interrupt.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674
  1. /*
  2. * handling kvm guest interrupts
  3. *
  4. * Copyright IBM Corp. 2008, 2015
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License (version 2 only)
  8. * as published by the Free Software Foundation.
  9. *
  10. * Author(s): Carsten Otte <cotte@de.ibm.com>
  11. */
  12. #include <linux/interrupt.h>
  13. #include <linux/kvm_host.h>
  14. #include <linux/hrtimer.h>
  15. #include <linux/mmu_context.h>
  16. #include <linux/signal.h>
  17. #include <linux/slab.h>
  18. #include <linux/bitmap.h>
  19. #include <linux/vmalloc.h>
  20. #include <asm/asm-offsets.h>
  21. #include <asm/dis.h>
  22. #include <linux/uaccess.h>
  23. #include <asm/sclp.h>
  24. #include <asm/isc.h>
  25. #include <asm/gmap.h>
  26. #include <asm/switch_to.h>
  27. #include <asm/nmi.h>
  28. #include "kvm-s390.h"
  29. #include "gaccess.h"
  30. #include "trace-s390.h"
  31. #define PFAULT_INIT 0x0600
  32. #define PFAULT_DONE 0x0680
  33. #define VIRTIO_PARAM 0x0d00
  34. /* handle external calls via sigp interpretation facility */
  35. static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
  36. {
  37. int c, scn;
  38. if (!(atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_ECALL_PEND))
  39. return 0;
  40. BUG_ON(!kvm_s390_use_sca_entries());
  41. read_lock(&vcpu->kvm->arch.sca_lock);
  42. if (vcpu->kvm->arch.use_esca) {
  43. struct esca_block *sca = vcpu->kvm->arch.sca;
  44. union esca_sigp_ctrl sigp_ctrl =
  45. sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  46. c = sigp_ctrl.c;
  47. scn = sigp_ctrl.scn;
  48. } else {
  49. struct bsca_block *sca = vcpu->kvm->arch.sca;
  50. union bsca_sigp_ctrl sigp_ctrl =
  51. sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  52. c = sigp_ctrl.c;
  53. scn = sigp_ctrl.scn;
  54. }
  55. read_unlock(&vcpu->kvm->arch.sca_lock);
  56. if (src_id)
  57. *src_id = scn;
  58. return c;
  59. }
  60. static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
  61. {
  62. int expect, rc;
  63. BUG_ON(!kvm_s390_use_sca_entries());
  64. read_lock(&vcpu->kvm->arch.sca_lock);
  65. if (vcpu->kvm->arch.use_esca) {
  66. struct esca_block *sca = vcpu->kvm->arch.sca;
  67. union esca_sigp_ctrl *sigp_ctrl =
  68. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  69. union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
  70. new_val.scn = src_id;
  71. new_val.c = 1;
  72. old_val.c = 0;
  73. expect = old_val.value;
  74. rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
  75. } else {
  76. struct bsca_block *sca = vcpu->kvm->arch.sca;
  77. union bsca_sigp_ctrl *sigp_ctrl =
  78. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  79. union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
  80. new_val.scn = src_id;
  81. new_val.c = 1;
  82. old_val.c = 0;
  83. expect = old_val.value;
  84. rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
  85. }
  86. read_unlock(&vcpu->kvm->arch.sca_lock);
  87. if (rc != expect) {
  88. /* another external call is pending */
  89. return -EBUSY;
  90. }
  91. atomic_or(CPUSTAT_ECALL_PEND, &vcpu->arch.sie_block->cpuflags);
  92. return 0;
  93. }
  94. static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
  95. {
  96. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  97. int rc, expect;
  98. if (!kvm_s390_use_sca_entries())
  99. return;
  100. atomic_andnot(CPUSTAT_ECALL_PEND, li->cpuflags);
  101. read_lock(&vcpu->kvm->arch.sca_lock);
  102. if (vcpu->kvm->arch.use_esca) {
  103. struct esca_block *sca = vcpu->kvm->arch.sca;
  104. union esca_sigp_ctrl *sigp_ctrl =
  105. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  106. union esca_sigp_ctrl old = *sigp_ctrl;
  107. expect = old.value;
  108. rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
  109. } else {
  110. struct bsca_block *sca = vcpu->kvm->arch.sca;
  111. union bsca_sigp_ctrl *sigp_ctrl =
  112. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  113. union bsca_sigp_ctrl old = *sigp_ctrl;
  114. expect = old.value;
  115. rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
  116. }
  117. read_unlock(&vcpu->kvm->arch.sca_lock);
  118. WARN_ON(rc != expect); /* cannot clear? */
  119. }
  120. int psw_extint_disabled(struct kvm_vcpu *vcpu)
  121. {
  122. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
  123. }
  124. static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
  125. {
  126. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
  127. }
  128. static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
  129. {
  130. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
  131. }
  132. static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
  133. {
  134. return psw_extint_disabled(vcpu) &&
  135. psw_ioint_disabled(vcpu) &&
  136. psw_mchk_disabled(vcpu);
  137. }
  138. static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
  139. {
  140. if (psw_extint_disabled(vcpu) ||
  141. !(vcpu->arch.sie_block->gcr[0] & 0x800ul))
  142. return 0;
  143. if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
  144. /* No timer interrupts when single stepping */
  145. return 0;
  146. return 1;
  147. }
  148. static int ckc_irq_pending(struct kvm_vcpu *vcpu)
  149. {
  150. if (vcpu->arch.sie_block->ckc >= kvm_s390_get_tod_clock_fast(vcpu->kvm))
  151. return 0;
  152. return ckc_interrupts_enabled(vcpu);
  153. }
  154. static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
  155. {
  156. return !psw_extint_disabled(vcpu) &&
  157. (vcpu->arch.sie_block->gcr[0] & 0x400ul);
  158. }
  159. static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
  160. {
  161. if (!cpu_timer_interrupts_enabled(vcpu))
  162. return 0;
  163. return kvm_s390_get_cpu_timer(vcpu) >> 63;
  164. }
  165. static inline int is_ioirq(unsigned long irq_type)
  166. {
  167. return ((irq_type >= IRQ_PEND_IO_ISC_0) &&
  168. (irq_type <= IRQ_PEND_IO_ISC_7));
  169. }
  170. static uint64_t isc_to_isc_bits(int isc)
  171. {
  172. return (0x80 >> isc) << 24;
  173. }
  174. static inline u8 int_word_to_isc(u32 int_word)
  175. {
  176. return (int_word & 0x38000000) >> 27;
  177. }
  178. static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
  179. {
  180. return vcpu->kvm->arch.float_int.pending_irqs |
  181. vcpu->arch.local_int.pending_irqs;
  182. }
  183. static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
  184. unsigned long active_mask)
  185. {
  186. int i;
  187. for (i = 0; i <= MAX_ISC; i++)
  188. if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
  189. active_mask &= ~(1UL << (IRQ_PEND_IO_ISC_0 + i));
  190. return active_mask;
  191. }
  192. static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
  193. {
  194. unsigned long active_mask;
  195. active_mask = pending_irqs(vcpu);
  196. if (!active_mask)
  197. return 0;
  198. if (psw_extint_disabled(vcpu))
  199. active_mask &= ~IRQ_PEND_EXT_MASK;
  200. if (psw_ioint_disabled(vcpu))
  201. active_mask &= ~IRQ_PEND_IO_MASK;
  202. else
  203. active_mask = disable_iscs(vcpu, active_mask);
  204. if (!(vcpu->arch.sie_block->gcr[0] & 0x2000ul))
  205. __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
  206. if (!(vcpu->arch.sie_block->gcr[0] & 0x4000ul))
  207. __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
  208. if (!(vcpu->arch.sie_block->gcr[0] & 0x800ul))
  209. __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
  210. if (!(vcpu->arch.sie_block->gcr[0] & 0x400ul))
  211. __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
  212. if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
  213. __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
  214. if (psw_mchk_disabled(vcpu))
  215. active_mask &= ~IRQ_PEND_MCHK_MASK;
  216. /*
  217. * Check both floating and local interrupt's cr14 because
  218. * bit IRQ_PEND_MCHK_REP could be set in both cases.
  219. */
  220. if (!(vcpu->arch.sie_block->gcr[14] &
  221. (vcpu->kvm->arch.float_int.mchk.cr14 |
  222. vcpu->arch.local_int.irq.mchk.cr14)))
  223. __clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
  224. /*
  225. * STOP irqs will never be actively delivered. They are triggered via
  226. * intercept requests and cleared when the stop intercept is performed.
  227. */
  228. __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
  229. return active_mask;
  230. }
  231. static void __set_cpu_idle(struct kvm_vcpu *vcpu)
  232. {
  233. atomic_or(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
  234. set_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
  235. }
  236. static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
  237. {
  238. atomic_andnot(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
  239. clear_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
  240. }
  241. static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
  242. {
  243. atomic_andnot(CPUSTAT_IO_INT | CPUSTAT_EXT_INT | CPUSTAT_STOP_INT,
  244. &vcpu->arch.sie_block->cpuflags);
  245. vcpu->arch.sie_block->lctl = 0x0000;
  246. vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
  247. if (guestdbg_enabled(vcpu)) {
  248. vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
  249. LCTL_CR10 | LCTL_CR11);
  250. vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
  251. }
  252. }
  253. static void __set_cpuflag(struct kvm_vcpu *vcpu, u32 flag)
  254. {
  255. atomic_or(flag, &vcpu->arch.sie_block->cpuflags);
  256. }
  257. static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
  258. {
  259. if (!(pending_irqs(vcpu) & IRQ_PEND_IO_MASK))
  260. return;
  261. else if (psw_ioint_disabled(vcpu))
  262. __set_cpuflag(vcpu, CPUSTAT_IO_INT);
  263. else
  264. vcpu->arch.sie_block->lctl |= LCTL_CR6;
  265. }
  266. static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
  267. {
  268. if (!(pending_irqs(vcpu) & IRQ_PEND_EXT_MASK))
  269. return;
  270. if (psw_extint_disabled(vcpu))
  271. __set_cpuflag(vcpu, CPUSTAT_EXT_INT);
  272. else
  273. vcpu->arch.sie_block->lctl |= LCTL_CR0;
  274. }
  275. static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
  276. {
  277. if (!(pending_irqs(vcpu) & IRQ_PEND_MCHK_MASK))
  278. return;
  279. if (psw_mchk_disabled(vcpu))
  280. vcpu->arch.sie_block->ictl |= ICTL_LPSW;
  281. else
  282. vcpu->arch.sie_block->lctl |= LCTL_CR14;
  283. }
  284. static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
  285. {
  286. if (kvm_s390_is_stop_irq_pending(vcpu))
  287. __set_cpuflag(vcpu, CPUSTAT_STOP_INT);
  288. }
  289. /* Set interception request for non-deliverable interrupts */
  290. static void set_intercept_indicators(struct kvm_vcpu *vcpu)
  291. {
  292. set_intercept_indicators_io(vcpu);
  293. set_intercept_indicators_ext(vcpu);
  294. set_intercept_indicators_mchk(vcpu);
  295. set_intercept_indicators_stop(vcpu);
  296. }
  297. static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
  298. {
  299. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  300. int rc;
  301. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
  302. 0, 0);
  303. rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
  304. (u16 *)__LC_EXT_INT_CODE);
  305. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  306. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  307. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  308. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  309. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  310. clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  311. return rc ? -EFAULT : 0;
  312. }
  313. static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
  314. {
  315. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  316. int rc;
  317. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
  318. 0, 0);
  319. rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
  320. (u16 __user *)__LC_EXT_INT_CODE);
  321. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  322. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  323. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  324. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  325. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  326. clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  327. return rc ? -EFAULT : 0;
  328. }
  329. static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
  330. {
  331. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  332. struct kvm_s390_ext_info ext;
  333. int rc;
  334. spin_lock(&li->lock);
  335. ext = li->irq.ext;
  336. clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
  337. li->irq.ext.ext_params2 = 0;
  338. spin_unlock(&li->lock);
  339. VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
  340. ext.ext_params2);
  341. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  342. KVM_S390_INT_PFAULT_INIT,
  343. 0, ext.ext_params2);
  344. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
  345. rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
  346. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  347. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  348. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  349. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  350. rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
  351. return rc ? -EFAULT : 0;
  352. }
  353. static int __write_machine_check(struct kvm_vcpu *vcpu,
  354. struct kvm_s390_mchk_info *mchk)
  355. {
  356. unsigned long ext_sa_addr;
  357. unsigned long lc;
  358. freg_t fprs[NUM_FPRS];
  359. union mci mci;
  360. int rc;
  361. mci.val = mchk->mcic;
  362. /* take care of lazy register loading */
  363. save_fpu_regs();
  364. save_access_regs(vcpu->run->s.regs.acrs);
  365. if (MACHINE_HAS_GS && vcpu->arch.gs_enabled)
  366. save_gs_cb(current->thread.gs_cb);
  367. /* Extended save area */
  368. rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
  369. sizeof(unsigned long));
  370. /* Only bits 0 through 63-LC are used for address formation */
  371. lc = ext_sa_addr & MCESA_LC_MASK;
  372. if (test_kvm_facility(vcpu->kvm, 133)) {
  373. switch (lc) {
  374. case 0:
  375. case 10:
  376. ext_sa_addr &= ~0x3ffUL;
  377. break;
  378. case 11:
  379. ext_sa_addr &= ~0x7ffUL;
  380. break;
  381. case 12:
  382. ext_sa_addr &= ~0xfffUL;
  383. break;
  384. default:
  385. ext_sa_addr = 0;
  386. break;
  387. }
  388. } else {
  389. ext_sa_addr &= ~0x3ffUL;
  390. }
  391. if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
  392. if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
  393. 512))
  394. mci.vr = 0;
  395. } else {
  396. mci.vr = 0;
  397. }
  398. if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
  399. && (lc == 11 || lc == 12)) {
  400. if (write_guest_abs(vcpu, ext_sa_addr + 1024,
  401. &vcpu->run->s.regs.gscb, 32))
  402. mci.gs = 0;
  403. } else {
  404. mci.gs = 0;
  405. }
  406. /* General interruption information */
  407. rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
  408. rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
  409. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  410. rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
  411. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  412. rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
  413. /* Register-save areas */
  414. if (MACHINE_HAS_VX) {
  415. convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
  416. rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
  417. } else {
  418. rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
  419. vcpu->run->s.regs.fprs, 128);
  420. }
  421. rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
  422. vcpu->run->s.regs.gprs, 128);
  423. rc |= put_guest_lc(vcpu, current->thread.fpu.fpc,
  424. (u32 __user *) __LC_FP_CREG_SAVE_AREA);
  425. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
  426. (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
  427. rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
  428. (u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
  429. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
  430. (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
  431. rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
  432. &vcpu->run->s.regs.acrs, 64);
  433. rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
  434. &vcpu->arch.sie_block->gcr, 128);
  435. /* Extended interruption information */
  436. rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
  437. (u32 __user *) __LC_EXT_DAMAGE_CODE);
  438. rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
  439. (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
  440. rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
  441. sizeof(mchk->fixed_logout));
  442. return rc ? -EFAULT : 0;
  443. }
  444. static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
  445. {
  446. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  447. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  448. struct kvm_s390_mchk_info mchk = {};
  449. int deliver = 0;
  450. int rc = 0;
  451. spin_lock(&fi->lock);
  452. spin_lock(&li->lock);
  453. if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
  454. test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
  455. /*
  456. * If there was an exigent machine check pending, then any
  457. * repressible machine checks that might have been pending
  458. * are indicated along with it, so always clear bits for
  459. * repressible and exigent interrupts
  460. */
  461. mchk = li->irq.mchk;
  462. clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
  463. clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
  464. memset(&li->irq.mchk, 0, sizeof(mchk));
  465. deliver = 1;
  466. }
  467. /*
  468. * We indicate floating repressible conditions along with
  469. * other pending conditions. Channel Report Pending and Channel
  470. * Subsystem damage are the only two and and are indicated by
  471. * bits in mcic and masked in cr14.
  472. */
  473. if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
  474. mchk.mcic |= fi->mchk.mcic;
  475. mchk.cr14 |= fi->mchk.cr14;
  476. memset(&fi->mchk, 0, sizeof(mchk));
  477. deliver = 1;
  478. }
  479. spin_unlock(&li->lock);
  480. spin_unlock(&fi->lock);
  481. if (deliver) {
  482. VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
  483. mchk.mcic);
  484. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  485. KVM_S390_MCHK,
  486. mchk.cr14, mchk.mcic);
  487. rc = __write_machine_check(vcpu, &mchk);
  488. }
  489. return rc;
  490. }
  491. static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
  492. {
  493. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  494. int rc;
  495. VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
  496. vcpu->stat.deliver_restart_signal++;
  497. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
  498. rc = write_guest_lc(vcpu,
  499. offsetof(struct lowcore, restart_old_psw),
  500. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  501. rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
  502. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  503. clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
  504. return rc ? -EFAULT : 0;
  505. }
  506. static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
  507. {
  508. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  509. struct kvm_s390_prefix_info prefix;
  510. spin_lock(&li->lock);
  511. prefix = li->irq.prefix;
  512. li->irq.prefix.address = 0;
  513. clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
  514. spin_unlock(&li->lock);
  515. vcpu->stat.deliver_prefix_signal++;
  516. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  517. KVM_S390_SIGP_SET_PREFIX,
  518. prefix.address, 0);
  519. kvm_s390_set_prefix(vcpu, prefix.address);
  520. return 0;
  521. }
  522. static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
  523. {
  524. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  525. int rc;
  526. int cpu_addr;
  527. spin_lock(&li->lock);
  528. cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
  529. clear_bit(cpu_addr, li->sigp_emerg_pending);
  530. if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
  531. clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
  532. spin_unlock(&li->lock);
  533. VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
  534. vcpu->stat.deliver_emergency_signal++;
  535. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
  536. cpu_addr, 0);
  537. rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
  538. (u16 *)__LC_EXT_INT_CODE);
  539. rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
  540. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  541. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  542. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  543. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  544. return rc ? -EFAULT : 0;
  545. }
  546. static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
  547. {
  548. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  549. struct kvm_s390_extcall_info extcall;
  550. int rc;
  551. spin_lock(&li->lock);
  552. extcall = li->irq.extcall;
  553. li->irq.extcall.code = 0;
  554. clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
  555. spin_unlock(&li->lock);
  556. VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
  557. vcpu->stat.deliver_external_call++;
  558. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  559. KVM_S390_INT_EXTERNAL_CALL,
  560. extcall.code, 0);
  561. rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
  562. (u16 *)__LC_EXT_INT_CODE);
  563. rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
  564. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  565. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  566. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
  567. sizeof(psw_t));
  568. return rc ? -EFAULT : 0;
  569. }
  570. static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
  571. {
  572. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  573. struct kvm_s390_pgm_info pgm_info;
  574. int rc = 0, nullifying = false;
  575. u16 ilen;
  576. spin_lock(&li->lock);
  577. pgm_info = li->irq.pgm;
  578. clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
  579. memset(&li->irq.pgm, 0, sizeof(pgm_info));
  580. spin_unlock(&li->lock);
  581. ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
  582. VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
  583. pgm_info.code, ilen);
  584. vcpu->stat.deliver_program_int++;
  585. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
  586. pgm_info.code, 0);
  587. switch (pgm_info.code & ~PGM_PER) {
  588. case PGM_AFX_TRANSLATION:
  589. case PGM_ASX_TRANSLATION:
  590. case PGM_EX_TRANSLATION:
  591. case PGM_LFX_TRANSLATION:
  592. case PGM_LSTE_SEQUENCE:
  593. case PGM_LSX_TRANSLATION:
  594. case PGM_LX_TRANSLATION:
  595. case PGM_PRIMARY_AUTHORITY:
  596. case PGM_SECONDARY_AUTHORITY:
  597. nullifying = true;
  598. /* fall through */
  599. case PGM_SPACE_SWITCH:
  600. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  601. (u64 *)__LC_TRANS_EXC_CODE);
  602. break;
  603. case PGM_ALEN_TRANSLATION:
  604. case PGM_ALE_SEQUENCE:
  605. case PGM_ASTE_INSTANCE:
  606. case PGM_ASTE_SEQUENCE:
  607. case PGM_ASTE_VALIDITY:
  608. case PGM_EXTENDED_AUTHORITY:
  609. rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
  610. (u8 *)__LC_EXC_ACCESS_ID);
  611. nullifying = true;
  612. break;
  613. case PGM_ASCE_TYPE:
  614. case PGM_PAGE_TRANSLATION:
  615. case PGM_REGION_FIRST_TRANS:
  616. case PGM_REGION_SECOND_TRANS:
  617. case PGM_REGION_THIRD_TRANS:
  618. case PGM_SEGMENT_TRANSLATION:
  619. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  620. (u64 *)__LC_TRANS_EXC_CODE);
  621. rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
  622. (u8 *)__LC_EXC_ACCESS_ID);
  623. rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
  624. (u8 *)__LC_OP_ACCESS_ID);
  625. nullifying = true;
  626. break;
  627. case PGM_MONITOR:
  628. rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
  629. (u16 *)__LC_MON_CLASS_NR);
  630. rc |= put_guest_lc(vcpu, pgm_info.mon_code,
  631. (u64 *)__LC_MON_CODE);
  632. break;
  633. case PGM_VECTOR_PROCESSING:
  634. case PGM_DATA:
  635. rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
  636. (u32 *)__LC_DATA_EXC_CODE);
  637. break;
  638. case PGM_PROTECTION:
  639. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  640. (u64 *)__LC_TRANS_EXC_CODE);
  641. rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
  642. (u8 *)__LC_EXC_ACCESS_ID);
  643. break;
  644. case PGM_STACK_FULL:
  645. case PGM_STACK_EMPTY:
  646. case PGM_STACK_SPECIFICATION:
  647. case PGM_STACK_TYPE:
  648. case PGM_STACK_OPERATION:
  649. case PGM_TRACE_TABEL:
  650. case PGM_CRYPTO_OPERATION:
  651. nullifying = true;
  652. break;
  653. }
  654. if (pgm_info.code & PGM_PER) {
  655. rc |= put_guest_lc(vcpu, pgm_info.per_code,
  656. (u8 *) __LC_PER_CODE);
  657. rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
  658. (u8 *)__LC_PER_ATMID);
  659. rc |= put_guest_lc(vcpu, pgm_info.per_address,
  660. (u64 *) __LC_PER_ADDRESS);
  661. rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
  662. (u8 *) __LC_PER_ACCESS_ID);
  663. }
  664. if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
  665. kvm_s390_rewind_psw(vcpu, ilen);
  666. /* bit 1+2 of the target are the ilc, so we can directly use ilen */
  667. rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
  668. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
  669. (u64 *) __LC_LAST_BREAK);
  670. rc |= put_guest_lc(vcpu, pgm_info.code,
  671. (u16 *)__LC_PGM_INT_CODE);
  672. rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
  673. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  674. rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
  675. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  676. return rc ? -EFAULT : 0;
  677. }
  678. static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
  679. {
  680. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  681. struct kvm_s390_ext_info ext;
  682. int rc = 0;
  683. spin_lock(&fi->lock);
  684. if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
  685. spin_unlock(&fi->lock);
  686. return 0;
  687. }
  688. ext = fi->srv_signal;
  689. memset(&fi->srv_signal, 0, sizeof(ext));
  690. clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
  691. spin_unlock(&fi->lock);
  692. VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
  693. ext.ext_params);
  694. vcpu->stat.deliver_service_signal++;
  695. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
  696. ext.ext_params, 0);
  697. rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
  698. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  699. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  700. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  701. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  702. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  703. rc |= put_guest_lc(vcpu, ext.ext_params,
  704. (u32 *)__LC_EXT_PARAMS);
  705. return rc ? -EFAULT : 0;
  706. }
  707. static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
  708. {
  709. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  710. struct kvm_s390_interrupt_info *inti;
  711. int rc = 0;
  712. spin_lock(&fi->lock);
  713. inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
  714. struct kvm_s390_interrupt_info,
  715. list);
  716. if (inti) {
  717. list_del(&inti->list);
  718. fi->counters[FIRQ_CNTR_PFAULT] -= 1;
  719. }
  720. if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
  721. clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
  722. spin_unlock(&fi->lock);
  723. if (inti) {
  724. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  725. KVM_S390_INT_PFAULT_DONE, 0,
  726. inti->ext.ext_params2);
  727. VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
  728. inti->ext.ext_params2);
  729. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
  730. (u16 *)__LC_EXT_INT_CODE);
  731. rc |= put_guest_lc(vcpu, PFAULT_DONE,
  732. (u16 *)__LC_EXT_CPU_ADDR);
  733. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  734. &vcpu->arch.sie_block->gpsw,
  735. sizeof(psw_t));
  736. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  737. &vcpu->arch.sie_block->gpsw,
  738. sizeof(psw_t));
  739. rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
  740. (u64 *)__LC_EXT_PARAMS2);
  741. kfree(inti);
  742. }
  743. return rc ? -EFAULT : 0;
  744. }
  745. static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
  746. {
  747. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  748. struct kvm_s390_interrupt_info *inti;
  749. int rc = 0;
  750. spin_lock(&fi->lock);
  751. inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
  752. struct kvm_s390_interrupt_info,
  753. list);
  754. if (inti) {
  755. VCPU_EVENT(vcpu, 4,
  756. "deliver: virtio parm: 0x%x,parm64: 0x%llx",
  757. inti->ext.ext_params, inti->ext.ext_params2);
  758. vcpu->stat.deliver_virtio_interrupt++;
  759. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  760. inti->type,
  761. inti->ext.ext_params,
  762. inti->ext.ext_params2);
  763. list_del(&inti->list);
  764. fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
  765. }
  766. if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
  767. clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
  768. spin_unlock(&fi->lock);
  769. if (inti) {
  770. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
  771. (u16 *)__LC_EXT_INT_CODE);
  772. rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
  773. (u16 *)__LC_EXT_CPU_ADDR);
  774. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  775. &vcpu->arch.sie_block->gpsw,
  776. sizeof(psw_t));
  777. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  778. &vcpu->arch.sie_block->gpsw,
  779. sizeof(psw_t));
  780. rc |= put_guest_lc(vcpu, inti->ext.ext_params,
  781. (u32 *)__LC_EXT_PARAMS);
  782. rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
  783. (u64 *)__LC_EXT_PARAMS2);
  784. kfree(inti);
  785. }
  786. return rc ? -EFAULT : 0;
  787. }
  788. static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
  789. unsigned long irq_type)
  790. {
  791. struct list_head *isc_list;
  792. struct kvm_s390_float_interrupt *fi;
  793. struct kvm_s390_interrupt_info *inti = NULL;
  794. int rc = 0;
  795. fi = &vcpu->kvm->arch.float_int;
  796. spin_lock(&fi->lock);
  797. isc_list = &fi->lists[irq_type - IRQ_PEND_IO_ISC_0];
  798. inti = list_first_entry_or_null(isc_list,
  799. struct kvm_s390_interrupt_info,
  800. list);
  801. if (inti) {
  802. if (inti->type & KVM_S390_INT_IO_AI_MASK)
  803. VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
  804. else
  805. VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
  806. inti->io.subchannel_id >> 8,
  807. inti->io.subchannel_id >> 1 & 0x3,
  808. inti->io.subchannel_nr);
  809. vcpu->stat.deliver_io_int++;
  810. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  811. inti->type,
  812. ((__u32)inti->io.subchannel_id << 16) |
  813. inti->io.subchannel_nr,
  814. ((__u64)inti->io.io_int_parm << 32) |
  815. inti->io.io_int_word);
  816. list_del(&inti->list);
  817. fi->counters[FIRQ_CNTR_IO] -= 1;
  818. }
  819. if (list_empty(isc_list))
  820. clear_bit(irq_type, &fi->pending_irqs);
  821. spin_unlock(&fi->lock);
  822. if (inti) {
  823. rc = put_guest_lc(vcpu, inti->io.subchannel_id,
  824. (u16 *)__LC_SUBCHANNEL_ID);
  825. rc |= put_guest_lc(vcpu, inti->io.subchannel_nr,
  826. (u16 *)__LC_SUBCHANNEL_NR);
  827. rc |= put_guest_lc(vcpu, inti->io.io_int_parm,
  828. (u32 *)__LC_IO_INT_PARM);
  829. rc |= put_guest_lc(vcpu, inti->io.io_int_word,
  830. (u32 *)__LC_IO_INT_WORD);
  831. rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
  832. &vcpu->arch.sie_block->gpsw,
  833. sizeof(psw_t));
  834. rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
  835. &vcpu->arch.sie_block->gpsw,
  836. sizeof(psw_t));
  837. kfree(inti);
  838. }
  839. return rc ? -EFAULT : 0;
  840. }
  841. typedef int (*deliver_irq_t)(struct kvm_vcpu *vcpu);
  842. static const deliver_irq_t deliver_irq_funcs[] = {
  843. [IRQ_PEND_MCHK_EX] = __deliver_machine_check,
  844. [IRQ_PEND_MCHK_REP] = __deliver_machine_check,
  845. [IRQ_PEND_PROG] = __deliver_prog,
  846. [IRQ_PEND_EXT_EMERGENCY] = __deliver_emergency_signal,
  847. [IRQ_PEND_EXT_EXTERNAL] = __deliver_external_call,
  848. [IRQ_PEND_EXT_CLOCK_COMP] = __deliver_ckc,
  849. [IRQ_PEND_EXT_CPU_TIMER] = __deliver_cpu_timer,
  850. [IRQ_PEND_RESTART] = __deliver_restart,
  851. [IRQ_PEND_SET_PREFIX] = __deliver_set_prefix,
  852. [IRQ_PEND_PFAULT_INIT] = __deliver_pfault_init,
  853. [IRQ_PEND_EXT_SERVICE] = __deliver_service,
  854. [IRQ_PEND_PFAULT_DONE] = __deliver_pfault_done,
  855. [IRQ_PEND_VIRTIO] = __deliver_virtio,
  856. };
  857. /* Check whether an external call is pending (deliverable or not) */
  858. int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
  859. {
  860. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  861. if (!sclp.has_sigpif)
  862. return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
  863. return sca_ext_call_pending(vcpu, NULL);
  864. }
  865. int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
  866. {
  867. if (deliverable_irqs(vcpu))
  868. return 1;
  869. if (kvm_cpu_has_pending_timer(vcpu))
  870. return 1;
  871. /* external call pending and deliverable */
  872. if (kvm_s390_ext_call_pending(vcpu) &&
  873. !psw_extint_disabled(vcpu) &&
  874. (vcpu->arch.sie_block->gcr[0] & 0x2000ul))
  875. return 1;
  876. if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
  877. return 1;
  878. return 0;
  879. }
  880. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  881. {
  882. return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
  883. }
  884. static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
  885. {
  886. u64 now, cputm, sltime = 0;
  887. if (ckc_interrupts_enabled(vcpu)) {
  888. now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
  889. sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now);
  890. /* already expired or overflow? */
  891. if (!sltime || vcpu->arch.sie_block->ckc <= now)
  892. return 0;
  893. if (cpu_timer_interrupts_enabled(vcpu)) {
  894. cputm = kvm_s390_get_cpu_timer(vcpu);
  895. /* already expired? */
  896. if (cputm >> 63)
  897. return 0;
  898. return min(sltime, tod_to_ns(cputm));
  899. }
  900. } else if (cpu_timer_interrupts_enabled(vcpu)) {
  901. sltime = kvm_s390_get_cpu_timer(vcpu);
  902. /* already expired? */
  903. if (sltime >> 63)
  904. return 0;
  905. }
  906. return sltime;
  907. }
  908. int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
  909. {
  910. u64 sltime;
  911. vcpu->stat.exit_wait_state++;
  912. /* fast path */
  913. if (kvm_arch_vcpu_runnable(vcpu))
  914. return 0;
  915. if (psw_interrupts_disabled(vcpu)) {
  916. VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
  917. return -EOPNOTSUPP; /* disabled wait */
  918. }
  919. if (!ckc_interrupts_enabled(vcpu) &&
  920. !cpu_timer_interrupts_enabled(vcpu)) {
  921. VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
  922. __set_cpu_idle(vcpu);
  923. goto no_timer;
  924. }
  925. sltime = __calculate_sltime(vcpu);
  926. if (!sltime)
  927. return 0;
  928. __set_cpu_idle(vcpu);
  929. hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
  930. VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
  931. no_timer:
  932. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  933. kvm_vcpu_block(vcpu);
  934. __unset_cpu_idle(vcpu);
  935. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  936. hrtimer_cancel(&vcpu->arch.ckc_timer);
  937. return 0;
  938. }
  939. void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
  940. {
  941. /*
  942. * We cannot move this into the if, as the CPU might be already
  943. * in kvm_vcpu_block without having the waitqueue set (polling)
  944. */
  945. vcpu->valid_wakeup = true;
  946. if (swait_active(&vcpu->wq)) {
  947. /*
  948. * The vcpu gave up the cpu voluntarily, mark it as a good
  949. * yield-candidate.
  950. */
  951. vcpu->preempted = true;
  952. swake_up(&vcpu->wq);
  953. vcpu->stat.halt_wakeup++;
  954. }
  955. /*
  956. * The VCPU might not be sleeping but is executing the VSIE. Let's
  957. * kick it, so it leaves the SIE to process the request.
  958. */
  959. kvm_s390_vsie_kick(vcpu);
  960. }
  961. enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
  962. {
  963. struct kvm_vcpu *vcpu;
  964. u64 sltime;
  965. vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
  966. sltime = __calculate_sltime(vcpu);
  967. /*
  968. * If the monotonic clock runs faster than the tod clock we might be
  969. * woken up too early and have to go back to sleep to avoid deadlocks.
  970. */
  971. if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
  972. return HRTIMER_RESTART;
  973. kvm_s390_vcpu_wakeup(vcpu);
  974. return HRTIMER_NORESTART;
  975. }
  976. void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
  977. {
  978. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  979. spin_lock(&li->lock);
  980. li->pending_irqs = 0;
  981. bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
  982. memset(&li->irq, 0, sizeof(li->irq));
  983. spin_unlock(&li->lock);
  984. sca_clear_ext_call(vcpu);
  985. }
  986. int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
  987. {
  988. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  989. deliver_irq_t func;
  990. int rc = 0;
  991. unsigned long irq_type;
  992. unsigned long irqs;
  993. __reset_intercept_indicators(vcpu);
  994. /* pending ckc conditions might have been invalidated */
  995. clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  996. if (ckc_irq_pending(vcpu))
  997. set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  998. /* pending cpu timer conditions might have been invalidated */
  999. clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  1000. if (cpu_timer_irq_pending(vcpu))
  1001. set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  1002. while ((irqs = deliverable_irqs(vcpu)) && !rc) {
  1003. /* bits are in the order of interrupt priority */
  1004. irq_type = find_first_bit(&irqs, IRQ_PEND_COUNT);
  1005. if (is_ioirq(irq_type)) {
  1006. rc = __deliver_io(vcpu, irq_type);
  1007. } else {
  1008. func = deliver_irq_funcs[irq_type];
  1009. if (!func) {
  1010. WARN_ON_ONCE(func == NULL);
  1011. clear_bit(irq_type, &li->pending_irqs);
  1012. continue;
  1013. }
  1014. rc = func(vcpu);
  1015. }
  1016. }
  1017. set_intercept_indicators(vcpu);
  1018. return rc;
  1019. }
  1020. static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1021. {
  1022. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1023. VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
  1024. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
  1025. irq->u.pgm.code, 0);
  1026. if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
  1027. /* auto detection if no valid ILC was given */
  1028. irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
  1029. irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
  1030. irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
  1031. }
  1032. if (irq->u.pgm.code == PGM_PER) {
  1033. li->irq.pgm.code |= PGM_PER;
  1034. li->irq.pgm.flags = irq->u.pgm.flags;
  1035. /* only modify PER related information */
  1036. li->irq.pgm.per_address = irq->u.pgm.per_address;
  1037. li->irq.pgm.per_code = irq->u.pgm.per_code;
  1038. li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
  1039. li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
  1040. } else if (!(irq->u.pgm.code & PGM_PER)) {
  1041. li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
  1042. irq->u.pgm.code;
  1043. li->irq.pgm.flags = irq->u.pgm.flags;
  1044. /* only modify non-PER information */
  1045. li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
  1046. li->irq.pgm.mon_code = irq->u.pgm.mon_code;
  1047. li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
  1048. li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
  1049. li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
  1050. li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
  1051. } else {
  1052. li->irq.pgm = irq->u.pgm;
  1053. }
  1054. set_bit(IRQ_PEND_PROG, &li->pending_irqs);
  1055. return 0;
  1056. }
  1057. static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1058. {
  1059. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1060. VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
  1061. irq->u.ext.ext_params2);
  1062. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
  1063. irq->u.ext.ext_params,
  1064. irq->u.ext.ext_params2);
  1065. li->irq.ext = irq->u.ext;
  1066. set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
  1067. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1068. return 0;
  1069. }
  1070. static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1071. {
  1072. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1073. struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
  1074. uint16_t src_id = irq->u.extcall.code;
  1075. VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
  1076. src_id);
  1077. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
  1078. src_id, 0);
  1079. /* sending vcpu invalid */
  1080. if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
  1081. return -EINVAL;
  1082. if (sclp.has_sigpif)
  1083. return sca_inject_ext_call(vcpu, src_id);
  1084. if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
  1085. return -EBUSY;
  1086. *extcall = irq->u.extcall;
  1087. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1088. return 0;
  1089. }
  1090. static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1091. {
  1092. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1093. struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
  1094. VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
  1095. irq->u.prefix.address);
  1096. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
  1097. irq->u.prefix.address, 0);
  1098. if (!is_vcpu_stopped(vcpu))
  1099. return -EBUSY;
  1100. *prefix = irq->u.prefix;
  1101. set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
  1102. return 0;
  1103. }
  1104. #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
  1105. static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1106. {
  1107. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1108. struct kvm_s390_stop_info *stop = &li->irq.stop;
  1109. int rc = 0;
  1110. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
  1111. if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
  1112. return -EINVAL;
  1113. if (is_vcpu_stopped(vcpu)) {
  1114. if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
  1115. rc = kvm_s390_store_status_unloaded(vcpu,
  1116. KVM_S390_STORE_STATUS_NOADDR);
  1117. return rc;
  1118. }
  1119. if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
  1120. return -EBUSY;
  1121. stop->flags = irq->u.stop.flags;
  1122. __set_cpuflag(vcpu, CPUSTAT_STOP_INT);
  1123. return 0;
  1124. }
  1125. static int __inject_sigp_restart(struct kvm_vcpu *vcpu,
  1126. struct kvm_s390_irq *irq)
  1127. {
  1128. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1129. VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
  1130. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
  1131. set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
  1132. return 0;
  1133. }
  1134. static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
  1135. struct kvm_s390_irq *irq)
  1136. {
  1137. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1138. VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
  1139. irq->u.emerg.code);
  1140. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
  1141. irq->u.emerg.code, 0);
  1142. /* sending vcpu invalid */
  1143. if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
  1144. return -EINVAL;
  1145. set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
  1146. set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
  1147. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1148. return 0;
  1149. }
  1150. static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1151. {
  1152. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1153. struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
  1154. VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
  1155. irq->u.mchk.mcic);
  1156. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
  1157. irq->u.mchk.mcic);
  1158. /*
  1159. * Because repressible machine checks can be indicated along with
  1160. * exigent machine checks (PoP, Chapter 11, Interruption action)
  1161. * we need to combine cr14, mcic and external damage code.
  1162. * Failing storage address and the logout area should not be or'ed
  1163. * together, we just indicate the last occurrence of the corresponding
  1164. * machine check
  1165. */
  1166. mchk->cr14 |= irq->u.mchk.cr14;
  1167. mchk->mcic |= irq->u.mchk.mcic;
  1168. mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
  1169. mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
  1170. memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
  1171. sizeof(mchk->fixed_logout));
  1172. if (mchk->mcic & MCHK_EX_MASK)
  1173. set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
  1174. else if (mchk->mcic & MCHK_REP_MASK)
  1175. set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
  1176. return 0;
  1177. }
  1178. static int __inject_ckc(struct kvm_vcpu *vcpu)
  1179. {
  1180. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1181. VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
  1182. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
  1183. 0, 0);
  1184. set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  1185. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1186. return 0;
  1187. }
  1188. static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
  1189. {
  1190. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1191. VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
  1192. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
  1193. 0, 0);
  1194. set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  1195. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1196. return 0;
  1197. }
  1198. static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
  1199. int isc, u32 schid)
  1200. {
  1201. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1202. struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
  1203. struct kvm_s390_interrupt_info *iter;
  1204. u16 id = (schid & 0xffff0000U) >> 16;
  1205. u16 nr = schid & 0x0000ffffU;
  1206. spin_lock(&fi->lock);
  1207. list_for_each_entry(iter, isc_list, list) {
  1208. if (schid && (id != iter->io.subchannel_id ||
  1209. nr != iter->io.subchannel_nr))
  1210. continue;
  1211. /* found an appropriate entry */
  1212. list_del_init(&iter->list);
  1213. fi->counters[FIRQ_CNTR_IO] -= 1;
  1214. if (list_empty(isc_list))
  1215. clear_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
  1216. spin_unlock(&fi->lock);
  1217. return iter;
  1218. }
  1219. spin_unlock(&fi->lock);
  1220. return NULL;
  1221. }
  1222. /*
  1223. * Dequeue and return an I/O interrupt matching any of the interruption
  1224. * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
  1225. */
  1226. struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
  1227. u64 isc_mask, u32 schid)
  1228. {
  1229. struct kvm_s390_interrupt_info *inti = NULL;
  1230. int isc;
  1231. for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
  1232. if (isc_mask & isc_to_isc_bits(isc))
  1233. inti = get_io_int(kvm, isc, schid);
  1234. }
  1235. return inti;
  1236. }
  1237. #define SCCB_MASK 0xFFFFFFF8
  1238. #define SCCB_EVENT_PENDING 0x3
  1239. static int __inject_service(struct kvm *kvm,
  1240. struct kvm_s390_interrupt_info *inti)
  1241. {
  1242. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1243. spin_lock(&fi->lock);
  1244. fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
  1245. /*
  1246. * Early versions of the QEMU s390 bios will inject several
  1247. * service interrupts after another without handling a
  1248. * condition code indicating busy.
  1249. * We will silently ignore those superfluous sccb values.
  1250. * A future version of QEMU will take care of serialization
  1251. * of servc requests
  1252. */
  1253. if (fi->srv_signal.ext_params & SCCB_MASK)
  1254. goto out;
  1255. fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
  1256. set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
  1257. out:
  1258. spin_unlock(&fi->lock);
  1259. kfree(inti);
  1260. return 0;
  1261. }
  1262. static int __inject_virtio(struct kvm *kvm,
  1263. struct kvm_s390_interrupt_info *inti)
  1264. {
  1265. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1266. spin_lock(&fi->lock);
  1267. if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
  1268. spin_unlock(&fi->lock);
  1269. return -EBUSY;
  1270. }
  1271. fi->counters[FIRQ_CNTR_VIRTIO] += 1;
  1272. list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
  1273. set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
  1274. spin_unlock(&fi->lock);
  1275. return 0;
  1276. }
  1277. static int __inject_pfault_done(struct kvm *kvm,
  1278. struct kvm_s390_interrupt_info *inti)
  1279. {
  1280. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1281. spin_lock(&fi->lock);
  1282. if (fi->counters[FIRQ_CNTR_PFAULT] >=
  1283. (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
  1284. spin_unlock(&fi->lock);
  1285. return -EBUSY;
  1286. }
  1287. fi->counters[FIRQ_CNTR_PFAULT] += 1;
  1288. list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
  1289. set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
  1290. spin_unlock(&fi->lock);
  1291. return 0;
  1292. }
  1293. #define CR_PENDING_SUBCLASS 28
  1294. static int __inject_float_mchk(struct kvm *kvm,
  1295. struct kvm_s390_interrupt_info *inti)
  1296. {
  1297. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1298. spin_lock(&fi->lock);
  1299. fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
  1300. fi->mchk.mcic |= inti->mchk.mcic;
  1301. set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
  1302. spin_unlock(&fi->lock);
  1303. kfree(inti);
  1304. return 0;
  1305. }
  1306. static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
  1307. {
  1308. struct kvm_s390_float_interrupt *fi;
  1309. struct list_head *list;
  1310. int isc;
  1311. fi = &kvm->arch.float_int;
  1312. spin_lock(&fi->lock);
  1313. if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
  1314. spin_unlock(&fi->lock);
  1315. return -EBUSY;
  1316. }
  1317. fi->counters[FIRQ_CNTR_IO] += 1;
  1318. if (inti->type & KVM_S390_INT_IO_AI_MASK)
  1319. VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
  1320. else
  1321. VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
  1322. inti->io.subchannel_id >> 8,
  1323. inti->io.subchannel_id >> 1 & 0x3,
  1324. inti->io.subchannel_nr);
  1325. isc = int_word_to_isc(inti->io.io_int_word);
  1326. list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
  1327. list_add_tail(&inti->list, list);
  1328. set_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
  1329. spin_unlock(&fi->lock);
  1330. return 0;
  1331. }
  1332. /*
  1333. * Find a destination VCPU for a floating irq and kick it.
  1334. */
  1335. static void __floating_irq_kick(struct kvm *kvm, u64 type)
  1336. {
  1337. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1338. struct kvm_s390_local_interrupt *li;
  1339. struct kvm_vcpu *dst_vcpu;
  1340. int sigcpu, online_vcpus, nr_tries = 0;
  1341. online_vcpus = atomic_read(&kvm->online_vcpus);
  1342. if (!online_vcpus)
  1343. return;
  1344. /* find idle VCPUs first, then round robin */
  1345. sigcpu = find_first_bit(fi->idle_mask, online_vcpus);
  1346. if (sigcpu == online_vcpus) {
  1347. do {
  1348. sigcpu = fi->next_rr_cpu;
  1349. fi->next_rr_cpu = (fi->next_rr_cpu + 1) % online_vcpus;
  1350. /* avoid endless loops if all vcpus are stopped */
  1351. if (nr_tries++ >= online_vcpus)
  1352. return;
  1353. } while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
  1354. }
  1355. dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
  1356. /* make the VCPU drop out of the SIE, or wake it up if sleeping */
  1357. li = &dst_vcpu->arch.local_int;
  1358. spin_lock(&li->lock);
  1359. switch (type) {
  1360. case KVM_S390_MCHK:
  1361. atomic_or(CPUSTAT_STOP_INT, li->cpuflags);
  1362. break;
  1363. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1364. atomic_or(CPUSTAT_IO_INT, li->cpuflags);
  1365. break;
  1366. default:
  1367. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1368. break;
  1369. }
  1370. spin_unlock(&li->lock);
  1371. kvm_s390_vcpu_wakeup(dst_vcpu);
  1372. }
  1373. static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
  1374. {
  1375. u64 type = READ_ONCE(inti->type);
  1376. int rc;
  1377. switch (type) {
  1378. case KVM_S390_MCHK:
  1379. rc = __inject_float_mchk(kvm, inti);
  1380. break;
  1381. case KVM_S390_INT_VIRTIO:
  1382. rc = __inject_virtio(kvm, inti);
  1383. break;
  1384. case KVM_S390_INT_SERVICE:
  1385. rc = __inject_service(kvm, inti);
  1386. break;
  1387. case KVM_S390_INT_PFAULT_DONE:
  1388. rc = __inject_pfault_done(kvm, inti);
  1389. break;
  1390. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1391. rc = __inject_io(kvm, inti);
  1392. break;
  1393. default:
  1394. rc = -EINVAL;
  1395. }
  1396. if (rc)
  1397. return rc;
  1398. __floating_irq_kick(kvm, type);
  1399. return 0;
  1400. }
  1401. int kvm_s390_inject_vm(struct kvm *kvm,
  1402. struct kvm_s390_interrupt *s390int)
  1403. {
  1404. struct kvm_s390_interrupt_info *inti;
  1405. int rc;
  1406. inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1407. if (!inti)
  1408. return -ENOMEM;
  1409. inti->type = s390int->type;
  1410. switch (inti->type) {
  1411. case KVM_S390_INT_VIRTIO:
  1412. VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
  1413. s390int->parm, s390int->parm64);
  1414. inti->ext.ext_params = s390int->parm;
  1415. inti->ext.ext_params2 = s390int->parm64;
  1416. break;
  1417. case KVM_S390_INT_SERVICE:
  1418. VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
  1419. inti->ext.ext_params = s390int->parm;
  1420. break;
  1421. case KVM_S390_INT_PFAULT_DONE:
  1422. inti->ext.ext_params2 = s390int->parm64;
  1423. break;
  1424. case KVM_S390_MCHK:
  1425. VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
  1426. s390int->parm64);
  1427. inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
  1428. inti->mchk.mcic = s390int->parm64;
  1429. break;
  1430. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1431. inti->io.subchannel_id = s390int->parm >> 16;
  1432. inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
  1433. inti->io.io_int_parm = s390int->parm64 >> 32;
  1434. inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
  1435. break;
  1436. default:
  1437. kfree(inti);
  1438. return -EINVAL;
  1439. }
  1440. trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
  1441. 2);
  1442. rc = __inject_vm(kvm, inti);
  1443. if (rc)
  1444. kfree(inti);
  1445. return rc;
  1446. }
  1447. int kvm_s390_reinject_io_int(struct kvm *kvm,
  1448. struct kvm_s390_interrupt_info *inti)
  1449. {
  1450. return __inject_vm(kvm, inti);
  1451. }
  1452. int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
  1453. struct kvm_s390_irq *irq)
  1454. {
  1455. irq->type = s390int->type;
  1456. switch (irq->type) {
  1457. case KVM_S390_PROGRAM_INT:
  1458. if (s390int->parm & 0xffff0000)
  1459. return -EINVAL;
  1460. irq->u.pgm.code = s390int->parm;
  1461. break;
  1462. case KVM_S390_SIGP_SET_PREFIX:
  1463. irq->u.prefix.address = s390int->parm;
  1464. break;
  1465. case KVM_S390_SIGP_STOP:
  1466. irq->u.stop.flags = s390int->parm;
  1467. break;
  1468. case KVM_S390_INT_EXTERNAL_CALL:
  1469. if (s390int->parm & 0xffff0000)
  1470. return -EINVAL;
  1471. irq->u.extcall.code = s390int->parm;
  1472. break;
  1473. case KVM_S390_INT_EMERGENCY:
  1474. if (s390int->parm & 0xffff0000)
  1475. return -EINVAL;
  1476. irq->u.emerg.code = s390int->parm;
  1477. break;
  1478. case KVM_S390_MCHK:
  1479. irq->u.mchk.mcic = s390int->parm64;
  1480. break;
  1481. }
  1482. return 0;
  1483. }
  1484. int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
  1485. {
  1486. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1487. return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
  1488. }
  1489. void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
  1490. {
  1491. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1492. spin_lock(&li->lock);
  1493. li->irq.stop.flags = 0;
  1494. clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
  1495. spin_unlock(&li->lock);
  1496. }
  1497. static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1498. {
  1499. int rc;
  1500. switch (irq->type) {
  1501. case KVM_S390_PROGRAM_INT:
  1502. rc = __inject_prog(vcpu, irq);
  1503. break;
  1504. case KVM_S390_SIGP_SET_PREFIX:
  1505. rc = __inject_set_prefix(vcpu, irq);
  1506. break;
  1507. case KVM_S390_SIGP_STOP:
  1508. rc = __inject_sigp_stop(vcpu, irq);
  1509. break;
  1510. case KVM_S390_RESTART:
  1511. rc = __inject_sigp_restart(vcpu, irq);
  1512. break;
  1513. case KVM_S390_INT_CLOCK_COMP:
  1514. rc = __inject_ckc(vcpu);
  1515. break;
  1516. case KVM_S390_INT_CPU_TIMER:
  1517. rc = __inject_cpu_timer(vcpu);
  1518. break;
  1519. case KVM_S390_INT_EXTERNAL_CALL:
  1520. rc = __inject_extcall(vcpu, irq);
  1521. break;
  1522. case KVM_S390_INT_EMERGENCY:
  1523. rc = __inject_sigp_emergency(vcpu, irq);
  1524. break;
  1525. case KVM_S390_MCHK:
  1526. rc = __inject_mchk(vcpu, irq);
  1527. break;
  1528. case KVM_S390_INT_PFAULT_INIT:
  1529. rc = __inject_pfault_init(vcpu, irq);
  1530. break;
  1531. case KVM_S390_INT_VIRTIO:
  1532. case KVM_S390_INT_SERVICE:
  1533. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1534. default:
  1535. rc = -EINVAL;
  1536. }
  1537. return rc;
  1538. }
  1539. int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1540. {
  1541. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1542. int rc;
  1543. spin_lock(&li->lock);
  1544. rc = do_inject_vcpu(vcpu, irq);
  1545. spin_unlock(&li->lock);
  1546. if (!rc)
  1547. kvm_s390_vcpu_wakeup(vcpu);
  1548. return rc;
  1549. }
  1550. static inline void clear_irq_list(struct list_head *_list)
  1551. {
  1552. struct kvm_s390_interrupt_info *inti, *n;
  1553. list_for_each_entry_safe(inti, n, _list, list) {
  1554. list_del(&inti->list);
  1555. kfree(inti);
  1556. }
  1557. }
  1558. static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
  1559. struct kvm_s390_irq *irq)
  1560. {
  1561. irq->type = inti->type;
  1562. switch (inti->type) {
  1563. case KVM_S390_INT_PFAULT_INIT:
  1564. case KVM_S390_INT_PFAULT_DONE:
  1565. case KVM_S390_INT_VIRTIO:
  1566. irq->u.ext = inti->ext;
  1567. break;
  1568. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1569. irq->u.io = inti->io;
  1570. break;
  1571. }
  1572. }
  1573. void kvm_s390_clear_float_irqs(struct kvm *kvm)
  1574. {
  1575. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1576. int i;
  1577. spin_lock(&fi->lock);
  1578. fi->pending_irqs = 0;
  1579. memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
  1580. memset(&fi->mchk, 0, sizeof(fi->mchk));
  1581. for (i = 0; i < FIRQ_LIST_COUNT; i++)
  1582. clear_irq_list(&fi->lists[i]);
  1583. for (i = 0; i < FIRQ_MAX_COUNT; i++)
  1584. fi->counters[i] = 0;
  1585. spin_unlock(&fi->lock);
  1586. };
  1587. static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
  1588. {
  1589. struct kvm_s390_interrupt_info *inti;
  1590. struct kvm_s390_float_interrupt *fi;
  1591. struct kvm_s390_irq *buf;
  1592. struct kvm_s390_irq *irq;
  1593. int max_irqs;
  1594. int ret = 0;
  1595. int n = 0;
  1596. int i;
  1597. if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
  1598. return -EINVAL;
  1599. /*
  1600. * We are already using -ENOMEM to signal
  1601. * userspace it may retry with a bigger buffer,
  1602. * so we need to use something else for this case
  1603. */
  1604. buf = vzalloc(len);
  1605. if (!buf)
  1606. return -ENOBUFS;
  1607. max_irqs = len / sizeof(struct kvm_s390_irq);
  1608. fi = &kvm->arch.float_int;
  1609. spin_lock(&fi->lock);
  1610. for (i = 0; i < FIRQ_LIST_COUNT; i++) {
  1611. list_for_each_entry(inti, &fi->lists[i], list) {
  1612. if (n == max_irqs) {
  1613. /* signal userspace to try again */
  1614. ret = -ENOMEM;
  1615. goto out;
  1616. }
  1617. inti_to_irq(inti, &buf[n]);
  1618. n++;
  1619. }
  1620. }
  1621. if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) {
  1622. if (n == max_irqs) {
  1623. /* signal userspace to try again */
  1624. ret = -ENOMEM;
  1625. goto out;
  1626. }
  1627. irq = (struct kvm_s390_irq *) &buf[n];
  1628. irq->type = KVM_S390_INT_SERVICE;
  1629. irq->u.ext = fi->srv_signal;
  1630. n++;
  1631. }
  1632. if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
  1633. if (n == max_irqs) {
  1634. /* signal userspace to try again */
  1635. ret = -ENOMEM;
  1636. goto out;
  1637. }
  1638. irq = (struct kvm_s390_irq *) &buf[n];
  1639. irq->type = KVM_S390_MCHK;
  1640. irq->u.mchk = fi->mchk;
  1641. n++;
  1642. }
  1643. out:
  1644. spin_unlock(&fi->lock);
  1645. if (!ret && n > 0) {
  1646. if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
  1647. ret = -EFAULT;
  1648. }
  1649. vfree(buf);
  1650. return ret < 0 ? ret : n;
  1651. }
  1652. static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr)
  1653. {
  1654. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1655. struct kvm_s390_ais_all ais;
  1656. if (attr->attr < sizeof(ais))
  1657. return -EINVAL;
  1658. if (!test_kvm_facility(kvm, 72))
  1659. return -ENOTSUPP;
  1660. mutex_lock(&fi->ais_lock);
  1661. ais.simm = fi->simm;
  1662. ais.nimm = fi->nimm;
  1663. mutex_unlock(&fi->ais_lock);
  1664. if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais)))
  1665. return -EFAULT;
  1666. return 0;
  1667. }
  1668. static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  1669. {
  1670. int r;
  1671. switch (attr->group) {
  1672. case KVM_DEV_FLIC_GET_ALL_IRQS:
  1673. r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
  1674. attr->attr);
  1675. break;
  1676. case KVM_DEV_FLIC_AISM_ALL:
  1677. r = flic_ais_mode_get_all(dev->kvm, attr);
  1678. break;
  1679. default:
  1680. r = -EINVAL;
  1681. }
  1682. return r;
  1683. }
  1684. static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
  1685. u64 addr)
  1686. {
  1687. struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
  1688. void *target = NULL;
  1689. void __user *source;
  1690. u64 size;
  1691. if (get_user(inti->type, (u64 __user *)addr))
  1692. return -EFAULT;
  1693. switch (inti->type) {
  1694. case KVM_S390_INT_PFAULT_INIT:
  1695. case KVM_S390_INT_PFAULT_DONE:
  1696. case KVM_S390_INT_VIRTIO:
  1697. case KVM_S390_INT_SERVICE:
  1698. target = (void *) &inti->ext;
  1699. source = &uptr->u.ext;
  1700. size = sizeof(inti->ext);
  1701. break;
  1702. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1703. target = (void *) &inti->io;
  1704. source = &uptr->u.io;
  1705. size = sizeof(inti->io);
  1706. break;
  1707. case KVM_S390_MCHK:
  1708. target = (void *) &inti->mchk;
  1709. source = &uptr->u.mchk;
  1710. size = sizeof(inti->mchk);
  1711. break;
  1712. default:
  1713. return -EINVAL;
  1714. }
  1715. if (copy_from_user(target, source, size))
  1716. return -EFAULT;
  1717. return 0;
  1718. }
  1719. static int enqueue_floating_irq(struct kvm_device *dev,
  1720. struct kvm_device_attr *attr)
  1721. {
  1722. struct kvm_s390_interrupt_info *inti = NULL;
  1723. int r = 0;
  1724. int len = attr->attr;
  1725. if (len % sizeof(struct kvm_s390_irq) != 0)
  1726. return -EINVAL;
  1727. else if (len > KVM_S390_FLIC_MAX_BUFFER)
  1728. return -EINVAL;
  1729. while (len >= sizeof(struct kvm_s390_irq)) {
  1730. inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1731. if (!inti)
  1732. return -ENOMEM;
  1733. r = copy_irq_from_user(inti, attr->addr);
  1734. if (r) {
  1735. kfree(inti);
  1736. return r;
  1737. }
  1738. r = __inject_vm(dev->kvm, inti);
  1739. if (r) {
  1740. kfree(inti);
  1741. return r;
  1742. }
  1743. len -= sizeof(struct kvm_s390_irq);
  1744. attr->addr += sizeof(struct kvm_s390_irq);
  1745. }
  1746. return r;
  1747. }
  1748. static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
  1749. {
  1750. if (id >= MAX_S390_IO_ADAPTERS)
  1751. return NULL;
  1752. return kvm->arch.adapters[id];
  1753. }
  1754. static int register_io_adapter(struct kvm_device *dev,
  1755. struct kvm_device_attr *attr)
  1756. {
  1757. struct s390_io_adapter *adapter;
  1758. struct kvm_s390_io_adapter adapter_info;
  1759. if (copy_from_user(&adapter_info,
  1760. (void __user *)attr->addr, sizeof(adapter_info)))
  1761. return -EFAULT;
  1762. if ((adapter_info.id >= MAX_S390_IO_ADAPTERS) ||
  1763. (dev->kvm->arch.adapters[adapter_info.id] != NULL))
  1764. return -EINVAL;
  1765. adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
  1766. if (!adapter)
  1767. return -ENOMEM;
  1768. INIT_LIST_HEAD(&adapter->maps);
  1769. init_rwsem(&adapter->maps_lock);
  1770. atomic_set(&adapter->nr_maps, 0);
  1771. adapter->id = adapter_info.id;
  1772. adapter->isc = adapter_info.isc;
  1773. adapter->maskable = adapter_info.maskable;
  1774. adapter->masked = false;
  1775. adapter->swap = adapter_info.swap;
  1776. adapter->suppressible = (adapter_info.flags) &
  1777. KVM_S390_ADAPTER_SUPPRESSIBLE;
  1778. dev->kvm->arch.adapters[adapter->id] = adapter;
  1779. return 0;
  1780. }
  1781. int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
  1782. {
  1783. int ret;
  1784. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1785. if (!adapter || !adapter->maskable)
  1786. return -EINVAL;
  1787. ret = adapter->masked;
  1788. adapter->masked = masked;
  1789. return ret;
  1790. }
  1791. static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr)
  1792. {
  1793. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1794. struct s390_map_info *map;
  1795. int ret;
  1796. if (!adapter || !addr)
  1797. return -EINVAL;
  1798. map = kzalloc(sizeof(*map), GFP_KERNEL);
  1799. if (!map) {
  1800. ret = -ENOMEM;
  1801. goto out;
  1802. }
  1803. INIT_LIST_HEAD(&map->list);
  1804. map->guest_addr = addr;
  1805. map->addr = gmap_translate(kvm->arch.gmap, addr);
  1806. if (map->addr == -EFAULT) {
  1807. ret = -EFAULT;
  1808. goto out;
  1809. }
  1810. ret = get_user_pages_fast(map->addr, 1, 1, &map->page);
  1811. if (ret < 0)
  1812. goto out;
  1813. BUG_ON(ret != 1);
  1814. down_write(&adapter->maps_lock);
  1815. if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) {
  1816. list_add_tail(&map->list, &adapter->maps);
  1817. ret = 0;
  1818. } else {
  1819. put_page(map->page);
  1820. ret = -EINVAL;
  1821. }
  1822. up_write(&adapter->maps_lock);
  1823. out:
  1824. if (ret)
  1825. kfree(map);
  1826. return ret;
  1827. }
  1828. static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr)
  1829. {
  1830. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1831. struct s390_map_info *map, *tmp;
  1832. int found = 0;
  1833. if (!adapter || !addr)
  1834. return -EINVAL;
  1835. down_write(&adapter->maps_lock);
  1836. list_for_each_entry_safe(map, tmp, &adapter->maps, list) {
  1837. if (map->guest_addr == addr) {
  1838. found = 1;
  1839. atomic_dec(&adapter->nr_maps);
  1840. list_del(&map->list);
  1841. put_page(map->page);
  1842. kfree(map);
  1843. break;
  1844. }
  1845. }
  1846. up_write(&adapter->maps_lock);
  1847. return found ? 0 : -EINVAL;
  1848. }
  1849. void kvm_s390_destroy_adapters(struct kvm *kvm)
  1850. {
  1851. int i;
  1852. struct s390_map_info *map, *tmp;
  1853. for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) {
  1854. if (!kvm->arch.adapters[i])
  1855. continue;
  1856. list_for_each_entry_safe(map, tmp,
  1857. &kvm->arch.adapters[i]->maps, list) {
  1858. list_del(&map->list);
  1859. put_page(map->page);
  1860. kfree(map);
  1861. }
  1862. kfree(kvm->arch.adapters[i]);
  1863. }
  1864. }
  1865. static int modify_io_adapter(struct kvm_device *dev,
  1866. struct kvm_device_attr *attr)
  1867. {
  1868. struct kvm_s390_io_adapter_req req;
  1869. struct s390_io_adapter *adapter;
  1870. int ret;
  1871. if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
  1872. return -EFAULT;
  1873. adapter = get_io_adapter(dev->kvm, req.id);
  1874. if (!adapter)
  1875. return -EINVAL;
  1876. switch (req.type) {
  1877. case KVM_S390_IO_ADAPTER_MASK:
  1878. ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
  1879. if (ret > 0)
  1880. ret = 0;
  1881. break;
  1882. case KVM_S390_IO_ADAPTER_MAP:
  1883. ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr);
  1884. break;
  1885. case KVM_S390_IO_ADAPTER_UNMAP:
  1886. ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr);
  1887. break;
  1888. default:
  1889. ret = -EINVAL;
  1890. }
  1891. return ret;
  1892. }
  1893. static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)
  1894. {
  1895. const u64 isc_mask = 0xffUL << 24; /* all iscs set */
  1896. u32 schid;
  1897. if (attr->flags)
  1898. return -EINVAL;
  1899. if (attr->attr != sizeof(schid))
  1900. return -EINVAL;
  1901. if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
  1902. return -EFAULT;
  1903. kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
  1904. /*
  1905. * If userspace is conforming to the architecture, we can have at most
  1906. * one pending I/O interrupt per subchannel, so this is effectively a
  1907. * clear all.
  1908. */
  1909. return 0;
  1910. }
  1911. static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
  1912. {
  1913. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1914. struct kvm_s390_ais_req req;
  1915. int ret = 0;
  1916. if (!test_kvm_facility(kvm, 72))
  1917. return -ENOTSUPP;
  1918. if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
  1919. return -EFAULT;
  1920. if (req.isc > MAX_ISC)
  1921. return -EINVAL;
  1922. trace_kvm_s390_modify_ais_mode(req.isc,
  1923. (fi->simm & AIS_MODE_MASK(req.isc)) ?
  1924. (fi->nimm & AIS_MODE_MASK(req.isc)) ?
  1925. 2 : KVM_S390_AIS_MODE_SINGLE :
  1926. KVM_S390_AIS_MODE_ALL, req.mode);
  1927. mutex_lock(&fi->ais_lock);
  1928. switch (req.mode) {
  1929. case KVM_S390_AIS_MODE_ALL:
  1930. fi->simm &= ~AIS_MODE_MASK(req.isc);
  1931. fi->nimm &= ~AIS_MODE_MASK(req.isc);
  1932. break;
  1933. case KVM_S390_AIS_MODE_SINGLE:
  1934. fi->simm |= AIS_MODE_MASK(req.isc);
  1935. fi->nimm &= ~AIS_MODE_MASK(req.isc);
  1936. break;
  1937. default:
  1938. ret = -EINVAL;
  1939. }
  1940. mutex_unlock(&fi->ais_lock);
  1941. return ret;
  1942. }
  1943. static int kvm_s390_inject_airq(struct kvm *kvm,
  1944. struct s390_io_adapter *adapter)
  1945. {
  1946. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1947. struct kvm_s390_interrupt s390int = {
  1948. .type = KVM_S390_INT_IO(1, 0, 0, 0),
  1949. .parm = 0,
  1950. .parm64 = (adapter->isc << 27) | 0x80000000,
  1951. };
  1952. int ret = 0;
  1953. if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
  1954. return kvm_s390_inject_vm(kvm, &s390int);
  1955. mutex_lock(&fi->ais_lock);
  1956. if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
  1957. trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
  1958. goto out;
  1959. }
  1960. ret = kvm_s390_inject_vm(kvm, &s390int);
  1961. if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
  1962. fi->nimm |= AIS_MODE_MASK(adapter->isc);
  1963. trace_kvm_s390_modify_ais_mode(adapter->isc,
  1964. KVM_S390_AIS_MODE_SINGLE, 2);
  1965. }
  1966. out:
  1967. mutex_unlock(&fi->ais_lock);
  1968. return ret;
  1969. }
  1970. static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
  1971. {
  1972. unsigned int id = attr->attr;
  1973. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1974. if (!adapter)
  1975. return -EINVAL;
  1976. return kvm_s390_inject_airq(kvm, adapter);
  1977. }
  1978. static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr)
  1979. {
  1980. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1981. struct kvm_s390_ais_all ais;
  1982. if (!test_kvm_facility(kvm, 72))
  1983. return -ENOTSUPP;
  1984. if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais)))
  1985. return -EFAULT;
  1986. mutex_lock(&fi->ais_lock);
  1987. fi->simm = ais.simm;
  1988. fi->nimm = ais.nimm;
  1989. mutex_unlock(&fi->ais_lock);
  1990. return 0;
  1991. }
  1992. static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  1993. {
  1994. int r = 0;
  1995. unsigned int i;
  1996. struct kvm_vcpu *vcpu;
  1997. switch (attr->group) {
  1998. case KVM_DEV_FLIC_ENQUEUE:
  1999. r = enqueue_floating_irq(dev, attr);
  2000. break;
  2001. case KVM_DEV_FLIC_CLEAR_IRQS:
  2002. kvm_s390_clear_float_irqs(dev->kvm);
  2003. break;
  2004. case KVM_DEV_FLIC_APF_ENABLE:
  2005. dev->kvm->arch.gmap->pfault_enabled = 1;
  2006. break;
  2007. case KVM_DEV_FLIC_APF_DISABLE_WAIT:
  2008. dev->kvm->arch.gmap->pfault_enabled = 0;
  2009. /*
  2010. * Make sure no async faults are in transition when
  2011. * clearing the queues. So we don't need to worry
  2012. * about late coming workers.
  2013. */
  2014. synchronize_srcu(&dev->kvm->srcu);
  2015. kvm_for_each_vcpu(i, vcpu, dev->kvm)
  2016. kvm_clear_async_pf_completion_queue(vcpu);
  2017. break;
  2018. case KVM_DEV_FLIC_ADAPTER_REGISTER:
  2019. r = register_io_adapter(dev, attr);
  2020. break;
  2021. case KVM_DEV_FLIC_ADAPTER_MODIFY:
  2022. r = modify_io_adapter(dev, attr);
  2023. break;
  2024. case KVM_DEV_FLIC_CLEAR_IO_IRQ:
  2025. r = clear_io_irq(dev->kvm, attr);
  2026. break;
  2027. case KVM_DEV_FLIC_AISM:
  2028. r = modify_ais_mode(dev->kvm, attr);
  2029. break;
  2030. case KVM_DEV_FLIC_AIRQ_INJECT:
  2031. r = flic_inject_airq(dev->kvm, attr);
  2032. break;
  2033. case KVM_DEV_FLIC_AISM_ALL:
  2034. r = flic_ais_mode_set_all(dev->kvm, attr);
  2035. break;
  2036. default:
  2037. r = -EINVAL;
  2038. }
  2039. return r;
  2040. }
  2041. static int flic_has_attr(struct kvm_device *dev,
  2042. struct kvm_device_attr *attr)
  2043. {
  2044. switch (attr->group) {
  2045. case KVM_DEV_FLIC_GET_ALL_IRQS:
  2046. case KVM_DEV_FLIC_ENQUEUE:
  2047. case KVM_DEV_FLIC_CLEAR_IRQS:
  2048. case KVM_DEV_FLIC_APF_ENABLE:
  2049. case KVM_DEV_FLIC_APF_DISABLE_WAIT:
  2050. case KVM_DEV_FLIC_ADAPTER_REGISTER:
  2051. case KVM_DEV_FLIC_ADAPTER_MODIFY:
  2052. case KVM_DEV_FLIC_CLEAR_IO_IRQ:
  2053. case KVM_DEV_FLIC_AISM:
  2054. case KVM_DEV_FLIC_AIRQ_INJECT:
  2055. case KVM_DEV_FLIC_AISM_ALL:
  2056. return 0;
  2057. }
  2058. return -ENXIO;
  2059. }
  2060. static int flic_create(struct kvm_device *dev, u32 type)
  2061. {
  2062. if (!dev)
  2063. return -EINVAL;
  2064. if (dev->kvm->arch.flic)
  2065. return -EINVAL;
  2066. dev->kvm->arch.flic = dev;
  2067. return 0;
  2068. }
  2069. static void flic_destroy(struct kvm_device *dev)
  2070. {
  2071. dev->kvm->arch.flic = NULL;
  2072. kfree(dev);
  2073. }
  2074. /* s390 floating irq controller (flic) */
  2075. struct kvm_device_ops kvm_flic_ops = {
  2076. .name = "kvm-flic",
  2077. .get_attr = flic_get_attr,
  2078. .set_attr = flic_set_attr,
  2079. .has_attr = flic_has_attr,
  2080. .create = flic_create,
  2081. .destroy = flic_destroy,
  2082. };
  2083. static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
  2084. {
  2085. unsigned long bit;
  2086. bit = bit_nr + (addr % PAGE_SIZE) * 8;
  2087. return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
  2088. }
  2089. static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter,
  2090. u64 addr)
  2091. {
  2092. struct s390_map_info *map;
  2093. if (!adapter)
  2094. return NULL;
  2095. list_for_each_entry(map, &adapter->maps, list) {
  2096. if (map->guest_addr == addr)
  2097. return map;
  2098. }
  2099. return NULL;
  2100. }
  2101. static int adapter_indicators_set(struct kvm *kvm,
  2102. struct s390_io_adapter *adapter,
  2103. struct kvm_s390_adapter_int *adapter_int)
  2104. {
  2105. unsigned long bit;
  2106. int summary_set, idx;
  2107. struct s390_map_info *info;
  2108. void *map;
  2109. info = get_map_info(adapter, adapter_int->ind_addr);
  2110. if (!info)
  2111. return -1;
  2112. map = page_address(info->page);
  2113. bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap);
  2114. set_bit(bit, map);
  2115. idx = srcu_read_lock(&kvm->srcu);
  2116. mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
  2117. set_page_dirty_lock(info->page);
  2118. info = get_map_info(adapter, adapter_int->summary_addr);
  2119. if (!info) {
  2120. srcu_read_unlock(&kvm->srcu, idx);
  2121. return -1;
  2122. }
  2123. map = page_address(info->page);
  2124. bit = get_ind_bit(info->addr, adapter_int->summary_offset,
  2125. adapter->swap);
  2126. summary_set = test_and_set_bit(bit, map);
  2127. mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
  2128. set_page_dirty_lock(info->page);
  2129. srcu_read_unlock(&kvm->srcu, idx);
  2130. return summary_set ? 0 : 1;
  2131. }
  2132. /*
  2133. * < 0 - not injected due to error
  2134. * = 0 - coalesced, summary indicator already active
  2135. * > 0 - injected interrupt
  2136. */
  2137. static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
  2138. struct kvm *kvm, int irq_source_id, int level,
  2139. bool line_status)
  2140. {
  2141. int ret;
  2142. struct s390_io_adapter *adapter;
  2143. /* We're only interested in the 0->1 transition. */
  2144. if (!level)
  2145. return 0;
  2146. adapter = get_io_adapter(kvm, e->adapter.adapter_id);
  2147. if (!adapter)
  2148. return -1;
  2149. down_read(&adapter->maps_lock);
  2150. ret = adapter_indicators_set(kvm, adapter, &e->adapter);
  2151. up_read(&adapter->maps_lock);
  2152. if ((ret > 0) && !adapter->masked) {
  2153. ret = kvm_s390_inject_airq(kvm, adapter);
  2154. if (ret == 0)
  2155. ret = 1;
  2156. }
  2157. return ret;
  2158. }
  2159. /*
  2160. * Inject the machine check to the guest.
  2161. */
  2162. void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
  2163. struct mcck_volatile_info *mcck_info)
  2164. {
  2165. struct kvm_s390_interrupt_info inti;
  2166. struct kvm_s390_irq irq;
  2167. struct kvm_s390_mchk_info *mchk;
  2168. union mci mci;
  2169. __u64 cr14 = 0; /* upper bits are not used */
  2170. int rc;
  2171. mci.val = mcck_info->mcic;
  2172. if (mci.sr)
  2173. cr14 |= MCCK_CR14_RECOVERY_SUB_MASK;
  2174. if (mci.dg)
  2175. cr14 |= MCCK_CR14_DEGRAD_SUB_MASK;
  2176. if (mci.w)
  2177. cr14 |= MCCK_CR14_WARN_SUB_MASK;
  2178. mchk = mci.ck ? &inti.mchk : &irq.u.mchk;
  2179. mchk->cr14 = cr14;
  2180. mchk->mcic = mcck_info->mcic;
  2181. mchk->ext_damage_code = mcck_info->ext_damage_code;
  2182. mchk->failing_storage_address = mcck_info->failing_storage_address;
  2183. if (mci.ck) {
  2184. /* Inject the floating machine check */
  2185. inti.type = KVM_S390_MCHK;
  2186. rc = __inject_vm(vcpu->kvm, &inti);
  2187. } else {
  2188. /* Inject the machine check to specified vcpu */
  2189. irq.type = KVM_S390_MCHK;
  2190. rc = kvm_s390_inject_vcpu(vcpu, &irq);
  2191. }
  2192. WARN_ON_ONCE(rc);
  2193. }
  2194. int kvm_set_routing_entry(struct kvm *kvm,
  2195. struct kvm_kernel_irq_routing_entry *e,
  2196. const struct kvm_irq_routing_entry *ue)
  2197. {
  2198. int ret;
  2199. switch (ue->type) {
  2200. case KVM_IRQ_ROUTING_S390_ADAPTER:
  2201. e->set = set_adapter_int;
  2202. e->adapter.summary_addr = ue->u.adapter.summary_addr;
  2203. e->adapter.ind_addr = ue->u.adapter.ind_addr;
  2204. e->adapter.summary_offset = ue->u.adapter.summary_offset;
  2205. e->adapter.ind_offset = ue->u.adapter.ind_offset;
  2206. e->adapter.adapter_id = ue->u.adapter.adapter_id;
  2207. ret = 0;
  2208. break;
  2209. default:
  2210. ret = -EINVAL;
  2211. }
  2212. return ret;
  2213. }
  2214. int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
  2215. int irq_source_id, int level, bool line_status)
  2216. {
  2217. return -EINVAL;
  2218. }
  2219. int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
  2220. {
  2221. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  2222. struct kvm_s390_irq *buf;
  2223. int r = 0;
  2224. int n;
  2225. buf = vmalloc(len);
  2226. if (!buf)
  2227. return -ENOMEM;
  2228. if (copy_from_user((void *) buf, irqstate, len)) {
  2229. r = -EFAULT;
  2230. goto out_free;
  2231. }
  2232. /*
  2233. * Don't allow setting the interrupt state
  2234. * when there are already interrupts pending
  2235. */
  2236. spin_lock(&li->lock);
  2237. if (li->pending_irqs) {
  2238. r = -EBUSY;
  2239. goto out_unlock;
  2240. }
  2241. for (n = 0; n < len / sizeof(*buf); n++) {
  2242. r = do_inject_vcpu(vcpu, &buf[n]);
  2243. if (r)
  2244. break;
  2245. }
  2246. out_unlock:
  2247. spin_unlock(&li->lock);
  2248. out_free:
  2249. vfree(buf);
  2250. return r;
  2251. }
  2252. static void store_local_irq(struct kvm_s390_local_interrupt *li,
  2253. struct kvm_s390_irq *irq,
  2254. unsigned long irq_type)
  2255. {
  2256. switch (irq_type) {
  2257. case IRQ_PEND_MCHK_EX:
  2258. case IRQ_PEND_MCHK_REP:
  2259. irq->type = KVM_S390_MCHK;
  2260. irq->u.mchk = li->irq.mchk;
  2261. break;
  2262. case IRQ_PEND_PROG:
  2263. irq->type = KVM_S390_PROGRAM_INT;
  2264. irq->u.pgm = li->irq.pgm;
  2265. break;
  2266. case IRQ_PEND_PFAULT_INIT:
  2267. irq->type = KVM_S390_INT_PFAULT_INIT;
  2268. irq->u.ext = li->irq.ext;
  2269. break;
  2270. case IRQ_PEND_EXT_EXTERNAL:
  2271. irq->type = KVM_S390_INT_EXTERNAL_CALL;
  2272. irq->u.extcall = li->irq.extcall;
  2273. break;
  2274. case IRQ_PEND_EXT_CLOCK_COMP:
  2275. irq->type = KVM_S390_INT_CLOCK_COMP;
  2276. break;
  2277. case IRQ_PEND_EXT_CPU_TIMER:
  2278. irq->type = KVM_S390_INT_CPU_TIMER;
  2279. break;
  2280. case IRQ_PEND_SIGP_STOP:
  2281. irq->type = KVM_S390_SIGP_STOP;
  2282. irq->u.stop = li->irq.stop;
  2283. break;
  2284. case IRQ_PEND_RESTART:
  2285. irq->type = KVM_S390_RESTART;
  2286. break;
  2287. case IRQ_PEND_SET_PREFIX:
  2288. irq->type = KVM_S390_SIGP_SET_PREFIX;
  2289. irq->u.prefix = li->irq.prefix;
  2290. break;
  2291. }
  2292. }
  2293. int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
  2294. {
  2295. int scn;
  2296. unsigned long sigp_emerg_pending[BITS_TO_LONGS(KVM_MAX_VCPUS)];
  2297. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  2298. unsigned long pending_irqs;
  2299. struct kvm_s390_irq irq;
  2300. unsigned long irq_type;
  2301. int cpuaddr;
  2302. int n = 0;
  2303. spin_lock(&li->lock);
  2304. pending_irqs = li->pending_irqs;
  2305. memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
  2306. sizeof(sigp_emerg_pending));
  2307. spin_unlock(&li->lock);
  2308. for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
  2309. memset(&irq, 0, sizeof(irq));
  2310. if (irq_type == IRQ_PEND_EXT_EMERGENCY)
  2311. continue;
  2312. if (n + sizeof(irq) > len)
  2313. return -ENOBUFS;
  2314. store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
  2315. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2316. return -EFAULT;
  2317. n += sizeof(irq);
  2318. }
  2319. if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
  2320. for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
  2321. memset(&irq, 0, sizeof(irq));
  2322. if (n + sizeof(irq) > len)
  2323. return -ENOBUFS;
  2324. irq.type = KVM_S390_INT_EMERGENCY;
  2325. irq.u.emerg.code = cpuaddr;
  2326. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2327. return -EFAULT;
  2328. n += sizeof(irq);
  2329. }
  2330. }
  2331. if (sca_ext_call_pending(vcpu, &scn)) {
  2332. if (n + sizeof(irq) > len)
  2333. return -ENOBUFS;
  2334. memset(&irq, 0, sizeof(irq));
  2335. irq.type = KVM_S390_INT_EXTERNAL_CALL;
  2336. irq.u.extcall.code = scn;
  2337. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2338. return -EFAULT;
  2339. n += sizeof(irq);
  2340. }
  2341. return n;
  2342. }