_entry(&p);
  1864. build_make_write(&p, &r, wr.r1, wr.r2);
  1865. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1866. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1867. /*
  1868. * This is the entry point when
  1869. * build_r4000_tlbchange_handler_head spots a huge page.
  1870. */
  1871. uasm_l_tlb_huge_update(&l, p);
  1872. iPTE_LW(&p, wr.r1, wr.r2);
  1873. build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
  1874. build_tlb_probe_entry(&p);
  1875. uasm_i_ori(&p, wr.r1, wr.r1,
  1876. _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
  1877. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1878. #endif
  1879. uasm_l_nopage_tlbs(&l, p);
  1880. build_restore_work_registers(&p);
  1881. #ifdef CONFIG_CPU_MICROMIPS
  1882. if ((unsigned long)tlb_do_page_fault_1 & 1) {
  1883. uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
  1884. uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
  1885. uasm_i_jr(&p, K0);
  1886. } else
  1887. #endif
  1888. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1889. uasm_i_nop(&p);
  1890. if (p >= handle_tlbs_end)
  1891. panic("TLB store handler fastpath space exceeded");
  1892. uasm_resolve_relocs(relocs, labels);
  1893. pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
  1894. (unsigned int)(p - handle_tlbs));
  1895. dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
  1896. }
  1897. static void build_r4000_tlb_modify_handler(void)
  1898. {
  1899. u32 *p = handle_tlbm;
  1900. const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
  1901. struct uasm_label *l = labels;
  1902. struct uasm_reloc *r = relocs;
  1903. struct work_registers wr;
  1904. memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
  1905. memset(labels, 0, sizeof(labels));
  1906. memset(relocs, 0, sizeof(relocs));
  1907. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1908. build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
  1909. if (m4kc_tlbp_war())
  1910. build_tlb_probe_entry(&p);
  1911. /* Present and writable bits set, set accessed and dirty bits. */
  1912. build_make_write(&p, &r, wr.r1, wr.r2);
  1913. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1914. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1915. /*
  1916. * This is the entry point when
  1917. * build_r4000_tlbchange_handler_head spots a huge page.
  1918. */
  1919. uasm_l_tlb_huge_update(&l, p);
  1920. iPTE_LW(&p, wr.r1, wr.r2);
  1921. build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
  1922. build_tlb_probe_entry(&p);
  1923. uasm_i_ori(&p, wr.r1, wr.r1,
  1924. _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
  1925. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1926. #endif
  1927. uasm_l_nopage_tlbm(&l, p);
  1928. build_restore_work_registers(&p);
  1929. #ifdef CONFIG_CPU_MICROMIPS
  1930. if ((unsigned long)tlb_do_page_fault_1 & 1) {
  1931. uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
  1932. uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
  1933. uasm_i_jr(&p, K0);
  1934. } else
  1935. #endif
  1936. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1937. uasm_i_nop(&p);
  1938. if (p >= handle_tlbm_end)
  1939. panic("TLB modify handler fastpath space exceeded");
  1940. uasm_resolve_relocs(relocs, labels);
  1941. pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
  1942. (unsigned int)(p - handle_tlbm));
  1943. dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
  1944. }
  1945. static void flush_tlb_handlers(void)
  1946. {
  1947. local_flush_icache_range((unsigned long)handle_tlbl,
  1948. (unsigned long)handle_tlbl_end);
  1949. local_flush_icache_range((unsigned long)handle_tlbs,
  1950. (unsigned long)handle_tlbs_end);
  1951. local_flush_icache_range((unsigned long)handle_tlbm,
  1952. (unsigned long)handle_tlbm_end);
  1953. local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
  1954. (unsigned long)tlbmiss_handler_setup_pgd_end);
  1955. }
  1956. static void print_htw_config(void)
  1957. {
  1958. unsigned long config;
  1959. unsigned int pwctl;
  1960. const int field = 2 * sizeof(unsigned long);
  1961. config = read_c0_pwfield();
  1962. pr_debug("PWField (0x%0*lx): GDI: 0x%02lx UDI: 0x%02lx MDI: 0x%02lx PTI: 0x%02lx PTEI: 0x%02lx\n",
  1963. field, config,
  1964. (config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
  1965. (config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
  1966. (config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
  1967. (config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
  1968. (config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
  1969. config = read_c0_pwsize();
  1970. pr_debug("PWSize (0x%0*lx): GDW: 0x%02lx UDW: 0x%02lx MDW: 0x%02lx PTW: 0x%02lx PTEW: 0x%02lx\n",
  1971. field, config,
  1972. (config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
  1973. (config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
  1974. (config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
  1975. (config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
  1976. (config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
  1977. pwctl = read_c0_pwctl();
  1978. pr_debug("PWCtl (0x%x): PWEn: 0x%x DPH: 0x%x HugePg: 0x%x Psn: 0x%x\n",
  1979. pwctl,
  1980. (pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
  1981. (pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
  1982. (pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
  1983. (pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
  1984. }
  1985. static void config_htw_params(void)
  1986. {
  1987. unsigned long pwfield, pwsize, ptei;
  1988. unsigned int config;
  1989. /*
  1990. * We are using 2-level page tables, so we only need to
  1991. * setup GDW and PTW appropriately. UDW and MDW will remain 0.
  1992. * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
  1993. * write values less than 0xc in these fields because the entire
  1994. * write will be dropped. As a result of which, we must preserve
  1995. * the original reset values and overwrite only what we really want.
  1996. */
  1997. pwfield = read_c0_pwfield();
  1998. /* re-initialize the GDI field */
  1999. pwfield &= ~MIPS_PWFIELD_GDI_MASK;
  2000. pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
  2001. /* re-initialize the PTI field including the even/odd bit */
  2002. pwfield &= ~MIPS_PWFIELD_PTI_MASK;
  2003. pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
  2004. /* Set the PTEI right shift */
  2005. ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
  2006. pwfield |= ptei;
  2007. write_c0_pwfield(pwfield);
  2008. /* Check whether the PTEI value is supported */
  2009. back_to_back_c0_hazard();
  2010. pwfield = read_c0_pwfield();
  2011. if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
  2012. != ptei) {
  2013. pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
  2014. ptei);
  2015. /*
  2016. * Drop option to avoid HTW being enabled via another path
  2017. * (eg htw_reset())
  2018. */
  2019. current_cpu_data.options &= ~MIPS_CPU_HTW;
  2020. return;
  2021. }
  2022. pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
  2023. pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
  2024. write_c0_pwsize(pwsize);
  2025. /* Make sure everything is set before we enable the HTW */
  2026. back_to_back_c0_hazard();
  2027. /* Enable HTW and disable the rest of the pwctl fields */
  2028. config = 1 << MIPS_PWCTL_PWEN_SHIFT;
  2029. write_c0_pwctl(config);
  2030. pr_info("Hardware Page Table Walker enabled\n");
  2031. print_htw_config();
  2032. }
  2033. void build_tlb_refill_handler(void)
  2034. {
  2035. /*
  2036. * The refill handler is generated per-CPU, multi-node systems
  2037. * may have local storage for it. The other handlers are only
  2038. * needed once.
  2039. */
  2040. static int run_once = 0;
  2041. output_pgtable_bits_defines();
  2042. #ifdef CONFIG_64BIT
  2043. check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  2044. #endif
  2045. switch (current_cpu_type()) {
  2046. case CPU_R2000:
  2047. case CPU_R3000:
  2048. case CPU_R3000A:
  2049. case CPU_R3081E:
  2050. case CPU_TX3912:
  2051. case CPU_TX3922:
  2052. case CPU_TX3927:
  2053. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  2054. if (cpu_has_local_ebase)
  2055. build_r3000_tlb_refill_handler();
  2056. if (!run_once) {
  2057. if (!cpu_has_local_ebase)
  2058. build_r3000_tlb_refill_handler();
  2059. build_setup_pgd();
  2060. build_r3000_tlb_load_handler();
  2061. build_r3000_tlb_store_handler();
  2062. build_r3000_tlb_modify_handler();
  2063. flush_tlb_handlers();
  2064. run_once++;
  2065. }
  2066. #else
  2067. panic("No R3000 TLB refill handler");
  2068. #endif
  2069. break;
  2070. case CPU_R6000:
  2071. case CPU_R6000A:
  2072. panic("No R6000 TLB refill handler yet");
  2073. break;
  2074. case CPU_R8000:
  2075. panic("No R8000 TLB refill handler yet");
  2076. break;
  2077. default:
  2078. if (!run_once) {
  2079. scratch_reg = allocate_kscratch();
  2080. build_setup_pgd();
  2081. build_r4000_tlb_load_handler();
  2082. build_r4000_tlb_store_handler();
  2083. build_r4000_tlb_modify_handler();
  2084. if (!cpu_has_local_ebase)
  2085. build_r4000_tlb_refill_handler();
  2086. flush_tlb_handlers();
  2087. run_once++;
  2088. }
  2089. if (cpu_has_local_ebase)
  2090. build_r4000_tlb_refill_handler();
  2091. if (cpu_has_htw)
  2092. config_htw_params();
  2093. }
  2094. }