pci.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820
  1. /*
  2. * pci.c - Low-Level PCI Access in IA-64
  3. *
  4. * Derived from bios32.c of i386 tree.
  5. *
  6. * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
  7. * David Mosberger-Tang <davidm@hpl.hp.com>
  8. * Bjorn Helgaas <bjorn.helgaas@hp.com>
  9. * Copyright (C) 2004 Silicon Graphics, Inc.
  10. *
  11. * Note: Above list of copyright holders is incomplete...
  12. */
  13. #include <linux/acpi.h>
  14. #include <linux/types.h>
  15. #include <linux/kernel.h>
  16. #include <linux/pci.h>
  17. #include <linux/pci-acpi.h>
  18. #include <linux/init.h>
  19. #include <linux/ioport.h>
  20. #include <linux/slab.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/export.h>
  24. #include <asm/machvec.h>
  25. #include <asm/page.h>
  26. #include <asm/io.h>
  27. #include <asm/sal.h>
  28. #include <asm/smp.h>
  29. #include <asm/irq.h>
  30. #include <asm/hw_irq.h>
  31. /*
  32. * Low-level SAL-based PCI configuration access functions. Note that SAL
  33. * calls are already serialized (via sal_lock), so we don't need another
  34. * synchronization mechanism here.
  35. */
  36. #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
  37. (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
  38. /* SAL 3.2 adds support for extended config space. */
  39. #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
  40. (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
  41. int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
  42. int reg, int len, u32 *value)
  43. {
  44. u64 addr, data = 0;
  45. int mode, result;
  46. if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
  47. return -EINVAL;
  48. if ((seg | reg) <= 255) {
  49. addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
  50. mode = 0;
  51. } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
  52. addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
  53. mode = 1;
  54. } else {
  55. return -EINVAL;
  56. }
  57. result = ia64_sal_pci_config_read(addr, mode, len, &data);
  58. if (result != 0)
  59. return -EINVAL;
  60. *value = (u32) data;
  61. return 0;
  62. }
  63. int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
  64. int reg, int len, u32 value)
  65. {
  66. u64 addr;
  67. int mode, result;
  68. if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
  69. return -EINVAL;
  70. if ((seg | reg) <= 255) {
  71. addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
  72. mode = 0;
  73. } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
  74. addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
  75. mode = 1;
  76. } else {
  77. return -EINVAL;
  78. }
  79. result = ia64_sal_pci_config_write(addr, mode, len, value);
  80. if (result != 0)
  81. return -EINVAL;
  82. return 0;
  83. }
  84. static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
  85. int size, u32 *value)
  86. {
  87. return raw_pci_read(pci_domain_nr(bus), bus->number,
  88. devfn, where, size, value);
  89. }
  90. static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
  91. int size, u32 value)
  92. {
  93. return raw_pci_write(pci_domain_nr(bus), bus->number,
  94. devfn, where, size, value);
  95. }
  96. struct pci_ops pci_root_ops = {
  97. .read = pci_read,
  98. .write = pci_write,
  99. };
  100. /* Called by ACPI when it finds a new root bus. */
  101. static struct pci_controller *alloc_pci_controller(int seg)
  102. {
  103. struct pci_controller *controller;
  104. controller = kzalloc(sizeof(*controller), GFP_KERNEL);
  105. if (!controller)
  106. return NULL;
  107. controller->segment = seg;
  108. return controller;
  109. }
  110. struct pci_root_info {
  111. struct acpi_device *bridge;
  112. struct pci_controller *controller;
  113. struct list_head resources;
  114. struct resource *res;
  115. resource_size_t *res_offset;
  116. unsigned int res_num;
  117. struct list_head io_resources;
  118. char *name;
  119. };
  120. static unsigned int
  121. new_space (u64 phys_base, int sparse)
  122. {
  123. u64 mmio_base;
  124. int i;
  125. if (phys_base == 0)
  126. return 0; /* legacy I/O port space */
  127. mmio_base = (u64) ioremap(phys_base, 0);
  128. for (i = 0; i < num_io_spaces; i++)
  129. if (io_space[i].mmio_base == mmio_base &&
  130. io_space[i].sparse == sparse)
  131. return i;
  132. if (num_io_spaces == MAX_IO_SPACES) {
  133. pr_err("PCI: Too many IO port spaces "
  134. "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
  135. return ~0;
  136. }
  137. i = num_io_spaces++;
  138. io_space[i].mmio_base = mmio_base;
  139. io_space[i].sparse = sparse;
  140. return i;
  141. }
  142. static u64 add_io_space(struct pci_root_info *info,
  143. struct acpi_resource_address64 *addr)
  144. {
  145. struct iospace_resource *iospace;
  146. struct resource *resource;
  147. char *name;
  148. unsigned long base, min, max, base_port;
  149. unsigned int sparse = 0, space_nr, len;
  150. len = strlen(info->name) + 32;
  151. iospace = kzalloc(sizeof(*iospace) + len, GFP_KERNEL);
  152. if (!iospace) {
  153. dev_err(&info->bridge->dev,
  154. "PCI: No memory for %s I/O port space\n",
  155. info->name);
  156. goto out;
  157. }
  158. name = (char *)(iospace + 1);
  159. min = addr->address.minimum;
  160. max = min + addr->address.address_length - 1;
  161. if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
  162. sparse = 1;
  163. space_nr = new_space(addr->address.translation_offset, sparse);
  164. if (space_nr == ~0)
  165. goto free_resource;
  166. base = __pa(io_space[space_nr].mmio_base);
  167. base_port = IO_SPACE_BASE(space_nr);
  168. snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
  169. base_port + min, base_port + max);
  170. /*
  171. * The SDM guarantees the legacy 0-64K space is sparse, but if the
  172. * mapping is done by the processor (not the bridge), ACPI may not
  173. * mark it as sparse.
  174. */
  175. if (space_nr == 0)
  176. sparse = 1;
  177. resource = &iospace->res;
  178. resource->name = name;
  179. resource->flags = IORESOURCE_MEM;
  180. resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
  181. resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
  182. if (insert_resource(&iomem_resource, resource)) {
  183. dev_err(&info->bridge->dev,
  184. "can't allocate host bridge io space resource %pR\n",
  185. resource);
  186. goto free_resource;
  187. }
  188. list_add_tail(&iospace->list, &info->io_resources);
  189. return base_port;
  190. free_resource:
  191. kfree(iospace);
  192. out:
  193. return ~0;
  194. }
  195. static acpi_status resource_to_window(struct acpi_resource *resource,
  196. struct acpi_resource_address64 *addr)
  197. {
  198. acpi_status status;
  199. /*
  200. * We're only interested in _CRS descriptors that are
  201. * - address space descriptors for memory or I/O space
  202. * - non-zero size
  203. * - producers, i.e., the address space is routed downstream,
  204. * not consumed by the bridge itself
  205. */
  206. status = acpi_resource_to_address64(resource, addr);
  207. if (ACPI_SUCCESS(status) &&
  208. (addr->resource_type == ACPI_MEMORY_RANGE ||
  209. addr->resource_type == ACPI_IO_RANGE) &&
  210. addr->address.address_length &&
  211. addr->producer_consumer == ACPI_PRODUCER)
  212. return AE_OK;
  213. return AE_ERROR;
  214. }
  215. static acpi_status count_window(struct acpi_resource *resource, void *data)
  216. {
  217. unsigned int *windows = (unsigned int *) data;
  218. struct acpi_resource_address64 addr;
  219. acpi_status status;
  220. status = resource_to_window(resource, &addr);
  221. if (ACPI_SUCCESS(status))
  222. (*windows)++;
  223. return AE_OK;
  224. }
  225. static acpi_status add_window(struct acpi_resource *res, void *data)
  226. {
  227. struct pci_root_info *info = data;
  228. struct resource *resource;
  229. struct acpi_resource_address64 addr;
  230. acpi_status status;
  231. unsigned long flags, offset = 0;
  232. struct resource *root;
  233. /* Return AE_OK for non-window resources to keep scanning for more */
  234. status = resource_to_window(res, &addr);
  235. if (!ACPI_SUCCESS(status))
  236. return AE_OK;
  237. if (addr.resource_type == ACPI_MEMORY_RANGE) {
  238. flags = IORESOURCE_MEM;
  239. root = &iomem_resource;
  240. offset = addr.address.translation_offset;
  241. } else if (addr.resource_type == ACPI_IO_RANGE) {
  242. flags = IORESOURCE_IO;
  243. root = &ioport_resource;
  244. offset = add_io_space(info, &addr);
  245. if (offset == ~0)
  246. return AE_OK;
  247. } else
  248. return AE_OK;
  249. resource = &info->res[info->res_num];
  250. resource->name = info->name;
  251. resource->flags = flags;
  252. resource->start = addr.address.minimum + offset;
  253. resource->end = resource->start + addr.address.address_length - 1;
  254. info->res_offset[info->res_num] = offset;
  255. if (insert_resource(root, resource)) {
  256. dev_err(&info->bridge->dev,
  257. "can't allocate host bridge window %pR\n",
  258. resource);
  259. } else {
  260. if (offset)
  261. dev_info(&info->bridge->dev, "host bridge window %pR "
  262. "(PCI address [%#llx-%#llx])\n",
  263. resource,
  264. resource->start - offset,
  265. resource->end - offset);
  266. else
  267. dev_info(&info->bridge->dev,
  268. "host bridge window %pR\n", resource);
  269. }
  270. /* HP's firmware has a hack to work around a Windows bug.
  271. * Ignore these tiny memory ranges */
  272. if (!((resource->flags & IORESOURCE_MEM) &&
  273. (resource->end - resource->start < 16)))
  274. pci_add_resource_offset(&info->resources, resource,
  275. info->res_offset[info->res_num]);
  276. info->res_num++;
  277. return AE_OK;
  278. }
  279. static void free_pci_root_info_res(struct pci_root_info *info)
  280. {
  281. struct iospace_resource *iospace, *tmp;
  282. list_for_each_entry_safe(iospace, tmp, &info->io_resources, list)
  283. kfree(iospace);
  284. kfree(info->name);
  285. kfree(info->res);
  286. info->res = NULL;
  287. kfree(info->res_offset);
  288. info->res_offset = NULL;
  289. info->res_num = 0;
  290. kfree(info->controller);
  291. info->controller = NULL;
  292. }
  293. static void __release_pci_root_info(struct pci_root_info *info)
  294. {
  295. int i;
  296. struct resource *res;
  297. struct iospace_resource *iospace;
  298. list_for_each_entry(iospace, &info->io_resources, list)
  299. release_resource(&iospace->res);
  300. for (i = 0; i < info->res_num; i++) {
  301. res = &info->res[i];
  302. if (!res->parent)
  303. continue;
  304. if (!(res->flags & (IORESOURCE_MEM | IORESOURCE_IO)))
  305. continue;
  306. release_resource(res);
  307. }
  308. free_pci_root_info_res(info);
  309. kfree(info);
  310. }
  311. static void release_pci_root_info(struct pci_host_bridge *bridge)
  312. {
  313. struct pci_root_info *info = bridge->release_data;
  314. __release_pci_root_info(info);
  315. }
  316. static int
  317. probe_pci_root_info(struct pci_root_info *info, struct acpi_device *device,
  318. int busnum, int domain)
  319. {
  320. char *name;
  321. name = kmalloc(16, GFP_KERNEL);
  322. if (!name)
  323. return -ENOMEM;
  324. sprintf(name, "PCI Bus %04x:%02x", domain, busnum);
  325. info->bridge = device;
  326. info->name = name;
  327. acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
  328. &info->res_num);
  329. if (info->res_num) {
  330. info->res =
  331. kzalloc_node(sizeof(*info->res) * info->res_num,
  332. GFP_KERNEL, info->controller->node);
  333. if (!info->res) {
  334. kfree(name);
  335. return -ENOMEM;
  336. }
  337. info->res_offset =
  338. kzalloc_node(sizeof(*info->res_offset) * info->res_num,
  339. GFP_KERNEL, info->controller->node);
  340. if (!info->res_offset) {
  341. kfree(name);
  342. kfree(info->res);
  343. info->res = NULL;
  344. return -ENOMEM;
  345. }
  346. info->res_num = 0;
  347. acpi_walk_resources(device->handle, METHOD_NAME__CRS,
  348. add_window, info);
  349. } else
  350. kfree(name);
  351. return 0;
  352. }
  353. struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root)
  354. {
  355. struct acpi_device *device = root->device;
  356. int domain = root->segment;
  357. int bus = root->secondary.start;
  358. struct pci_controller *controller;
  359. struct pci_root_info *info = NULL;
  360. int busnum = root->secondary.start;
  361. struct pci_bus *pbus;
  362. int ret;
  363. controller = alloc_pci_controller(domain);
  364. if (!controller)
  365. return NULL;
  366. controller->companion = device;
  367. controller->node = acpi_get_node(device->handle);
  368. info = kzalloc(sizeof(*info), GFP_KERNEL);
  369. if (!info) {
  370. dev_err(&device->dev,
  371. "pci_bus %04x:%02x: ignored (out of memory)\n",
  372. domain, busnum);
  373. kfree(controller);
  374. return NULL;
  375. }
  376. info->controller = controller;
  377. INIT_LIST_HEAD(&info->io_resources);
  378. INIT_LIST_HEAD(&info->resources);
  379. ret = probe_pci_root_info(info, device, busnum, domain);
  380. if (ret) {
  381. kfree(info->controller);
  382. kfree(info);
  383. return NULL;
  384. }
  385. /* insert busn resource at first */
  386. pci_add_resource(&info->resources, &root->secondary);
  387. /*
  388. * See arch/x86/pci/acpi.c.
  389. * The desired pci bus might already be scanned in a quirk. We
  390. * should handle the case here, but it appears that IA64 hasn't
  391. * such quirk. So we just ignore the case now.
  392. */
  393. pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller,
  394. &info->resources);
  395. if (!pbus) {
  396. pci_free_resource_list(&info->resources);
  397. __release_pci_root_info(info);
  398. return NULL;
  399. }
  400. pci_set_host_bridge_release(to_pci_host_bridge(pbus->bridge),
  401. release_pci_root_info, info);
  402. pci_scan_child_bus(pbus);
  403. return pbus;
  404. }
  405. int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
  406. {
  407. struct pci_controller *controller = bridge->bus->sysdata;
  408. ACPI_COMPANION_SET(&bridge->dev, controller->companion);
  409. return 0;
  410. }
  411. void pcibios_fixup_device_resources(struct pci_dev *dev)
  412. {
  413. int idx;
  414. if (!dev->bus)
  415. return;
  416. for (idx = 0; idx < PCI_BRIDGE_RESOURCES; idx++) {
  417. struct resource *r = &dev->resource[idx];
  418. if (!r->flags || r->parent || !r->start)
  419. continue;
  420. pci_claim_resource(dev, idx);
  421. }
  422. }
  423. EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
  424. static void pcibios_fixup_bridge_resources(struct pci_dev *dev)
  425. {
  426. int idx;
  427. if (!dev->bus)
  428. return;
  429. for (idx = PCI_BRIDGE_RESOURCES; idx < PCI_NUM_RESOURCES; idx++) {
  430. struct resource *r = &dev->resource[idx];
  431. if (!r->flags || r->parent || !r->start)
  432. continue;
  433. pci_claim_bridge_resource(dev, idx);
  434. }
  435. }
  436. /*
  437. * Called after each bus is probed, but before its children are examined.
  438. */
  439. void pcibios_fixup_bus(struct pci_bus *b)
  440. {
  441. struct pci_dev *dev;
  442. if (b->self) {
  443. pci_read_bridge_bases(b);
  444. pcibios_fixup_bridge_resources(b->self);
  445. }
  446. list_for_each_entry(dev, &b->devices, bus_list)
  447. pcibios_fixup_device_resources(dev);
  448. platform_pci_fixup_bus(b);
  449. }
  450. void pcibios_add_bus(struct pci_bus *bus)
  451. {
  452. acpi_pci_add_bus(bus);
  453. }
  454. void pcibios_remove_bus(struct pci_bus *bus)
  455. {
  456. acpi_pci_remove_bus(bus);
  457. }
  458. void pcibios_set_master (struct pci_dev *dev)
  459. {
  460. /* No special bus mastering setup handling */
  461. }
  462. int
  463. pcibios_enable_device (struct pci_dev *dev, int mask)
  464. {
  465. int ret;
  466. ret = pci_enable_resources(dev, mask);
  467. if (ret < 0)
  468. return ret;
  469. if (!dev->msi_enabled)
  470. return acpi_pci_irq_enable(dev);
  471. return 0;
  472. }
  473. void
  474. pcibios_disable_device (struct pci_dev *dev)
  475. {
  476. BUG_ON(atomic_read(&dev->enable_cnt));
  477. if (!dev->msi_enabled)
  478. acpi_pci_irq_disable(dev);
  479. }
  480. resource_size_t
  481. pcibios_align_resource (void *data, const struct resource *res,
  482. resource_size_t size, resource_size_t align)
  483. {
  484. return res->start;
  485. }
  486. int
  487. pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
  488. enum pci_mmap_state mmap_state, int write_combine)
  489. {
  490. unsigned long size = vma->vm_end - vma->vm_start;
  491. pgprot_t prot;
  492. /*
  493. * I/O space cannot be accessed via normal processor loads and
  494. * stores on this platform.
  495. */
  496. if (mmap_state == pci_mmap_io)
  497. /*
  498. * XXX we could relax this for I/O spaces for which ACPI
  499. * indicates that the space is 1-to-1 mapped. But at the
  500. * moment, we don't support multiple PCI address spaces and
  501. * the legacy I/O space is not 1-to-1 mapped, so this is moot.
  502. */
  503. return -EINVAL;
  504. if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
  505. return -EINVAL;
  506. prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
  507. vma->vm_page_prot);
  508. /*
  509. * If the user requested WC, the kernel uses UC or WC for this region,
  510. * and the chipset supports WC, we can use WC. Otherwise, we have to
  511. * use the same attribute the kernel uses.
  512. */
  513. if (write_combine &&
  514. ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
  515. (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
  516. efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
  517. vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
  518. else
  519. vma->vm_page_prot = prot;
  520. if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
  521. vma->vm_end - vma->vm_start, vma->vm_page_prot))
  522. return -EAGAIN;
  523. return 0;
  524. }
  525. /**
  526. * ia64_pci_get_legacy_mem - generic legacy mem routine
  527. * @bus: bus to get legacy memory base address for
  528. *
  529. * Find the base of legacy memory for @bus. This is typically the first
  530. * megabyte of bus address space for @bus or is simply 0 on platforms whose
  531. * chipsets support legacy I/O and memory routing. Returns the base address
  532. * or an error pointer if an error occurred.
  533. *
  534. * This is the ia64 generic version of this routine. Other platforms
  535. * are free to override it with a machine vector.
  536. */
  537. char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
  538. {
  539. return (char *)__IA64_UNCACHED_OFFSET;
  540. }
  541. /**
  542. * pci_mmap_legacy_page_range - map legacy memory space to userland
  543. * @bus: bus whose legacy space we're mapping
  544. * @vma: vma passed in by mmap
  545. *
  546. * Map legacy memory space for this device back to userspace using a machine
  547. * vector to get the base address.
  548. */
  549. int
  550. pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
  551. enum pci_mmap_state mmap_state)
  552. {
  553. unsigned long size = vma->vm_end - vma->vm_start;
  554. pgprot_t prot;
  555. char *addr;
  556. /* We only support mmap'ing of legacy memory space */
  557. if (mmap_state != pci_mmap_mem)
  558. return -ENOSYS;
  559. /*
  560. * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
  561. * for more details.
  562. */
  563. if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
  564. return -EINVAL;
  565. prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
  566. vma->vm_page_prot);
  567. addr = pci_get_legacy_mem(bus);
  568. if (IS_ERR(addr))
  569. return PTR_ERR(addr);
  570. vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
  571. vma->vm_page_prot = prot;
  572. if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
  573. size, vma->vm_page_prot))
  574. return -EAGAIN;
  575. return 0;
  576. }
  577. /**
  578. * ia64_pci_legacy_read - read from legacy I/O space
  579. * @bus: bus to read
  580. * @port: legacy port value
  581. * @val: caller allocated storage for returned value
  582. * @size: number of bytes to read
  583. *
  584. * Simply reads @size bytes from @port and puts the result in @val.
  585. *
  586. * Again, this (and the write routine) are generic versions that can be
  587. * overridden by the platform. This is necessary on platforms that don't
  588. * support legacy I/O routing or that hard fail on legacy I/O timeouts.
  589. */
  590. int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
  591. {
  592. int ret = size;
  593. switch (size) {
  594. case 1:
  595. *val = inb(port);
  596. break;
  597. case 2:
  598. *val = inw(port);
  599. break;
  600. case 4:
  601. *val = inl(port);
  602. break;
  603. default:
  604. ret = -EINVAL;
  605. break;
  606. }
  607. return ret;
  608. }
  609. /**
  610. * ia64_pci_legacy_write - perform a legacy I/O write
  611. * @bus: bus pointer
  612. * @port: port to write
  613. * @val: value to write
  614. * @size: number of bytes to write from @val
  615. *
  616. * Simply writes @size bytes of @val to @port.
  617. */
  618. int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
  619. {
  620. int ret = size;
  621. switch (size) {
  622. case 1:
  623. outb(val, port);
  624. break;
  625. case 2:
  626. outw(val, port);
  627. break;
  628. case 4:
  629. outl(val, port);
  630. break;
  631. default:
  632. ret = -EINVAL;
  633. break;
  634. }
  635. return ret;
  636. }
  637. /**
  638. * set_pci_cacheline_size - determine cacheline size for PCI devices
  639. *
  640. * We want to use the line-size of the outer-most cache. We assume
  641. * that this line-size is the same for all CPUs.
  642. *
  643. * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
  644. */
  645. static void __init set_pci_dfl_cacheline_size(void)
  646. {
  647. unsigned long levels, unique_caches;
  648. long status;
  649. pal_cache_config_info_t cci;
  650. status = ia64_pal_cache_summary(&levels, &unique_caches);
  651. if (status != 0) {
  652. pr_err("%s: ia64_pal_cache_summary() failed "
  653. "(status=%ld)\n", __func__, status);
  654. return;
  655. }
  656. status = ia64_pal_cache_config_info(levels - 1,
  657. /* cache_type (data_or_unified)= */ 2, &cci);
  658. if (status != 0) {
  659. pr_err("%s: ia64_pal_cache_config_info() failed "
  660. "(status=%ld)\n", __func__, status);
  661. return;
  662. }
  663. pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
  664. }
  665. u64 ia64_dma_get_required_mask(struct device *dev)
  666. {
  667. u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
  668. u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
  669. u64 mask;
  670. if (!high_totalram) {
  671. /* convert to mask just covering totalram */
  672. low_totalram = (1 << (fls(low_totalram) - 1));
  673. low_totalram += low_totalram - 1;
  674. mask = low_totalram;
  675. } else {
  676. high_totalram = (1 << (fls(high_totalram) - 1));
  677. high_totalram += high_totalram - 1;
  678. mask = (((u64)high_totalram) << 32) + 0xffffffff;
  679. }
  680. return mask;
  681. }
  682. EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
  683. u64 dma_get_required_mask(struct device *dev)
  684. {
  685. return platform_dma_get_required_mask(dev);
  686. }
  687. EXPORT_SYMBOL_GPL(dma_get_required_mask);
  688. static int __init pcibios_init(void)
  689. {
  690. set_pci_dfl_cacheline_size();
  691. return 0;
  692. }
  693. subsys_initcall(pcibios_init);