segment.c 109 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322
  1. /*
  2. * fs/f2fs/segment.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/bio.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/prefetch.h>
  16. #include <linux/kthread.h>
  17. #include <linux/swap.h>
  18. #include <linux/timer.h>
  19. #include <linux/freezer.h>
  20. #include <linux/sched/signal.h>
  21. #include "f2fs.h"
  22. #include "segment.h"
  23. #include "node.h"
  24. #include "gc.h"
  25. #include "trace.h"
  26. #include <trace/events/f2fs.h>
  27. #define __reverse_ffz(x) __reverse_ffs(~(x))
  28. static struct kmem_cache *discard_entry_slab;
  29. static struct kmem_cache *discard_cmd_slab;
  30. static struct kmem_cache *sit_entry_set_slab;
  31. static struct kmem_cache *inmem_entry_slab;
  32. static unsigned long __reverse_ulong(unsigned char *str)
  33. {
  34. unsigned long tmp = 0;
  35. int shift = 24, idx = 0;
  36. #if BITS_PER_LONG == 64
  37. shift = 56;
  38. #endif
  39. while (shift >= 0) {
  40. tmp |= (unsigned long)str[idx++] << shift;
  41. shift -= BITS_PER_BYTE;
  42. }
  43. return tmp;
  44. }
  45. /*
  46. * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  47. * MSB and LSB are reversed in a byte by f2fs_set_bit.
  48. */
  49. static inline unsigned long __reverse_ffs(unsigned long word)
  50. {
  51. int num = 0;
  52. #if BITS_PER_LONG == 64
  53. if ((word & 0xffffffff00000000UL) == 0)
  54. num += 32;
  55. else
  56. word >>= 32;
  57. #endif
  58. if ((word & 0xffff0000) == 0)
  59. num += 16;
  60. else
  61. word >>= 16;
  62. if ((word & 0xff00) == 0)
  63. num += 8;
  64. else
  65. word >>= 8;
  66. if ((word & 0xf0) == 0)
  67. num += 4;
  68. else
  69. word >>= 4;
  70. if ((word & 0xc) == 0)
  71. num += 2;
  72. else
  73. word >>= 2;
  74. if ((word & 0x2) == 0)
  75. num += 1;
  76. return num;
  77. }
  78. /*
  79. * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  80. * f2fs_set_bit makes MSB and LSB reversed in a byte.
  81. * @size must be integral times of unsigned long.
  82. * Example:
  83. * MSB <--> LSB
  84. * f2fs_set_bit(0, bitmap) => 1000 0000
  85. * f2fs_set_bit(7, bitmap) => 0000 0001
  86. */
  87. static unsigned long __find_rev_next_bit(const unsigned long *addr,
  88. unsigned long size, unsigned long offset)
  89. {
  90. const unsigned long *p = addr + BIT_WORD(offset);
  91. unsigned long result = size;
  92. unsigned long tmp;
  93. if (offset >= size)
  94. return size;
  95. size -= (offset & ~(BITS_PER_LONG - 1));
  96. offset %= BITS_PER_LONG;
  97. while (1) {
  98. if (*p == 0)
  99. goto pass;
  100. tmp = __reverse_ulong((unsigned char *)p);
  101. tmp &= ~0UL >> offset;
  102. if (size < BITS_PER_LONG)
  103. tmp &= (~0UL << (BITS_PER_LONG - size));
  104. if (tmp)
  105. goto found;
  106. pass:
  107. if (size <= BITS_PER_LONG)
  108. break;
  109. size -= BITS_PER_LONG;
  110. offset = 0;
  111. p++;
  112. }
  113. return result;
  114. found:
  115. return result - size + __reverse_ffs(tmp);
  116. }
  117. static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
  118. unsigned long size, unsigned long offset)
  119. {
  120. const unsigned long *p = addr + BIT_WORD(offset);
  121. unsigned long result = size;
  122. unsigned long tmp;
  123. if (offset >= size)
  124. return size;
  125. size -= (offset & ~(BITS_PER_LONG - 1));
  126. offset %= BITS_PER_LONG;
  127. while (1) {
  128. if (*p == ~0UL)
  129. goto pass;
  130. tmp = __reverse_ulong((unsigned char *)p);
  131. if (offset)
  132. tmp |= ~0UL << (BITS_PER_LONG - offset);
  133. if (size < BITS_PER_LONG)
  134. tmp |= ~0UL >> size;
  135. if (tmp != ~0UL)
  136. goto found;
  137. pass:
  138. if (size <= BITS_PER_LONG)
  139. break;
  140. size -= BITS_PER_LONG;
  141. offset = 0;
  142. p++;
  143. }
  144. return result;
  145. found:
  146. return result - size + __reverse_ffz(tmp);
  147. }
  148. bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
  149. {
  150. int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
  151. int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
  152. int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
  153. if (test_opt(sbi, LFS))
  154. return false;
  155. if (sbi->gc_mode == GC_URGENT)
  156. return true;
  157. return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
  158. SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
  159. }
  160. void f2fs_register_inmem_page(struct inode *inode, struct page *page)
  161. {
  162. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  163. struct f2fs_inode_info *fi = F2FS_I(inode);
  164. struct inmem_pages *new;
  165. f2fs_trace_pid(page);
  166. set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
  167. SetPagePrivate(page);
  168. new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
  169. /* add atomic page indices to the list */
  170. new->page = page;
  171. INIT_LIST_HEAD(&new->list);
  172. /* increase reference count with clean state */
  173. mutex_lock(&fi->inmem_lock);
  174. get_page(page);
  175. list_add_tail(&new->list, &fi->inmem_pages);
  176. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  177. if (list_empty(&fi->inmem_ilist))
  178. list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
  179. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  180. inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  181. mutex_unlock(&fi->inmem_lock);
  182. trace_f2fs_register_inmem_page(page, INMEM);
  183. }
  184. static int __revoke_inmem_pages(struct inode *inode,
  185. struct list_head *head, bool drop, bool recover)
  186. {
  187. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  188. struct inmem_pages *cur, *tmp;
  189. int err = 0;
  190. list_for_each_entry_safe(cur, tmp, head, list) {
  191. struct page *page = cur->page;
  192. if (drop)
  193. trace_f2fs_commit_inmem_page(page, INMEM_DROP);
  194. lock_page(page);
  195. f2fs_wait_on_page_writeback(page, DATA, true);
  196. if (recover) {
  197. struct dnode_of_data dn;
  198. struct node_info ni;
  199. trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
  200. retry:
  201. set_new_dnode(&dn, inode, NULL, NULL, 0);
  202. err = f2fs_get_dnode_of_data(&dn, page->index,
  203. LOOKUP_NODE);
  204. if (err) {
  205. if (err == -ENOMEM) {
  206. congestion_wait(BLK_RW_ASYNC, HZ/50);
  207. cond_resched();
  208. goto retry;
  209. }
  210. err = -EAGAIN;
  211. goto next;
  212. }
  213. err = f2fs_get_node_info(sbi, dn.nid, &ni);
  214. if (err) {
  215. f2fs_put_dnode(&dn);
  216. return err;
  217. }
  218. if (cur->old_addr == NEW_ADDR) {
  219. f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
  220. f2fs_update_data_blkaddr(&dn, NEW_ADDR);
  221. } else
  222. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  223. cur->old_addr, ni.version, true, true);
  224. f2fs_put_dnode(&dn);
  225. }
  226. next:
  227. /* we don't need to invalidate this in the sccessful status */
  228. if (drop || recover)
  229. ClearPageUptodate(page);
  230. set_page_private(page, 0);
  231. ClearPagePrivate(page);
  232. f2fs_put_page(page, 1);
  233. list_del(&cur->list);
  234. kmem_cache_free(inmem_entry_slab, cur);
  235. dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  236. }
  237. return err;
  238. }
  239. void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
  240. {
  241. struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
  242. struct inode *inode;
  243. struct f2fs_inode_info *fi;
  244. next:
  245. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  246. if (list_empty(head)) {
  247. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  248. return;
  249. }
  250. fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
  251. inode = igrab(&fi->vfs_inode);
  252. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  253. if (inode) {
  254. if (gc_failure) {
  255. if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
  256. goto drop;
  257. goto skip;
  258. }
  259. drop:
  260. set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
  261. f2fs_drop_inmem_pages(inode);
  262. iput(inode);
  263. }
  264. skip:
  265. congestion_wait(BLK_RW_ASYNC, HZ/50);
  266. cond_resched();
  267. goto next;
  268. }
  269. void f2fs_drop_inmem_pages(struct inode *inode)
  270. {
  271. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  272. struct f2fs_inode_info *fi = F2FS_I(inode);
  273. mutex_lock(&fi->inmem_lock);
  274. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  275. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  276. if (!list_empty(&fi->inmem_ilist))
  277. list_del_init(&fi->inmem_ilist);
  278. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  279. mutex_unlock(&fi->inmem_lock);
  280. clear_inode_flag(inode, FI_ATOMIC_FILE);
  281. fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
  282. stat_dec_atomic_write(inode);
  283. }
  284. void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
  285. {
  286. struct f2fs_inode_info *fi = F2FS_I(inode);
  287. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  288. struct list_head *head = &fi->inmem_pages;
  289. struct inmem_pages *cur = NULL;
  290. f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
  291. mutex_lock(&fi->inmem_lock);
  292. list_for_each_entry(cur, head, list) {
  293. if (cur->page == page)
  294. break;
  295. }
  296. f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
  297. list_del(&cur->list);
  298. mutex_unlock(&fi->inmem_lock);
  299. dec_page_count(sbi, F2FS_INMEM_PAGES);
  300. kmem_cache_free(inmem_entry_slab, cur);
  301. ClearPageUptodate(page);
  302. set_page_private(page, 0);
  303. ClearPagePrivate(page);
  304. f2fs_put_page(page, 0);
  305. trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
  306. }
  307. static int __f2fs_commit_inmem_pages(struct inode *inode)
  308. {
  309. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  310. struct f2fs_inode_info *fi = F2FS_I(inode);
  311. struct inmem_pages *cur, *tmp;
  312. struct f2fs_io_info fio = {
  313. .sbi = sbi,
  314. .ino = inode->i_ino,
  315. .type = DATA,
  316. .op = REQ_OP_WRITE,
  317. .op_flags = REQ_SYNC | REQ_PRIO,
  318. .io_type = FS_DATA_IO,
  319. };
  320. struct list_head revoke_list;
  321. pgoff_t last_idx = ULONG_MAX;
  322. int err = 0;
  323. INIT_LIST_HEAD(&revoke_list);
  324. list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
  325. struct page *page = cur->page;
  326. lock_page(page);
  327. if (page->mapping == inode->i_mapping) {
  328. trace_f2fs_commit_inmem_page(page, INMEM);
  329. set_page_dirty(page);
  330. f2fs_wait_on_page_writeback(page, DATA, true);
  331. if (clear_page_dirty_for_io(page)) {
  332. inode_dec_dirty_pages(inode);
  333. f2fs_remove_dirty_inode(inode);
  334. }
  335. retry:
  336. fio.page = page;
  337. fio.old_blkaddr = NULL_ADDR;
  338. fio.encrypted_page = NULL;
  339. fio.need_lock = LOCK_DONE;
  340. err = f2fs_do_write_data_page(&fio);
  341. if (err) {
  342. if (err == -ENOMEM) {
  343. congestion_wait(BLK_RW_ASYNC, HZ/50);
  344. cond_resched();
  345. goto retry;
  346. }
  347. unlock_page(page);
  348. break;
  349. }
  350. /* record old blkaddr for revoking */
  351. cur->old_addr = fio.old_blkaddr;
  352. last_idx = page->index;
  353. }
  354. unlock_page(page);
  355. list_move_tail(&cur->list, &revoke_list);
  356. }
  357. if (last_idx != ULONG_MAX)
  358. f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
  359. if (err) {
  360. /*
  361. * try to revoke all committed pages, but still we could fail
  362. * due to no memory or other reason, if that happened, EAGAIN
  363. * will be returned, which means in such case, transaction is
  364. * already not integrity, caller should use journal to do the
  365. * recovery or rewrite & commit last transaction. For other
  366. * error number, revoking was done by filesystem itself.
  367. */
  368. err = __revoke_inmem_pages(inode, &revoke_list, false, true);
  369. /* drop all uncommitted pages */
  370. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  371. } else {
  372. __revoke_inmem_pages(inode, &revoke_list, false, false);
  373. }
  374. return err;
  375. }
  376. int f2fs_commit_inmem_pages(struct inode *inode)
  377. {
  378. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  379. struct f2fs_inode_info *fi = F2FS_I(inode);
  380. int err;
  381. f2fs_balance_fs(sbi, true);
  382. f2fs_lock_op(sbi);
  383. set_inode_flag(inode, FI_ATOMIC_COMMIT);
  384. mutex_lock(&fi->inmem_lock);
  385. err = __f2fs_commit_inmem_pages(inode);
  386. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  387. if (!list_empty(&fi->inmem_ilist))
  388. list_del_init(&fi->inmem_ilist);
  389. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  390. mutex_unlock(&fi->inmem_lock);
  391. clear_inode_flag(inode, FI_ATOMIC_COMMIT);
  392. f2fs_unlock_op(sbi);
  393. return err;
  394. }
  395. /*
  396. * This function balances dirty node and dentry pages.
  397. * In addition, it controls garbage collection.
  398. */
  399. void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
  400. {
  401. #ifdef CONFIG_F2FS_FAULT_INJECTION
  402. if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
  403. f2fs_show_injection_info(FAULT_CHECKPOINT);
  404. f2fs_stop_checkpoint(sbi, false);
  405. }
  406. #endif
  407. /* balance_fs_bg is able to be pending */
  408. if (need && excess_cached_nats(sbi))
  409. f2fs_balance_fs_bg(sbi);
  410. /*
  411. * We should do GC or end up with checkpoint, if there are so many dirty
  412. * dir/node pages without enough free segments.
  413. */
  414. if (has_not_enough_free_secs(sbi, 0, 0)) {
  415. mutex_lock(&sbi->gc_mutex);
  416. f2fs_gc(sbi, false, false, NULL_SEGNO);
  417. }
  418. }
  419. void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
  420. {
  421. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  422. return;
  423. /* try to shrink extent cache when there is no enough memory */
  424. if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
  425. f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
  426. /* check the # of cached NAT entries */
  427. if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
  428. f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
  429. if (!f2fs_available_free_memory(sbi, FREE_NIDS))
  430. f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
  431. else
  432. f2fs_build_free_nids(sbi, false, false);
  433. if (!is_idle(sbi) &&
  434. (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
  435. return;
  436. /* checkpoint is the only way to shrink partial cached entries */
  437. if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
  438. !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
  439. excess_prefree_segs(sbi) ||
  440. excess_dirty_nats(sbi) ||
  441. excess_dirty_nodes(sbi) ||
  442. f2fs_time_over(sbi, CP_TIME)) {
  443. if (test_opt(sbi, DATA_FLUSH)) {
  444. struct blk_plug plug;
  445. blk_start_plug(&plug);
  446. f2fs_sync_dirty_inodes(sbi, FILE_INODE);
  447. blk_finish_plug(&plug);
  448. }
  449. f2fs_sync_fs(sbi->sb, true);
  450. stat_inc_bg_cp_count(sbi->stat_info);
  451. }
  452. }
  453. static int __submit_flush_wait(struct f2fs_sb_info *sbi,
  454. struct block_device *bdev)
  455. {
  456. struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
  457. int ret;
  458. bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
  459. bio_set_dev(bio, bdev);
  460. ret = submit_bio_wait(bio);
  461. bio_put(bio);
  462. trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
  463. test_opt(sbi, FLUSH_MERGE), ret);
  464. return ret;
  465. }
  466. static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
  467. {
  468. int ret = 0;
  469. int i;
  470. if (!sbi->s_ndevs)
  471. return __submit_flush_wait(sbi, sbi->sb->s_bdev);
  472. for (i = 0; i < sbi->s_ndevs; i++) {
  473. if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
  474. continue;
  475. ret = __submit_flush_wait(sbi, FDEV(i).bdev);
  476. if (ret)
  477. break;
  478. }
  479. return ret;
  480. }
  481. static int issue_flush_thread(void *data)
  482. {
  483. struct f2fs_sb_info *sbi = data;
  484. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  485. wait_queue_head_t *q = &fcc->flush_wait_queue;
  486. repeat:
  487. if (kthread_should_stop())
  488. return 0;
  489. sb_start_intwrite(sbi->sb);
  490. if (!llist_empty(&fcc->issue_list)) {
  491. struct flush_cmd *cmd, *next;
  492. int ret;
  493. fcc->dispatch_list = llist_del_all(&fcc->issue_list);
  494. fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
  495. cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
  496. ret = submit_flush_wait(sbi, cmd->ino);
  497. atomic_inc(&fcc->issued_flush);
  498. llist_for_each_entry_safe(cmd, next,
  499. fcc->dispatch_list, llnode) {
  500. cmd->ret = ret;
  501. complete(&cmd->wait);
  502. }
  503. fcc->dispatch_list = NULL;
  504. }
  505. sb_end_intwrite(sbi->sb);
  506. wait_event_interruptible(*q,
  507. kthread_should_stop() || !llist_empty(&fcc->issue_list));
  508. goto repeat;
  509. }
  510. int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
  511. {
  512. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  513. struct flush_cmd cmd;
  514. int ret;
  515. if (test_opt(sbi, NOBARRIER))
  516. return 0;
  517. if (!test_opt(sbi, FLUSH_MERGE)) {
  518. ret = submit_flush_wait(sbi, ino);
  519. atomic_inc(&fcc->issued_flush);
  520. return ret;
  521. }
  522. if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
  523. ret = submit_flush_wait(sbi, ino);
  524. atomic_dec(&fcc->issing_flush);
  525. atomic_inc(&fcc->issued_flush);
  526. return ret;
  527. }
  528. cmd.ino = ino;
  529. init_completion(&cmd.wait);
  530. llist_add(&cmd.llnode, &fcc->issue_list);
  531. /* update issue_list before we wake up issue_flush thread */
  532. smp_mb();
  533. if (waitqueue_active(&fcc->flush_wait_queue))
  534. wake_up(&fcc->flush_wait_queue);
  535. if (fcc->f2fs_issue_flush) {
  536. wait_for_completion(&cmd.wait);
  537. atomic_dec(&fcc->issing_flush);
  538. } else {
  539. struct llist_node *list;
  540. list = llist_del_all(&fcc->issue_list);
  541. if (!list) {
  542. wait_for_completion(&cmd.wait);
  543. atomic_dec(&fcc->issing_flush);
  544. } else {
  545. struct flush_cmd *tmp, *next;
  546. ret = submit_flush_wait(sbi, ino);
  547. llist_for_each_entry_safe(tmp, next, list, llnode) {
  548. if (tmp == &cmd) {
  549. cmd.ret = ret;
  550. atomic_dec(&fcc->issing_flush);
  551. continue;
  552. }
  553. tmp->ret = ret;
  554. complete(&tmp->wait);
  555. }
  556. }
  557. }
  558. return cmd.ret;
  559. }
  560. int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
  561. {
  562. dev_t dev = sbi->sb->s_bdev->bd_dev;
  563. struct flush_cmd_control *fcc;
  564. int err = 0;
  565. if (SM_I(sbi)->fcc_info) {
  566. fcc = SM_I(sbi)->fcc_info;
  567. if (fcc->f2fs_issue_flush)
  568. return err;
  569. goto init_thread;
  570. }
  571. fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
  572. if (!fcc)
  573. return -ENOMEM;
  574. atomic_set(&fcc->issued_flush, 0);
  575. atomic_set(&fcc->issing_flush, 0);
  576. init_waitqueue_head(&fcc->flush_wait_queue);
  577. init_llist_head(&fcc->issue_list);
  578. SM_I(sbi)->fcc_info = fcc;
  579. if (!test_opt(sbi, FLUSH_MERGE))
  580. return err;
  581. init_thread:
  582. fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
  583. "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
  584. if (IS_ERR(fcc->f2fs_issue_flush)) {
  585. err = PTR_ERR(fcc->f2fs_issue_flush);
  586. kfree(fcc);
  587. SM_I(sbi)->fcc_info = NULL;
  588. return err;
  589. }
  590. return err;
  591. }
  592. void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
  593. {
  594. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  595. if (fcc && fcc->f2fs_issue_flush) {
  596. struct task_struct *flush_thread = fcc->f2fs_issue_flush;
  597. fcc->f2fs_issue_flush = NULL;
  598. kthread_stop(flush_thread);
  599. }
  600. if (free) {
  601. kfree(fcc);
  602. SM_I(sbi)->fcc_info = NULL;
  603. }
  604. }
  605. int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
  606. {
  607. int ret = 0, i;
  608. if (!sbi->s_ndevs)
  609. return 0;
  610. for (i = 1; i < sbi->s_ndevs; i++) {
  611. if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
  612. continue;
  613. ret = __submit_flush_wait(sbi, FDEV(i).bdev);
  614. if (ret)
  615. break;
  616. spin_lock(&sbi->dev_lock);
  617. f2fs_clear_bit(i, (char *)&sbi->dirty_device);
  618. spin_unlock(&sbi->dev_lock);
  619. }
  620. return ret;
  621. }
  622. static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  623. enum dirty_type dirty_type)
  624. {
  625. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  626. /* need not be added */
  627. if (IS_CURSEG(sbi, segno))
  628. return;
  629. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  630. dirty_i->nr_dirty[dirty_type]++;
  631. if (dirty_type == DIRTY) {
  632. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  633. enum dirty_type t = sentry->type;
  634. if (unlikely(t >= DIRTY)) {
  635. f2fs_bug_on(sbi, 1);
  636. return;
  637. }
  638. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
  639. dirty_i->nr_dirty[t]++;
  640. }
  641. }
  642. static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  643. enum dirty_type dirty_type)
  644. {
  645. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  646. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  647. dirty_i->nr_dirty[dirty_type]--;
  648. if (dirty_type == DIRTY) {
  649. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  650. enum dirty_type t = sentry->type;
  651. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
  652. dirty_i->nr_dirty[t]--;
  653. if (get_valid_blocks(sbi, segno, true) == 0)
  654. clear_bit(GET_SEC_FROM_SEG(sbi, segno),
  655. dirty_i->victim_secmap);
  656. }
  657. }
  658. /*
  659. * Should not occur error such as -ENOMEM.
  660. * Adding dirty entry into seglist is not critical operation.
  661. * If a given segment is one of current working segments, it won't be added.
  662. */
  663. static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
  664. {
  665. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  666. unsigned short valid_blocks;
  667. if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
  668. return;
  669. mutex_lock(&dirty_i->seglist_lock);
  670. valid_blocks = get_valid_blocks(sbi, segno, false);
  671. if (valid_blocks == 0) {
  672. __locate_dirty_segment(sbi, segno, PRE);
  673. __remove_dirty_segment(sbi, segno, DIRTY);
  674. } else if (valid_blocks < sbi->blocks_per_seg) {
  675. __locate_dirty_segment(sbi, segno, DIRTY);
  676. } else {
  677. /* Recovery routine with SSR needs this */
  678. __remove_dirty_segment(sbi, segno, DIRTY);
  679. }
  680. mutex_unlock(&dirty_i->seglist_lock);
  681. }
  682. static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
  683. struct block_device *bdev, block_t lstart,
  684. block_t start, block_t len)
  685. {
  686. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  687. struct list_head *pend_list;
  688. struct discard_cmd *dc;
  689. f2fs_bug_on(sbi, !len);
  690. pend_list = &dcc->pend_list[plist_idx(len)];
  691. dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
  692. INIT_LIST_HEAD(&dc->list);
  693. dc->bdev = bdev;
  694. dc->lstart = lstart;
  695. dc->start = start;
  696. dc->len = len;
  697. dc->ref = 0;
  698. dc->state = D_PREP;
  699. dc->issuing = 0;
  700. dc->error = 0;
  701. init_completion(&dc->wait);
  702. list_add_tail(&dc->list, pend_list);
  703. spin_lock_init(&dc->lock);
  704. dc->bio_ref = 0;
  705. atomic_inc(&dcc->discard_cmd_cnt);
  706. dcc->undiscard_blks += len;
  707. return dc;
  708. }
  709. static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
  710. struct block_device *bdev, block_t lstart,
  711. block_t start, block_t len,
  712. struct rb_node *parent, struct rb_node **p)
  713. {
  714. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  715. struct discard_cmd *dc;
  716. dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
  717. rb_link_node(&dc->rb_node, parent, p);
  718. rb_insert_color(&dc->rb_node, &dcc->root);
  719. return dc;
  720. }
  721. static void __detach_discard_cmd(struct discard_cmd_control *dcc,
  722. struct discard_cmd *dc)
  723. {
  724. if (dc->state == D_DONE)
  725. atomic_sub(dc->issuing, &dcc->issing_discard);
  726. list_del(&dc->list);
  727. rb_erase(&dc->rb_node, &dcc->root);
  728. dcc->undiscard_blks -= dc->len;
  729. kmem_cache_free(discard_cmd_slab, dc);
  730. atomic_dec(&dcc->discard_cmd_cnt);
  731. }
  732. static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
  733. struct discard_cmd *dc)
  734. {
  735. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  736. unsigned long flags;
  737. trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
  738. spin_lock_irqsave(&dc->lock, flags);
  739. if (dc->bio_ref) {
  740. spin_unlock_irqrestore(&dc->lock, flags);
  741. return;
  742. }
  743. spin_unlock_irqrestore(&dc->lock, flags);
  744. f2fs_bug_on(sbi, dc->ref);
  745. if (dc->error == -EOPNOTSUPP)
  746. dc->error = 0;
  747. if (dc->error)
  748. f2fs_msg(sbi->sb, KERN_INFO,
  749. "Issue discard(%u, %u, %u) failed, ret: %d",
  750. dc->lstart, dc->start, dc->len, dc->error);
  751. __detach_discard_cmd(dcc, dc);
  752. }
  753. static void f2fs_submit_discard_endio(struct bio *bio)
  754. {
  755. struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
  756. unsigned long flags;
  757. dc->error = blk_status_to_errno(bio->bi_status);
  758. spin_lock_irqsave(&dc->lock, flags);
  759. dc->bio_ref--;
  760. if (!dc->bio_ref && dc->state == D_SUBMIT) {
  761. dc->state = D_DONE;
  762. complete_all(&dc->wait);
  763. }
  764. spin_unlock_irqrestore(&dc->lock, flags);
  765. bio_put(bio);
  766. }
  767. static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
  768. block_t start, block_t end)
  769. {
  770. #ifdef CONFIG_F2FS_CHECK_FS
  771. struct seg_entry *sentry;
  772. unsigned int segno;
  773. block_t blk = start;
  774. unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
  775. unsigned long *map;
  776. while (blk < end) {
  777. segno = GET_SEGNO(sbi, blk);
  778. sentry = get_seg_entry(sbi, segno);
  779. offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
  780. if (end < START_BLOCK(sbi, segno + 1))
  781. size = GET_BLKOFF_FROM_SEG0(sbi, end);
  782. else
  783. size = max_blocks;
  784. map = (unsigned long *)(sentry->cur_valid_map);
  785. offset = __find_rev_next_bit(map, size, offset);
  786. f2fs_bug_on(sbi, offset != size);
  787. blk = START_BLOCK(sbi, segno + 1);
  788. }
  789. #endif
  790. }
  791. static void __init_discard_policy(struct f2fs_sb_info *sbi,
  792. struct discard_policy *dpolicy,
  793. int discard_type, unsigned int granularity)
  794. {
  795. /* common policy */
  796. dpolicy->type = discard_type;
  797. dpolicy->sync = true;
  798. dpolicy->ordered = false;
  799. dpolicy->granularity = granularity;
  800. dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
  801. dpolicy->io_aware_gran = MAX_PLIST_NUM;
  802. if (discard_type == DPOLICY_BG) {
  803. dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
  804. dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
  805. dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
  806. dpolicy->io_aware = true;
  807. dpolicy->sync = false;
  808. dpolicy->ordered = true;
  809. if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
  810. dpolicy->granularity = 1;
  811. dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
  812. }
  813. } else if (discard_type == DPOLICY_FORCE) {
  814. dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
  815. dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
  816. dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
  817. dpolicy->io_aware = false;
  818. } else if (discard_type == DPOLICY_FSTRIM) {
  819. dpolicy->io_aware = false;
  820. } else if (discard_type == DPOLICY_UMOUNT) {
  821. dpolicy->max_requests = UINT_MAX;
  822. dpolicy->io_aware = false;
  823. }
  824. }
  825. static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
  826. struct block_device *bdev, block_t lstart,
  827. block_t start, block_t len);
  828. /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
  829. static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
  830. struct discard_policy *dpolicy,
  831. struct discard_cmd *dc,
  832. unsigned int *issued)
  833. {
  834. struct block_device *bdev = dc->bdev;
  835. struct request_queue *q = bdev_get_queue(bdev);
  836. unsigned int max_discard_blocks =
  837. SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
  838. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  839. struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
  840. &(dcc->fstrim_list) : &(dcc->wait_list);
  841. int flag = dpolicy->sync ? REQ_SYNC : 0;
  842. block_t lstart, start, len, total_len;
  843. int err = 0;
  844. if (dc->state != D_PREP)
  845. return 0;
  846. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
  847. return 0;
  848. trace_f2fs_issue_discard(bdev, dc->start, dc->len);
  849. lstart = dc->lstart;
  850. start = dc->start;
  851. len = dc->len;
  852. total_len = len;
  853. dc->len = 0;
  854. while (total_len && *issued < dpolicy->max_requests && !err) {
  855. struct bio *bio = NULL;
  856. unsigned long flags;
  857. bool last = true;
  858. if (len > max_discard_blocks) {
  859. len = max_discard_blocks;
  860. last = false;
  861. }
  862. (*issued)++;
  863. if (*issued == dpolicy->max_requests)
  864. last = true;
  865. dc->len += len;
  866. #ifdef CONFIG_F2FS_FAULT_INJECTION
  867. if (time_to_inject(sbi, FAULT_DISCARD)) {
  868. f2fs_show_injection_info(FAULT_DISCARD);
  869. err = -EIO;
  870. goto submit;
  871. }
  872. #endif
  873. err = __blkdev_issue_discard(bdev,
  874. SECTOR_FROM_BLOCK(start),
  875. SECTOR_FROM_BLOCK(len),
  876. GFP_NOFS, 0, &bio);
  877. submit:
  878. if (err) {
  879. spin_lock_irqsave(&dc->lock, flags);
  880. if (dc->state == D_PARTIAL)
  881. dc->state = D_SUBMIT;
  882. spin_unlock_irqrestore(&dc->lock, flags);
  883. break;
  884. }
  885. f2fs_bug_on(sbi, !bio);
  886. /*
  887. * should keep before submission to avoid D_DONE
  888. * right away
  889. */
  890. spin_lock_irqsave(&dc->lock, flags);
  891. if (last)
  892. dc->state = D_SUBMIT;
  893. else
  894. dc->state = D_PARTIAL;
  895. dc->bio_ref++;
  896. spin_unlock_irqrestore(&dc->lock, flags);
  897. atomic_inc(&dcc->issing_discard);
  898. dc->issuing++;
  899. list_move_tail(&dc->list, wait_list);
  900. /* sanity check on discard range */
  901. __check_sit_bitmap(sbi, start, start + len);
  902. bio->bi_private = dc;
  903. bio->bi_end_io = f2fs_submit_discard_endio;
  904. bio->bi_opf |= flag;
  905. submit_bio(bio);
  906. atomic_inc(&dcc->issued_discard);
  907. f2fs_update_iostat(sbi, FS_DISCARD, 1);
  908. lstart += len;
  909. start += len;
  910. total_len -= len;
  911. len = total_len;
  912. }
  913. if (!err && len)
  914. __update_discard_tree_range(sbi, bdev, lstart, start, len);
  915. return err;
  916. }
  917. static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
  918. struct block_device *bdev, block_t lstart,
  919. block_t start, block_t len,
  920. struct rb_node **insert_p,
  921. struct rb_node *insert_parent)
  922. {
  923. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  924. struct rb_node **p;
  925. struct rb_node *parent = NULL;
  926. struct discard_cmd *dc = NULL;
  927. if (insert_p && insert_parent) {
  928. parent = insert_parent;
  929. p = insert_p;
  930. goto do_insert;
  931. }
  932. p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
  933. do_insert:
  934. dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
  935. if (!dc)
  936. return NULL;
  937. return dc;
  938. }
  939. static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
  940. struct discard_cmd *dc)
  941. {
  942. list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
  943. }
  944. static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
  945. struct discard_cmd *dc, block_t blkaddr)
  946. {
  947. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  948. struct discard_info di = dc->di;
  949. bool modified = false;
  950. if (dc->state == D_DONE || dc->len == 1) {
  951. __remove_discard_cmd(sbi, dc);
  952. return;
  953. }
  954. dcc->undiscard_blks -= di.len;
  955. if (blkaddr > di.lstart) {
  956. dc->len = blkaddr - dc->lstart;
  957. dcc->undiscard_blks += dc->len;
  958. __relocate_discard_cmd(dcc, dc);
  959. modified = true;
  960. }
  961. if (blkaddr < di.lstart + di.len - 1) {
  962. if (modified) {
  963. __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
  964. di.start + blkaddr + 1 - di.lstart,
  965. di.lstart + di.len - 1 - blkaddr,
  966. NULL, NULL);
  967. } else {
  968. dc->lstart++;
  969. dc->len--;
  970. dc->start++;
  971. dcc->undiscard_blks += dc->len;
  972. __relocate_discard_cmd(dcc, dc);
  973. }
  974. }
  975. }
  976. static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
  977. struct block_device *bdev, block_t lstart,
  978. block_t start, block_t len)
  979. {
  980. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  981. struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
  982. struct discard_cmd *dc;
  983. struct discard_info di = {0};
  984. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  985. struct request_queue *q = bdev_get_queue(bdev);
  986. unsigned int max_discard_blocks =
  987. SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
  988. block_t end = lstart + len;
  989. dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
  990. NULL, lstart,
  991. (struct rb_entry **)&prev_dc,
  992. (struct rb_entry **)&next_dc,
  993. &insert_p, &insert_parent, true);
  994. if (dc)
  995. prev_dc = dc;
  996. if (!prev_dc) {
  997. di.lstart = lstart;
  998. di.len = next_dc ? next_dc->lstart - lstart : len;
  999. di.len = min(di.len, len);
  1000. di.start = start;
  1001. }
  1002. while (1) {
  1003. struct rb_node *node;
  1004. bool merged = false;
  1005. struct discard_cmd *tdc = NULL;
  1006. if (prev_dc) {
  1007. di.lstart = prev_dc->lstart + prev_dc->len;
  1008. if (di.lstart < lstart)
  1009. di.lstart = lstart;
  1010. if (di.lstart >= end)
  1011. break;
  1012. if (!next_dc || next_dc->lstart > end)
  1013. di.len = end - di.lstart;
  1014. else
  1015. di.len = next_dc->lstart - di.lstart;
  1016. di.start = start + di.lstart - lstart;
  1017. }
  1018. if (!di.len)
  1019. goto next;
  1020. if (prev_dc && prev_dc->state == D_PREP &&
  1021. prev_dc->bdev == bdev &&
  1022. __is_discard_back_mergeable(&di, &prev_dc->di,
  1023. max_discard_blocks)) {
  1024. prev_dc->di.len += di.len;
  1025. dcc->undiscard_blks += di.len;
  1026. __relocate_discard_cmd(dcc, prev_dc);
  1027. di = prev_dc->di;
  1028. tdc = prev_dc;
  1029. merged = true;
  1030. }
  1031. if (next_dc && next_dc->state == D_PREP &&
  1032. next_dc->bdev == bdev &&
  1033. __is_discard_front_mergeable(&di, &next_dc->di,
  1034. max_discard_blocks)) {
  1035. next_dc->di.lstart = di.lstart;
  1036. next_dc->di.len += di.len;
  1037. next_dc->di.start = di.start;
  1038. dcc->undiscard_blks += di.len;
  1039. __relocate_discard_cmd(dcc, next_dc);
  1040. if (tdc)
  1041. __remove_discard_cmd(sbi, tdc);
  1042. merged = true;
  1043. }
  1044. if (!merged) {
  1045. __insert_discard_tree(sbi, bdev, di.lstart, di.start,
  1046. di.len, NULL, NULL);
  1047. }
  1048. next:
  1049. prev_dc = next_dc;
  1050. if (!prev_dc)
  1051. break;
  1052. node = rb_next(&prev_dc->rb_node);
  1053. next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
  1054. }
  1055. }
  1056. static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
  1057. struct block_device *bdev, block_t blkstart, block_t blklen)
  1058. {
  1059. block_t lblkstart = blkstart;
  1060. trace_f2fs_queue_discard(bdev, blkstart, blklen);
  1061. if (sbi->s_ndevs) {
  1062. int devi = f2fs_target_device_index(sbi, blkstart);
  1063. blkstart -= FDEV(devi).start_blk;
  1064. }
  1065. mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
  1066. __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
  1067. mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
  1068. return 0;
  1069. }
  1070. static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
  1071. struct discard_policy *dpolicy)
  1072. {
  1073. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1074. struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
  1075. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  1076. struct discard_cmd *dc;
  1077. struct blk_plug plug;
  1078. unsigned int pos = dcc->next_pos;
  1079. unsigned int issued = 0;
  1080. bool io_interrupted = false;
  1081. mutex_lock(&dcc->cmd_lock);
  1082. dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
  1083. NULL, pos,
  1084. (struct rb_entry **)&prev_dc,
  1085. (struct rb_entry **)&next_dc,
  1086. &insert_p, &insert_parent, true);
  1087. if (!dc)
  1088. dc = next_dc;
  1089. blk_start_plug(&plug);
  1090. while (dc) {
  1091. struct rb_node *node;
  1092. int err = 0;
  1093. if (dc->state != D_PREP)
  1094. goto next;
  1095. if (dpolicy->io_aware && !is_idle(sbi)) {
  1096. io_interrupted = true;
  1097. break;
  1098. }
  1099. dcc->next_pos = dc->lstart + dc->len;
  1100. err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
  1101. if (issued >= dpolicy->max_requests)
  1102. break;
  1103. next:
  1104. node = rb_next(&dc->rb_node);
  1105. if (err)
  1106. __remove_discard_cmd(sbi, dc);
  1107. dc = rb_entry_safe(node, struct discard_cmd, rb_node);
  1108. }
  1109. blk_finish_plug(&plug);
  1110. if (!dc)
  1111. dcc->next_pos = 0;
  1112. mutex_unlock(&dcc->cmd_lock);
  1113. if (!issued && io_interrupted)
  1114. issued = -1;
  1115. return issued;
  1116. }
  1117. static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
  1118. struct discard_policy *dpolicy)
  1119. {
  1120. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1121. struct list_head *pend_list;
  1122. struct discard_cmd *dc, *tmp;
  1123. struct blk_plug plug;
  1124. int i, issued = 0;
  1125. bool io_interrupted = false;
  1126. for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
  1127. if (i + 1 < dpolicy->granularity)
  1128. break;
  1129. if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
  1130. return __issue_discard_cmd_orderly(sbi, dpolicy);
  1131. pend_list = &dcc->pend_list[i];
  1132. mutex_lock(&dcc->cmd_lock);
  1133. if (list_empty(pend_list))
  1134. goto next;
  1135. if (unlikely(dcc->rbtree_check))
  1136. f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
  1137. &dcc->root));
  1138. blk_start_plug(&plug);
  1139. list_for_each_entry_safe(dc, tmp, pend_list, list) {
  1140. f2fs_bug_on(sbi, dc->state != D_PREP);
  1141. if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
  1142. !is_idle(sbi)) {
  1143. io_interrupted = true;
  1144. break;
  1145. }
  1146. __submit_discard_cmd(sbi, dpolicy, dc, &issued);
  1147. if (issued >= dpolicy->max_requests)
  1148. break;
  1149. }
  1150. blk_finish_plug(&plug);
  1151. next:
  1152. mutex_unlock(&dcc->cmd_lock);
  1153. if (issued >= dpolicy->max_requests || io_interrupted)
  1154. break;
  1155. }
  1156. if (!issued && io_interrupted)
  1157. issued = -1;
  1158. return issued;
  1159. }
  1160. static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
  1161. {
  1162. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1163. struct list_head *pend_list;
  1164. struct discard_cmd *dc, *tmp;
  1165. int i;
  1166. bool dropped = false;
  1167. mutex_lock(&dcc->cmd_lock);
  1168. for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
  1169. pend_list = &dcc->pend_list[i];
  1170. list_for_each_entry_safe(dc, tmp, pend_list, list) {
  1171. f2fs_bug_on(sbi, dc->state != D_PREP);
  1172. __remove_discard_cmd(sbi, dc);
  1173. dropped = true;
  1174. }
  1175. }
  1176. mutex_unlock(&dcc->cmd_lock);
  1177. return dropped;
  1178. }
  1179. void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
  1180. {
  1181. __drop_discard_cmd(sbi);
  1182. }
  1183. static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
  1184. struct discard_cmd *dc)
  1185. {
  1186. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1187. unsigned int len = 0;
  1188. wait_for_completion_io(&dc->wait);
  1189. mutex_lock(&dcc->cmd_lock);
  1190. f2fs_bug_on(sbi, dc->state != D_DONE);
  1191. dc->ref--;
  1192. if (!dc->ref) {
  1193. if (!dc->error)
  1194. len = dc->len;
  1195. __remove_discard_cmd(sbi, dc);
  1196. }
  1197. mutex_unlock(&dcc->cmd_lock);
  1198. return len;
  1199. }
  1200. static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
  1201. struct discard_policy *dpolicy,
  1202. block_t start, block_t end)
  1203. {
  1204. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1205. struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
  1206. &(dcc->fstrim_list) : &(dcc->wait_list);
  1207. struct discard_cmd *dc, *tmp;
  1208. bool need_wait;
  1209. unsigned int trimmed = 0;
  1210. next:
  1211. need_wait = false;
  1212. mutex_lock(&dcc->cmd_lock);
  1213. list_for_each_entry_safe(dc, tmp, wait_list, list) {
  1214. if (dc->lstart + dc->len <= start || end <= dc->lstart)
  1215. continue;
  1216. if (dc->len < dpolicy->granularity)
  1217. continue;
  1218. if (dc->state == D_DONE && !dc->ref) {
  1219. wait_for_completion_io(&dc->wait);
  1220. if (!dc->error)
  1221. trimmed += dc->len;
  1222. __remove_discard_cmd(sbi, dc);
  1223. } else {
  1224. dc->ref++;
  1225. need_wait = true;
  1226. break;
  1227. }
  1228. }
  1229. mutex_unlock(&dcc->cmd_lock);
  1230. if (need_wait) {
  1231. trimmed += __wait_one_discard_bio(sbi, dc);
  1232. goto next;
  1233. }
  1234. return trimmed;
  1235. }
  1236. static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
  1237. struct discard_policy *dpolicy)
  1238. {
  1239. struct discard_policy dp;
  1240. unsigned int discard_blks;
  1241. if (dpolicy)
  1242. return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
  1243. /* wait all */
  1244. __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
  1245. discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
  1246. __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
  1247. discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
  1248. return discard_blks;
  1249. }
  1250. /* This should be covered by global mutex, &sit_i->sentry_lock */
  1251. static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
  1252. {
  1253. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1254. struct discard_cmd *dc;
  1255. bool need_wait = false;
  1256. mutex_lock(&dcc->cmd_lock);
  1257. dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
  1258. NULL, blkaddr);
  1259. if (dc) {
  1260. if (dc->state == D_PREP) {
  1261. __punch_discard_cmd(sbi, dc, blkaddr);
  1262. } else {
  1263. dc->ref++;
  1264. need_wait = true;
  1265. }
  1266. }
  1267. mutex_unlock(&dcc->cmd_lock);
  1268. if (need_wait)
  1269. __wait_one_discard_bio(sbi, dc);
  1270. }
  1271. void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
  1272. {
  1273. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1274. if (dcc && dcc->f2fs_issue_discard) {
  1275. struct task_struct *discard_thread = dcc->f2fs_issue_discard;
  1276. dcc->f2fs_issue_discard = NULL;
  1277. kthread_stop(discard_thread);
  1278. }
  1279. }
  1280. /* This comes from f2fs_put_super */
  1281. bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
  1282. {
  1283. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1284. struct discard_policy dpolicy;
  1285. bool dropped;
  1286. __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
  1287. dcc->discard_granularity);
  1288. __issue_discard_cmd(sbi, &dpolicy);
  1289. dropped = __drop_discard_cmd(sbi);
  1290. /* just to make sure there is no pending discard commands */
  1291. __wait_all_discard_cmd(sbi, NULL);
  1292. f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
  1293. return dropped;
  1294. }
  1295. static int issue_discard_thread(void *data)
  1296. {
  1297. struct f2fs_sb_info *sbi = data;
  1298. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1299. wait_queue_head_t *q = &dcc->discard_wait_queue;
  1300. struct discard_policy dpolicy;
  1301. unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
  1302. int issued;
  1303. set_freezable();
  1304. do {
  1305. __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
  1306. dcc->discard_granularity);
  1307. wait_event_interruptible_timeout(*q,
  1308. kthread_should_stop() || freezing(current) ||
  1309. dcc->discard_wake,
  1310. msecs_to_jiffies(wait_ms));
  1311. if (dcc->discard_wake)
  1312. dcc->discard_wake = 0;
  1313. if (try_to_freeze())
  1314. continue;
  1315. if (f2fs_readonly(sbi->sb))
  1316. continue;
  1317. if (kthread_should_stop())
  1318. return 0;
  1319. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
  1320. wait_ms = dpolicy.max_interval;
  1321. continue;
  1322. }
  1323. if (sbi->gc_mode == GC_URGENT)
  1324. __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
  1325. sb_start_intwrite(sbi->sb);
  1326. issued = __issue_discard_cmd(sbi, &dpolicy);
  1327. if (issued > 0) {
  1328. __wait_all_discard_cmd(sbi, &dpolicy);
  1329. wait_ms = dpolicy.min_interval;
  1330. } else if (issued == -1){
  1331. wait_ms = dpolicy.mid_interval;
  1332. } else {
  1333. wait_ms = dpolicy.max_interval;
  1334. }
  1335. sb_end_intwrite(sbi->sb);
  1336. } while (!kthread_should_stop());
  1337. return 0;
  1338. }
  1339. #ifdef CONFIG_BLK_DEV_ZONED
  1340. static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
  1341. struct block_device *bdev, block_t blkstart, block_t blklen)
  1342. {
  1343. sector_t sector, nr_sects;
  1344. block_t lblkstart = blkstart;
  1345. int devi = 0;
  1346. if (sbi->s_ndevs) {
  1347. devi = f2fs_target_device_index(sbi, blkstart);
  1348. blkstart -= FDEV(devi).start_blk;
  1349. }
  1350. /*
  1351. * We need to know the type of the zone: for conventional zones,
  1352. * use regular discard if the drive supports it. For sequential
  1353. * zones, reset the zone write pointer.
  1354. */
  1355. switch (get_blkz_type(sbi, bdev, blkstart)) {
  1356. case BLK_ZONE_TYPE_CONVENTIONAL:
  1357. if (!blk_queue_discard(bdev_get_queue(bdev)))
  1358. return 0;
  1359. return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
  1360. case BLK_ZONE_TYPE_SEQWRITE_REQ:
  1361. case BLK_ZONE_TYPE_SEQWRITE_PREF:
  1362. sector = SECTOR_FROM_BLOCK(blkstart);
  1363. nr_sects = SECTOR_FROM_BLOCK(blklen);
  1364. if (sector & (bdev_zone_sectors(bdev) - 1) ||
  1365. nr_sects != bdev_zone_sectors(bdev)) {
  1366. f2fs_msg(sbi->sb, KERN_INFO,
  1367. "(%d) %s: Unaligned discard attempted (block %x + %x)",
  1368. devi, sbi->s_ndevs ? FDEV(devi).path: "",
  1369. blkstart, blklen);
  1370. return -EIO;
  1371. }
  1372. trace_f2fs_issue_reset_zone(bdev, blkstart);
  1373. return blkdev_reset_zones(bdev, sector,
  1374. nr_sects, GFP_NOFS);
  1375. default:
  1376. /* Unknown zone type: broken device ? */
  1377. return -EIO;
  1378. }
  1379. }
  1380. #endif
  1381. static int __issue_discard_async(struct f2fs_sb_info *sbi,
  1382. struct block_device *bdev, block_t blkstart, block_t blklen)
  1383. {
  1384. #ifdef CONFIG_BLK_DEV_ZONED
  1385. if (f2fs_sb_has_blkzoned(sbi->sb) &&
  1386. bdev_zoned_model(bdev) != BLK_ZONED_NONE)
  1387. return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
  1388. #endif
  1389. return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
  1390. }
  1391. static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
  1392. block_t blkstart, block_t blklen)
  1393. {
  1394. sector_t start = blkstart, len = 0;
  1395. struct block_device *bdev;
  1396. struct seg_entry *se;
  1397. unsigned int offset;
  1398. block_t i;
  1399. int err = 0;
  1400. bdev = f2fs_target_device(sbi, blkstart, NULL);
  1401. for (i = blkstart; i < blkstart + blklen; i++, len++) {
  1402. if (i != start) {
  1403. struct block_device *bdev2 =
  1404. f2fs_target_device(sbi, i, NULL);
  1405. if (bdev2 != bdev) {
  1406. err = __issue_discard_async(sbi, bdev,
  1407. start, len);
  1408. if (err)
  1409. return err;
  1410. bdev = bdev2;
  1411. start = i;
  1412. len = 0;
  1413. }
  1414. }
  1415. se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
  1416. offset = GET_BLKOFF_FROM_SEG0(sbi, i);
  1417. if (!f2fs_test_and_set_bit(offset, se->discard_map))
  1418. sbi->discard_blks--;
  1419. }
  1420. if (len)
  1421. err = __issue_discard_async(sbi, bdev, start, len);
  1422. return err;
  1423. }
  1424. static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
  1425. bool check_only)
  1426. {
  1427. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  1428. int max_blocks = sbi->blocks_per_seg;
  1429. struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
  1430. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  1431. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  1432. unsigned long *discard_map = (unsigned long *)se->discard_map;
  1433. unsigned long *dmap = SIT_I(sbi)->tmp_map;
  1434. unsigned int start = 0, end = -1;
  1435. bool force = (cpc->reason & CP_DISCARD);
  1436. struct discard_entry *de = NULL;
  1437. struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
  1438. int i;
  1439. if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
  1440. return false;
  1441. if (!force) {
  1442. if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
  1443. SM_I(sbi)->dcc_info->nr_discards >=
  1444. SM_I(sbi)->dcc_info->max_discards)
  1445. return false;
  1446. }
  1447. /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
  1448. for (i = 0; i < entries; i++)
  1449. dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
  1450. (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
  1451. while (force || SM_I(sbi)->dcc_info->nr_discards <=
  1452. SM_I(sbi)->dcc_info->max_discards) {
  1453. start = __find_rev_next_bit(dmap, max_blocks, end + 1);
  1454. if (start >= max_blocks)
  1455. break;
  1456. end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
  1457. if (force && start && end != max_blocks
  1458. && (end - start) < cpc->trim_minlen)
  1459. continue;
  1460. if (check_only)
  1461. return true;
  1462. if (!de) {
  1463. de = f2fs_kmem_cache_alloc(discard_entry_slab,
  1464. GFP_F2FS_ZERO);
  1465. de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
  1466. list_add_tail(&de->list, head);
  1467. }
  1468. for (i = start; i < end; i++)
  1469. __set_bit_le(i, (void *)de->discard_map);
  1470. SM_I(sbi)->dcc_info->nr_discards += end - start;
  1471. }
  1472. return false;
  1473. }
  1474. static void release_discard_addr(struct discard_entry *entry)
  1475. {
  1476. list_del(&entry->list);
  1477. kmem_cache_free(discard_entry_slab, entry);
  1478. }
  1479. void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
  1480. {
  1481. struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
  1482. struct discard_entry *entry, *this;
  1483. /* drop caches */
  1484. list_for_each_entry_safe(entry, this, head, list)
  1485. release_discard_addr(entry);
  1486. }
  1487. /*
  1488. * Should call f2fs_clear_prefree_segments after checkpoint is done.
  1489. */
  1490. static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
  1491. {
  1492. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1493. unsigned int segno;
  1494. mutex_lock(&dirty_i->seglist_lock);
  1495. for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
  1496. __set_test_and_free(sbi, segno);
  1497. mutex_unlock(&dirty_i->seglist_lock);
  1498. }
  1499. void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
  1500. struct cp_control *cpc)
  1501. {
  1502. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1503. struct list_head *head = &dcc->entry_list;
  1504. struct discard_entry *entry, *this;
  1505. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1506. unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
  1507. unsigned int start = 0, end = -1;
  1508. unsigned int secno, start_segno;
  1509. bool force = (cpc->reason & CP_DISCARD);
  1510. bool need_align = test_opt(sbi, LFS) && sbi->segs_per_sec > 1;
  1511. mutex_lock(&dirty_i->seglist_lock);
  1512. while (1) {
  1513. int i;
  1514. if (need_align && end != -1)
  1515. end--;
  1516. start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
  1517. if (start >= MAIN_SEGS(sbi))
  1518. break;
  1519. end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
  1520. start + 1);
  1521. if (need_align) {
  1522. start = rounddown(start, sbi->segs_per_sec);
  1523. end = roundup(end, sbi->segs_per_sec);
  1524. }
  1525. for (i = start; i < end; i++) {
  1526. if (test_and_clear_bit(i, prefree_map))
  1527. dirty_i->nr_dirty[PRE]--;
  1528. }
  1529. if (!test_opt(sbi, DISCARD))
  1530. continue;
  1531. if (force && start >= cpc->trim_start &&
  1532. (end - 1) <= cpc->trim_end)
  1533. continue;
  1534. if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
  1535. f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
  1536. (end - start) << sbi->log_blocks_per_seg);
  1537. continue;
  1538. }
  1539. next:
  1540. secno = GET_SEC_FROM_SEG(sbi, start);
  1541. start_segno = GET_SEG_FROM_SEC(sbi, secno);
  1542. if (!IS_CURSEC(sbi, secno) &&
  1543. !get_valid_blocks(sbi, start, true))
  1544. f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
  1545. sbi->segs_per_sec << sbi->log_blocks_per_seg);
  1546. start = start_segno + sbi->segs_per_sec;
  1547. if (start < end)
  1548. goto next;
  1549. else
  1550. end = start - 1;
  1551. }
  1552. mutex_unlock(&dirty_i->seglist_lock);
  1553. /* send small discards */
  1554. list_for_each_entry_safe(entry, this, head, list) {
  1555. unsigned int cur_pos = 0, next_pos, len, total_len = 0;
  1556. bool is_valid = test_bit_le(0, entry->discard_map);
  1557. find_next:
  1558. if (is_valid) {
  1559. next_pos = find_next_zero_bit_le(entry->discard_map,
  1560. sbi->blocks_per_seg, cur_pos);
  1561. len = next_pos - cur_pos;
  1562. if (f2fs_sb_has_blkzoned(sbi->sb) ||
  1563. (force && len < cpc->trim_minlen))
  1564. goto skip;
  1565. f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
  1566. len);
  1567. total_len += len;
  1568. } else {
  1569. next_pos = find_next_bit_le(entry->discard_map,
  1570. sbi->blocks_per_seg, cur_pos);
  1571. }
  1572. skip:
  1573. cur_pos = next_pos;
  1574. is_valid = !is_valid;
  1575. if (cur_pos < sbi->blocks_per_seg)
  1576. goto find_next;
  1577. release_discard_addr(entry);
  1578. dcc->nr_discards -= total_len;
  1579. }
  1580. wake_up_discard_thread(sbi, false);
  1581. }
  1582. static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
  1583. {
  1584. dev_t dev = sbi->sb->s_bdev->bd_dev;
  1585. struct discard_cmd_control *dcc;
  1586. int err = 0, i;
  1587. if (SM_I(sbi)->dcc_info) {
  1588. dcc = SM_I(sbi)->dcc_info;
  1589. goto init_thread;
  1590. }
  1591. dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
  1592. if (!dcc)
  1593. return -ENOMEM;
  1594. dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
  1595. INIT_LIST_HEAD(&dcc->entry_list);
  1596. for (i = 0; i < MAX_PLIST_NUM; i++)
  1597. INIT_LIST_HEAD(&dcc->pend_list[i]);
  1598. INIT_LIST_HEAD(&dcc->wait_list);
  1599. INIT_LIST_HEAD(&dcc->fstrim_list);
  1600. mutex_init(&dcc->cmd_lock);
  1601. atomic_set(&dcc->issued_discard, 0);
  1602. atomic_set(&dcc->issing_discard, 0);
  1603. atomic_set(&dcc->discard_cmd_cnt, 0);
  1604. dcc->nr_discards = 0;
  1605. dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
  1606. dcc->undiscard_blks = 0;
  1607. dcc->next_pos = 0;
  1608. dcc->root = RB_ROOT;
  1609. dcc->rbtree_check = false;
  1610. init_waitqueue_head(&dcc->discard_wait_queue);
  1611. SM_I(sbi)->dcc_info = dcc;
  1612. init_thread:
  1613. dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
  1614. "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
  1615. if (IS_ERR(dcc->f2fs_issue_discard)) {
  1616. err = PTR_ERR(dcc->f2fs_issue_discard);
  1617. kfree(dcc);
  1618. SM_I(sbi)->dcc_info = NULL;
  1619. return err;
  1620. }
  1621. return err;
  1622. }
  1623. static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
  1624. {
  1625. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1626. if (!dcc)
  1627. return;
  1628. f2fs_stop_discard_thread(sbi);
  1629. kfree(dcc);
  1630. SM_I(sbi)->dcc_info = NULL;
  1631. }
  1632. static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
  1633. {
  1634. struct sit_info *sit_i = SIT_I(sbi);
  1635. if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
  1636. sit_i->dirty_sentries++;
  1637. return false;
  1638. }
  1639. return true;
  1640. }
  1641. static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
  1642. unsigned int segno, int modified)
  1643. {
  1644. struct seg_entry *se = get_seg_entry(sbi, segno);
  1645. se->type = type;
  1646. if (modified)
  1647. __mark_sit_entry_dirty(sbi, segno);
  1648. }
  1649. static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
  1650. {
  1651. struct seg_entry *se;
  1652. unsigned int segno, offset;
  1653. long int new_vblocks;
  1654. bool exist;
  1655. #ifdef CONFIG_F2FS_CHECK_FS
  1656. bool mir_exist;
  1657. #endif
  1658. segno = GET_SEGNO(sbi, blkaddr);
  1659. se = get_seg_entry(sbi, segno);
  1660. new_vblocks = se->valid_blocks + del;
  1661. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1662. f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
  1663. (new_vblocks > sbi->blocks_per_seg)));
  1664. se->valid_blocks = new_vblocks;
  1665. se->mtime = get_mtime(sbi, false);
  1666. if (se->mtime > SIT_I(sbi)->max_mtime)
  1667. SIT_I(sbi)->max_mtime = se->mtime;
  1668. /* Update valid block bitmap */
  1669. if (del > 0) {
  1670. exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
  1671. #ifdef CONFIG_F2FS_CHECK_FS
  1672. mir_exist = f2fs_test_and_set_bit(offset,
  1673. se->cur_valid_map_mir);
  1674. if (unlikely(exist != mir_exist)) {
  1675. f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
  1676. "when setting bitmap, blk:%u, old bit:%d",
  1677. blkaddr, exist);
  1678. f2fs_bug_on(sbi, 1);
  1679. }
  1680. #endif
  1681. if (unlikely(exist)) {
  1682. f2fs_msg(sbi->sb, KERN_ERR,
  1683. "Bitmap was wrongly set, blk:%u", blkaddr);
  1684. f2fs_bug_on(sbi, 1);
  1685. se->valid_blocks--;
  1686. del = 0;
  1687. }
  1688. if (f2fs_discard_en(sbi) &&
  1689. !f2fs_test_and_set_bit(offset, se->discard_map))
  1690. sbi->discard_blks--;
  1691. /* don't overwrite by SSR to keep node chain */
  1692. if (IS_NODESEG(se->type)) {
  1693. if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
  1694. se->ckpt_valid_blocks++;
  1695. }
  1696. } else {
  1697. exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
  1698. #ifdef CONFIG_F2FS_CHECK_FS
  1699. mir_exist = f2fs_test_and_clear_bit(offset,
  1700. se->cur_valid_map_mir);
  1701. if (unlikely(exist != mir_exist)) {
  1702. f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
  1703. "when clearing bitmap, blk:%u, old bit:%d",
  1704. blkaddr, exist);
  1705. f2fs_bug_on(sbi, 1);
  1706. }
  1707. #endif
  1708. if (unlikely(!exist)) {
  1709. f2fs_msg(sbi->sb, KERN_ERR,
  1710. "Bitmap was wrongly cleared, blk:%u", blkaddr);
  1711. f2fs_bug_on(sbi, 1);
  1712. se->valid_blocks++;
  1713. del = 0;
  1714. }
  1715. if (f2fs_discard_en(sbi) &&
  1716. f2fs_test_and_clear_bit(offset, se->discard_map))
  1717. sbi->discard_blks++;
  1718. }
  1719. if (!f2fs_test_bit(offset, se->ckpt_valid_map))
  1720. se->ckpt_valid_blocks += del;
  1721. __mark_sit_entry_dirty(sbi, segno);
  1722. /* update total number of valid blocks to be written in ckpt area */
  1723. SIT_I(sbi)->written_valid_blocks += del;
  1724. if (sbi->segs_per_sec > 1)
  1725. get_sec_entry(sbi, segno)->valid_blocks += del;
  1726. }
  1727. void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
  1728. {
  1729. unsigned int segno = GET_SEGNO(sbi, addr);
  1730. struct sit_info *sit_i = SIT_I(sbi);
  1731. f2fs_bug_on(sbi, addr == NULL_ADDR);
  1732. if (addr == NEW_ADDR)
  1733. return;
  1734. /* add it into sit main buffer */
  1735. down_write(&sit_i->sentry_lock);
  1736. update_sit_entry(sbi, addr, -1);
  1737. /* add it into dirty seglist */
  1738. locate_dirty_segment(sbi, segno);
  1739. up_write(&sit_i->sentry_lock);
  1740. }
  1741. bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
  1742. {
  1743. struct sit_info *sit_i = SIT_I(sbi);
  1744. unsigned int segno, offset;
  1745. struct seg_entry *se;
  1746. bool is_cp = false;
  1747. if (!is_valid_data_blkaddr(sbi, blkaddr))
  1748. return true;
  1749. down_read(&sit_i->sentry_lock);
  1750. segno = GET_SEGNO(sbi, blkaddr);
  1751. se = get_seg_entry(sbi, segno);
  1752. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1753. if (f2fs_test_bit(offset, se->ckpt_valid_map))
  1754. is_cp = true;
  1755. up_read(&sit_i->sentry_lock);
  1756. return is_cp;
  1757. }
  1758. /*
  1759. * This function should be resided under the curseg_mutex lock
  1760. */
  1761. static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
  1762. struct f2fs_summary *sum)
  1763. {
  1764. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1765. void *addr = curseg->sum_blk;
  1766. addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
  1767. memcpy(addr, sum, sizeof(struct f2fs_summary));
  1768. }
  1769. /*
  1770. * Calculate the number of current summary pages for writing
  1771. */
  1772. int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
  1773. {
  1774. int valid_sum_count = 0;
  1775. int i, sum_in_page;
  1776. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1777. if (sbi->ckpt->alloc_type[i] == SSR)
  1778. valid_sum_count += sbi->blocks_per_seg;
  1779. else {
  1780. if (for_ra)
  1781. valid_sum_count += le16_to_cpu(
  1782. F2FS_CKPT(sbi)->cur_data_blkoff[i]);
  1783. else
  1784. valid_sum_count += curseg_blkoff(sbi, i);
  1785. }
  1786. }
  1787. sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
  1788. SUM_FOOTER_SIZE) / SUMMARY_SIZE;
  1789. if (valid_sum_count <= sum_in_page)
  1790. return 1;
  1791. else if ((valid_sum_count - sum_in_page) <=
  1792. (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
  1793. return 2;
  1794. return 3;
  1795. }
  1796. /*
  1797. * Caller should put this summary page
  1798. */
  1799. struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
  1800. {
  1801. return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
  1802. }
  1803. void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
  1804. void *src, block_t blk_addr)
  1805. {
  1806. struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
  1807. memcpy(page_address(page), src, PAGE_SIZE);
  1808. set_page_dirty(page);
  1809. f2fs_put_page(page, 1);
  1810. }
  1811. static void write_sum_page(struct f2fs_sb_info *sbi,
  1812. struct f2fs_summary_block *sum_blk, block_t blk_addr)
  1813. {
  1814. f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
  1815. }
  1816. static void write_current_sum_page(struct f2fs_sb_info *sbi,
  1817. int type, block_t blk_addr)
  1818. {
  1819. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1820. struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
  1821. struct f2fs_summary_block *src = curseg->sum_blk;
  1822. struct f2fs_summary_block *dst;
  1823. dst = (struct f2fs_summary_block *)page_address(page);
  1824. memset(dst, 0, PAGE_SIZE);
  1825. mutex_lock(&curseg->curseg_mutex);
  1826. down_read(&curseg->journal_rwsem);
  1827. memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
  1828. up_read(&curseg->journal_rwsem);
  1829. memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
  1830. memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
  1831. mutex_unlock(&curseg->curseg_mutex);
  1832. set_page_dirty(page);
  1833. f2fs_put_page(page, 1);
  1834. }
  1835. static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
  1836. {
  1837. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1838. unsigned int segno = curseg->segno + 1;
  1839. struct free_segmap_info *free_i = FREE_I(sbi);
  1840. if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
  1841. return !test_bit(segno, free_i->free_segmap);
  1842. return 0;
  1843. }
  1844. /*
  1845. * Find a new segment from the free segments bitmap to right order
  1846. * This function should be returned with success, otherwise BUG
  1847. */
  1848. static void get_new_segment(struct f2fs_sb_info *sbi,
  1849. unsigned int *newseg, bool new_sec, int dir)
  1850. {
  1851. struct free_segmap_info *free_i = FREE_I(sbi);
  1852. unsigned int segno, secno, zoneno;
  1853. unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
  1854. unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
  1855. unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
  1856. unsigned int left_start = hint;
  1857. bool init = true;
  1858. int go_left = 0;
  1859. int i;
  1860. spin_lock(&free_i->segmap_lock);
  1861. if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
  1862. segno = find_next_zero_bit(free_i->free_segmap,
  1863. GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
  1864. if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
  1865. goto got_it;
  1866. }
  1867. find_other_zone:
  1868. secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
  1869. if (secno >= MAIN_SECS(sbi)) {
  1870. if (dir == ALLOC_RIGHT) {
  1871. secno = find_next_zero_bit(free_i->free_secmap,
  1872. MAIN_SECS(sbi), 0);
  1873. f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
  1874. } else {
  1875. go_left = 1;
  1876. left_start = hint - 1;
  1877. }
  1878. }
  1879. if (go_left == 0)
  1880. goto skip_left;
  1881. while (test_bit(left_start, free_i->free_secmap)) {
  1882. if (left_start > 0) {
  1883. left_start--;
  1884. continue;
  1885. }
  1886. left_start = find_next_zero_bit(free_i->free_secmap,
  1887. MAIN_SECS(sbi), 0);
  1888. f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
  1889. break;
  1890. }
  1891. secno = left_start;
  1892. skip_left:
  1893. segno = GET_SEG_FROM_SEC(sbi, secno);
  1894. zoneno = GET_ZONE_FROM_SEC(sbi, secno);
  1895. /* give up on finding another zone */
  1896. if (!init)
  1897. goto got_it;
  1898. if (sbi->secs_per_zone == 1)
  1899. goto got_it;
  1900. if (zoneno == old_zoneno)
  1901. goto got_it;
  1902. if (dir == ALLOC_LEFT) {
  1903. if (!go_left && zoneno + 1 >= total_zones)
  1904. goto got_it;
  1905. if (go_left && zoneno == 0)
  1906. goto got_it;
  1907. }
  1908. for (i = 0; i < NR_CURSEG_TYPE; i++)
  1909. if (CURSEG_I(sbi, i)->zone == zoneno)
  1910. break;
  1911. if (i < NR_CURSEG_TYPE) {
  1912. /* zone is in user, try another */
  1913. if (go_left)
  1914. hint = zoneno * sbi->secs_per_zone - 1;
  1915. else if (zoneno + 1 >= total_zones)
  1916. hint = 0;
  1917. else
  1918. hint = (zoneno + 1) * sbi->secs_per_zone;
  1919. init = false;
  1920. goto find_other_zone;
  1921. }
  1922. got_it:
  1923. /* set it as dirty segment in free segmap */
  1924. f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
  1925. __set_inuse(sbi, segno);
  1926. *newseg = segno;
  1927. spin_unlock(&free_i->segmap_lock);
  1928. }
  1929. static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
  1930. {
  1931. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1932. struct summary_footer *sum_footer;
  1933. curseg->segno = curseg->next_segno;
  1934. curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
  1935. curseg->next_blkoff = 0;
  1936. curseg->next_segno = NULL_SEGNO;
  1937. sum_footer = &(curseg->sum_blk->footer);
  1938. memset(sum_footer, 0, sizeof(struct summary_footer));
  1939. if (IS_DATASEG(type))
  1940. SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
  1941. if (IS_NODESEG(type))
  1942. SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
  1943. __set_sit_entry_type(sbi, type, curseg->segno, modified);
  1944. }
  1945. static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
  1946. {
  1947. /* if segs_per_sec is large than 1, we need to keep original policy. */
  1948. if (sbi->segs_per_sec != 1)
  1949. return CURSEG_I(sbi, type)->segno;
  1950. if (test_opt(sbi, NOHEAP) &&
  1951. (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
  1952. return 0;
  1953. if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
  1954. return SIT_I(sbi)->last_victim[ALLOC_NEXT];
  1955. /* find segments from 0 to reuse freed segments */
  1956. if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
  1957. return 0;
  1958. return CURSEG_I(sbi, type)->segno;
  1959. }
  1960. /*
  1961. * Allocate a current working segment.
  1962. * This function always allocates a free segment in LFS manner.
  1963. */
  1964. static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
  1965. {
  1966. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1967. unsigned int segno = curseg->segno;
  1968. int dir = ALLOC_LEFT;
  1969. write_sum_page(sbi, curseg->sum_blk,
  1970. GET_SUM_BLOCK(sbi, segno));
  1971. if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
  1972. dir = ALLOC_RIGHT;
  1973. if (test_opt(sbi, NOHEAP))
  1974. dir = ALLOC_RIGHT;
  1975. segno = __get_next_segno(sbi, type);
  1976. get_new_segment(sbi, &segno, new_sec, dir);
  1977. curseg->next_segno = segno;
  1978. reset_curseg(sbi, type, 1);
  1979. curseg->alloc_type = LFS;
  1980. }
  1981. static void __next_free_blkoff(struct f2fs_sb_info *sbi,
  1982. struct curseg_info *seg, block_t start)
  1983. {
  1984. struct seg_entry *se = get_seg_entry(sbi, seg->segno);
  1985. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  1986. unsigned long *target_map = SIT_I(sbi)->tmp_map;
  1987. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  1988. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  1989. int i, pos;
  1990. for (i = 0; i < entries; i++)
  1991. target_map[i] = ckpt_map[i] | cur_map[i];
  1992. pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
  1993. seg->next_blkoff = pos;
  1994. }
  1995. /*
  1996. * If a segment is written by LFS manner, next block offset is just obtained
  1997. * by increasing the current block offset. However, if a segment is written by
  1998. * SSR manner, next block offset obtained by calling __next_free_blkoff
  1999. */
  2000. static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
  2001. struct curseg_info *seg)
  2002. {
  2003. if (seg->alloc_type == SSR)
  2004. __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
  2005. else
  2006. seg->next_blkoff++;
  2007. }
  2008. /*
  2009. * This function always allocates a used segment(from dirty seglist) by SSR
  2010. * manner, so it should recover the existing segment information of valid blocks
  2011. */
  2012. static void change_curseg(struct f2fs_sb_info *sbi, int type)
  2013. {
  2014. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2015. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2016. unsigned int new_segno = curseg->next_segno;
  2017. struct f2fs_summary_block *sum_node;
  2018. struct page *sum_page;
  2019. write_sum_page(sbi, curseg->sum_blk,
  2020. GET_SUM_BLOCK(sbi, curseg->segno));
  2021. __set_test_and_inuse(sbi, new_segno);
  2022. mutex_lock(&dirty_i->seglist_lock);
  2023. __remove_dirty_segment(sbi, new_segno, PRE);
  2024. __remove_dirty_segment(sbi, new_segno, DIRTY);
  2025. mutex_unlock(&dirty_i->seglist_lock);
  2026. reset_curseg(sbi, type, 1);
  2027. curseg->alloc_type = SSR;
  2028. __next_free_blkoff(sbi, curseg, 0);
  2029. sum_page = f2fs_get_sum_page(sbi, new_segno);
  2030. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  2031. memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
  2032. f2fs_put_page(sum_page, 1);
  2033. }
  2034. static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
  2035. {
  2036. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2037. const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
  2038. unsigned segno = NULL_SEGNO;
  2039. int i, cnt;
  2040. bool reversed = false;
  2041. /* f2fs_need_SSR() already forces to do this */
  2042. if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
  2043. curseg->next_segno = segno;
  2044. return 1;
  2045. }
  2046. /* For node segments, let's do SSR more intensively */
  2047. if (IS_NODESEG(type)) {
  2048. if (type >= CURSEG_WARM_NODE) {
  2049. reversed = true;
  2050. i = CURSEG_COLD_NODE;
  2051. } else {
  2052. i = CURSEG_HOT_NODE;
  2053. }
  2054. cnt = NR_CURSEG_NODE_TYPE;
  2055. } else {
  2056. if (type >= CURSEG_WARM_DATA) {
  2057. reversed = true;
  2058. i = CURSEG_COLD_DATA;
  2059. } else {
  2060. i = CURSEG_HOT_DATA;
  2061. }
  2062. cnt = NR_CURSEG_DATA_TYPE;
  2063. }
  2064. for (; cnt-- > 0; reversed ? i-- : i++) {
  2065. if (i == type)
  2066. continue;
  2067. if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
  2068. curseg->next_segno = segno;
  2069. return 1;
  2070. }
  2071. }
  2072. return 0;
  2073. }
  2074. /*
  2075. * flush out current segment and replace it with new segment
  2076. * This function should be returned with success, otherwise BUG
  2077. */
  2078. static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
  2079. int type, bool force)
  2080. {
  2081. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2082. if (force)
  2083. new_curseg(sbi, type, true);
  2084. else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
  2085. type == CURSEG_WARM_NODE)
  2086. new_curseg(sbi, type, false);
  2087. else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
  2088. new_curseg(sbi, type, false);
  2089. else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
  2090. change_curseg(sbi, type);
  2091. else
  2092. new_curseg(sbi, type, false);
  2093. stat_inc_seg_type(sbi, curseg);
  2094. }
  2095. void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
  2096. {
  2097. struct curseg_info *curseg;
  2098. unsigned int old_segno;
  2099. int i;
  2100. down_write(&SIT_I(sbi)->sentry_lock);
  2101. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2102. curseg = CURSEG_I(sbi, i);
  2103. old_segno = curseg->segno;
  2104. SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
  2105. locate_dirty_segment(sbi, old_segno);
  2106. }
  2107. up_write(&SIT_I(sbi)->sentry_lock);
  2108. }
  2109. static const struct segment_allocation default_salloc_ops = {
  2110. .allocate_segment = allocate_segment_by_default,
  2111. };
  2112. bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
  2113. struct cp_control *cpc)
  2114. {
  2115. __u64 trim_start = cpc->trim_start;
  2116. bool has_candidate = false;
  2117. down_write(&SIT_I(sbi)->sentry_lock);
  2118. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
  2119. if (add_discard_addrs(sbi, cpc, true)) {
  2120. has_candidate = true;
  2121. break;
  2122. }
  2123. }
  2124. up_write(&SIT_I(sbi)->sentry_lock);
  2125. cpc->trim_start = trim_start;
  2126. return has_candidate;
  2127. }
  2128. static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
  2129. struct discard_policy *dpolicy,
  2130. unsigned int start, unsigned int end)
  2131. {
  2132. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  2133. struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
  2134. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  2135. struct discard_cmd *dc;
  2136. struct blk_plug plug;
  2137. int issued;
  2138. unsigned int trimmed = 0;
  2139. next:
  2140. issued = 0;
  2141. mutex_lock(&dcc->cmd_lock);
  2142. if (unlikely(dcc->rbtree_check))
  2143. f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
  2144. &dcc->root));
  2145. dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
  2146. NULL, start,
  2147. (struct rb_entry **)&prev_dc,
  2148. (struct rb_entry **)&next_dc,
  2149. &insert_p, &insert_parent, true);
  2150. if (!dc)
  2151. dc = next_dc;
  2152. blk_start_plug(&plug);
  2153. while (dc && dc->lstart <= end) {
  2154. struct rb_node *node;
  2155. int err = 0;
  2156. if (dc->len < dpolicy->granularity)
  2157. goto skip;
  2158. if (dc->state != D_PREP) {
  2159. list_move_tail(&dc->list, &dcc->fstrim_list);
  2160. goto skip;
  2161. }
  2162. err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
  2163. if (issued >= dpolicy->max_requests) {
  2164. start = dc->lstart + dc->len;
  2165. if (err)
  2166. __remove_discard_cmd(sbi, dc);
  2167. blk_finish_plug(&plug);
  2168. mutex_unlock(&dcc->cmd_lock);
  2169. trimmed += __wait_all_discard_cmd(sbi, NULL);
  2170. congestion_wait(BLK_RW_ASYNC, HZ/50);
  2171. goto next;
  2172. }
  2173. skip:
  2174. node = rb_next(&dc->rb_node);
  2175. if (err)
  2176. __remove_discard_cmd(sbi, dc);
  2177. dc = rb_entry_safe(node, struct discard_cmd, rb_node);
  2178. if (fatal_signal_pending(current))
  2179. break;
  2180. }
  2181. blk_finish_plug(&plug);
  2182. mutex_unlock(&dcc->cmd_lock);
  2183. return trimmed;
  2184. }
  2185. int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
  2186. {
  2187. __u64 start = F2FS_BYTES_TO_BLK(range->start);
  2188. __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
  2189. unsigned int start_segno, end_segno;
  2190. block_t start_block, end_block;
  2191. struct cp_control cpc;
  2192. struct discard_policy dpolicy;
  2193. unsigned long long trimmed = 0;
  2194. int err = 0;
  2195. bool need_align = test_opt(sbi, LFS) && sbi->segs_per_sec > 1;
  2196. if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
  2197. return -EINVAL;
  2198. if (end < MAIN_BLKADDR(sbi))
  2199. goto out;
  2200. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
  2201. f2fs_msg(sbi->sb, KERN_WARNING,
  2202. "Found FS corruption, run fsck to fix.");
  2203. return -EIO;
  2204. }
  2205. /* start/end segment number in main_area */
  2206. start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
  2207. end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
  2208. GET_SEGNO(sbi, end);
  2209. if (need_align) {
  2210. start_segno = rounddown(start_segno, sbi->segs_per_sec);
  2211. end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
  2212. }
  2213. cpc.reason = CP_DISCARD;
  2214. cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
  2215. cpc.trim_start = start_segno;
  2216. cpc.trim_end = end_segno;
  2217. if (sbi->discard_blks == 0)
  2218. goto out;
  2219. mutex_lock(&sbi->gc_mutex);
  2220. err = f2fs_write_checkpoint(sbi, &cpc);
  2221. mutex_unlock(&sbi->gc_mutex);
  2222. if (err)
  2223. goto out;
  2224. /*
  2225. * We filed discard candidates, but actually we don't need to wait for
  2226. * all of them, since they'll be issued in idle time along with runtime
  2227. * discard option. User configuration looks like using runtime discard
  2228. * or periodic fstrim instead of it.
  2229. */
  2230. if (test_opt(sbi, DISCARD))
  2231. goto out;
  2232. start_block = START_BLOCK(sbi, start_segno);
  2233. end_block = START_BLOCK(sbi, end_segno + 1);
  2234. __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
  2235. trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
  2236. start_block, end_block);
  2237. trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
  2238. start_block, end_block);
  2239. out:
  2240. if (!err)
  2241. range->len = F2FS_BLK_TO_BYTES(trimmed);
  2242. return err;
  2243. }
  2244. static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
  2245. {
  2246. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2247. if (curseg->next_blkoff < sbi->blocks_per_seg)
  2248. return true;
  2249. return false;
  2250. }
  2251. int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
  2252. {
  2253. switch (hint) {
  2254. case WRITE_LIFE_SHORT:
  2255. return CURSEG_HOT_DATA;
  2256. case WRITE_LIFE_EXTREME:
  2257. return CURSEG_COLD_DATA;
  2258. default:
  2259. return CURSEG_WARM_DATA;
  2260. }
  2261. }
  2262. /* This returns write hints for each segment type. This hints will be
  2263. * passed down to block layer. There are mapping tables which depend on
  2264. * the mount option 'whint_mode'.
  2265. *
  2266. * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
  2267. *
  2268. * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
  2269. *
  2270. * User F2FS Block
  2271. * ---- ---- -----
  2272. * META WRITE_LIFE_NOT_SET
  2273. * HOT_NODE "
  2274. * WARM_NODE "
  2275. * COLD_NODE "
  2276. * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
  2277. * extension list " "
  2278. *
  2279. * -- buffered io
  2280. * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
  2281. * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
  2282. * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
  2283. * WRITE_LIFE_NONE " "
  2284. * WRITE_LIFE_MEDIUM " "
  2285. * WRITE_LIFE_LONG " "
  2286. *
  2287. * -- direct io
  2288. * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
  2289. * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
  2290. * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
  2291. * WRITE_LIFE_NONE " WRITE_LIFE_NONE
  2292. * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
  2293. * WRITE_LIFE_LONG " WRITE_LIFE_LONG
  2294. *
  2295. * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
  2296. *
  2297. * User F2FS Block
  2298. * ---- ---- -----
  2299. * META WRITE_LIFE_MEDIUM;
  2300. * HOT_NODE WRITE_LIFE_NOT_SET
  2301. * WARM_NODE "
  2302. * COLD_NODE WRITE_LIFE_NONE
  2303. * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
  2304. * extension list " "
  2305. *
  2306. * -- buffered io
  2307. * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
  2308. * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
  2309. * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
  2310. * WRITE_LIFE_NONE " "
  2311. * WRITE_LIFE_MEDIUM " "
  2312. * WRITE_LIFE_LONG " "
  2313. *
  2314. * -- direct io
  2315. * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
  2316. * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
  2317. * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
  2318. * WRITE_LIFE_NONE " WRITE_LIFE_NONE
  2319. * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
  2320. * WRITE_LIFE_LONG " WRITE_LIFE_LONG
  2321. */
  2322. enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
  2323. enum page_type type, enum temp_type temp)
  2324. {
  2325. if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
  2326. if (type == DATA) {
  2327. if (temp == WARM)
  2328. return WRITE_LIFE_NOT_SET;
  2329. else if (temp == HOT)
  2330. return WRITE_LIFE_SHORT;
  2331. else if (temp == COLD)
  2332. return WRITE_LIFE_EXTREME;
  2333. } else {
  2334. return WRITE_LIFE_NOT_SET;
  2335. }
  2336. } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
  2337. if (type == DATA) {
  2338. if (temp == WARM)
  2339. return WRITE_LIFE_LONG;
  2340. else if (temp == HOT)
  2341. return WRITE_LIFE_SHORT;
  2342. else if (temp == COLD)
  2343. return WRITE_LIFE_EXTREME;
  2344. } else if (type == NODE) {
  2345. if (temp == WARM || temp == HOT)
  2346. return WRITE_LIFE_NOT_SET;
  2347. else if (temp == COLD)
  2348. return WRITE_LIFE_NONE;
  2349. } else if (type == META) {
  2350. return WRITE_LIFE_MEDIUM;
  2351. }
  2352. }
  2353. return WRITE_LIFE_NOT_SET;
  2354. }
  2355. static int __get_segment_type_2(struct f2fs_io_info *fio)
  2356. {
  2357. if (fio->type == DATA)
  2358. return CURSEG_HOT_DATA;
  2359. else
  2360. return CURSEG_HOT_NODE;
  2361. }
  2362. static int __get_segment_type_4(struct f2fs_io_info *fio)
  2363. {
  2364. if (fio->type == DATA) {
  2365. struct inode *inode = fio->page->mapping->host;
  2366. if (S_ISDIR(inode->i_mode))
  2367. return CURSEG_HOT_DATA;
  2368. else
  2369. return CURSEG_COLD_DATA;
  2370. } else {
  2371. if (IS_DNODE(fio->page) && is_cold_node(fio->page))
  2372. return CURSEG_WARM_NODE;
  2373. else
  2374. return CURSEG_COLD_NODE;
  2375. }
  2376. }
  2377. static int __get_segment_type_6(struct f2fs_io_info *fio)
  2378. {
  2379. if (fio->type == DATA) {
  2380. struct inode *inode = fio->page->mapping->host;
  2381. if (is_cold_data(fio->page) || file_is_cold(inode))
  2382. return CURSEG_COLD_DATA;
  2383. if (file_is_hot(inode) ||
  2384. is_inode_flag_set(inode, FI_HOT_DATA) ||
  2385. f2fs_is_atomic_file(inode) ||
  2386. f2fs_is_volatile_file(inode))
  2387. return CURSEG_HOT_DATA;
  2388. return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
  2389. } else {
  2390. if (IS_DNODE(fio->page))
  2391. return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
  2392. CURSEG_HOT_NODE;
  2393. return CURSEG_COLD_NODE;
  2394. }
  2395. }
  2396. static int __get_segment_type(struct f2fs_io_info *fio)
  2397. {
  2398. int type = 0;
  2399. switch (F2FS_OPTION(fio->sbi).active_logs) {
  2400. case 2:
  2401. type = __get_segment_type_2(fio);
  2402. break;
  2403. case 4:
  2404. type = __get_segment_type_4(fio);
  2405. break;
  2406. case 6:
  2407. type = __get_segment_type_6(fio);
  2408. break;
  2409. default:
  2410. f2fs_bug_on(fio->sbi, true);
  2411. }
  2412. if (IS_HOT(type))
  2413. fio->temp = HOT;
  2414. else if (IS_WARM(type))
  2415. fio->temp = WARM;
  2416. else
  2417. fio->temp = COLD;
  2418. return type;
  2419. }
  2420. void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
  2421. block_t old_blkaddr, block_t *new_blkaddr,
  2422. struct f2fs_summary *sum, int type,
  2423. struct f2fs_io_info *fio, bool add_list)
  2424. {
  2425. struct sit_info *sit_i = SIT_I(sbi);
  2426. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2427. down_read(&SM_I(sbi)->curseg_lock);
  2428. mutex_lock(&curseg->curseg_mutex);
  2429. down_write(&sit_i->sentry_lock);
  2430. *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  2431. f2fs_wait_discard_bio(sbi, *new_blkaddr);
  2432. /*
  2433. * __add_sum_entry should be resided under the curseg_mutex
  2434. * because, this function updates a summary entry in the
  2435. * current summary block.
  2436. */
  2437. __add_sum_entry(sbi, type, sum);
  2438. __refresh_next_blkoff(sbi, curseg);
  2439. stat_inc_block_count(sbi, curseg);
  2440. /*
  2441. * SIT information should be updated before segment allocation,
  2442. * since SSR needs latest valid block information.
  2443. */
  2444. update_sit_entry(sbi, *new_blkaddr, 1);
  2445. if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
  2446. update_sit_entry(sbi, old_blkaddr, -1);
  2447. if (!__has_curseg_space(sbi, type))
  2448. sit_i->s_ops->allocate_segment(sbi, type, false);
  2449. /*
  2450. * segment dirty status should be updated after segment allocation,
  2451. * so we just need to update status only one time after previous
  2452. * segment being closed.
  2453. */
  2454. locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
  2455. locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
  2456. up_write(&sit_i->sentry_lock);
  2457. if (page && IS_NODESEG(type)) {
  2458. fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
  2459. f2fs_inode_chksum_set(sbi, page);
  2460. }
  2461. if (add_list) {
  2462. struct f2fs_bio_info *io;
  2463. INIT_LIST_HEAD(&fio->list);
  2464. fio->in_list = true;
  2465. fio->retry = false;
  2466. io = sbi->write_io[fio->type] + fio->temp;
  2467. spin_lock(&io->io_lock);
  2468. list_add_tail(&fio->list, &io->io_list);
  2469. spin_unlock(&io->io_lock);
  2470. }
  2471. mutex_unlock(&curseg->curseg_mutex);
  2472. up_read(&SM_I(sbi)->curseg_lock);
  2473. }
  2474. static void update_device_state(struct f2fs_io_info *fio)
  2475. {
  2476. struct f2fs_sb_info *sbi = fio->sbi;
  2477. unsigned int devidx;
  2478. if (!sbi->s_ndevs)
  2479. return;
  2480. devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
  2481. /* update device state for fsync */
  2482. f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
  2483. /* update device state for checkpoint */
  2484. if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
  2485. spin_lock(&sbi->dev_lock);
  2486. f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
  2487. spin_unlock(&sbi->dev_lock);
  2488. }
  2489. }
  2490. static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
  2491. {
  2492. int type = __get_segment_type(fio);
  2493. bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
  2494. if (keep_order)
  2495. down_read(&fio->sbi->io_order_lock);
  2496. reallocate:
  2497. f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
  2498. &fio->new_blkaddr, sum, type, fio, true);
  2499. /* writeout dirty page into bdev */
  2500. f2fs_submit_page_write(fio);
  2501. if (fio->retry) {
  2502. fio->old_blkaddr = fio->new_blkaddr;
  2503. goto reallocate;
  2504. }
  2505. update_device_state(fio);
  2506. if (keep_order)
  2507. up_read(&fio->sbi->io_order_lock);
  2508. }
  2509. void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
  2510. enum iostat_type io_type)
  2511. {
  2512. struct f2fs_io_info fio = {
  2513. .sbi = sbi,
  2514. .type = META,
  2515. .temp = HOT,
  2516. .op = REQ_OP_WRITE,
  2517. .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
  2518. .old_blkaddr = page->index,
  2519. .new_blkaddr = page->index,
  2520. .page = page,
  2521. .encrypted_page = NULL,
  2522. .in_list = false,
  2523. };
  2524. if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
  2525. fio.op_flags &= ~REQ_META;
  2526. set_page_writeback(page);
  2527. ClearPageError(page);
  2528. f2fs_submit_page_write(&fio);
  2529. f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
  2530. }
  2531. void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
  2532. {
  2533. struct f2fs_summary sum;
  2534. set_summary(&sum, nid, 0, 0);
  2535. do_write_page(&sum, fio);
  2536. f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
  2537. }
  2538. void f2fs_outplace_write_data(struct dnode_of_data *dn,
  2539. struct f2fs_io_info *fio)
  2540. {
  2541. struct f2fs_sb_info *sbi = fio->sbi;
  2542. struct f2fs_summary sum;
  2543. f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
  2544. set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
  2545. do_write_page(&sum, fio);
  2546. f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
  2547. f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
  2548. }
  2549. int f2fs_inplace_write_data(struct f2fs_io_info *fio)
  2550. {
  2551. int err;
  2552. struct f2fs_sb_info *sbi = fio->sbi;
  2553. fio->new_blkaddr = fio->old_blkaddr;
  2554. /* i/o temperature is needed for passing down write hints */
  2555. __get_segment_type(fio);
  2556. f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi,
  2557. GET_SEGNO(sbi, fio->new_blkaddr))->type));
  2558. stat_inc_inplace_blocks(fio->sbi);
  2559. err = f2fs_submit_page_bio(fio);
  2560. if (!err)
  2561. update_device_state(fio);
  2562. f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
  2563. return err;
  2564. }
  2565. static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
  2566. unsigned int segno)
  2567. {
  2568. int i;
  2569. for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
  2570. if (CURSEG_I(sbi, i)->segno == segno)
  2571. break;
  2572. }
  2573. return i;
  2574. }
  2575. void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
  2576. block_t old_blkaddr, block_t new_blkaddr,
  2577. bool recover_curseg, bool recover_newaddr)
  2578. {
  2579. struct sit_info *sit_i = SIT_I(sbi);
  2580. struct curseg_info *curseg;
  2581. unsigned int segno, old_cursegno;
  2582. struct seg_entry *se;
  2583. int type;
  2584. unsigned short old_blkoff;
  2585. segno = GET_SEGNO(sbi, new_blkaddr);
  2586. se = get_seg_entry(sbi, segno);
  2587. type = se->type;
  2588. down_write(&SM_I(sbi)->curseg_lock);
  2589. if (!recover_curseg) {
  2590. /* for recovery flow */
  2591. if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
  2592. if (old_blkaddr == NULL_ADDR)
  2593. type = CURSEG_COLD_DATA;
  2594. else
  2595. type = CURSEG_WARM_DATA;
  2596. }
  2597. } else {
  2598. if (IS_CURSEG(sbi, segno)) {
  2599. /* se->type is volatile as SSR allocation */
  2600. type = __f2fs_get_curseg(sbi, segno);
  2601. f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
  2602. } else {
  2603. type = CURSEG_WARM_DATA;
  2604. }
  2605. }
  2606. f2fs_bug_on(sbi, !IS_DATASEG(type));
  2607. curseg = CURSEG_I(sbi, type);
  2608. mutex_lock(&curseg->curseg_mutex);
  2609. down_write(&sit_i->sentry_lock);
  2610. old_cursegno = curseg->segno;
  2611. old_blkoff = curseg->next_blkoff;
  2612. /* change the current segment */
  2613. if (segno != curseg->segno) {
  2614. curseg->next_segno = segno;
  2615. change_curseg(sbi, type);
  2616. }
  2617. curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
  2618. __add_sum_entry(sbi, type, sum);
  2619. if (!recover_curseg || recover_newaddr)
  2620. update_sit_entry(sbi, new_blkaddr, 1);
  2621. if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
  2622. update_sit_entry(sbi, old_blkaddr, -1);
  2623. locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
  2624. locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
  2625. locate_dirty_segment(sbi, old_cursegno);
  2626. if (recover_curseg) {
  2627. if (old_cursegno != curseg->segno) {
  2628. curseg->next_segno = old_cursegno;
  2629. change_curseg(sbi, type);
  2630. }
  2631. curseg->next_blkoff = old_blkoff;
  2632. }
  2633. up_write(&sit_i->sentry_lock);
  2634. mutex_unlock(&curseg->curseg_mutex);
  2635. up_write(&SM_I(sbi)->curseg_lock);
  2636. }
  2637. void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
  2638. block_t old_addr, block_t new_addr,
  2639. unsigned char version, bool recover_curseg,
  2640. bool recover_newaddr)
  2641. {
  2642. struct f2fs_summary sum;
  2643. set_summary(&sum, dn->nid, dn->ofs_in_node, version);
  2644. f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
  2645. recover_curseg, recover_newaddr);
  2646. f2fs_update_data_blkaddr(dn, new_addr);
  2647. }
  2648. void f2fs_wait_on_page_writeback(struct page *page,
  2649. enum page_type type, bool ordered)
  2650. {
  2651. if (PageWriteback(page)) {
  2652. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  2653. f2fs_submit_merged_write_cond(sbi, page->mapping->host,
  2654. 0, page->index, type);
  2655. if (ordered)
  2656. wait_on_page_writeback(page);
  2657. else
  2658. wait_for_stable_page(page);
  2659. }
  2660. }
  2661. void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
  2662. {
  2663. struct page *cpage;
  2664. if (!is_valid_data_blkaddr(sbi, blkaddr))
  2665. return;
  2666. cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
  2667. if (cpage) {
  2668. f2fs_wait_on_page_writeback(cpage, DATA, true);
  2669. f2fs_put_page(cpage, 1);
  2670. }
  2671. }
  2672. static int read_compacted_summaries(struct f2fs_sb_info *sbi)
  2673. {
  2674. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2675. struct curseg_info *seg_i;
  2676. unsigned char *kaddr;
  2677. struct page *page;
  2678. block_t start;
  2679. int i, j, offset;
  2680. start = start_sum_block(sbi);
  2681. page = f2fs_get_meta_page(sbi, start++);
  2682. if (IS_ERR(page))
  2683. return PTR_ERR(page);
  2684. kaddr = (unsigned char *)page_address(page);
  2685. /* Step 1: restore nat cache */
  2686. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2687. memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
  2688. /* Step 2: restore sit cache */
  2689. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2690. memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
  2691. offset = 2 * SUM_JOURNAL_SIZE;
  2692. /* Step 3: restore summary entries */
  2693. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2694. unsigned short blk_off;
  2695. unsigned int segno;
  2696. seg_i = CURSEG_I(sbi, i);
  2697. segno = le32_to_cpu(ckpt->cur_data_segno[i]);
  2698. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
  2699. seg_i->next_segno = segno;
  2700. reset_curseg(sbi, i, 0);
  2701. seg_i->alloc_type = ckpt->alloc_type[i];
  2702. seg_i->next_blkoff = blk_off;
  2703. if (seg_i->alloc_type == SSR)
  2704. blk_off = sbi->blocks_per_seg;
  2705. for (j = 0; j < blk_off; j++) {
  2706. struct f2fs_summary *s;
  2707. s = (struct f2fs_summary *)(kaddr + offset);
  2708. seg_i->sum_blk->entries[j] = *s;
  2709. offset += SUMMARY_SIZE;
  2710. if (offset + SUMMARY_SIZE <= PAGE_SIZE -
  2711. SUM_FOOTER_SIZE)
  2712. continue;
  2713. f2fs_put_page(page, 1);
  2714. page = NULL;
  2715. page = f2fs_get_meta_page(sbi, start++);
  2716. if (IS_ERR(page))
  2717. return PTR_ERR(page);
  2718. kaddr = (unsigned char *)page_address(page);
  2719. offset = 0;
  2720. }
  2721. }
  2722. f2fs_put_page(page, 1);
  2723. return 0;
  2724. }
  2725. static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
  2726. {
  2727. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2728. struct f2fs_summary_block *sum;
  2729. struct curseg_info *curseg;
  2730. struct page *new;
  2731. unsigned short blk_off;
  2732. unsigned int segno = 0;
  2733. block_t blk_addr = 0;
  2734. int err = 0;
  2735. /* get segment number and block addr */
  2736. if (IS_DATASEG(type)) {
  2737. segno = le32_to_cpu(ckpt->cur_data_segno[type]);
  2738. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
  2739. CURSEG_HOT_DATA]);
  2740. if (__exist_node_summaries(sbi))
  2741. blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
  2742. else
  2743. blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
  2744. } else {
  2745. segno = le32_to_cpu(ckpt->cur_node_segno[type -
  2746. CURSEG_HOT_NODE]);
  2747. blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
  2748. CURSEG_HOT_NODE]);
  2749. if (__exist_node_summaries(sbi))
  2750. blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
  2751. type - CURSEG_HOT_NODE);
  2752. else
  2753. blk_addr = GET_SUM_BLOCK(sbi, segno);
  2754. }
  2755. new = f2fs_get_meta_page(sbi, blk_addr);
  2756. if (IS_ERR(new))
  2757. return PTR_ERR(new);
  2758. sum = (struct f2fs_summary_block *)page_address(new);
  2759. if (IS_NODESEG(type)) {
  2760. if (__exist_node_summaries(sbi)) {
  2761. struct f2fs_summary *ns = &sum->entries[0];
  2762. int i;
  2763. for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
  2764. ns->version = 0;
  2765. ns->ofs_in_node = 0;
  2766. }
  2767. } else {
  2768. err = f2fs_restore_node_summary(sbi, segno, sum);
  2769. if (err)
  2770. goto out;
  2771. }
  2772. }
  2773. /* set uncompleted segment to curseg */
  2774. curseg = CURSEG_I(sbi, type);
  2775. mutex_lock(&curseg->curseg_mutex);
  2776. /* update journal info */
  2777. down_write(&curseg->journal_rwsem);
  2778. memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
  2779. up_write(&curseg->journal_rwsem);
  2780. memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
  2781. memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
  2782. curseg->next_segno = segno;
  2783. reset_curseg(sbi, type, 0);
  2784. curseg->alloc_type = ckpt->alloc_type[type];
  2785. curseg->next_blkoff = blk_off;
  2786. mutex_unlock(&curseg->curseg_mutex);
  2787. out:
  2788. f2fs_put_page(new, 1);
  2789. return err;
  2790. }
  2791. static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
  2792. {
  2793. struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
  2794. struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
  2795. int type = CURSEG_HOT_DATA;
  2796. int err;
  2797. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
  2798. int npages = f2fs_npages_for_summary_flush(sbi, true);
  2799. if (npages >= 2)
  2800. f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
  2801. META_CP, true);
  2802. /* restore for compacted data summary */
  2803. err = read_compacted_summaries(sbi);
  2804. if (err)
  2805. return err;
  2806. type = CURSEG_HOT_NODE;
  2807. }
  2808. if (__exist_node_summaries(sbi))
  2809. f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
  2810. NR_CURSEG_TYPE - type, META_CP, true);
  2811. for (; type <= CURSEG_COLD_NODE; type++) {
  2812. err = read_normal_summaries(sbi, type);
  2813. if (err)
  2814. return err;
  2815. }
  2816. /* sanity check for summary blocks */
  2817. if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
  2818. sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
  2819. return -EINVAL;
  2820. return 0;
  2821. }
  2822. static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
  2823. {
  2824. struct page *page;
  2825. unsigned char *kaddr;
  2826. struct f2fs_summary *summary;
  2827. struct curseg_info *seg_i;
  2828. int written_size = 0;
  2829. int i, j;
  2830. page = f2fs_grab_meta_page(sbi, blkaddr++);
  2831. kaddr = (unsigned char *)page_address(page);
  2832. memset(kaddr, 0, PAGE_SIZE);
  2833. /* Step 1: write nat cache */
  2834. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2835. memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
  2836. written_size += SUM_JOURNAL_SIZE;
  2837. /* Step 2: write sit cache */
  2838. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2839. memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
  2840. written_size += SUM_JOURNAL_SIZE;
  2841. /* Step 3: write summary entries */
  2842. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2843. unsigned short blkoff;
  2844. seg_i = CURSEG_I(sbi, i);
  2845. if (sbi->ckpt->alloc_type[i] == SSR)
  2846. blkoff = sbi->blocks_per_seg;
  2847. else
  2848. blkoff = curseg_blkoff(sbi, i);
  2849. for (j = 0; j < blkoff; j++) {
  2850. if (!page) {
  2851. page = f2fs_grab_meta_page(sbi, blkaddr++);
  2852. kaddr = (unsigned char *)page_address(page);
  2853. memset(kaddr, 0, PAGE_SIZE);
  2854. written_size = 0;
  2855. }
  2856. summary = (struct f2fs_summary *)(kaddr + written_size);
  2857. *summary = seg_i->sum_blk->entries[j];
  2858. written_size += SUMMARY_SIZE;
  2859. if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
  2860. SUM_FOOTER_SIZE)
  2861. continue;
  2862. set_page_dirty(page);
  2863. f2fs_put_page(page, 1);
  2864. page = NULL;
  2865. }
  2866. }
  2867. if (page) {
  2868. set_page_dirty(page);
  2869. f2fs_put_page(page, 1);
  2870. }
  2871. }
  2872. static void write_normal_summaries(struct f2fs_sb_info *sbi,
  2873. block_t blkaddr, int type)
  2874. {
  2875. int i, end;
  2876. if (IS_DATASEG(type))
  2877. end = type + NR_CURSEG_DATA_TYPE;
  2878. else
  2879. end = type + NR_CURSEG_NODE_TYPE;
  2880. for (i = type; i < end; i++)
  2881. write_current_sum_page(sbi, i, blkaddr + (i - type));
  2882. }
  2883. void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2884. {
  2885. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
  2886. write_compacted_summaries(sbi, start_blk);
  2887. else
  2888. write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
  2889. }
  2890. void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2891. {
  2892. write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
  2893. }
  2894. int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
  2895. unsigned int val, int alloc)
  2896. {
  2897. int i;
  2898. if (type == NAT_JOURNAL) {
  2899. for (i = 0; i < nats_in_cursum(journal); i++) {
  2900. if (le32_to_cpu(nid_in_journal(journal, i)) == val)
  2901. return i;
  2902. }
  2903. if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
  2904. return update_nats_in_cursum(journal, 1);
  2905. } else if (type == SIT_JOURNAL) {
  2906. for (i = 0; i < sits_in_cursum(journal); i++)
  2907. if (le32_to_cpu(segno_in_journal(journal, i)) == val)
  2908. return i;
  2909. if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
  2910. return update_sits_in_cursum(journal, 1);
  2911. }
  2912. return -1;
  2913. }
  2914. static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
  2915. unsigned int segno)
  2916. {
  2917. return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
  2918. }
  2919. static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
  2920. unsigned int start)
  2921. {
  2922. struct sit_info *sit_i = SIT_I(sbi);
  2923. struct page *page;
  2924. pgoff_t src_off, dst_off;
  2925. src_off = current_sit_addr(sbi, start);
  2926. dst_off = next_sit_addr(sbi, src_off);
  2927. page = f2fs_grab_meta_page(sbi, dst_off);
  2928. seg_info_to_sit_page(sbi, page, start);
  2929. set_page_dirty(page);
  2930. set_to_next_sit(sit_i, start);
  2931. return page;
  2932. }
  2933. static struct sit_entry_set *grab_sit_entry_set(void)
  2934. {
  2935. struct sit_entry_set *ses =
  2936. f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
  2937. ses->entry_cnt = 0;
  2938. INIT_LIST_HEAD(&ses->set_list);
  2939. return ses;
  2940. }
  2941. static void release_sit_entry_set(struct sit_entry_set *ses)
  2942. {
  2943. list_del(&ses->set_list);
  2944. kmem_cache_free(sit_entry_set_slab, ses);
  2945. }
  2946. static void adjust_sit_entry_set(struct sit_entry_set *ses,
  2947. struct list_head *head)
  2948. {
  2949. struct sit_entry_set *next = ses;
  2950. if (list_is_last(&ses->set_list, head))
  2951. return;
  2952. list_for_each_entry_continue(next, head, set_list)
  2953. if (ses->entry_cnt <= next->entry_cnt)
  2954. break;
  2955. list_move_tail(&ses->set_list, &next->set_list);
  2956. }
  2957. static void add_sit_entry(unsigned int segno, struct list_head *head)
  2958. {
  2959. struct sit_entry_set *ses;
  2960. unsigned int start_segno = START_SEGNO(segno);
  2961. list_for_each_entry(ses, head, set_list) {
  2962. if (ses->start_segno == start_segno) {
  2963. ses->entry_cnt++;
  2964. adjust_sit_entry_set(ses, head);
  2965. return;
  2966. }
  2967. }
  2968. ses = grab_sit_entry_set();
  2969. ses->start_segno = start_segno;
  2970. ses->entry_cnt++;
  2971. list_add(&ses->set_list, head);
  2972. }
  2973. static void add_sits_in_set(struct f2fs_sb_info *sbi)
  2974. {
  2975. struct f2fs_sm_info *sm_info = SM_I(sbi);
  2976. struct list_head *set_list = &sm_info->sit_entry_set;
  2977. unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
  2978. unsigned int segno;
  2979. for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
  2980. add_sit_entry(segno, set_list);
  2981. }
  2982. static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
  2983. {
  2984. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2985. struct f2fs_journal *journal = curseg->journal;
  2986. int i;
  2987. down_write(&curseg->journal_rwsem);
  2988. for (i = 0; i < sits_in_cursum(journal); i++) {
  2989. unsigned int segno;
  2990. bool dirtied;
  2991. segno = le32_to_cpu(segno_in_journal(journal, i));
  2992. dirtied = __mark_sit_entry_dirty(sbi, segno);
  2993. if (!dirtied)
  2994. add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
  2995. }
  2996. update_sits_in_cursum(journal, -i);
  2997. up_write(&curseg->journal_rwsem);
  2998. }
  2999. /*
  3000. * CP calls this function, which flushes SIT entries including sit_journal,
  3001. * and moves prefree segs to free segs.
  3002. */
  3003. void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  3004. {
  3005. struct sit_info *sit_i = SIT_I(sbi);
  3006. unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
  3007. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  3008. struct f2fs_journal *journal = curseg->journal;
  3009. struct sit_entry_set *ses, *tmp;
  3010. struct list_head *head = &SM_I(sbi)->sit_entry_set;
  3011. bool to_journal = true;
  3012. struct seg_entry *se;
  3013. down_write(&sit_i->sentry_lock);
  3014. if (!sit_i->dirty_sentries)
  3015. goto out;
  3016. /*
  3017. * add and account sit entries of dirty bitmap in sit entry
  3018. * set temporarily
  3019. */
  3020. add_sits_in_set(sbi);
  3021. /*
  3022. * if there are no enough space in journal to store dirty sit
  3023. * entries, remove all entries from journal and add and account
  3024. * them in sit entry set.
  3025. */
  3026. if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
  3027. remove_sits_in_journal(sbi);
  3028. /*
  3029. * there are two steps to flush sit entries:
  3030. * #1, flush sit entries to journal in current cold data summary block.
  3031. * #2, flush sit entries to sit page.
  3032. */
  3033. list_for_each_entry_safe(ses, tmp, head, set_list) {
  3034. struct page *page = NULL;
  3035. struct f2fs_sit_block *raw_sit = NULL;
  3036. unsigned int start_segno = ses->start_segno;
  3037. unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
  3038. (unsigned long)MAIN_SEGS(sbi));
  3039. unsigned int segno = start_segno;
  3040. if (to_journal &&
  3041. !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
  3042. to_journal = false;
  3043. if (to_journal) {
  3044. down_write(&curseg->journal_rwsem);
  3045. } else {
  3046. page = get_next_sit_page(sbi, start_segno);
  3047. raw_sit = page_address(page);
  3048. }
  3049. /* flush dirty sit entries in region of current sit set */
  3050. for_each_set_bit_from(segno, bitmap, end) {
  3051. int offset, sit_offset;
  3052. se = get_seg_entry(sbi, segno);
  3053. #ifdef CONFIG_F2FS_CHECK_FS
  3054. if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
  3055. SIT_VBLOCK_MAP_SIZE))
  3056. f2fs_bug_on(sbi, 1);
  3057. #endif
  3058. /* add discard candidates */
  3059. if (!(cpc->reason & CP_DISCARD)) {
  3060. cpc->trim_start = segno;
  3061. add_discard_addrs(sbi, cpc, false);
  3062. }
  3063. if (to_journal) {
  3064. offset = f2fs_lookup_journal_in_cursum(journal,
  3065. SIT_JOURNAL, segno, 1);
  3066. f2fs_bug_on(sbi, offset < 0);
  3067. segno_in_journal(journal, offset) =
  3068. cpu_to_le32(segno);
  3069. seg_info_to_raw_sit(se,
  3070. &sit_in_journal(journal, offset));
  3071. check_block_count(sbi, segno,
  3072. &sit_in_journal(journal, offset));
  3073. } else {
  3074. sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
  3075. seg_info_to_raw_sit(se,
  3076. &raw_sit->entries[sit_offset]);
  3077. check_block_count(sbi, segno,
  3078. &raw_sit->entries[sit_offset]);
  3079. }
  3080. __clear_bit(segno, bitmap);
  3081. sit_i->dirty_sentries--;
  3082. ses->entry_cnt--;
  3083. }
  3084. if (to_journal)
  3085. up_write(&curseg->journal_rwsem);
  3086. else
  3087. f2fs_put_page(page, 1);
  3088. f2fs_bug_on(sbi, ses->entry_cnt);
  3089. release_sit_entry_set(ses);
  3090. }
  3091. f2fs_bug_on(sbi, !list_empty(head));
  3092. f2fs_bug_on(sbi, sit_i->dirty_sentries);
  3093. out:
  3094. if (cpc->reason & CP_DISCARD) {
  3095. __u64 trim_start = cpc->trim_start;
  3096. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
  3097. add_discard_addrs(sbi, cpc, false);
  3098. cpc->trim_start = trim_start;
  3099. }
  3100. up_write(&sit_i->sentry_lock);
  3101. set_prefree_as_free_segments(sbi);
  3102. }
  3103. static int build_sit_info(struct f2fs_sb_info *sbi)
  3104. {
  3105. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  3106. struct sit_info *sit_i;
  3107. unsigned int sit_segs, start;
  3108. char *src_bitmap;
  3109. unsigned int bitmap_size;
  3110. /* allocate memory for SIT information */
  3111. sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
  3112. if (!sit_i)
  3113. return -ENOMEM;
  3114. SM_I(sbi)->sit_info = sit_i;
  3115. sit_i->sentries =
  3116. f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
  3117. MAIN_SEGS(sbi)),
  3118. GFP_KERNEL);
  3119. if (!sit_i->sentries)
  3120. return -ENOMEM;
  3121. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  3122. sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
  3123. GFP_KERNEL);
  3124. if (!sit_i->dirty_sentries_bitmap)
  3125. return -ENOMEM;
  3126. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  3127. sit_i->sentries[start].cur_valid_map
  3128. = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  3129. sit_i->sentries[start].ckpt_valid_map
  3130. = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  3131. if (!sit_i->sentries[start].cur_valid_map ||
  3132. !sit_i->sentries[start].ckpt_valid_map)
  3133. return -ENOMEM;
  3134. #ifdef CONFIG_F2FS_CHECK_FS
  3135. sit_i->sentries[start].cur_valid_map_mir
  3136. = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  3137. if (!sit_i->sentries[start].cur_valid_map_mir)
  3138. return -ENOMEM;
  3139. #endif
  3140. if (f2fs_discard_en(sbi)) {
  3141. sit_i->sentries[start].discard_map
  3142. = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
  3143. GFP_KERNEL);
  3144. if (!sit_i->sentries[start].discard_map)
  3145. return -ENOMEM;
  3146. }
  3147. }
  3148. sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  3149. if (!sit_i->tmp_map)
  3150. return -ENOMEM;
  3151. if (sbi->segs_per_sec > 1) {
  3152. sit_i->sec_entries =
  3153. f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
  3154. MAIN_SECS(sbi)),
  3155. GFP_KERNEL);
  3156. if (!sit_i->sec_entries)
  3157. return -ENOMEM;
  3158. }
  3159. /* get information related with SIT */
  3160. sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
  3161. /* setup SIT bitmap from ckeckpoint pack */
  3162. bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
  3163. src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
  3164. sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  3165. if (!sit_i->sit_bitmap)
  3166. return -ENOMEM;
  3167. #ifdef CONFIG_F2FS_CHECK_FS
  3168. sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  3169. if (!sit_i->sit_bitmap_mir)
  3170. return -ENOMEM;
  3171. #endif
  3172. /* init SIT information */
  3173. sit_i->s_ops = &default_salloc_ops;
  3174. sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
  3175. sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
  3176. sit_i->written_valid_blocks = 0;
  3177. sit_i->bitmap_size = bitmap_size;
  3178. sit_i->dirty_sentries = 0;
  3179. sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
  3180. sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
  3181. sit_i->mounted_time = ktime_get_real_seconds();
  3182. init_rwsem(&sit_i->sentry_lock);
  3183. return 0;
  3184. }
  3185. static int build_free_segmap(struct f2fs_sb_info *sbi)
  3186. {
  3187. struct free_segmap_info *free_i;
  3188. unsigned int bitmap_size, sec_bitmap_size;
  3189. /* allocate memory for free segmap information */
  3190. free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
  3191. if (!free_i)
  3192. return -ENOMEM;
  3193. SM_I(sbi)->free_info = free_i;
  3194. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  3195. free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
  3196. if (!free_i->free_segmap)
  3197. return -ENOMEM;
  3198. sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  3199. free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
  3200. if (!free_i->free_secmap)
  3201. return -ENOMEM;
  3202. /* set all segments as dirty temporarily */
  3203. memset(free_i->free_segmap, 0xff, bitmap_size);
  3204. memset(free_i->free_secmap, 0xff, sec_bitmap_size);
  3205. /* init free segmap information */
  3206. free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
  3207. free_i->free_segments = 0;
  3208. free_i->free_sections = 0;
  3209. spin_lock_init(&free_i->segmap_lock);
  3210. return 0;
  3211. }
  3212. static int build_curseg(struct f2fs_sb_info *sbi)
  3213. {
  3214. struct curseg_info *array;
  3215. int i;
  3216. array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
  3217. GFP_KERNEL);
  3218. if (!array)
  3219. return -ENOMEM;
  3220. SM_I(sbi)->curseg_array = array;
  3221. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  3222. mutex_init(&array[i].curseg_mutex);
  3223. array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
  3224. if (!array[i].sum_blk)
  3225. return -ENOMEM;
  3226. init_rwsem(&array[i].journal_rwsem);
  3227. array[i].journal = f2fs_kzalloc(sbi,
  3228. sizeof(struct f2fs_journal), GFP_KERNEL);
  3229. if (!array[i].journal)
  3230. return -ENOMEM;
  3231. array[i].segno = NULL_SEGNO;
  3232. array[i].next_blkoff = 0;
  3233. }
  3234. return restore_curseg_summaries(sbi);
  3235. }
  3236. static int build_sit_entries(struct f2fs_sb_info *sbi)
  3237. {
  3238. struct sit_info *sit_i = SIT_I(sbi);
  3239. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  3240. struct f2fs_journal *journal = curseg->journal;
  3241. struct seg_entry *se;
  3242. struct f2fs_sit_entry sit;
  3243. int sit_blk_cnt = SIT_BLK_CNT(sbi);
  3244. unsigned int i, start, end;
  3245. unsigned int readed, start_blk = 0;
  3246. int err = 0;
  3247. block_t total_node_blocks = 0;
  3248. do {
  3249. readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
  3250. META_SIT, true);
  3251. start = start_blk * sit_i->sents_per_block;
  3252. end = (start_blk + readed) * sit_i->sents_per_block;
  3253. for (; start < end && start < MAIN_SEGS(sbi); start++) {
  3254. struct f2fs_sit_block *sit_blk;
  3255. struct page *page;
  3256. se = &sit_i->sentries[start];
  3257. page = get_current_sit_page(sbi, start);
  3258. sit_blk = (struct f2fs_sit_block *)page_address(page);
  3259. sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
  3260. f2fs_put_page(page, 1);
  3261. err = check_block_count(sbi, start, &sit);
  3262. if (err)
  3263. return err;
  3264. seg_info_from_raw_sit(se, &sit);
  3265. if (IS_NODESEG(se->type))
  3266. total_node_blocks += se->valid_blocks;
  3267. /* build discard map only one time */
  3268. if (f2fs_discard_en(sbi)) {
  3269. if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
  3270. memset(se->discard_map, 0xff,
  3271. SIT_VBLOCK_MAP_SIZE);
  3272. } else {
  3273. memcpy(se->discard_map,
  3274. se->cur_valid_map,
  3275. SIT_VBLOCK_MAP_SIZE);
  3276. sbi->discard_blks +=
  3277. sbi->blocks_per_seg -
  3278. se->valid_blocks;
  3279. }
  3280. }
  3281. if (sbi->segs_per_sec > 1)
  3282. get_sec_entry(sbi, start)->valid_blocks +=
  3283. se->valid_blocks;
  3284. }
  3285. start_blk += readed;
  3286. } while (start_blk < sit_blk_cnt);
  3287. down_read(&curseg->journal_rwsem);
  3288. for (i = 0; i < sits_in_cursum(journal); i++) {
  3289. unsigned int old_valid_blocks;
  3290. start = le32_to_cpu(segno_in_journal(journal, i));
  3291. if (start >= MAIN_SEGS(sbi)) {
  3292. f2fs_msg(sbi->sb, KERN_ERR,
  3293. "Wrong journal entry on segno %u",
  3294. start);
  3295. set_sbi_flag(sbi, SBI_NEED_FSCK);
  3296. err = -EINVAL;
  3297. break;
  3298. }
  3299. se = &sit_i->sentries[start];
  3300. sit = sit_in_journal(journal, i);
  3301. old_valid_blocks = se->valid_blocks;
  3302. if (IS_NODESEG(se->type))
  3303. total_node_blocks -= old_valid_blocks;
  3304. err = check_block_count(sbi, start, &sit);
  3305. if (err)
  3306. break;
  3307. seg_info_from_raw_sit(se, &sit);
  3308. if (IS_NODESEG(se->type))
  3309. total_node_blocks += se->valid_blocks;
  3310. if (f2fs_discard_en(sbi)) {
  3311. if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
  3312. memset(se->discard_map, 0xff,
  3313. SIT_VBLOCK_MAP_SIZE);
  3314. } else {
  3315. memcpy(se->discard_map, se->cur_valid_map,
  3316. SIT_VBLOCK_MAP_SIZE);
  3317. sbi->discard_blks += old_valid_blocks;
  3318. sbi->discard_blks -= se->valid_blocks;
  3319. }
  3320. }
  3321. if (sbi->segs_per_sec > 1) {
  3322. get_sec_entry(sbi, start)->valid_blocks +=
  3323. se->valid_blocks;
  3324. get_sec_entry(sbi, start)->valid_blocks -=
  3325. old_valid_blocks;
  3326. }
  3327. }
  3328. up_read(&curseg->journal_rwsem);
  3329. if (!err && total_node_blocks != valid_node_count(sbi)) {
  3330. f2fs_msg(sbi->sb, KERN_ERR,
  3331. "SIT is corrupted node# %u vs %u",
  3332. total_node_blocks, valid_node_count(sbi));
  3333. set_sbi_flag(sbi, SBI_NEED_FSCK);
  3334. err = -EINVAL;
  3335. }
  3336. return err;
  3337. }
  3338. static void init_free_segmap(struct f2fs_sb_info *sbi)
  3339. {
  3340. unsigned int start;
  3341. int type;
  3342. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  3343. struct seg_entry *sentry = get_seg_entry(sbi, start);
  3344. if (!sentry->valid_blocks)
  3345. __set_free(sbi, start);
  3346. else
  3347. SIT_I(sbi)->written_valid_blocks +=
  3348. sentry->valid_blocks;
  3349. }
  3350. /* set use the current segments */
  3351. for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
  3352. struct curseg_info *curseg_t = CURSEG_I(sbi, type);
  3353. __set_test_and_inuse(sbi, curseg_t->segno);
  3354. }
  3355. }
  3356. static void init_dirty_segmap(struct f2fs_sb_info *sbi)
  3357. {
  3358. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3359. struct free_segmap_info *free_i = FREE_I(sbi);
  3360. unsigned int segno = 0, offset = 0;
  3361. unsigned short valid_blocks;
  3362. while (1) {
  3363. /* find dirty segment based on free segmap */
  3364. segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
  3365. if (segno >= MAIN_SEGS(sbi))
  3366. break;
  3367. offset = segno + 1;
  3368. valid_blocks = get_valid_blocks(sbi, segno, false);
  3369. if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
  3370. continue;
  3371. if (valid_blocks > sbi->blocks_per_seg) {
  3372. f2fs_bug_on(sbi, 1);
  3373. continue;
  3374. }
  3375. mutex_lock(&dirty_i->seglist_lock);
  3376. __locate_dirty_segment(sbi, segno, DIRTY);
  3377. mutex_unlock(&dirty_i->seglist_lock);
  3378. }
  3379. }
  3380. static int init_victim_secmap(struct f2fs_sb_info *sbi)
  3381. {
  3382. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3383. unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  3384. dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
  3385. if (!dirty_i->victim_secmap)
  3386. return -ENOMEM;
  3387. return 0;
  3388. }
  3389. static int build_dirty_segmap(struct f2fs_sb_info *sbi)
  3390. {
  3391. struct dirty_seglist_info *dirty_i;
  3392. unsigned int bitmap_size, i;
  3393. /* allocate memory for dirty segments list information */
  3394. dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
  3395. GFP_KERNEL);
  3396. if (!dirty_i)
  3397. return -ENOMEM;
  3398. SM_I(sbi)->dirty_info = dirty_i;
  3399. mutex_init(&dirty_i->seglist_lock);
  3400. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  3401. for (i = 0; i < NR_DIRTY_TYPE; i++) {
  3402. dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
  3403. GFP_KERNEL);
  3404. if (!dirty_i->dirty_segmap[i])
  3405. return -ENOMEM;
  3406. }
  3407. init_dirty_segmap(sbi);
  3408. return init_victim_secmap(sbi);
  3409. }
  3410. /*
  3411. * Update min, max modified time for cost-benefit GC algorithm
  3412. */
  3413. static void init_min_max_mtime(struct f2fs_sb_info *sbi)
  3414. {
  3415. struct sit_info *sit_i = SIT_I(sbi);
  3416. unsigned int segno;
  3417. down_write(&sit_i->sentry_lock);
  3418. sit_i->min_mtime = ULLONG_MAX;
  3419. for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
  3420. unsigned int i;
  3421. unsigned long long mtime = 0;
  3422. for (i = 0; i < sbi->segs_per_sec; i++)
  3423. mtime += get_seg_entry(sbi, segno + i)->mtime;
  3424. mtime = div_u64(mtime, sbi->segs_per_sec);
  3425. if (sit_i->min_mtime > mtime)
  3426. sit_i->min_mtime = mtime;
  3427. }
  3428. sit_i->max_mtime = get_mtime(sbi, false);
  3429. up_write(&sit_i->sentry_lock);
  3430. }
  3431. int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
  3432. {
  3433. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  3434. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  3435. struct f2fs_sm_info *sm_info;
  3436. int err;
  3437. sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
  3438. if (!sm_info)
  3439. return -ENOMEM;
  3440. /* init sm info */
  3441. sbi->sm_info = sm_info;
  3442. sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
  3443. sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
  3444. sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
  3445. sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
  3446. sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
  3447. sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
  3448. sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
  3449. sm_info->rec_prefree_segments = sm_info->main_segments *
  3450. DEF_RECLAIM_PREFREE_SEGMENTS / 100;
  3451. if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
  3452. sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
  3453. if (!test_opt(sbi, LFS))
  3454. sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
  3455. sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
  3456. sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
  3457. sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
  3458. sm_info->min_ssr_sections = reserved_sections(sbi);
  3459. INIT_LIST_HEAD(&sm_info->sit_entry_set);
  3460. init_rwsem(&sm_info->curseg_lock);
  3461. if (!f2fs_readonly(sbi->sb)) {
  3462. err = f2fs_create_flush_cmd_control(sbi);
  3463. if (err)
  3464. return err;
  3465. }
  3466. err = create_discard_cmd_control(sbi);
  3467. if (err)
  3468. return err;
  3469. err = build_sit_info(sbi);
  3470. if (err)
  3471. return err;
  3472. err = build_free_segmap(sbi);
  3473. if (err)
  3474. return err;
  3475. err = build_curseg(sbi);
  3476. if (err)
  3477. return err;
  3478. /* reinit free segmap based on SIT */
  3479. err = build_sit_entries(sbi);
  3480. if (err)
  3481. return err;
  3482. init_free_segmap(sbi);
  3483. err = build_dirty_segmap(sbi);
  3484. if (err)
  3485. return err;
  3486. init_min_max_mtime(sbi);
  3487. return 0;
  3488. }
  3489. static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
  3490. enum dirty_type dirty_type)
  3491. {
  3492. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3493. mutex_lock(&dirty_i->seglist_lock);
  3494. kvfree(dirty_i->dirty_segmap[dirty_type]);
  3495. dirty_i->nr_dirty[dirty_type] = 0;
  3496. mutex_unlock(&dirty_i->seglist_lock);
  3497. }
  3498. static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
  3499. {
  3500. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3501. kvfree(dirty_i->victim_secmap);
  3502. }
  3503. static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
  3504. {
  3505. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3506. int i;
  3507. if (!dirty_i)
  3508. return;
  3509. /* discard pre-free/dirty segments list */
  3510. for (i = 0; i < NR_DIRTY_TYPE; i++)
  3511. discard_dirty_segmap(sbi, i);
  3512. destroy_victim_secmap(sbi);
  3513. SM_I(sbi)->dirty_info = NULL;
  3514. kfree(dirty_i);
  3515. }
  3516. static void destroy_curseg(struct f2fs_sb_info *sbi)
  3517. {
  3518. struct curseg_info *array = SM_I(sbi)->curseg_array;
  3519. int i;
  3520. if (!array)
  3521. return;
  3522. SM_I(sbi)->curseg_array = NULL;
  3523. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  3524. kfree(array[i].sum_blk);
  3525. kfree(array[i].journal);
  3526. }
  3527. kfree(array);
  3528. }
  3529. static void destroy_free_segmap(struct f2fs_sb_info *sbi)
  3530. {
  3531. struct free_segmap_info *free_i = SM_I(sbi)->free_info;
  3532. if (!free_i)
  3533. return;
  3534. SM_I(sbi)->free_info = NULL;
  3535. kvfree(free_i->free_segmap);
  3536. kvfree(free_i->free_secmap);
  3537. kfree(free_i);
  3538. }
  3539. static void destroy_sit_info(struct f2fs_sb_info *sbi)
  3540. {
  3541. struct sit_info *sit_i = SIT_I(sbi);
  3542. unsigned int start;
  3543. if (!sit_i)
  3544. return;
  3545. if (sit_i->sentries) {
  3546. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  3547. kfree(sit_i->sentries[start].cur_valid_map);
  3548. #ifdef CONFIG_F2FS_CHECK_FS
  3549. kfree(sit_i->sentries[start].cur_valid_map_mir);
  3550. #endif
  3551. kfree(sit_i->sentries[start].ckpt_valid_map);
  3552. kfree(sit_i->sentries[start].discard_map);
  3553. }
  3554. }
  3555. kfree(sit_i->tmp_map);
  3556. kvfree(sit_i->sentries);
  3557. kvfree(sit_i->sec_entries);
  3558. kvfree(sit_i->dirty_sentries_bitmap);
  3559. SM_I(sbi)->sit_info = NULL;
  3560. kfree(sit_i->sit_bitmap);
  3561. #ifdef CONFIG_F2FS_CHECK_FS
  3562. kfree(sit_i->sit_bitmap_mir);
  3563. #endif
  3564. kfree(sit_i);
  3565. }
  3566. void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
  3567. {
  3568. struct f2fs_sm_info *sm_info = SM_I(sbi);
  3569. if (!sm_info)
  3570. return;
  3571. f2fs_destroy_flush_cmd_control(sbi, true);
  3572. destroy_discard_cmd_control(sbi);
  3573. destroy_dirty_segmap(sbi);
  3574. destroy_curseg(sbi);
  3575. destroy_free_segmap(sbi);
  3576. destroy_sit_info(sbi);
  3577. sbi->sm_info = NULL;
  3578. kfree(sm_info);
  3579. }
  3580. int __init f2fs_create_segment_manager_caches(void)
  3581. {
  3582. discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
  3583. sizeof(struct discard_entry));
  3584. if (!discard_entry_slab)
  3585. goto fail;
  3586. discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
  3587. sizeof(struct discard_cmd));
  3588. if (!discard_cmd_slab)
  3589. goto destroy_discard_entry;
  3590. sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
  3591. sizeof(struct sit_entry_set));
  3592. if (!sit_entry_set_slab)
  3593. goto destroy_discard_cmd;
  3594. inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
  3595. sizeof(struct inmem_pages));
  3596. if (!inmem_entry_slab)
  3597. goto destroy_sit_entry_set;
  3598. return 0;
  3599. destroy_sit_entry_set:
  3600. kmem_cache_destroy(sit_entry_set_slab);
  3601. destroy_discard_cmd:
  3602. kmem_cache_destroy(discard_cmd_slab);
  3603. destroy_discard_entry:
  3604. kmem_cache_destroy(discard_entry_slab);
  3605. fail:
  3606. return -ENOMEM;
  3607. }
  3608. void f2fs_destroy_segment_manager_caches(void)
  3609. {
  3610. kmem_cache_destroy(sit_entry_set_slab);
  3611. kmem_cache_destroy(discard_cmd_slab);
  3612. kmem_cache_destroy(discard_entry_slab);
  3613. kmem_cache_destroy(inmem_entry_slab);
  3614. }