slub.c 127 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/notifier.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/kmemcheck.h>
  23. #include <linux/cpu.h>
  24. #include <linux/cpuset.h>
  25. #include <linux/mempolicy.h>
  26. #include <linux/ctype.h>
  27. #include <linux/debugobjects.h>
  28. #include <linux/kallsyms.h>
  29. #include <linux/memory.h>
  30. #include <linux/math64.h>
  31. #include <linux/fault-inject.h>
  32. #include <linux/stacktrace.h>
  33. #include <linux/prefetch.h>
  34. #include <linux/memcontrol.h>
  35. #include <trace/events/kmem.h>
  36. #include "internal.h"
  37. /*
  38. * Lock order:
  39. * 1. slab_mutex (Global Mutex)
  40. * 2. node->list_lock
  41. * 3. slab_lock(page) (Only on some arches and for debugging)
  42. *
  43. * slab_mutex
  44. *
  45. * The role of the slab_mutex is to protect the list of all the slabs
  46. * and to synchronize major metadata changes to slab cache structures.
  47. *
  48. * The slab_lock is only used for debugging and on arches that do not
  49. * have the ability to do a cmpxchg_double. It only protects the second
  50. * double word in the page struct. Meaning
  51. * A. page->freelist -> List of object free in a page
  52. * B. page->counters -> Counters of objects
  53. * C. page->frozen -> frozen state
  54. *
  55. * If a slab is frozen then it is exempt from list management. It is not
  56. * on any list. The processor that froze the slab is the one who can
  57. * perform list operations on the page. Other processors may put objects
  58. * onto the freelist but the processor that froze the slab is the only
  59. * one that can retrieve the objects from the page's freelist.
  60. *
  61. * The list_lock protects the partial and full list on each node and
  62. * the partial slab counter. If taken then no new slabs may be added or
  63. * removed from the lists nor make the number of partial slabs be modified.
  64. * (Note that the total number of slabs is an atomic value that may be
  65. * modified without taking the list lock).
  66. *
  67. * The list_lock is a centralized lock and thus we avoid taking it as
  68. * much as possible. As long as SLUB does not have to handle partial
  69. * slabs, operations can continue without any centralized lock. F.e.
  70. * allocating a long series of objects that fill up slabs does not require
  71. * the list lock.
  72. * Interrupts are disabled during allocation and deallocation in order to
  73. * make the slab allocator safe to use in the context of an irq. In addition
  74. * interrupts are disabled to ensure that the processor does not change
  75. * while handling per_cpu slabs, due to kernel preemption.
  76. *
  77. * SLUB assigns one slab for allocation to each processor.
  78. * Allocations only occur from these slabs called cpu slabs.
  79. *
  80. * Slabs with free elements are kept on a partial list and during regular
  81. * operations no list for full slabs is used. If an object in a full slab is
  82. * freed then the slab will show up again on the partial lists.
  83. * We track full slabs for debugging purposes though because otherwise we
  84. * cannot scan all objects.
  85. *
  86. * Slabs are freed when they become empty. Teardown and setup is
  87. * minimal so we rely on the page allocators per cpu caches for
  88. * fast frees and allocs.
  89. *
  90. * Overloading of page flags that are otherwise used for LRU management.
  91. *
  92. * PageActive The slab is frozen and exempt from list processing.
  93. * This means that the slab is dedicated to a purpose
  94. * such as satisfying allocations for a specific
  95. * processor. Objects may be freed in the slab while
  96. * it is frozen but slab_free will then skip the usual
  97. * list operations. It is up to the processor holding
  98. * the slab to integrate the slab into the slab lists
  99. * when the slab is no longer needed.
  100. *
  101. * One use of this flag is to mark slabs that are
  102. * used for allocations. Then such a slab becomes a cpu
  103. * slab. The cpu slab may be equipped with an additional
  104. * freelist that allows lockless access to
  105. * free objects in addition to the regular freelist
  106. * that requires the slab lock.
  107. *
  108. * PageError Slab requires special handling due to debug
  109. * options set. This moves slab handling out of
  110. * the fast path and disables lockless freelists.
  111. */
  112. static inline int kmem_cache_debug(struct kmem_cache *s)
  113. {
  114. #ifdef CONFIG_SLUB_DEBUG
  115. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  116. #else
  117. return 0;
  118. #endif
  119. }
  120. static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
  121. {
  122. #ifdef CONFIG_SLUB_CPU_PARTIAL
  123. return !kmem_cache_debug(s);
  124. #else
  125. return false;
  126. #endif
  127. }
  128. /*
  129. * Issues still to be resolved:
  130. *
  131. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  132. *
  133. * - Variable sizing of the per node arrays
  134. */
  135. /* Enable to test recovery from slab corruption on boot */
  136. #undef SLUB_RESILIENCY_TEST
  137. /* Enable to log cmpxchg failures */
  138. #undef SLUB_DEBUG_CMPXCHG
  139. /*
  140. * Mininum number of partial slabs. These will be left on the partial
  141. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  142. */
  143. #define MIN_PARTIAL 5
  144. /*
  145. * Maximum number of desirable partial slabs.
  146. * The existence of more partial slabs makes kmem_cache_shrink
  147. * sort the partial list by the number of objects in use.
  148. */
  149. #define MAX_PARTIAL 10
  150. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  151. SLAB_POISON | SLAB_STORE_USER)
  152. /*
  153. * Debugging flags that require metadata to be stored in the slab. These get
  154. * disabled when slub_debug=O is used and a cache's min order increases with
  155. * metadata.
  156. */
  157. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  158. /*
  159. * Set of flags that will prevent slab merging
  160. */
  161. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  162. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  163. SLAB_FAILSLAB)
  164. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  165. SLAB_CACHE_DMA | SLAB_NOTRACK)
  166. #define OO_SHIFT 16
  167. #define OO_MASK ((1 << OO_SHIFT) - 1)
  168. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  169. /* Internal SLUB flags */
  170. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  171. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  172. #ifdef CONFIG_SMP
  173. static struct notifier_block slab_notifier;
  174. #endif
  175. /*
  176. * Tracking user of a slab.
  177. */
  178. #define TRACK_ADDRS_COUNT 16
  179. struct track {
  180. unsigned long addr; /* Called from address */
  181. #ifdef CONFIG_STACKTRACE
  182. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  183. #endif
  184. int cpu; /* Was running on cpu */
  185. int pid; /* Pid context */
  186. unsigned long when; /* When did the operation occur */
  187. };
  188. enum track_item { TRACK_ALLOC, TRACK_FREE };
  189. #ifdef CONFIG_SYSFS
  190. static int sysfs_slab_add(struct kmem_cache *);
  191. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  192. static void sysfs_slab_remove(struct kmem_cache *);
  193. static void memcg_propagate_slab_attrs(struct kmem_cache *s);
  194. #else
  195. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  196. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  197. { return 0; }
  198. static inline void sysfs_slab_remove(struct kmem_cache *s) { }
  199. static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
  200. #endif
  201. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  202. {
  203. #ifdef CONFIG_SLUB_STATS
  204. __this_cpu_inc(s->cpu_slab->stat[si]);
  205. #endif
  206. }
  207. /********************************************************************
  208. * Core slab cache functions
  209. *******************************************************************/
  210. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  211. {
  212. return s->node[node];
  213. }
  214. /* Verify that a pointer has an address that is valid within a slab page */
  215. static inline int check_valid_pointer(struct kmem_cache *s,
  216. struct page *page, const void *object)
  217. {
  218. void *base;
  219. if (!object)
  220. return 1;
  221. base = page_address(page);
  222. if (object < base || object >= base + page->objects * s->size ||
  223. (object - base) % s->size) {
  224. return 0;
  225. }
  226. return 1;
  227. }
  228. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  229. {
  230. return *(void **)(object + s->offset);
  231. }
  232. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  233. {
  234. prefetch(object + s->offset);
  235. }
  236. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  237. {
  238. void *p;
  239. #ifdef CONFIG_DEBUG_PAGEALLOC
  240. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  241. #else
  242. p = get_freepointer(s, object);
  243. #endif
  244. return p;
  245. }
  246. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  247. {
  248. *(void **)(object + s->offset) = fp;
  249. }
  250. /* Loop over all objects in a slab */
  251. #define for_each_object(__p, __s, __addr, __objects) \
  252. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  253. __p += (__s)->size)
  254. /* Determine object index from a given position */
  255. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  256. {
  257. return (p - addr) / s->size;
  258. }
  259. static inline size_t slab_ksize(const struct kmem_cache *s)
  260. {
  261. #ifdef CONFIG_SLUB_DEBUG
  262. /*
  263. * Debugging requires use of the padding between object
  264. * and whatever may come after it.
  265. */
  266. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  267. return s->object_size;
  268. #endif
  269. /*
  270. * If we have the need to store the freelist pointer
  271. * back there or track user information then we can
  272. * only use the space before that information.
  273. */
  274. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  275. return s->inuse;
  276. /*
  277. * Else we can use all the padding etc for the allocation
  278. */
  279. return s->size;
  280. }
  281. static inline int order_objects(int order, unsigned long size, int reserved)
  282. {
  283. return ((PAGE_SIZE << order) - reserved) / size;
  284. }
  285. static inline struct kmem_cache_order_objects oo_make(int order,
  286. unsigned long size, int reserved)
  287. {
  288. struct kmem_cache_order_objects x = {
  289. (order << OO_SHIFT) + order_objects(order, size, reserved)
  290. };
  291. return x;
  292. }
  293. static inline int oo_order(struct kmem_cache_order_objects x)
  294. {
  295. return x.x >> OO_SHIFT;
  296. }
  297. static inline int oo_objects(struct kmem_cache_order_objects x)
  298. {
  299. return x.x & OO_MASK;
  300. }
  301. /*
  302. * Per slab locking using the pagelock
  303. */
  304. static __always_inline void slab_lock(struct page *page)
  305. {
  306. bit_spin_lock(PG_locked, &page->flags);
  307. }
  308. static __always_inline void slab_unlock(struct page *page)
  309. {
  310. __bit_spin_unlock(PG_locked, &page->flags);
  311. }
  312. static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
  313. {
  314. struct page tmp;
  315. tmp.counters = counters_new;
  316. /*
  317. * page->counters can cover frozen/inuse/objects as well
  318. * as page->_count. If we assign to ->counters directly
  319. * we run the risk of losing updates to page->_count, so
  320. * be careful and only assign to the fields we need.
  321. */
  322. page->frozen = tmp.frozen;
  323. page->inuse = tmp.inuse;
  324. page->objects = tmp.objects;
  325. }
  326. /* Interrupts must be disabled (for the fallback code to work right) */
  327. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  328. void *freelist_old, unsigned long counters_old,
  329. void *freelist_new, unsigned long counters_new,
  330. const char *n)
  331. {
  332. VM_BUG_ON(!irqs_disabled());
  333. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  334. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  335. if (s->flags & __CMPXCHG_DOUBLE) {
  336. if (cmpxchg_double(&page->freelist, &page->counters,
  337. freelist_old, counters_old,
  338. freelist_new, counters_new))
  339. return 1;
  340. } else
  341. #endif
  342. {
  343. slab_lock(page);
  344. if (page->freelist == freelist_old &&
  345. page->counters == counters_old) {
  346. page->freelist = freelist_new;
  347. set_page_slub_counters(page, counters_new);
  348. slab_unlock(page);
  349. return 1;
  350. }
  351. slab_unlock(page);
  352. }
  353. cpu_relax();
  354. stat(s, CMPXCHG_DOUBLE_FAIL);
  355. #ifdef SLUB_DEBUG_CMPXCHG
  356. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  357. #endif
  358. return 0;
  359. }
  360. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  361. void *freelist_old, unsigned long counters_old,
  362. void *freelist_new, unsigned long counters_new,
  363. const char *n)
  364. {
  365. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  366. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  367. if (s->flags & __CMPXCHG_DOUBLE) {
  368. if (cmpxchg_double(&page->freelist, &page->counters,
  369. freelist_old, counters_old,
  370. freelist_new, counters_new))
  371. return 1;
  372. } else
  373. #endif
  374. {
  375. unsigned long flags;
  376. local_irq_save(flags);
  377. slab_lock(page);
  378. if (page->freelist == freelist_old &&
  379. page->counters == counters_old) {
  380. page->freelist = freelist_new;
  381. set_page_slub_counters(page, counters_new);
  382. slab_unlock(page);
  383. local_irq_restore(flags);
  384. return 1;
  385. }
  386. slab_unlock(page);
  387. local_irq_restore(flags);
  388. }
  389. cpu_relax();
  390. stat(s, CMPXCHG_DOUBLE_FAIL);
  391. #ifdef SLUB_DEBUG_CMPXCHG
  392. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  393. #endif
  394. return 0;
  395. }
  396. #ifdef CONFIG_SLUB_DEBUG
  397. /*
  398. * Determine a map of object in use on a page.
  399. *
  400. * Node listlock must be held to guarantee that the page does
  401. * not vanish from under us.
  402. */
  403. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  404. {
  405. void *p;
  406. void *addr = page_address(page);
  407. for (p = page->freelist; p; p = get_freepointer(s, p))
  408. set_bit(slab_index(p, s, addr), map);
  409. }
  410. /*
  411. * Debug settings:
  412. */
  413. #ifdef CONFIG_SLUB_DEBUG_ON
  414. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  415. #else
  416. static int slub_debug;
  417. #endif
  418. static char *slub_debug_slabs;
  419. static int disable_higher_order_debug;
  420. /*
  421. * Object debugging
  422. */
  423. static void print_section(char *text, u8 *addr, unsigned int length)
  424. {
  425. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  426. length, 1);
  427. }
  428. static struct track *get_track(struct kmem_cache *s, void *object,
  429. enum track_item alloc)
  430. {
  431. struct track *p;
  432. if (s->offset)
  433. p = object + s->offset + sizeof(void *);
  434. else
  435. p = object + s->inuse;
  436. return p + alloc;
  437. }
  438. static void set_track(struct kmem_cache *s, void *object,
  439. enum track_item alloc, unsigned long addr)
  440. {
  441. struct track *p = get_track(s, object, alloc);
  442. if (addr) {
  443. #ifdef CONFIG_STACKTRACE
  444. struct stack_trace trace;
  445. int i;
  446. trace.nr_entries = 0;
  447. trace.max_entries = TRACK_ADDRS_COUNT;
  448. trace.entries = p->addrs;
  449. trace.skip = 3;
  450. save_stack_trace(&trace);
  451. /* See rant in lockdep.c */
  452. if (trace.nr_entries != 0 &&
  453. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  454. trace.nr_entries--;
  455. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  456. p->addrs[i] = 0;
  457. #endif
  458. p->addr = addr;
  459. p->cpu = smp_processor_id();
  460. p->pid = current->pid;
  461. p->when = jiffies;
  462. } else
  463. memset(p, 0, sizeof(struct track));
  464. }
  465. static void init_tracking(struct kmem_cache *s, void *object)
  466. {
  467. if (!(s->flags & SLAB_STORE_USER))
  468. return;
  469. set_track(s, object, TRACK_FREE, 0UL);
  470. set_track(s, object, TRACK_ALLOC, 0UL);
  471. }
  472. static void print_track(const char *s, struct track *t)
  473. {
  474. if (!t->addr)
  475. return;
  476. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  477. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  478. #ifdef CONFIG_STACKTRACE
  479. {
  480. int i;
  481. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  482. if (t->addrs[i])
  483. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  484. else
  485. break;
  486. }
  487. #endif
  488. }
  489. static void print_tracking(struct kmem_cache *s, void *object)
  490. {
  491. if (!(s->flags & SLAB_STORE_USER))
  492. return;
  493. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  494. print_track("Freed", get_track(s, object, TRACK_FREE));
  495. }
  496. static void print_page_info(struct page *page)
  497. {
  498. printk(KERN_ERR
  499. "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  500. page, page->objects, page->inuse, page->freelist, page->flags);
  501. }
  502. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  503. {
  504. va_list args;
  505. char buf[100];
  506. va_start(args, fmt);
  507. vsnprintf(buf, sizeof(buf), fmt, args);
  508. va_end(args);
  509. printk(KERN_ERR "========================================"
  510. "=====================================\n");
  511. printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
  512. printk(KERN_ERR "----------------------------------------"
  513. "-------------------------------------\n\n");
  514. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  515. }
  516. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  517. {
  518. va_list args;
  519. char buf[100];
  520. va_start(args, fmt);
  521. vsnprintf(buf, sizeof(buf), fmt, args);
  522. va_end(args);
  523. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  524. }
  525. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  526. {
  527. unsigned int off; /* Offset of last byte */
  528. u8 *addr = page_address(page);
  529. print_tracking(s, p);
  530. print_page_info(page);
  531. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  532. p, p - addr, get_freepointer(s, p));
  533. if (p > addr + 16)
  534. print_section("Bytes b4 ", p - 16, 16);
  535. print_section("Object ", p, min_t(unsigned long, s->object_size,
  536. PAGE_SIZE));
  537. if (s->flags & SLAB_RED_ZONE)
  538. print_section("Redzone ", p + s->object_size,
  539. s->inuse - s->object_size);
  540. if (s->offset)
  541. off = s->offset + sizeof(void *);
  542. else
  543. off = s->inuse;
  544. if (s->flags & SLAB_STORE_USER)
  545. off += 2 * sizeof(struct track);
  546. if (off != s->size)
  547. /* Beginning of the filler is the free pointer */
  548. print_section("Padding ", p + off, s->size - off);
  549. dump_stack();
  550. }
  551. static void object_err(struct kmem_cache *s, struct page *page,
  552. u8 *object, char *reason)
  553. {
  554. slab_bug(s, "%s", reason);
  555. print_trailer(s, page, object);
  556. }
  557. static void slab_err(struct kmem_cache *s, struct page *page,
  558. const char *fmt, ...)
  559. {
  560. va_list args;
  561. char buf[100];
  562. va_start(args, fmt);
  563. vsnprintf(buf, sizeof(buf), fmt, args);
  564. va_end(args);
  565. slab_bug(s, "%s", buf);
  566. print_page_info(page);
  567. dump_stack();
  568. }
  569. static void init_object(struct kmem_cache *s, void *object, u8 val)
  570. {
  571. u8 *p = object;
  572. if (s->flags & __OBJECT_POISON) {
  573. memset(p, POISON_FREE, s->object_size - 1);
  574. p[s->object_size - 1] = POISON_END;
  575. }
  576. if (s->flags & SLAB_RED_ZONE)
  577. memset(p + s->object_size, val, s->inuse - s->object_size);
  578. }
  579. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  580. void *from, void *to)
  581. {
  582. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  583. memset(from, data, to - from);
  584. }
  585. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  586. u8 *object, char *what,
  587. u8 *start, unsigned int value, unsigned int bytes)
  588. {
  589. u8 *fault;
  590. u8 *end;
  591. fault = memchr_inv(start, value, bytes);
  592. if (!fault)
  593. return 1;
  594. end = start + bytes;
  595. while (end > fault && end[-1] == value)
  596. end--;
  597. slab_bug(s, "%s overwritten", what);
  598. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  599. fault, end - 1, fault[0], value);
  600. print_trailer(s, page, object);
  601. restore_bytes(s, what, value, fault, end);
  602. return 0;
  603. }
  604. /*
  605. * Object layout:
  606. *
  607. * object address
  608. * Bytes of the object to be managed.
  609. * If the freepointer may overlay the object then the free
  610. * pointer is the first word of the object.
  611. *
  612. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  613. * 0xa5 (POISON_END)
  614. *
  615. * object + s->object_size
  616. * Padding to reach word boundary. This is also used for Redzoning.
  617. * Padding is extended by another word if Redzoning is enabled and
  618. * object_size == inuse.
  619. *
  620. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  621. * 0xcc (RED_ACTIVE) for objects in use.
  622. *
  623. * object + s->inuse
  624. * Meta data starts here.
  625. *
  626. * A. Free pointer (if we cannot overwrite object on free)
  627. * B. Tracking data for SLAB_STORE_USER
  628. * C. Padding to reach required alignment boundary or at mininum
  629. * one word if debugging is on to be able to detect writes
  630. * before the word boundary.
  631. *
  632. * Padding is done using 0x5a (POISON_INUSE)
  633. *
  634. * object + s->size
  635. * Nothing is used beyond s->size.
  636. *
  637. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  638. * ignored. And therefore no slab options that rely on these boundaries
  639. * may be used with merged slabcaches.
  640. */
  641. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  642. {
  643. unsigned long off = s->inuse; /* The end of info */
  644. if (s->offset)
  645. /* Freepointer is placed after the object. */
  646. off += sizeof(void *);
  647. if (s->flags & SLAB_STORE_USER)
  648. /* We also have user information there */
  649. off += 2 * sizeof(struct track);
  650. if (s->size == off)
  651. return 1;
  652. return check_bytes_and_report(s, page, p, "Object padding",
  653. p + off, POISON_INUSE, s->size - off);
  654. }
  655. /* Check the pad bytes at the end of a slab page */
  656. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  657. {
  658. u8 *start;
  659. u8 *fault;
  660. u8 *end;
  661. int length;
  662. int remainder;
  663. if (!(s->flags & SLAB_POISON))
  664. return 1;
  665. start = page_address(page);
  666. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  667. end = start + length;
  668. remainder = length % s->size;
  669. if (!remainder)
  670. return 1;
  671. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  672. if (!fault)
  673. return 1;
  674. while (end > fault && end[-1] == POISON_INUSE)
  675. end--;
  676. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  677. print_section("Padding ", end - remainder, remainder);
  678. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  679. return 0;
  680. }
  681. static int check_object(struct kmem_cache *s, struct page *page,
  682. void *object, u8 val)
  683. {
  684. u8 *p = object;
  685. u8 *endobject = object + s->object_size;
  686. if (s->flags & SLAB_RED_ZONE) {
  687. if (!check_bytes_and_report(s, page, object, "Redzone",
  688. endobject, val, s->inuse - s->object_size))
  689. return 0;
  690. } else {
  691. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  692. check_bytes_and_report(s, page, p, "Alignment padding",
  693. endobject, POISON_INUSE,
  694. s->inuse - s->object_size);
  695. }
  696. }
  697. if (s->flags & SLAB_POISON) {
  698. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  699. (!check_bytes_and_report(s, page, p, "Poison", p,
  700. POISON_FREE, s->object_size - 1) ||
  701. !check_bytes_and_report(s, page, p, "Poison",
  702. p + s->object_size - 1, POISON_END, 1)))
  703. return 0;
  704. /*
  705. * check_pad_bytes cleans up on its own.
  706. */
  707. check_pad_bytes(s, page, p);
  708. }
  709. if (!s->offset && val == SLUB_RED_ACTIVE)
  710. /*
  711. * Object and freepointer overlap. Cannot check
  712. * freepointer while object is allocated.
  713. */
  714. return 1;
  715. /* Check free pointer validity */
  716. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  717. object_err(s, page, p, "Freepointer corrupt");
  718. /*
  719. * No choice but to zap it and thus lose the remainder
  720. * of the free objects in this slab. May cause
  721. * another error because the object count is now wrong.
  722. */
  723. set_freepointer(s, p, NULL);
  724. return 0;
  725. }
  726. return 1;
  727. }
  728. static int check_slab(struct kmem_cache *s, struct page *page)
  729. {
  730. int maxobj;
  731. VM_BUG_ON(!irqs_disabled());
  732. if (!PageSlab(page)) {
  733. slab_err(s, page, "Not a valid slab page");
  734. return 0;
  735. }
  736. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  737. if (page->objects > maxobj) {
  738. slab_err(s, page, "objects %u > max %u",
  739. s->name, page->objects, maxobj);
  740. return 0;
  741. }
  742. if (page->inuse > page->objects) {
  743. slab_err(s, page, "inuse %u > max %u",
  744. s->name, page->inuse, page->objects);
  745. return 0;
  746. }
  747. /* Slab_pad_check fixes things up after itself */
  748. slab_pad_check(s, page);
  749. return 1;
  750. }
  751. /*
  752. * Determine if a certain object on a page is on the freelist. Must hold the
  753. * slab lock to guarantee that the chains are in a consistent state.
  754. */
  755. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  756. {
  757. int nr = 0;
  758. void *fp;
  759. void *object = NULL;
  760. unsigned long max_objects;
  761. fp = page->freelist;
  762. while (fp && nr <= page->objects) {
  763. if (fp == search)
  764. return 1;
  765. if (!check_valid_pointer(s, page, fp)) {
  766. if (object) {
  767. object_err(s, page, object,
  768. "Freechain corrupt");
  769. set_freepointer(s, object, NULL);
  770. } else {
  771. slab_err(s, page, "Freepointer corrupt");
  772. page->freelist = NULL;
  773. page->inuse = page->objects;
  774. slab_fix(s, "Freelist cleared");
  775. return 0;
  776. }
  777. break;
  778. }
  779. object = fp;
  780. fp = get_freepointer(s, object);
  781. nr++;
  782. }
  783. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  784. if (max_objects > MAX_OBJS_PER_PAGE)
  785. max_objects = MAX_OBJS_PER_PAGE;
  786. if (page->objects != max_objects) {
  787. slab_err(s, page, "Wrong number of objects. Found %d but "
  788. "should be %d", page->objects, max_objects);
  789. page->objects = max_objects;
  790. slab_fix(s, "Number of objects adjusted.");
  791. }
  792. if (page->inuse != page->objects - nr) {
  793. slab_err(s, page, "Wrong object count. Counter is %d but "
  794. "counted were %d", page->inuse, page->objects - nr);
  795. page->inuse = page->objects - nr;
  796. slab_fix(s, "Object count adjusted.");
  797. }
  798. return search == NULL;
  799. }
  800. static void trace(struct kmem_cache *s, struct page *page, void *object,
  801. int alloc)
  802. {
  803. if (s->flags & SLAB_TRACE) {
  804. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  805. s->name,
  806. alloc ? "alloc" : "free",
  807. object, page->inuse,
  808. page->freelist);
  809. if (!alloc)
  810. print_section("Object ", (void *)object,
  811. s->object_size);
  812. dump_stack();
  813. }
  814. }
  815. /*
  816. * Hooks for other subsystems that check memory allocations. In a typical
  817. * production configuration these hooks all should produce no code at all.
  818. */
  819. static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
  820. {
  821. kmemleak_alloc(ptr, size, 1, flags);
  822. }
  823. static inline void kfree_hook(const void *x)
  824. {
  825. kmemleak_free(x);
  826. }
  827. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  828. {
  829. flags &= gfp_allowed_mask;
  830. lockdep_trace_alloc(flags);
  831. might_sleep_if(flags & __GFP_WAIT);
  832. return should_failslab(s->object_size, flags, s->flags);
  833. }
  834. static inline void slab_post_alloc_hook(struct kmem_cache *s,
  835. gfp_t flags, void *object)
  836. {
  837. flags &= gfp_allowed_mask;
  838. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  839. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
  840. }
  841. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  842. {
  843. kmemleak_free_recursive(x, s->flags);
  844. /*
  845. * Trouble is that we may no longer disable interrupts in the fast path
  846. * So in order to make the debug calls that expect irqs to be
  847. * disabled we need to disable interrupts temporarily.
  848. */
  849. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  850. {
  851. unsigned long flags;
  852. local_irq_save(flags);
  853. kmemcheck_slab_free(s, x, s->object_size);
  854. debug_check_no_locks_freed(x, s->object_size);
  855. local_irq_restore(flags);
  856. }
  857. #endif
  858. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  859. debug_check_no_obj_freed(x, s->object_size);
  860. }
  861. /*
  862. * Tracking of fully allocated slabs for debugging purposes.
  863. */
  864. static void add_full(struct kmem_cache *s,
  865. struct kmem_cache_node *n, struct page *page)
  866. {
  867. lockdep_assert_held(&n->list_lock);
  868. if (!(s->flags & SLAB_STORE_USER))
  869. return;
  870. list_add(&page->lru, &n->full);
  871. }
  872. static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
  873. {
  874. lockdep_assert_held(&n->list_lock);
  875. if (!(s->flags & SLAB_STORE_USER))
  876. return;
  877. list_del(&page->lru);
  878. }
  879. /* Tracking of the number of slabs for debugging purposes */
  880. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  881. {
  882. struct kmem_cache_node *n = get_node(s, node);
  883. return atomic_long_read(&n->nr_slabs);
  884. }
  885. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  886. {
  887. return atomic_long_read(&n->nr_slabs);
  888. }
  889. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  890. {
  891. struct kmem_cache_node *n = get_node(s, node);
  892. /*
  893. * May be called early in order to allocate a slab for the
  894. * kmem_cache_node structure. Solve the chicken-egg
  895. * dilemma by deferring the increment of the count during
  896. * bootstrap (see early_kmem_cache_node_alloc).
  897. */
  898. if (likely(n)) {
  899. atomic_long_inc(&n->nr_slabs);
  900. atomic_long_add(objects, &n->total_objects);
  901. }
  902. }
  903. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  904. {
  905. struct kmem_cache_node *n = get_node(s, node);
  906. atomic_long_dec(&n->nr_slabs);
  907. atomic_long_sub(objects, &n->total_objects);
  908. }
  909. /* Object debug checks for alloc/free paths */
  910. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  911. void *object)
  912. {
  913. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  914. return;
  915. init_object(s, object, SLUB_RED_INACTIVE);
  916. init_tracking(s, object);
  917. }
  918. static noinline int alloc_debug_processing(struct kmem_cache *s,
  919. struct page *page,
  920. void *object, unsigned long addr)
  921. {
  922. if (!check_slab(s, page))
  923. goto bad;
  924. if (!check_valid_pointer(s, page, object)) {
  925. object_err(s, page, object, "Freelist Pointer check fails");
  926. goto bad;
  927. }
  928. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  929. goto bad;
  930. /* Success perform special debug activities for allocs */
  931. if (s->flags & SLAB_STORE_USER)
  932. set_track(s, object, TRACK_ALLOC, addr);
  933. trace(s, page, object, 1);
  934. init_object(s, object, SLUB_RED_ACTIVE);
  935. return 1;
  936. bad:
  937. if (PageSlab(page)) {
  938. /*
  939. * If this is a slab page then lets do the best we can
  940. * to avoid issues in the future. Marking all objects
  941. * as used avoids touching the remaining objects.
  942. */
  943. slab_fix(s, "Marking all objects used");
  944. page->inuse = page->objects;
  945. page->freelist = NULL;
  946. }
  947. return 0;
  948. }
  949. static noinline struct kmem_cache_node *free_debug_processing(
  950. struct kmem_cache *s, struct page *page, void *object,
  951. unsigned long addr, unsigned long *flags)
  952. {
  953. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  954. spin_lock_irqsave(&n->list_lock, *flags);
  955. slab_lock(page);
  956. if (!check_slab(s, page))
  957. goto fail;
  958. if (!check_valid_pointer(s, page, object)) {
  959. slab_err(s, page, "Invalid object pointer 0x%p", object);
  960. goto fail;
  961. }
  962. if (on_freelist(s, page, object)) {
  963. object_err(s, page, object, "Object already free");
  964. goto fail;
  965. }
  966. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  967. goto out;
  968. if (unlikely(s != page->slab_cache)) {
  969. if (!PageSlab(page)) {
  970. slab_err(s, page, "Attempt to free object(0x%p) "
  971. "outside of slab", object);
  972. } else if (!page->slab_cache) {
  973. printk(KERN_ERR
  974. "SLUB <none>: no slab for object 0x%p.\n",
  975. object);
  976. dump_stack();
  977. } else
  978. object_err(s, page, object,
  979. "page slab pointer corrupt.");
  980. goto fail;
  981. }
  982. if (s->flags & SLAB_STORE_USER)
  983. set_track(s, object, TRACK_FREE, addr);
  984. trace(s, page, object, 0);
  985. init_object(s, object, SLUB_RED_INACTIVE);
  986. out:
  987. slab_unlock(page);
  988. /*
  989. * Keep node_lock to preserve integrity
  990. * until the object is actually freed
  991. */
  992. return n;
  993. fail:
  994. slab_unlock(page);
  995. spin_unlock_irqrestore(&n->list_lock, *flags);
  996. slab_fix(s, "Object at 0x%p not freed", object);
  997. return NULL;
  998. }
  999. static int __init setup_slub_debug(char *str)
  1000. {
  1001. slub_debug = DEBUG_DEFAULT_FLAGS;
  1002. if (*str++ != '=' || !*str)
  1003. /*
  1004. * No options specified. Switch on full debugging.
  1005. */
  1006. goto out;
  1007. if (*str == ',')
  1008. /*
  1009. * No options but restriction on slabs. This means full
  1010. * debugging for slabs matching a pattern.
  1011. */
  1012. goto check_slabs;
  1013. if (tolower(*str) == 'o') {
  1014. /*
  1015. * Avoid enabling debugging on caches if its minimum order
  1016. * would increase as a result.
  1017. */
  1018. disable_higher_order_debug = 1;
  1019. goto out;
  1020. }
  1021. slub_debug = 0;
  1022. if (*str == '-')
  1023. /*
  1024. * Switch off all debugging measures.
  1025. */
  1026. goto out;
  1027. /*
  1028. * Determine which debug features should be switched on
  1029. */
  1030. for (; *str && *str != ','; str++) {
  1031. switch (tolower(*str)) {
  1032. case 'f':
  1033. slub_debug |= SLAB_DEBUG_FREE;
  1034. break;
  1035. case 'z':
  1036. slub_debug |= SLAB_RED_ZONE;
  1037. break;
  1038. case 'p':
  1039. slub_debug |= SLAB_POISON;
  1040. break;
  1041. case 'u':
  1042. slub_debug |= SLAB_STORE_USER;
  1043. break;
  1044. case 't':
  1045. slub_debug |= SLAB_TRACE;
  1046. break;
  1047. case 'a':
  1048. slub_debug |= SLAB_FAILSLAB;
  1049. break;
  1050. default:
  1051. printk(KERN_ERR "slub_debug option '%c' "
  1052. "unknown. skipped\n", *str);
  1053. }
  1054. }
  1055. check_slabs:
  1056. if (*str == ',')
  1057. slub_debug_slabs = str + 1;
  1058. out:
  1059. return 1;
  1060. }
  1061. __setup("slub_debug", setup_slub_debug);
  1062. static unsigned long kmem_cache_flags(unsigned long object_size,
  1063. unsigned long flags, const char *name,
  1064. void (*ctor)(void *))
  1065. {
  1066. /*
  1067. * Enable debugging if selected on the kernel commandline.
  1068. */
  1069. if (slub_debug && (!slub_debug_slabs || (name &&
  1070. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
  1071. flags |= slub_debug;
  1072. return flags;
  1073. }
  1074. #else
  1075. static inline void setup_object_debug(struct kmem_cache *s,
  1076. struct page *page, void *object) {}
  1077. static inline int alloc_debug_processing(struct kmem_cache *s,
  1078. struct page *page, void *object, unsigned long addr) { return 0; }
  1079. static inline struct kmem_cache_node *free_debug_processing(
  1080. struct kmem_cache *s, struct page *page, void *object,
  1081. unsigned long addr, unsigned long *flags) { return NULL; }
  1082. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1083. { return 1; }
  1084. static inline int check_object(struct kmem_cache *s, struct page *page,
  1085. void *object, u8 val) { return 1; }
  1086. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1087. struct page *page) {}
  1088. static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1089. struct page *page) {}
  1090. static inline unsigned long kmem_cache_flags(unsigned long object_size,
  1091. unsigned long flags, const char *name,
  1092. void (*ctor)(void *))
  1093. {
  1094. return flags;
  1095. }
  1096. #define slub_debug 0
  1097. #define disable_higher_order_debug 0
  1098. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1099. { return 0; }
  1100. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1101. { return 0; }
  1102. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1103. int objects) {}
  1104. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1105. int objects) {}
  1106. static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
  1107. {
  1108. kmemleak_alloc(ptr, size, 1, flags);
  1109. }
  1110. static inline void kfree_hook(const void *x)
  1111. {
  1112. kmemleak_free(x);
  1113. }
  1114. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1115. { return 0; }
  1116. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1117. void *object)
  1118. {
  1119. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
  1120. flags & gfp_allowed_mask);
  1121. }
  1122. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  1123. {
  1124. kmemleak_free_recursive(x, s->flags);
  1125. }
  1126. #endif /* CONFIG_SLUB_DEBUG */
  1127. /*
  1128. * Slab allocation and freeing
  1129. */
  1130. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1131. struct kmem_cache_order_objects oo)
  1132. {
  1133. int order = oo_order(oo);
  1134. flags |= __GFP_NOTRACK;
  1135. if (node == NUMA_NO_NODE)
  1136. return alloc_pages(flags, order);
  1137. else
  1138. return alloc_pages_exact_node(node, flags, order);
  1139. }
  1140. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1141. {
  1142. struct page *page;
  1143. struct kmem_cache_order_objects oo = s->oo;
  1144. gfp_t alloc_gfp;
  1145. flags &= gfp_allowed_mask;
  1146. if (flags & __GFP_WAIT)
  1147. local_irq_enable();
  1148. flags |= s->allocflags;
  1149. /*
  1150. * Let the initial higher-order allocation fail under memory pressure
  1151. * so we fall-back to the minimum order allocation.
  1152. */
  1153. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1154. page = alloc_slab_page(alloc_gfp, node, oo);
  1155. if (unlikely(!page)) {
  1156. oo = s->min;
  1157. /*
  1158. * Allocation may have failed due to fragmentation.
  1159. * Try a lower order alloc if possible
  1160. */
  1161. page = alloc_slab_page(flags, node, oo);
  1162. if (page)
  1163. stat(s, ORDER_FALLBACK);
  1164. }
  1165. if (kmemcheck_enabled && page
  1166. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1167. int pages = 1 << oo_order(oo);
  1168. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1169. /*
  1170. * Objects from caches that have a constructor don't get
  1171. * cleared when they're allocated, so we need to do it here.
  1172. */
  1173. if (s->ctor)
  1174. kmemcheck_mark_uninitialized_pages(page, pages);
  1175. else
  1176. kmemcheck_mark_unallocated_pages(page, pages);
  1177. }
  1178. if (flags & __GFP_WAIT)
  1179. local_irq_disable();
  1180. if (!page)
  1181. return NULL;
  1182. page->objects = oo_objects(oo);
  1183. mod_zone_page_state(page_zone(page),
  1184. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1185. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1186. 1 << oo_order(oo));
  1187. return page;
  1188. }
  1189. static void setup_object(struct kmem_cache *s, struct page *page,
  1190. void *object)
  1191. {
  1192. setup_object_debug(s, page, object);
  1193. if (unlikely(s->ctor))
  1194. s->ctor(object);
  1195. }
  1196. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1197. {
  1198. struct page *page;
  1199. void *start;
  1200. void *last;
  1201. void *p;
  1202. int order;
  1203. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1204. page = allocate_slab(s,
  1205. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1206. if (!page)
  1207. goto out;
  1208. order = compound_order(page);
  1209. inc_slabs_node(s, page_to_nid(page), page->objects);
  1210. memcg_bind_pages(s, order);
  1211. page->slab_cache = s;
  1212. __SetPageSlab(page);
  1213. if (page->pfmemalloc)
  1214. SetPageSlabPfmemalloc(page);
  1215. start = page_address(page);
  1216. if (unlikely(s->flags & SLAB_POISON))
  1217. memset(start, POISON_INUSE, PAGE_SIZE << order);
  1218. last = start;
  1219. for_each_object(p, s, start, page->objects) {
  1220. setup_object(s, page, last);
  1221. set_freepointer(s, last, p);
  1222. last = p;
  1223. }
  1224. setup_object(s, page, last);
  1225. set_freepointer(s, last, NULL);
  1226. page->freelist = start;
  1227. page->inuse = page->objects;
  1228. page->frozen = 1;
  1229. out:
  1230. return page;
  1231. }
  1232. static void __free_slab(struct kmem_cache *s, struct page *page)
  1233. {
  1234. int order = compound_order(page);
  1235. int pages = 1 << order;
  1236. if (kmem_cache_debug(s)) {
  1237. void *p;
  1238. slab_pad_check(s, page);
  1239. for_each_object(p, s, page_address(page),
  1240. page->objects)
  1241. check_object(s, page, p, SLUB_RED_INACTIVE);
  1242. }
  1243. kmemcheck_free_shadow(page, compound_order(page));
  1244. mod_zone_page_state(page_zone(page),
  1245. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1246. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1247. -pages);
  1248. __ClearPageSlabPfmemalloc(page);
  1249. __ClearPageSlab(page);
  1250. memcg_release_pages(s, order);
  1251. page_mapcount_reset(page);
  1252. if (current->reclaim_state)
  1253. current->reclaim_state->reclaimed_slab += pages;
  1254. __free_memcg_kmem_pages(page, order);
  1255. }
  1256. #define need_reserve_slab_rcu \
  1257. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1258. static void rcu_free_slab(struct rcu_head *h)
  1259. {
  1260. struct page *page;
  1261. if (need_reserve_slab_rcu)
  1262. page = virt_to_head_page(h);
  1263. else
  1264. page = container_of((struct list_head *)h, struct page, lru);
  1265. __free_slab(page->slab_cache, page);
  1266. }
  1267. static void free_slab(struct kmem_cache *s, struct page *page)
  1268. {
  1269. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1270. struct rcu_head *head;
  1271. if (need_reserve_slab_rcu) {
  1272. int order = compound_order(page);
  1273. int offset = (PAGE_SIZE << order) - s->reserved;
  1274. VM_BUG_ON(s->reserved != sizeof(*head));
  1275. head = page_address(page) + offset;
  1276. } else {
  1277. /*
  1278. * RCU free overloads the RCU head over the LRU
  1279. */
  1280. head = (void *)&page->lru;
  1281. }
  1282. call_rcu(head, rcu_free_slab);
  1283. } else
  1284. __free_slab(s, page);
  1285. }
  1286. static void discard_slab(struct kmem_cache *s, struct page *page)
  1287. {
  1288. dec_slabs_node(s, page_to_nid(page), page->objects);
  1289. free_slab(s, page);
  1290. }
  1291. /*
  1292. * Management of partially allocated slabs.
  1293. */
  1294. static inline void add_partial(struct kmem_cache_node *n,
  1295. struct page *page, int tail)
  1296. {
  1297. lockdep_assert_held(&n->list_lock);
  1298. n->nr_partial++;
  1299. if (tail == DEACTIVATE_TO_TAIL)
  1300. list_add_tail(&page->lru, &n->partial);
  1301. else
  1302. list_add(&page->lru, &n->partial);
  1303. }
  1304. static inline void remove_partial(struct kmem_cache_node *n,
  1305. struct page *page)
  1306. {
  1307. lockdep_assert_held(&n->list_lock);
  1308. list_del(&page->lru);
  1309. n->nr_partial--;
  1310. }
  1311. /*
  1312. * Remove slab from the partial list, freeze it and
  1313. * return the pointer to the freelist.
  1314. *
  1315. * Returns a list of objects or NULL if it fails.
  1316. */
  1317. static inline void *acquire_slab(struct kmem_cache *s,
  1318. struct kmem_cache_node *n, struct page *page,
  1319. int mode, int *objects)
  1320. {
  1321. void *freelist;
  1322. unsigned long counters;
  1323. struct page new;
  1324. lockdep_assert_held(&n->list_lock);
  1325. /*
  1326. * Zap the freelist and set the frozen bit.
  1327. * The old freelist is the list of objects for the
  1328. * per cpu allocation list.
  1329. */
  1330. freelist = page->freelist;
  1331. counters = page->counters;
  1332. new.counters = counters;
  1333. *objects = new.objects - new.inuse;
  1334. if (mode) {
  1335. new.inuse = page->objects;
  1336. new.freelist = NULL;
  1337. } else {
  1338. new.freelist = freelist;
  1339. }
  1340. VM_BUG_ON(new.frozen);
  1341. new.frozen = 1;
  1342. if (!__cmpxchg_double_slab(s, page,
  1343. freelist, counters,
  1344. new.freelist, new.counters,
  1345. "acquire_slab"))
  1346. return NULL;
  1347. remove_partial(n, page);
  1348. WARN_ON(!freelist);
  1349. return freelist;
  1350. }
  1351. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1352. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
  1353. /*
  1354. * Try to allocate a partial slab from a specific node.
  1355. */
  1356. static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
  1357. struct kmem_cache_cpu *c, gfp_t flags)
  1358. {
  1359. struct page *page, *page2;
  1360. void *object = NULL;
  1361. int available = 0;
  1362. int objects;
  1363. /*
  1364. * Racy check. If we mistakenly see no partial slabs then we
  1365. * just allocate an empty slab. If we mistakenly try to get a
  1366. * partial slab and there is none available then get_partials()
  1367. * will return NULL.
  1368. */
  1369. if (!n || !n->nr_partial)
  1370. return NULL;
  1371. spin_lock(&n->list_lock);
  1372. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1373. void *t;
  1374. if (!pfmemalloc_match(page, flags))
  1375. continue;
  1376. t = acquire_slab(s, n, page, object == NULL, &objects);
  1377. if (!t)
  1378. break;
  1379. available += objects;
  1380. if (!object) {
  1381. c->page = page;
  1382. stat(s, ALLOC_FROM_PARTIAL);
  1383. object = t;
  1384. } else {
  1385. put_cpu_partial(s, page, 0);
  1386. stat(s, CPU_PARTIAL_NODE);
  1387. }
  1388. if (!kmem_cache_has_cpu_partial(s)
  1389. || available > s->cpu_partial / 2)
  1390. break;
  1391. }
  1392. spin_unlock(&n->list_lock);
  1393. return object;
  1394. }
  1395. /*
  1396. * Get a page from somewhere. Search in increasing NUMA distances.
  1397. */
  1398. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1399. struct kmem_cache_cpu *c)
  1400. {
  1401. #ifdef CONFIG_NUMA
  1402. struct zonelist *zonelist;
  1403. struct zoneref *z;
  1404. struct zone *zone;
  1405. enum zone_type high_zoneidx = gfp_zone(flags);
  1406. void *object;
  1407. unsigned int cpuset_mems_cookie;
  1408. /*
  1409. * The defrag ratio allows a configuration of the tradeoffs between
  1410. * inter node defragmentation and node local allocations. A lower
  1411. * defrag_ratio increases the tendency to do local allocations
  1412. * instead of attempting to obtain partial slabs from other nodes.
  1413. *
  1414. * If the defrag_ratio is set to 0 then kmalloc() always
  1415. * returns node local objects. If the ratio is higher then kmalloc()
  1416. * may return off node objects because partial slabs are obtained
  1417. * from other nodes and filled up.
  1418. *
  1419. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1420. * defrag_ratio = 1000) then every (well almost) allocation will
  1421. * first attempt to defrag slab caches on other nodes. This means
  1422. * scanning over all nodes to look for partial slabs which may be
  1423. * expensive if we do it every time we are trying to find a slab
  1424. * with available objects.
  1425. */
  1426. if (!s->remote_node_defrag_ratio ||
  1427. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1428. return NULL;
  1429. do {
  1430. cpuset_mems_cookie = get_mems_allowed();
  1431. zonelist = node_zonelist(slab_node(), flags);
  1432. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1433. struct kmem_cache_node *n;
  1434. n = get_node(s, zone_to_nid(zone));
  1435. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1436. n->nr_partial > s->min_partial) {
  1437. object = get_partial_node(s, n, c, flags);
  1438. if (object) {
  1439. /*
  1440. * Return the object even if
  1441. * put_mems_allowed indicated that
  1442. * the cpuset mems_allowed was
  1443. * updated in parallel. It's a
  1444. * harmless race between the alloc
  1445. * and the cpuset update.
  1446. */
  1447. put_mems_allowed(cpuset_mems_cookie);
  1448. return object;
  1449. }
  1450. }
  1451. }
  1452. } while (!put_mems_allowed(cpuset_mems_cookie));
  1453. #endif
  1454. return NULL;
  1455. }
  1456. /*
  1457. * Get a partial page, lock it and return it.
  1458. */
  1459. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1460. struct kmem_cache_cpu *c)
  1461. {
  1462. void *object;
  1463. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1464. object = get_partial_node(s, get_node(s, searchnode), c, flags);
  1465. if (object || node != NUMA_NO_NODE)
  1466. return object;
  1467. return get_any_partial(s, flags, c);
  1468. }
  1469. #ifdef CONFIG_PREEMPT
  1470. /*
  1471. * Calculate the next globally unique transaction for disambiguiation
  1472. * during cmpxchg. The transactions start with the cpu number and are then
  1473. * incremented by CONFIG_NR_CPUS.
  1474. */
  1475. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1476. #else
  1477. /*
  1478. * No preemption supported therefore also no need to check for
  1479. * different cpus.
  1480. */
  1481. #define TID_STEP 1
  1482. #endif
  1483. static inline unsigned long next_tid(unsigned long tid)
  1484. {
  1485. return tid + TID_STEP;
  1486. }
  1487. static inline unsigned int tid_to_cpu(unsigned long tid)
  1488. {
  1489. return tid % TID_STEP;
  1490. }
  1491. static inline unsigned long tid_to_event(unsigned long tid)
  1492. {
  1493. return tid / TID_STEP;
  1494. }
  1495. static inline unsigned int init_tid(int cpu)
  1496. {
  1497. return cpu;
  1498. }
  1499. static inline void note_cmpxchg_failure(const char *n,
  1500. const struct kmem_cache *s, unsigned long tid)
  1501. {
  1502. #ifdef SLUB_DEBUG_CMPXCHG
  1503. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1504. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1505. #ifdef CONFIG_PREEMPT
  1506. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1507. printk("due to cpu change %d -> %d\n",
  1508. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1509. else
  1510. #endif
  1511. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1512. printk("due to cpu running other code. Event %ld->%ld\n",
  1513. tid_to_event(tid), tid_to_event(actual_tid));
  1514. else
  1515. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1516. actual_tid, tid, next_tid(tid));
  1517. #endif
  1518. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1519. }
  1520. static void init_kmem_cache_cpus(struct kmem_cache *s)
  1521. {
  1522. int cpu;
  1523. for_each_possible_cpu(cpu)
  1524. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1525. }
  1526. /*
  1527. * Remove the cpu slab
  1528. */
  1529. static void deactivate_slab(struct kmem_cache *s, struct page *page,
  1530. void *freelist)
  1531. {
  1532. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1533. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1534. int lock = 0;
  1535. enum slab_modes l = M_NONE, m = M_NONE;
  1536. void *nextfree;
  1537. int tail = DEACTIVATE_TO_HEAD;
  1538. struct page new;
  1539. struct page old;
  1540. if (page->freelist) {
  1541. stat(s, DEACTIVATE_REMOTE_FREES);
  1542. tail = DEACTIVATE_TO_TAIL;
  1543. }
  1544. /*
  1545. * Stage one: Free all available per cpu objects back
  1546. * to the page freelist while it is still frozen. Leave the
  1547. * last one.
  1548. *
  1549. * There is no need to take the list->lock because the page
  1550. * is still frozen.
  1551. */
  1552. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1553. void *prior;
  1554. unsigned long counters;
  1555. do {
  1556. prior = page->freelist;
  1557. counters = page->counters;
  1558. set_freepointer(s, freelist, prior);
  1559. new.counters = counters;
  1560. new.inuse--;
  1561. VM_BUG_ON(!new.frozen);
  1562. } while (!__cmpxchg_double_slab(s, page,
  1563. prior, counters,
  1564. freelist, new.counters,
  1565. "drain percpu freelist"));
  1566. freelist = nextfree;
  1567. }
  1568. /*
  1569. * Stage two: Ensure that the page is unfrozen while the
  1570. * list presence reflects the actual number of objects
  1571. * during unfreeze.
  1572. *
  1573. * We setup the list membership and then perform a cmpxchg
  1574. * with the count. If there is a mismatch then the page
  1575. * is not unfrozen but the page is on the wrong list.
  1576. *
  1577. * Then we restart the process which may have to remove
  1578. * the page from the list that we just put it on again
  1579. * because the number of objects in the slab may have
  1580. * changed.
  1581. */
  1582. redo:
  1583. old.freelist = page->freelist;
  1584. old.counters = page->counters;
  1585. VM_BUG_ON(!old.frozen);
  1586. /* Determine target state of the slab */
  1587. new.counters = old.counters;
  1588. if (freelist) {
  1589. new.inuse--;
  1590. set_freepointer(s, freelist, old.freelist);
  1591. new.freelist = freelist;
  1592. } else
  1593. new.freelist = old.freelist;
  1594. new.frozen = 0;
  1595. if (!new.inuse && n->nr_partial > s->min_partial)
  1596. m = M_FREE;
  1597. else if (new.freelist) {
  1598. m = M_PARTIAL;
  1599. if (!lock) {
  1600. lock = 1;
  1601. /*
  1602. * Taking the spinlock removes the possiblity
  1603. * that acquire_slab() will see a slab page that
  1604. * is frozen
  1605. */
  1606. spin_lock(&n->list_lock);
  1607. }
  1608. } else {
  1609. m = M_FULL;
  1610. if (kmem_cache_debug(s) && !lock) {
  1611. lock = 1;
  1612. /*
  1613. * This also ensures that the scanning of full
  1614. * slabs from diagnostic functions will not see
  1615. * any frozen slabs.
  1616. */
  1617. spin_lock(&n->list_lock);
  1618. }
  1619. }
  1620. if (l != m) {
  1621. if (l == M_PARTIAL)
  1622. remove_partial(n, page);
  1623. else if (l == M_FULL)
  1624. remove_full(s, n, page);
  1625. if (m == M_PARTIAL) {
  1626. add_partial(n, page, tail);
  1627. stat(s, tail);
  1628. } else if (m == M_FULL) {
  1629. stat(s, DEACTIVATE_FULL);
  1630. add_full(s, n, page);
  1631. }
  1632. }
  1633. l = m;
  1634. if (!__cmpxchg_double_slab(s, page,
  1635. old.freelist, old.counters,
  1636. new.freelist, new.counters,
  1637. "unfreezing slab"))
  1638. goto redo;
  1639. if (lock)
  1640. spin_unlock(&n->list_lock);
  1641. if (m == M_FREE) {
  1642. stat(s, DEACTIVATE_EMPTY);
  1643. discard_slab(s, page);
  1644. stat(s, FREE_SLAB);
  1645. }
  1646. }
  1647. /*
  1648. * Unfreeze all the cpu partial slabs.
  1649. *
  1650. * This function must be called with interrupts disabled
  1651. * for the cpu using c (or some other guarantee must be there
  1652. * to guarantee no concurrent accesses).
  1653. */
  1654. static void unfreeze_partials(struct kmem_cache *s,
  1655. struct kmem_cache_cpu *c)
  1656. {
  1657. #ifdef CONFIG_SLUB_CPU_PARTIAL
  1658. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1659. struct page *page, *discard_page = NULL;
  1660. while ((page = c->partial)) {
  1661. struct page new;
  1662. struct page old;
  1663. c->partial = page->next;
  1664. n2 = get_node(s, page_to_nid(page));
  1665. if (n != n2) {
  1666. if (n)
  1667. spin_unlock(&n->list_lock);
  1668. n = n2;
  1669. spin_lock(&n->list_lock);
  1670. }
  1671. do {
  1672. old.freelist = page->freelist;
  1673. old.counters = page->counters;
  1674. VM_BUG_ON(!old.frozen);
  1675. new.counters = old.counters;
  1676. new.freelist = old.freelist;
  1677. new.frozen = 0;
  1678. } while (!__cmpxchg_double_slab(s, page,
  1679. old.freelist, old.counters,
  1680. new.freelist, new.counters,
  1681. "unfreezing slab"));
  1682. if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
  1683. page->next = discard_page;
  1684. discard_page = page;
  1685. } else {
  1686. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1687. stat(s, FREE_ADD_PARTIAL);
  1688. }
  1689. }
  1690. if (n)
  1691. spin_unlock(&n->list_lock);
  1692. while (discard_page) {
  1693. page = discard_page;
  1694. discard_page = discard_page->next;
  1695. stat(s, DEACTIVATE_EMPTY);
  1696. discard_slab(s, page);
  1697. stat(s, FREE_SLAB);
  1698. }
  1699. #endif
  1700. }
  1701. /*
  1702. * Put a page that was just frozen (in __slab_free) into a partial page
  1703. * slot if available. This is done without interrupts disabled and without
  1704. * preemption disabled. The cmpxchg is racy and may put the partial page
  1705. * onto a random cpus partial slot.
  1706. *
  1707. * If we did not find a slot then simply move all the partials to the
  1708. * per node partial list.
  1709. */
  1710. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1711. {
  1712. #ifdef CONFIG_SLUB_CPU_PARTIAL
  1713. struct page *oldpage;
  1714. int pages;
  1715. int pobjects;
  1716. do {
  1717. pages = 0;
  1718. pobjects = 0;
  1719. oldpage = this_cpu_read(s->cpu_slab->partial);
  1720. if (oldpage) {
  1721. pobjects = oldpage->pobjects;
  1722. pages = oldpage->pages;
  1723. if (drain && pobjects > s->cpu_partial) {
  1724. unsigned long flags;
  1725. /*
  1726. * partial array is full. Move the existing
  1727. * set to the per node partial list.
  1728. */
  1729. local_irq_save(flags);
  1730. unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
  1731. local_irq_restore(flags);
  1732. oldpage = NULL;
  1733. pobjects = 0;
  1734. pages = 0;
  1735. stat(s, CPU_PARTIAL_DRAIN);
  1736. }
  1737. }
  1738. pages++;
  1739. pobjects += page->objects - page->inuse;
  1740. page->pages = pages;
  1741. page->pobjects = pobjects;
  1742. page->next = oldpage;
  1743. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
  1744. != oldpage);
  1745. #endif
  1746. }
  1747. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1748. {
  1749. stat(s, CPUSLAB_FLUSH);
  1750. deactivate_slab(s, c->page, c->freelist);
  1751. c->tid = next_tid(c->tid);
  1752. c->page = NULL;
  1753. c->freelist = NULL;
  1754. }
  1755. /*
  1756. * Flush cpu slab.
  1757. *
  1758. * Called from IPI handler with interrupts disabled.
  1759. */
  1760. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1761. {
  1762. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1763. if (likely(c)) {
  1764. if (c->page)
  1765. flush_slab(s, c);
  1766. unfreeze_partials(s, c);
  1767. }
  1768. }
  1769. static void flush_cpu_slab(void *d)
  1770. {
  1771. struct kmem_cache *s = d;
  1772. __flush_cpu_slab(s, smp_processor_id());
  1773. }
  1774. static bool has_cpu_slab(int cpu, void *info)
  1775. {
  1776. struct kmem_cache *s = info;
  1777. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1778. return c->page || c->partial;
  1779. }
  1780. static void flush_all(struct kmem_cache *s)
  1781. {
  1782. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1783. }
  1784. /*
  1785. * Check if the objects in a per cpu structure fit numa
  1786. * locality expectations.
  1787. */
  1788. static inline int node_match(struct page *page, int node)
  1789. {
  1790. #ifdef CONFIG_NUMA
  1791. if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
  1792. return 0;
  1793. #endif
  1794. return 1;
  1795. }
  1796. static int count_free(struct page *page)
  1797. {
  1798. return page->objects - page->inuse;
  1799. }
  1800. static unsigned long count_partial(struct kmem_cache_node *n,
  1801. int (*get_count)(struct page *))
  1802. {
  1803. unsigned long flags;
  1804. unsigned long x = 0;
  1805. struct page *page;
  1806. spin_lock_irqsave(&n->list_lock, flags);
  1807. list_for_each_entry(page, &n->partial, lru)
  1808. x += get_count(page);
  1809. spin_unlock_irqrestore(&n->list_lock, flags);
  1810. return x;
  1811. }
  1812. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1813. {
  1814. #ifdef CONFIG_SLUB_DEBUG
  1815. return atomic_long_read(&n->total_objects);
  1816. #else
  1817. return 0;
  1818. #endif
  1819. }
  1820. static noinline void
  1821. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1822. {
  1823. int node;
  1824. printk(KERN_WARNING
  1825. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1826. nid, gfpflags);
  1827. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1828. "default order: %d, min order: %d\n", s->name, s->object_size,
  1829. s->size, oo_order(s->oo), oo_order(s->min));
  1830. if (oo_order(s->min) > get_order(s->object_size))
  1831. printk(KERN_WARNING " %s debugging increased min order, use "
  1832. "slub_debug=O to disable.\n", s->name);
  1833. for_each_online_node(node) {
  1834. struct kmem_cache_node *n = get_node(s, node);
  1835. unsigned long nr_slabs;
  1836. unsigned long nr_objs;
  1837. unsigned long nr_free;
  1838. if (!n)
  1839. continue;
  1840. nr_free = count_partial(n, count_free);
  1841. nr_slabs = node_nr_slabs(n);
  1842. nr_objs = node_nr_objs(n);
  1843. printk(KERN_WARNING
  1844. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1845. node, nr_slabs, nr_objs, nr_free);
  1846. }
  1847. }
  1848. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1849. int node, struct kmem_cache_cpu **pc)
  1850. {
  1851. void *freelist;
  1852. struct kmem_cache_cpu *c = *pc;
  1853. struct page *page;
  1854. freelist = get_partial(s, flags, node, c);
  1855. if (freelist)
  1856. return freelist;
  1857. page = new_slab(s, flags, node);
  1858. if (page) {
  1859. c = __this_cpu_ptr(s->cpu_slab);
  1860. if (c->page)
  1861. flush_slab(s, c);
  1862. /*
  1863. * No other reference to the page yet so we can
  1864. * muck around with it freely without cmpxchg
  1865. */
  1866. freelist = page->freelist;
  1867. page->freelist = NULL;
  1868. stat(s, ALLOC_SLAB);
  1869. c->page = page;
  1870. *pc = c;
  1871. } else
  1872. freelist = NULL;
  1873. return freelist;
  1874. }
  1875. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
  1876. {
  1877. if (unlikely(PageSlabPfmemalloc(page)))
  1878. return gfp_pfmemalloc_allowed(gfpflags);
  1879. return true;
  1880. }
  1881. /*
  1882. * Check the page->freelist of a page and either transfer the freelist to the
  1883. * per cpu freelist or deactivate the page.
  1884. *
  1885. * The page is still frozen if the return value is not NULL.
  1886. *
  1887. * If this function returns NULL then the page has been unfrozen.
  1888. *
  1889. * This function must be called with interrupt disabled.
  1890. */
  1891. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1892. {
  1893. struct page new;
  1894. unsigned long counters;
  1895. void *freelist;
  1896. do {
  1897. freelist = page->freelist;
  1898. counters = page->counters;
  1899. new.counters = counters;
  1900. VM_BUG_ON(!new.frozen);
  1901. new.inuse = page->objects;
  1902. new.frozen = freelist != NULL;
  1903. } while (!__cmpxchg_double_slab(s, page,
  1904. freelist, counters,
  1905. NULL, new.counters,
  1906. "get_freelist"));
  1907. return freelist;
  1908. }
  1909. /*
  1910. * Slow path. The lockless freelist is empty or we need to perform
  1911. * debugging duties.
  1912. *
  1913. * Processing is still very fast if new objects have been freed to the
  1914. * regular freelist. In that case we simply take over the regular freelist
  1915. * as the lockless freelist and zap the regular freelist.
  1916. *
  1917. * If that is not working then we fall back to the partial lists. We take the
  1918. * first element of the freelist as the object to allocate now and move the
  1919. * rest of the freelist to the lockless freelist.
  1920. *
  1921. * And if we were unable to get a new slab from the partial slab lists then
  1922. * we need to allocate a new slab. This is the slowest path since it involves
  1923. * a call to the page allocator and the setup of a new slab.
  1924. */
  1925. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1926. unsigned long addr, struct kmem_cache_cpu *c)
  1927. {
  1928. void *freelist;
  1929. struct page *page;
  1930. unsigned long flags;
  1931. local_irq_save(flags);
  1932. #ifdef CONFIG_PREEMPT
  1933. /*
  1934. * We may have been preempted and rescheduled on a different
  1935. * cpu before disabling interrupts. Need to reload cpu area
  1936. * pointer.
  1937. */
  1938. c = this_cpu_ptr(s->cpu_slab);
  1939. #endif
  1940. page = c->page;
  1941. if (!page)
  1942. goto new_slab;
  1943. redo:
  1944. if (unlikely(!node_match(page, node))) {
  1945. stat(s, ALLOC_NODE_MISMATCH);
  1946. deactivate_slab(s, page, c->freelist);
  1947. c->page = NULL;
  1948. c->freelist = NULL;
  1949. goto new_slab;
  1950. }
  1951. /*
  1952. * By rights, we should be searching for a slab page that was
  1953. * PFMEMALLOC but right now, we are losing the pfmemalloc
  1954. * information when the page leaves the per-cpu allocator
  1955. */
  1956. if (unlikely(!pfmemalloc_match(page, gfpflags))) {
  1957. deactivate_slab(s, page, c->freelist);
  1958. c->page = NULL;
  1959. c->freelist = NULL;
  1960. goto new_slab;
  1961. }
  1962. /* must check again c->freelist in case of cpu migration or IRQ */
  1963. freelist = c->freelist;
  1964. if (freelist)
  1965. goto load_freelist;
  1966. stat(s, ALLOC_SLOWPATH);
  1967. freelist = get_freelist(s, page);
  1968. if (!freelist) {
  1969. c->page = NULL;
  1970. stat(s, DEACTIVATE_BYPASS);
  1971. goto new_slab;
  1972. }
  1973. stat(s, ALLOC_REFILL);
  1974. load_freelist:
  1975. /*
  1976. * freelist is pointing to the list of objects to be used.
  1977. * page is pointing to the page from which the objects are obtained.
  1978. * That page must be frozen for per cpu allocations to work.
  1979. */
  1980. VM_BUG_ON(!c->page->frozen);
  1981. c->freelist = get_freepointer(s, freelist);
  1982. c->tid = next_tid(c->tid);
  1983. local_irq_restore(flags);
  1984. return freelist;
  1985. new_slab:
  1986. if (c->partial) {
  1987. page = c->page = c->partial;
  1988. c->partial = page->next;
  1989. stat(s, CPU_PARTIAL_ALLOC);
  1990. c->freelist = NULL;
  1991. goto redo;
  1992. }
  1993. freelist = new_slab_objects(s, gfpflags, node, &c);
  1994. if (unlikely(!freelist)) {
  1995. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1996. slab_out_of_memory(s, gfpflags, node);
  1997. local_irq_restore(flags);
  1998. return NULL;
  1999. }
  2000. page = c->page;
  2001. if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
  2002. goto load_freelist;
  2003. /* Only entered in the debug case */
  2004. if (kmem_cache_debug(s) &&
  2005. !alloc_debug_processing(s, page, freelist, addr))
  2006. goto new_slab; /* Slab failed checks. Next slab needed */
  2007. deactivate_slab(s, page, get_freepointer(s, freelist));
  2008. c->page = NULL;
  2009. c->freelist = NULL;
  2010. local_irq_restore(flags);
  2011. return freelist;
  2012. }
  2013. /*
  2014. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  2015. * have the fastpath folded into their functions. So no function call
  2016. * overhead for requests that can be satisfied on the fastpath.
  2017. *
  2018. * The fastpath works by first checking if the lockless freelist can be used.
  2019. * If not then __slab_alloc is called for slow processing.
  2020. *
  2021. * Otherwise we can simply pick the next object from the lockless free list.
  2022. */
  2023. static __always_inline void *slab_alloc_node(struct kmem_cache *s,
  2024. gfp_t gfpflags, int node, unsigned long addr)
  2025. {
  2026. void **object;
  2027. struct kmem_cache_cpu *c;
  2028. struct page *page;
  2029. unsigned long tid;
  2030. if (slab_pre_alloc_hook(s, gfpflags))
  2031. return NULL;
  2032. s = memcg_kmem_get_cache(s, gfpflags);
  2033. redo:
  2034. /*
  2035. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  2036. * enabled. We may switch back and forth between cpus while
  2037. * reading from one cpu area. That does not matter as long
  2038. * as we end up on the original cpu again when doing the cmpxchg.
  2039. *
  2040. * Preemption is disabled for the retrieval of the tid because that
  2041. * must occur from the current processor. We cannot allow rescheduling
  2042. * on a different processor between the determination of the pointer
  2043. * and the retrieval of the tid.
  2044. */
  2045. preempt_disable();
  2046. c = __this_cpu_ptr(s->cpu_slab);
  2047. /*
  2048. * The transaction ids are globally unique per cpu and per operation on
  2049. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  2050. * occurs on the right processor and that there was no operation on the
  2051. * linked list in between.
  2052. */
  2053. tid = c->tid;
  2054. preempt_enable();
  2055. object = c->freelist;
  2056. page = c->page;
  2057. if (unlikely(!object || !node_match(page, node)))
  2058. object = __slab_alloc(s, gfpflags, node, addr, c);
  2059. else {
  2060. void *next_object = get_freepointer_safe(s, object);
  2061. /*
  2062. * The cmpxchg will only match if there was no additional
  2063. * operation and if we are on the right processor.
  2064. *
  2065. * The cmpxchg does the following atomically (without lock
  2066. * semantics!)
  2067. * 1. Relocate first pointer to the current per cpu area.
  2068. * 2. Verify that tid and freelist have not been changed
  2069. * 3. If they were not changed replace tid and freelist
  2070. *
  2071. * Since this is without lock semantics the protection is only
  2072. * against code executing on this cpu *not* from access by
  2073. * other cpus.
  2074. */
  2075. if (unlikely(!this_cpu_cmpxchg_double(
  2076. s->cpu_slab->freelist, s->cpu_slab->tid,
  2077. object, tid,
  2078. next_object, next_tid(tid)))) {
  2079. note_cmpxchg_failure("slab_alloc", s, tid);
  2080. goto redo;
  2081. }
  2082. prefetch_freepointer(s, next_object);
  2083. stat(s, ALLOC_FASTPATH);
  2084. }
  2085. if (unlikely(gfpflags & __GFP_ZERO) && object)
  2086. memset(object, 0, s->object_size);
  2087. slab_post_alloc_hook(s, gfpflags, object);
  2088. return object;
  2089. }
  2090. static __always_inline void *slab_alloc(struct kmem_cache *s,
  2091. gfp_t gfpflags, unsigned long addr)
  2092. {
  2093. return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
  2094. }
  2095. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  2096. {
  2097. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2098. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
  2099. s->size, gfpflags);
  2100. return ret;
  2101. }
  2102. EXPORT_SYMBOL(kmem_cache_alloc);
  2103. #ifdef CONFIG_TRACING
  2104. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2105. {
  2106. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2107. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2108. return ret;
  2109. }
  2110. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2111. #endif
  2112. #ifdef CONFIG_NUMA
  2113. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2114. {
  2115. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2116. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2117. s->object_size, s->size, gfpflags, node);
  2118. return ret;
  2119. }
  2120. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2121. #ifdef CONFIG_TRACING
  2122. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2123. gfp_t gfpflags,
  2124. int node, size_t size)
  2125. {
  2126. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2127. trace_kmalloc_node(_RET_IP_, ret,
  2128. size, s->size, gfpflags, node);
  2129. return ret;
  2130. }
  2131. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2132. #endif
  2133. #endif
  2134. /*
  2135. * Slow patch handling. This may still be called frequently since objects
  2136. * have a longer lifetime than the cpu slabs in most processing loads.
  2137. *
  2138. * So we still attempt to reduce cache line usage. Just take the slab
  2139. * lock and free the item. If there is no additional partial page
  2140. * handling required then we can return immediately.
  2141. */
  2142. static void __slab_free(struct kmem_cache *s, struct page *page,
  2143. void *x, unsigned long addr)
  2144. {
  2145. void *prior;
  2146. void **object = (void *)x;
  2147. int was_frozen;
  2148. struct page new;
  2149. unsigned long counters;
  2150. struct kmem_cache_node *n = NULL;
  2151. unsigned long uninitialized_var(flags);
  2152. stat(s, FREE_SLOWPATH);
  2153. if (kmem_cache_debug(s) &&
  2154. !(n = free_debug_processing(s, page, x, addr, &flags)))
  2155. return;
  2156. do {
  2157. if (unlikely(n)) {
  2158. spin_unlock_irqrestore(&n->list_lock, flags);
  2159. n = NULL;
  2160. }
  2161. prior = page->freelist;
  2162. counters = page->counters;
  2163. set_freepointer(s, object, prior);
  2164. new.counters = counters;
  2165. was_frozen = new.frozen;
  2166. new.inuse--;
  2167. if ((!new.inuse || !prior) && !was_frozen) {
  2168. if (kmem_cache_has_cpu_partial(s) && !prior) {
  2169. /*
  2170. * Slab was on no list before and will be
  2171. * partially empty
  2172. * We can defer the list move and instead
  2173. * freeze it.
  2174. */
  2175. new.frozen = 1;
  2176. } else { /* Needs to be taken off a list */
  2177. n = get_node(s, page_to_nid(page));
  2178. /*
  2179. * Speculatively acquire the list_lock.
  2180. * If the cmpxchg does not succeed then we may
  2181. * drop the list_lock without any processing.
  2182. *
  2183. * Otherwise the list_lock will synchronize with
  2184. * other processors updating the list of slabs.
  2185. */
  2186. spin_lock_irqsave(&n->list_lock, flags);
  2187. }
  2188. }
  2189. } while (!cmpxchg_double_slab(s, page,
  2190. prior, counters,
  2191. object, new.counters,
  2192. "__slab_free"));
  2193. if (likely(!n)) {
  2194. /*
  2195. * If we just froze the page then put it onto the
  2196. * per cpu partial list.
  2197. */
  2198. if (new.frozen && !was_frozen) {
  2199. put_cpu_partial(s, page, 1);
  2200. stat(s, CPU_PARTIAL_FREE);
  2201. }
  2202. /*
  2203. * The list lock was not taken therefore no list
  2204. * activity can be necessary.
  2205. */
  2206. if (was_frozen)
  2207. stat(s, FREE_FROZEN);
  2208. return;
  2209. }
  2210. if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
  2211. goto slab_empty;
  2212. /*
  2213. * Objects left in the slab. If it was not on the partial list before
  2214. * then add it.
  2215. */
  2216. if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
  2217. if (kmem_cache_debug(s))
  2218. remove_full(s, n, page);
  2219. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2220. stat(s, FREE_ADD_PARTIAL);
  2221. }
  2222. spin_unlock_irqrestore(&n->list_lock, flags);
  2223. return;
  2224. slab_empty:
  2225. if (prior) {
  2226. /*
  2227. * Slab on the partial list.
  2228. */
  2229. remove_partial(n, page);
  2230. stat(s, FREE_REMOVE_PARTIAL);
  2231. } else {
  2232. /* Slab must be on the full list */
  2233. remove_full(s, n, page);
  2234. }
  2235. spin_unlock_irqrestore(&n->list_lock, flags);
  2236. stat(s, FREE_SLAB);
  2237. discard_slab(s, page);
  2238. }
  2239. /*
  2240. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2241. * can perform fastpath freeing without additional function calls.
  2242. *
  2243. * The fastpath is only possible if we are freeing to the current cpu slab
  2244. * of this processor. This typically the case if we have just allocated
  2245. * the item before.
  2246. *
  2247. * If fastpath is not possible then fall back to __slab_free where we deal
  2248. * with all sorts of special processing.
  2249. */
  2250. static __always_inline void slab_free(struct kmem_cache *s,
  2251. struct page *page, void *x, unsigned long addr)
  2252. {
  2253. void **object = (void *)x;
  2254. struct kmem_cache_cpu *c;
  2255. unsigned long tid;
  2256. slab_free_hook(s, x);
  2257. redo:
  2258. /*
  2259. * Determine the currently cpus per cpu slab.
  2260. * The cpu may change afterward. However that does not matter since
  2261. * data is retrieved via this pointer. If we are on the same cpu
  2262. * during the cmpxchg then the free will succedd.
  2263. */
  2264. preempt_disable();
  2265. c = __this_cpu_ptr(s->cpu_slab);
  2266. tid = c->tid;
  2267. preempt_enable();
  2268. if (likely(page == c->page)) {
  2269. set_freepointer(s, object, c->freelist);
  2270. if (unlikely(!this_cpu_cmpxchg_double(
  2271. s->cpu_slab->freelist, s->cpu_slab->tid,
  2272. c->freelist, tid,
  2273. object, next_tid(tid)))) {
  2274. note_cmpxchg_failure("slab_free", s, tid);
  2275. goto redo;
  2276. }
  2277. stat(s, FREE_FASTPATH);
  2278. } else
  2279. __slab_free(s, page, x, addr);
  2280. }
  2281. void kmem_cache_free(struct kmem_cache *s, void *x)
  2282. {
  2283. s = cache_from_obj(s, x);
  2284. if (!s)
  2285. return;
  2286. slab_free(s, virt_to_head_page(x), x, _RET_IP_);
  2287. trace_kmem_cache_free(_RET_IP_, x);
  2288. }
  2289. EXPORT_SYMBOL(kmem_cache_free);
  2290. /*
  2291. * Object placement in a slab is made very easy because we always start at
  2292. * offset 0. If we tune the size of the object to the alignment then we can
  2293. * get the required alignment by putting one properly sized object after
  2294. * another.
  2295. *
  2296. * Notice that the allocation order determines the sizes of the per cpu
  2297. * caches. Each processor has always one slab available for allocations.
  2298. * Increasing the allocation order reduces the number of times that slabs
  2299. * must be moved on and off the partial lists and is therefore a factor in
  2300. * locking overhead.
  2301. */
  2302. /*
  2303. * Mininum / Maximum order of slab pages. This influences locking overhead
  2304. * and slab fragmentation. A higher order reduces the number of partial slabs
  2305. * and increases the number of allocations possible without having to
  2306. * take the list_lock.
  2307. */
  2308. static int slub_min_order;
  2309. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2310. static int slub_min_objects;
  2311. /*
  2312. * Merge control. If this is set then no merging of slab caches will occur.
  2313. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2314. */
  2315. static int slub_nomerge;
  2316. /*
  2317. * Calculate the order of allocation given an slab object size.
  2318. *
  2319. * The order of allocation has significant impact on performance and other
  2320. * system components. Generally order 0 allocations should be preferred since
  2321. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2322. * be problematic to put into order 0 slabs because there may be too much
  2323. * unused space left. We go to a higher order if more than 1/16th of the slab
  2324. * would be wasted.
  2325. *
  2326. * In order to reach satisfactory performance we must ensure that a minimum
  2327. * number of objects is in one slab. Otherwise we may generate too much
  2328. * activity on the partial lists which requires taking the list_lock. This is
  2329. * less a concern for large slabs though which are rarely used.
  2330. *
  2331. * slub_max_order specifies the order where we begin to stop considering the
  2332. * number of objects in a slab as critical. If we reach slub_max_order then
  2333. * we try to keep the page order as low as possible. So we accept more waste
  2334. * of space in favor of a small page order.
  2335. *
  2336. * Higher order allocations also allow the placement of more objects in a
  2337. * slab and thereby reduce object handling overhead. If the user has
  2338. * requested a higher mininum order then we start with that one instead of
  2339. * the smallest order which will fit the object.
  2340. */
  2341. static inline int slab_order(int size, int min_objects,
  2342. int max_order, int fract_leftover, int reserved)
  2343. {
  2344. int order;
  2345. int rem;
  2346. int min_order = slub_min_order;
  2347. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2348. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2349. for (order = max(min_order,
  2350. fls(min_objects * size - 1) - PAGE_SHIFT);
  2351. order <= max_order; order++) {
  2352. unsigned long slab_size = PAGE_SIZE << order;
  2353. if (slab_size < min_objects * size + reserved)
  2354. continue;
  2355. rem = (slab_size - reserved) % size;
  2356. if (rem <= slab_size / fract_leftover)
  2357. break;
  2358. }
  2359. return order;
  2360. }
  2361. static inline int calculate_order(int size, int reserved)
  2362. {
  2363. int order;
  2364. int min_objects;
  2365. int fraction;
  2366. int max_objects;
  2367. /*
  2368. * Attempt to find best configuration for a slab. This
  2369. * works by first attempting to generate a layout with
  2370. * the best configuration and backing off gradually.
  2371. *
  2372. * First we reduce the acceptable waste in a slab. Then
  2373. * we reduce the minimum objects required in a slab.
  2374. */
  2375. min_objects = slub_min_objects;
  2376. if (!min_objects)
  2377. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2378. max_objects = order_objects(slub_max_order, size, reserved);
  2379. min_objects = min(min_objects, max_objects);
  2380. while (min_objects > 1) {
  2381. fraction = 16;
  2382. while (fraction >= 4) {
  2383. order = slab_order(size, min_objects,
  2384. slub_max_order, fraction, reserved);
  2385. if (order <= slub_max_order)
  2386. return order;
  2387. fraction /= 2;
  2388. }
  2389. min_objects--;
  2390. }
  2391. /*
  2392. * We were unable to place multiple objects in a slab. Now
  2393. * lets see if we can place a single object there.
  2394. */
  2395. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2396. if (order <= slub_max_order)
  2397. return order;
  2398. /*
  2399. * Doh this slab cannot be placed using slub_max_order.
  2400. */
  2401. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2402. if (order < MAX_ORDER)
  2403. return order;
  2404. return -ENOSYS;
  2405. }
  2406. static void
  2407. init_kmem_cache_node(struct kmem_cache_node *n)
  2408. {
  2409. n->nr_partial = 0;
  2410. spin_lock_init(&n->list_lock);
  2411. INIT_LIST_HEAD(&n->partial);
  2412. #ifdef CONFIG_SLUB_DEBUG
  2413. atomic_long_set(&n->nr_slabs, 0);
  2414. atomic_long_set(&n->total_objects, 0);
  2415. INIT_LIST_HEAD(&n->full);
  2416. #endif
  2417. }
  2418. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2419. {
  2420. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2421. KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
  2422. /*
  2423. * Must align to double word boundary for the double cmpxchg
  2424. * instructions to work; see __pcpu_double_call_return_bool().
  2425. */
  2426. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2427. 2 * sizeof(void *));
  2428. if (!s->cpu_slab)
  2429. return 0;
  2430. init_kmem_cache_cpus(s);
  2431. return 1;
  2432. }
  2433. static struct kmem_cache *kmem_cache_node;
  2434. /*
  2435. * No kmalloc_node yet so do it by hand. We know that this is the first
  2436. * slab on the node for this slabcache. There are no concurrent accesses
  2437. * possible.
  2438. *
  2439. * Note that this function only works on the kmem_cache_node
  2440. * when allocating for the kmem_cache_node. This is used for bootstrapping
  2441. * memory on a fresh node that has no slab structures yet.
  2442. */
  2443. static void early_kmem_cache_node_alloc(int node)
  2444. {
  2445. struct page *page;
  2446. struct kmem_cache_node *n;
  2447. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2448. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2449. BUG_ON(!page);
  2450. if (page_to_nid(page) != node) {
  2451. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2452. "node %d\n", node);
  2453. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2454. "in order to be able to continue\n");
  2455. }
  2456. n = page->freelist;
  2457. BUG_ON(!n);
  2458. page->freelist = get_freepointer(kmem_cache_node, n);
  2459. page->inuse = 1;
  2460. page->frozen = 0;
  2461. kmem_cache_node->node[node] = n;
  2462. #ifdef CONFIG_SLUB_DEBUG
  2463. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2464. init_tracking(kmem_cache_node, n);
  2465. #endif
  2466. init_kmem_cache_node(n);
  2467. inc_slabs_node(kmem_cache_node, node, page->objects);
  2468. /*
  2469. * the lock is for lockdep's sake, not for any actual
  2470. * race protection
  2471. */
  2472. spin_lock(&n->list_lock);
  2473. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2474. spin_unlock(&n->list_lock);
  2475. }
  2476. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2477. {
  2478. int node;
  2479. for_each_node_state(node, N_NORMAL_MEMORY) {
  2480. struct kmem_cache_node *n = s->node[node];
  2481. if (n)
  2482. kmem_cache_free(kmem_cache_node, n);
  2483. s->node[node] = NULL;
  2484. }
  2485. }
  2486. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2487. {
  2488. int node;
  2489. for_each_node_state(node, N_NORMAL_MEMORY) {
  2490. struct kmem_cache_node *n;
  2491. if (slab_state == DOWN) {
  2492. early_kmem_cache_node_alloc(node);
  2493. continue;
  2494. }
  2495. n = kmem_cache_alloc_node(kmem_cache_node,
  2496. GFP_KERNEL, node);
  2497. if (!n) {
  2498. free_kmem_cache_nodes(s);
  2499. return 0;
  2500. }
  2501. s->node[node] = n;
  2502. init_kmem_cache_node(n);
  2503. }
  2504. return 1;
  2505. }
  2506. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2507. {
  2508. if (min < MIN_PARTIAL)
  2509. min = MIN_PARTIAL;
  2510. else if (min > MAX_PARTIAL)
  2511. min = MAX_PARTIAL;
  2512. s->min_partial = min;
  2513. }
  2514. /*
  2515. * calculate_sizes() determines the order and the distribution of data within
  2516. * a slab object.
  2517. */
  2518. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2519. {
  2520. unsigned long flags = s->flags;
  2521. unsigned long size = s->object_size;
  2522. int order;
  2523. /*
  2524. * Round up object size to the next word boundary. We can only
  2525. * place the free pointer at word boundaries and this determines
  2526. * the possible location of the free pointer.
  2527. */
  2528. size = ALIGN(size, sizeof(void *));
  2529. #ifdef CONFIG_SLUB_DEBUG
  2530. /*
  2531. * Determine if we can poison the object itself. If the user of
  2532. * the slab may touch the object after free or before allocation
  2533. * then we should never poison the object itself.
  2534. */
  2535. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2536. !s->ctor)
  2537. s->flags |= __OBJECT_POISON;
  2538. else
  2539. s->flags &= ~__OBJECT_POISON;
  2540. /*
  2541. * If we are Redzoning then check if there is some space between the
  2542. * end of the object and the free pointer. If not then add an
  2543. * additional word to have some bytes to store Redzone information.
  2544. */
  2545. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2546. size += sizeof(void *);
  2547. #endif
  2548. /*
  2549. * With that we have determined the number of bytes in actual use
  2550. * by the object. This is the potential offset to the free pointer.
  2551. */
  2552. s->inuse = size;
  2553. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2554. s->ctor)) {
  2555. /*
  2556. * Relocate free pointer after the object if it is not
  2557. * permitted to overwrite the first word of the object on
  2558. * kmem_cache_free.
  2559. *
  2560. * This is the case if we do RCU, have a constructor or
  2561. * destructor or are poisoning the objects.
  2562. */
  2563. s->offset = size;
  2564. size += sizeof(void *);
  2565. }
  2566. #ifdef CONFIG_SLUB_DEBUG
  2567. if (flags & SLAB_STORE_USER)
  2568. /*
  2569. * Need to store information about allocs and frees after
  2570. * the object.
  2571. */
  2572. size += 2 * sizeof(struct track);
  2573. if (flags & SLAB_RED_ZONE)
  2574. /*
  2575. * Add some empty padding so that we can catch
  2576. * overwrites from earlier objects rather than let
  2577. * tracking information or the free pointer be
  2578. * corrupted if a user writes before the start
  2579. * of the object.
  2580. */
  2581. size += sizeof(void *);
  2582. #endif
  2583. /*
  2584. * SLUB stores one object immediately after another beginning from
  2585. * offset 0. In order to align the objects we have to simply size
  2586. * each object to conform to the alignment.
  2587. */
  2588. size = ALIGN(size, s->align);
  2589. s->size = size;
  2590. if (forced_order >= 0)
  2591. order = forced_order;
  2592. else
  2593. order = calculate_order(size, s->reserved);
  2594. if (order < 0)
  2595. return 0;
  2596. s->allocflags = 0;
  2597. if (order)
  2598. s->allocflags |= __GFP_COMP;
  2599. if (s->flags & SLAB_CACHE_DMA)
  2600. s->allocflags |= GFP_DMA;
  2601. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2602. s->allocflags |= __GFP_RECLAIMABLE;
  2603. /*
  2604. * Determine the number of objects per slab
  2605. */
  2606. s->oo = oo_make(order, size, s->reserved);
  2607. s->min = oo_make(get_order(size), size, s->reserved);
  2608. if (oo_objects(s->oo) > oo_objects(s->max))
  2609. s->max = s->oo;
  2610. return !!oo_objects(s->oo);
  2611. }
  2612. static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
  2613. {
  2614. s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
  2615. s->reserved = 0;
  2616. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2617. s->reserved = sizeof(struct rcu_head);
  2618. if (!calculate_sizes(s, -1))
  2619. goto error;
  2620. if (disable_higher_order_debug) {
  2621. /*
  2622. * Disable debugging flags that store metadata if the min slab
  2623. * order increased.
  2624. */
  2625. if (get_order(s->size) > get_order(s->object_size)) {
  2626. s->flags &= ~DEBUG_METADATA_FLAGS;
  2627. s->offset = 0;
  2628. if (!calculate_sizes(s, -1))
  2629. goto error;
  2630. }
  2631. }
  2632. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2633. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2634. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2635. /* Enable fast mode */
  2636. s->flags |= __CMPXCHG_DOUBLE;
  2637. #endif
  2638. /*
  2639. * The larger the object size is, the more pages we want on the partial
  2640. * list to avoid pounding the page allocator excessively.
  2641. */
  2642. set_min_partial(s, ilog2(s->size) / 2);
  2643. /*
  2644. * cpu_partial determined the maximum number of objects kept in the
  2645. * per cpu partial lists of a processor.
  2646. *
  2647. * Per cpu partial lists mainly contain slabs that just have one
  2648. * object freed. If they are used for allocation then they can be
  2649. * filled up again with minimal effort. The slab will never hit the
  2650. * per node partial lists and therefore no locking will be required.
  2651. *
  2652. * This setting also determines
  2653. *
  2654. * A) The number of objects from per cpu partial slabs dumped to the
  2655. * per node list when we reach the limit.
  2656. * B) The number of objects in cpu partial slabs to extract from the
  2657. * per node list when we run out of per cpu objects. We only fetch
  2658. * 50% to keep some capacity around for frees.
  2659. */
  2660. if (!kmem_cache_has_cpu_partial(s))
  2661. s->cpu_partial = 0;
  2662. else if (s->size >= PAGE_SIZE)
  2663. s->cpu_partial = 2;
  2664. else if (s->size >= 1024)
  2665. s->cpu_partial = 6;
  2666. else if (s->size >= 256)
  2667. s->cpu_partial = 13;
  2668. else
  2669. s->cpu_partial = 30;
  2670. #ifdef CONFIG_NUMA
  2671. s->remote_node_defrag_ratio = 1000;
  2672. #endif
  2673. if (!init_kmem_cache_nodes(s))
  2674. goto error;
  2675. if (alloc_kmem_cache_cpus(s))
  2676. return 0;
  2677. free_kmem_cache_nodes(s);
  2678. error:
  2679. if (flags & SLAB_PANIC)
  2680. panic("Cannot create slab %s size=%lu realsize=%u "
  2681. "order=%u offset=%u flags=%lx\n",
  2682. s->name, (unsigned long)s->size, s->size,
  2683. oo_order(s->oo), s->offset, flags);
  2684. return -EINVAL;
  2685. }
  2686. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2687. const char *text)
  2688. {
  2689. #ifdef CONFIG_SLUB_DEBUG
  2690. void *addr = page_address(page);
  2691. void *p;
  2692. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2693. sizeof(long), GFP_ATOMIC);
  2694. if (!map)
  2695. return;
  2696. slab_err(s, page, text, s->name);
  2697. slab_lock(page);
  2698. get_map(s, page, map);
  2699. for_each_object(p, s, addr, page->objects) {
  2700. if (!test_bit(slab_index(p, s, addr), map)) {
  2701. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2702. p, p - addr);
  2703. print_tracking(s, p);
  2704. }
  2705. }
  2706. slab_unlock(page);
  2707. kfree(map);
  2708. #endif
  2709. }
  2710. /*
  2711. * Attempt to free all partial slabs on a node.
  2712. * This is called from kmem_cache_close(). We must be the last thread
  2713. * using the cache and therefore we do not need to lock anymore.
  2714. */
  2715. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2716. {
  2717. struct page *page, *h;
  2718. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2719. if (!page->inuse) {
  2720. remove_partial(n, page);
  2721. discard_slab(s, page);
  2722. } else {
  2723. list_slab_objects(s, page,
  2724. "Objects remaining in %s on kmem_cache_close()");
  2725. }
  2726. }
  2727. }
  2728. /*
  2729. * Release all resources used by a slab cache.
  2730. */
  2731. static inline int kmem_cache_close(struct kmem_cache *s)
  2732. {
  2733. int node;
  2734. flush_all(s);
  2735. /* Attempt to free all objects */
  2736. for_each_node_state(node, N_NORMAL_MEMORY) {
  2737. struct kmem_cache_node *n = get_node(s, node);
  2738. free_partial(s, n);
  2739. if (n->nr_partial || slabs_node(s, node))
  2740. return 1;
  2741. }
  2742. free_percpu(s->cpu_slab);
  2743. free_kmem_cache_nodes(s);
  2744. return 0;
  2745. }
  2746. int __kmem_cache_shutdown(struct kmem_cache *s)
  2747. {
  2748. int rc = kmem_cache_close(s);
  2749. if (!rc) {
  2750. /*
  2751. * We do the same lock strategy around sysfs_slab_add, see
  2752. * __kmem_cache_create. Because this is pretty much the last
  2753. * operation we do and the lock will be released shortly after
  2754. * that in slab_common.c, we could just move sysfs_slab_remove
  2755. * to a later point in common code. We should do that when we
  2756. * have a common sysfs framework for all allocators.
  2757. */
  2758. mutex_unlock(&slab_mutex);
  2759. sysfs_slab_remove(s);
  2760. mutex_lock(&slab_mutex);
  2761. }
  2762. return rc;
  2763. }
  2764. /********************************************************************
  2765. * Kmalloc subsystem
  2766. *******************************************************************/
  2767. static int __init setup_slub_min_order(char *str)
  2768. {
  2769. get_option(&str, &slub_min_order);
  2770. return 1;
  2771. }
  2772. __setup("slub_min_order=", setup_slub_min_order);
  2773. static int __init setup_slub_max_order(char *str)
  2774. {
  2775. get_option(&str, &slub_max_order);
  2776. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2777. return 1;
  2778. }
  2779. __setup("slub_max_order=", setup_slub_max_order);
  2780. static int __init setup_slub_min_objects(char *str)
  2781. {
  2782. get_option(&str, &slub_min_objects);
  2783. return 1;
  2784. }
  2785. __setup("slub_min_objects=", setup_slub_min_objects);
  2786. static int __init setup_slub_nomerge(char *str)
  2787. {
  2788. slub_nomerge = 1;
  2789. return 1;
  2790. }
  2791. __setup("slub_nomerge", setup_slub_nomerge);
  2792. void *__kmalloc(size_t size, gfp_t flags)
  2793. {
  2794. struct kmem_cache *s;
  2795. void *ret;
  2796. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  2797. return kmalloc_large(size, flags);
  2798. s = kmalloc_slab(size, flags);
  2799. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2800. return s;
  2801. ret = slab_alloc(s, flags, _RET_IP_);
  2802. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2803. return ret;
  2804. }
  2805. EXPORT_SYMBOL(__kmalloc);
  2806. #ifdef CONFIG_NUMA
  2807. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2808. {
  2809. struct page *page;
  2810. void *ptr = NULL;
  2811. flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
  2812. page = alloc_pages_node(node, flags, get_order(size));
  2813. if (page)
  2814. ptr = page_address(page);
  2815. kmalloc_large_node_hook(ptr, size, flags);
  2816. return ptr;
  2817. }
  2818. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2819. {
  2820. struct kmem_cache *s;
  2821. void *ret;
  2822. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  2823. ret = kmalloc_large_node(size, flags, node);
  2824. trace_kmalloc_node(_RET_IP_, ret,
  2825. size, PAGE_SIZE << get_order(size),
  2826. flags, node);
  2827. return ret;
  2828. }
  2829. s = kmalloc_slab(size, flags);
  2830. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2831. return s;
  2832. ret = slab_alloc_node(s, flags, node, _RET_IP_);
  2833. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2834. return ret;
  2835. }
  2836. EXPORT_SYMBOL(__kmalloc_node);
  2837. #endif
  2838. size_t ksize(const void *object)
  2839. {
  2840. struct page *page;
  2841. if (unlikely(object == ZERO_SIZE_PTR))
  2842. return 0;
  2843. page = virt_to_head_page(object);
  2844. if (unlikely(!PageSlab(page))) {
  2845. WARN_ON(!PageCompound(page));
  2846. return PAGE_SIZE << compound_order(page);
  2847. }
  2848. return slab_ksize(page->slab_cache);
  2849. }
  2850. EXPORT_SYMBOL(ksize);
  2851. void kfree(const void *x)
  2852. {
  2853. struct page *page;
  2854. void *object = (void *)x;
  2855. trace_kfree(_RET_IP_, x);
  2856. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2857. return;
  2858. page = virt_to_head_page(x);
  2859. if (unlikely(!PageSlab(page))) {
  2860. BUG_ON(!PageCompound(page));
  2861. kfree_hook(x);
  2862. __free_memcg_kmem_pages(page, compound_order(page));
  2863. return;
  2864. }
  2865. slab_free(page->slab_cache, page, object, _RET_IP_);
  2866. }
  2867. EXPORT_SYMBOL(kfree);
  2868. /*
  2869. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2870. * the remaining slabs by the number of items in use. The slabs with the
  2871. * most items in use come first. New allocations will then fill those up
  2872. * and thus they can be removed from the partial lists.
  2873. *
  2874. * The slabs with the least items are placed last. This results in them
  2875. * being allocated from last increasing the chance that the last objects
  2876. * are freed in them.
  2877. */
  2878. int kmem_cache_shrink(struct kmem_cache *s)
  2879. {
  2880. int node;
  2881. int i;
  2882. struct kmem_cache_node *n;
  2883. struct page *page;
  2884. struct page *t;
  2885. int objects = oo_objects(s->max);
  2886. struct list_head *slabs_by_inuse =
  2887. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2888. unsigned long flags;
  2889. if (!slabs_by_inuse)
  2890. return -ENOMEM;
  2891. flush_all(s);
  2892. for_each_node_state(node, N_NORMAL_MEMORY) {
  2893. n = get_node(s, node);
  2894. if (!n->nr_partial)
  2895. continue;
  2896. for (i = 0; i < objects; i++)
  2897. INIT_LIST_HEAD(slabs_by_inuse + i);
  2898. spin_lock_irqsave(&n->list_lock, flags);
  2899. /*
  2900. * Build lists indexed by the items in use in each slab.
  2901. *
  2902. * Note that concurrent frees may occur while we hold the
  2903. * list_lock. page->inuse here is the upper limit.
  2904. */
  2905. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2906. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2907. if (!page->inuse)
  2908. n->nr_partial--;
  2909. }
  2910. /*
  2911. * Rebuild the partial list with the slabs filled up most
  2912. * first and the least used slabs at the end.
  2913. */
  2914. for (i = objects - 1; i > 0; i--)
  2915. list_splice(slabs_by_inuse + i, n->partial.prev);
  2916. spin_unlock_irqrestore(&n->list_lock, flags);
  2917. /* Release empty slabs */
  2918. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2919. discard_slab(s, page);
  2920. }
  2921. kfree(slabs_by_inuse);
  2922. return 0;
  2923. }
  2924. EXPORT_SYMBOL(kmem_cache_shrink);
  2925. static int slab_mem_going_offline_callback(void *arg)
  2926. {
  2927. struct kmem_cache *s;
  2928. mutex_lock(&slab_mutex);
  2929. list_for_each_entry(s, &slab_caches, list)
  2930. kmem_cache_shrink(s);
  2931. mutex_unlock(&slab_mutex);
  2932. return 0;
  2933. }
  2934. static void slab_mem_offline_callback(void *arg)
  2935. {
  2936. struct kmem_cache_node *n;
  2937. struct kmem_cache *s;
  2938. struct memory_notify *marg = arg;
  2939. int offline_node;
  2940. offline_node = marg->status_change_nid_normal;
  2941. /*
  2942. * If the node still has available memory. we need kmem_cache_node
  2943. * for it yet.
  2944. */
  2945. if (offline_node < 0)
  2946. return;
  2947. mutex_lock(&slab_mutex);
  2948. list_for_each_entry(s, &slab_caches, list) {
  2949. n = get_node(s, offline_node);
  2950. if (n) {
  2951. /*
  2952. * if n->nr_slabs > 0, slabs still exist on the node
  2953. * that is going down. We were unable to free them,
  2954. * and offline_pages() function shouldn't call this
  2955. * callback. So, we must fail.
  2956. */
  2957. BUG_ON(slabs_node(s, offline_node));
  2958. s->node[offline_node] = NULL;
  2959. kmem_cache_free(kmem_cache_node, n);
  2960. }
  2961. }
  2962. mutex_unlock(&slab_mutex);
  2963. }
  2964. static int slab_mem_going_online_callback(void *arg)
  2965. {
  2966. struct kmem_cache_node *n;
  2967. struct kmem_cache *s;
  2968. struct memory_notify *marg = arg;
  2969. int nid = marg->status_change_nid_normal;
  2970. int ret = 0;
  2971. /*
  2972. * If the node's memory is already available, then kmem_cache_node is
  2973. * already created. Nothing to do.
  2974. */
  2975. if (nid < 0)
  2976. return 0;
  2977. /*
  2978. * We are bringing a node online. No memory is available yet. We must
  2979. * allocate a kmem_cache_node structure in order to bring the node
  2980. * online.
  2981. */
  2982. mutex_lock(&slab_mutex);
  2983. list_for_each_entry(s, &slab_caches, list) {
  2984. /*
  2985. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2986. * since memory is not yet available from the node that
  2987. * is brought up.
  2988. */
  2989. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  2990. if (!n) {
  2991. ret = -ENOMEM;
  2992. goto out;
  2993. }
  2994. init_kmem_cache_node(n);
  2995. s->node[nid] = n;
  2996. }
  2997. out:
  2998. mutex_unlock(&slab_mutex);
  2999. return ret;
  3000. }
  3001. static int slab_memory_callback(struct notifier_block *self,
  3002. unsigned long action, void *arg)
  3003. {
  3004. int ret = 0;
  3005. switch (action) {
  3006. case MEM_GOING_ONLINE:
  3007. ret = slab_mem_going_online_callback(arg);
  3008. break;
  3009. case MEM_GOING_OFFLINE:
  3010. ret = slab_mem_going_offline_callback(arg);
  3011. break;
  3012. case MEM_OFFLINE:
  3013. case MEM_CANCEL_ONLINE:
  3014. slab_mem_offline_callback(arg);
  3015. break;
  3016. case MEM_ONLINE:
  3017. case MEM_CANCEL_OFFLINE:
  3018. break;
  3019. }
  3020. if (ret)
  3021. ret = notifier_from_errno(ret);
  3022. else
  3023. ret = NOTIFY_OK;
  3024. return ret;
  3025. }
  3026. static struct notifier_block slab_memory_callback_nb = {
  3027. .notifier_call = slab_memory_callback,
  3028. .priority = SLAB_CALLBACK_PRI,
  3029. };
  3030. /********************************************************************
  3031. * Basic setup of slabs
  3032. *******************************************************************/
  3033. /*
  3034. * Used for early kmem_cache structures that were allocated using
  3035. * the page allocator. Allocate them properly then fix up the pointers
  3036. * that may be pointing to the wrong kmem_cache structure.
  3037. */
  3038. static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
  3039. {
  3040. int node;
  3041. struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
  3042. memcpy(s, static_cache, kmem_cache->object_size);
  3043. /*
  3044. * This runs very early, and only the boot processor is supposed to be
  3045. * up. Even if it weren't true, IRQs are not up so we couldn't fire
  3046. * IPIs around.
  3047. */
  3048. __flush_cpu_slab(s, smp_processor_id());
  3049. for_each_node_state(node, N_NORMAL_MEMORY) {
  3050. struct kmem_cache_node *n = get_node(s, node);
  3051. struct page *p;
  3052. if (n) {
  3053. list_for_each_entry(p, &n->partial, lru)
  3054. p->slab_cache = s;
  3055. #ifdef CONFIG_SLUB_DEBUG
  3056. list_for_each_entry(p, &n->full, lru)
  3057. p->slab_cache = s;
  3058. #endif
  3059. }
  3060. }
  3061. list_add(&s->list, &slab_caches);
  3062. return s;
  3063. }
  3064. void __init kmem_cache_init(void)
  3065. {
  3066. static __initdata struct kmem_cache boot_kmem_cache,
  3067. boot_kmem_cache_node;
  3068. if (debug_guardpage_minorder())
  3069. slub_max_order = 0;
  3070. kmem_cache_node = &boot_kmem_cache_node;
  3071. kmem_cache = &boot_kmem_cache;
  3072. create_boot_cache(kmem_cache_node, "kmem_cache_node",
  3073. sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
  3074. register_hotmemory_notifier(&slab_memory_callback_nb);
  3075. /* Able to allocate the per node structures */
  3076. slab_state = PARTIAL;
  3077. create_boot_cache(kmem_cache, "kmem_cache",
  3078. offsetof(struct kmem_cache, node) +
  3079. nr_node_ids * sizeof(struct kmem_cache_node *),
  3080. SLAB_HWCACHE_ALIGN);
  3081. kmem_cache = bootstrap(&boot_kmem_cache);
  3082. /*
  3083. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3084. * kmem_cache_node is separately allocated so no need to
  3085. * update any list pointers.
  3086. */
  3087. kmem_cache_node = bootstrap(&boot_kmem_cache_node);
  3088. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3089. create_kmalloc_caches(0);
  3090. #ifdef CONFIG_SMP
  3091. register_cpu_notifier(&slab_notifier);
  3092. #endif
  3093. printk(KERN_INFO
  3094. "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3095. " CPUs=%d, Nodes=%d\n",
  3096. cache_line_size(),
  3097. slub_min_order, slub_max_order, slub_min_objects,
  3098. nr_cpu_ids, nr_node_ids);
  3099. }
  3100. void __init kmem_cache_init_late(void)
  3101. {
  3102. }
  3103. /*
  3104. * Find a mergeable slab cache
  3105. */
  3106. static int slab_unmergeable(struct kmem_cache *s)
  3107. {
  3108. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3109. return 1;
  3110. if (s->ctor)
  3111. return 1;
  3112. /*
  3113. * We may have set a slab to be unmergeable during bootstrap.
  3114. */
  3115. if (s->refcount < 0)
  3116. return 1;
  3117. return 0;
  3118. }
  3119. static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
  3120. size_t align, unsigned long flags, const char *name,
  3121. void (*ctor)(void *))
  3122. {
  3123. struct kmem_cache *s;
  3124. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3125. return NULL;
  3126. if (ctor)
  3127. return NULL;
  3128. size = ALIGN(size, sizeof(void *));
  3129. align = calculate_alignment(flags, align, size);
  3130. size = ALIGN(size, align);
  3131. flags = kmem_cache_flags(size, flags, name, NULL);
  3132. list_for_each_entry(s, &slab_caches, list) {
  3133. if (slab_unmergeable(s))
  3134. continue;
  3135. if (size > s->size)
  3136. continue;
  3137. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3138. continue;
  3139. /*
  3140. * Check if alignment is compatible.
  3141. * Courtesy of Adrian Drzewiecki
  3142. */
  3143. if ((s->size & ~(align - 1)) != s->size)
  3144. continue;
  3145. if (s->size - size >= sizeof(void *))
  3146. continue;
  3147. if (!cache_match_memcg(s, memcg))
  3148. continue;
  3149. return s;
  3150. }
  3151. return NULL;
  3152. }
  3153. struct kmem_cache *
  3154. __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
  3155. size_t align, unsigned long flags, void (*ctor)(void *))
  3156. {
  3157. struct kmem_cache *s;
  3158. s = find_mergeable(memcg, size, align, flags, name, ctor);
  3159. if (s) {
  3160. s->refcount++;
  3161. /*
  3162. * Adjust the object sizes so that we clear
  3163. * the complete object on kzalloc.
  3164. */
  3165. s->object_size = max(s->object_size, (int)size);
  3166. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3167. if (sysfs_slab_alias(s, name)) {
  3168. s->refcount--;
  3169. s = NULL;
  3170. }
  3171. }
  3172. return s;
  3173. }
  3174. int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
  3175. {
  3176. int err;
  3177. err = kmem_cache_open(s, flags);
  3178. if (err)
  3179. return err;
  3180. /* Mutex is not taken during early boot */
  3181. if (slab_state <= UP)
  3182. return 0;
  3183. memcg_propagate_slab_attrs(s);
  3184. mutex_unlock(&slab_mutex);
  3185. err = sysfs_slab_add(s);
  3186. mutex_lock(&slab_mutex);
  3187. if (err)
  3188. kmem_cache_close(s);
  3189. return err;
  3190. }
  3191. #ifdef CONFIG_SMP
  3192. /*
  3193. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3194. * necessary.
  3195. */
  3196. static int slab_cpuup_callback(struct notifier_block *nfb,
  3197. unsigned long action, void *hcpu)
  3198. {
  3199. long cpu = (long)hcpu;
  3200. struct kmem_cache *s;
  3201. unsigned long flags;
  3202. switch (action) {
  3203. case CPU_UP_CANCELED:
  3204. case CPU_UP_CANCELED_FROZEN:
  3205. case CPU_DEAD:
  3206. case CPU_DEAD_FROZEN:
  3207. mutex_lock(&slab_mutex);
  3208. list_for_each_entry(s, &slab_caches, list) {
  3209. local_irq_save(flags);
  3210. __flush_cpu_slab(s, cpu);
  3211. local_irq_restore(flags);
  3212. }
  3213. mutex_unlock(&slab_mutex);
  3214. break;
  3215. default:
  3216. break;
  3217. }
  3218. return NOTIFY_OK;
  3219. }
  3220. static struct notifier_block slab_notifier = {
  3221. .notifier_call = slab_cpuup_callback
  3222. };
  3223. #endif
  3224. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3225. {
  3226. struct kmem_cache *s;
  3227. void *ret;
  3228. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  3229. return kmalloc_large(size, gfpflags);
  3230. s = kmalloc_slab(size, gfpflags);
  3231. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3232. return s;
  3233. ret = slab_alloc(s, gfpflags, caller);
  3234. /* Honor the call site pointer we received. */
  3235. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3236. return ret;
  3237. }
  3238. #ifdef CONFIG_NUMA
  3239. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3240. int node, unsigned long caller)
  3241. {
  3242. struct kmem_cache *s;
  3243. void *ret;
  3244. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  3245. ret = kmalloc_large_node(size, gfpflags, node);
  3246. trace_kmalloc_node(caller, ret,
  3247. size, PAGE_SIZE << get_order(size),
  3248. gfpflags, node);
  3249. return ret;
  3250. }
  3251. s = kmalloc_slab(size, gfpflags);
  3252. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3253. return s;
  3254. ret = slab_alloc_node(s, gfpflags, node, caller);
  3255. /* Honor the call site pointer we received. */
  3256. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3257. return ret;
  3258. }
  3259. #endif
  3260. #ifdef CONFIG_SYSFS
  3261. static int count_inuse(struct page *page)
  3262. {
  3263. return page->inuse;
  3264. }
  3265. static int count_total(struct page *page)
  3266. {
  3267. return page->objects;
  3268. }
  3269. #endif
  3270. #ifdef CONFIG_SLUB_DEBUG
  3271. static int validate_slab(struct kmem_cache *s, struct page *page,
  3272. unsigned long *map)
  3273. {
  3274. void *p;
  3275. void *addr = page_address(page);
  3276. if (!check_slab(s, page) ||
  3277. !on_freelist(s, page, NULL))
  3278. return 0;
  3279. /* Now we know that a valid freelist exists */
  3280. bitmap_zero(map, page->objects);
  3281. get_map(s, page, map);
  3282. for_each_object(p, s, addr, page->objects) {
  3283. if (test_bit(slab_index(p, s, addr), map))
  3284. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3285. return 0;
  3286. }
  3287. for_each_object(p, s, addr, page->objects)
  3288. if (!test_bit(slab_index(p, s, addr), map))
  3289. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3290. return 0;
  3291. return 1;
  3292. }
  3293. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3294. unsigned long *map)
  3295. {
  3296. slab_lock(page);
  3297. validate_slab(s, page, map);
  3298. slab_unlock(page);
  3299. }
  3300. static int validate_slab_node(struct kmem_cache *s,
  3301. struct kmem_cache_node *n, unsigned long *map)
  3302. {
  3303. unsigned long count = 0;
  3304. struct page *page;
  3305. unsigned long flags;
  3306. spin_lock_irqsave(&n->list_lock, flags);
  3307. list_for_each_entry(page, &n->partial, lru) {
  3308. validate_slab_slab(s, page, map);
  3309. count++;
  3310. }
  3311. if (count != n->nr_partial)
  3312. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3313. "counter=%ld\n", s->name, count, n->nr_partial);
  3314. if (!(s->flags & SLAB_STORE_USER))
  3315. goto out;
  3316. list_for_each_entry(page, &n->full, lru) {
  3317. validate_slab_slab(s, page, map);
  3318. count++;
  3319. }
  3320. if (count != atomic_long_read(&n->nr_slabs))
  3321. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3322. "counter=%ld\n", s->name, count,
  3323. atomic_long_read(&n->nr_slabs));
  3324. out:
  3325. spin_unlock_irqrestore(&n->list_lock, flags);
  3326. return count;
  3327. }
  3328. static long validate_slab_cache(struct kmem_cache *s)
  3329. {
  3330. int node;
  3331. unsigned long count = 0;
  3332. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3333. sizeof(unsigned long), GFP_KERNEL);
  3334. if (!map)
  3335. return -ENOMEM;
  3336. flush_all(s);
  3337. for_each_node_state(node, N_NORMAL_MEMORY) {
  3338. struct kmem_cache_node *n = get_node(s, node);
  3339. count += validate_slab_node(s, n, map);
  3340. }
  3341. kfree(map);
  3342. return count;
  3343. }
  3344. /*
  3345. * Generate lists of code addresses where slabcache objects are allocated
  3346. * and freed.
  3347. */
  3348. struct location {
  3349. unsigned long count;
  3350. unsigned long addr;
  3351. long long sum_time;
  3352. long min_time;
  3353. long max_time;
  3354. long min_pid;
  3355. long max_pid;
  3356. DECLARE_BITMAP(cpus, NR_CPUS);
  3357. nodemask_t nodes;
  3358. };
  3359. struct loc_track {
  3360. unsigned long max;
  3361. unsigned long count;
  3362. struct location *loc;
  3363. };
  3364. static void free_loc_track(struct loc_track *t)
  3365. {
  3366. if (t->max)
  3367. free_pages((unsigned long)t->loc,
  3368. get_order(sizeof(struct location) * t->max));
  3369. }
  3370. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3371. {
  3372. struct location *l;
  3373. int order;
  3374. order = get_order(sizeof(struct location) * max);
  3375. l = (void *)__get_free_pages(flags, order);
  3376. if (!l)
  3377. return 0;
  3378. if (t->count) {
  3379. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3380. free_loc_track(t);
  3381. }
  3382. t->max = max;
  3383. t->loc = l;
  3384. return 1;
  3385. }
  3386. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3387. const struct track *track)
  3388. {
  3389. long start, end, pos;
  3390. struct location *l;
  3391. unsigned long caddr;
  3392. unsigned long age = jiffies - track->when;
  3393. start = -1;
  3394. end = t->count;
  3395. for ( ; ; ) {
  3396. pos = start + (end - start + 1) / 2;
  3397. /*
  3398. * There is nothing at "end". If we end up there
  3399. * we need to add something to before end.
  3400. */
  3401. if (pos == end)
  3402. break;
  3403. caddr = t->loc[pos].addr;
  3404. if (track->addr == caddr) {
  3405. l = &t->loc[pos];
  3406. l->count++;
  3407. if (track->when) {
  3408. l->sum_time += age;
  3409. if (age < l->min_time)
  3410. l->min_time = age;
  3411. if (age > l->max_time)
  3412. l->max_time = age;
  3413. if (track->pid < l->min_pid)
  3414. l->min_pid = track->pid;
  3415. if (track->pid > l->max_pid)
  3416. l->max_pid = track->pid;
  3417. cpumask_set_cpu(track->cpu,
  3418. to_cpumask(l->cpus));
  3419. }
  3420. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3421. return 1;
  3422. }
  3423. if (track->addr < caddr)
  3424. end = pos;
  3425. else
  3426. start = pos;
  3427. }
  3428. /*
  3429. * Not found. Insert new tracking element.
  3430. */
  3431. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3432. return 0;
  3433. l = t->loc + pos;
  3434. if (pos < t->count)
  3435. memmove(l + 1, l,
  3436. (t->count - pos) * sizeof(struct location));
  3437. t->count++;
  3438. l->count = 1;
  3439. l->addr = track->addr;
  3440. l->sum_time = age;
  3441. l->min_time = age;
  3442. l->max_time = age;
  3443. l->min_pid = track->pid;
  3444. l->max_pid = track->pid;
  3445. cpumask_clear(to_cpumask(l->cpus));
  3446. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3447. nodes_clear(l->nodes);
  3448. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3449. return 1;
  3450. }
  3451. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3452. struct page *page, enum track_item alloc,
  3453. unsigned long *map)
  3454. {
  3455. void *addr = page_address(page);
  3456. void *p;
  3457. bitmap_zero(map, page->objects);
  3458. get_map(s, page, map);
  3459. for_each_object(p, s, addr, page->objects)
  3460. if (!test_bit(slab_index(p, s, addr), map))
  3461. add_location(t, s, get_track(s, p, alloc));
  3462. }
  3463. static int list_locations(struct kmem_cache *s, char *buf,
  3464. enum track_item alloc)
  3465. {
  3466. int len = 0;
  3467. unsigned long i;
  3468. struct loc_track t = { 0, 0, NULL };
  3469. int node;
  3470. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3471. sizeof(unsigned long), GFP_KERNEL);
  3472. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3473. GFP_TEMPORARY)) {
  3474. kfree(map);
  3475. return sprintf(buf, "Out of memory\n");
  3476. }
  3477. /* Push back cpu slabs */
  3478. flush_all(s);
  3479. for_each_node_state(node, N_NORMAL_MEMORY) {
  3480. struct kmem_cache_node *n = get_node(s, node);
  3481. unsigned long flags;
  3482. struct page *page;
  3483. if (!atomic_long_read(&n->nr_slabs))
  3484. continue;
  3485. spin_lock_irqsave(&n->list_lock, flags);
  3486. list_for_each_entry(page, &n->partial, lru)
  3487. process_slab(&t, s, page, alloc, map);
  3488. list_for_each_entry(page, &n->full, lru)
  3489. process_slab(&t, s, page, alloc, map);
  3490. spin_unlock_irqrestore(&n->list_lock, flags);
  3491. }
  3492. for (i = 0; i < t.count; i++) {
  3493. struct location *l = &t.loc[i];
  3494. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3495. break;
  3496. len += sprintf(buf + len, "%7ld ", l->count);
  3497. if (l->addr)
  3498. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3499. else
  3500. len += sprintf(buf + len, "<not-available>");
  3501. if (l->sum_time != l->min_time) {
  3502. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3503. l->min_time,
  3504. (long)div_u64(l->sum_time, l->count),
  3505. l->max_time);
  3506. } else
  3507. len += sprintf(buf + len, " age=%ld",
  3508. l->min_time);
  3509. if (l->min_pid != l->max_pid)
  3510. len += sprintf(buf + len, " pid=%ld-%ld",
  3511. l->min_pid, l->max_pid);
  3512. else
  3513. len += sprintf(buf + len, " pid=%ld",
  3514. l->min_pid);
  3515. if (num_online_cpus() > 1 &&
  3516. !cpumask_empty(to_cpumask(l->cpus)) &&
  3517. len < PAGE_SIZE - 60) {
  3518. len += sprintf(buf + len, " cpus=");
  3519. len += cpulist_scnprintf(buf + len,
  3520. PAGE_SIZE - len - 50,
  3521. to_cpumask(l->cpus));
  3522. }
  3523. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3524. len < PAGE_SIZE - 60) {
  3525. len += sprintf(buf + len, " nodes=");
  3526. len += nodelist_scnprintf(buf + len,
  3527. PAGE_SIZE - len - 50,
  3528. l->nodes);
  3529. }
  3530. len += sprintf(buf + len, "\n");
  3531. }
  3532. free_loc_track(&t);
  3533. kfree(map);
  3534. if (!t.count)
  3535. len += sprintf(buf, "No data\n");
  3536. return len;
  3537. }
  3538. #endif
  3539. #ifdef SLUB_RESILIENCY_TEST
  3540. static void resiliency_test(void)
  3541. {
  3542. u8 *p;
  3543. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
  3544. printk(KERN_ERR "SLUB resiliency testing\n");
  3545. printk(KERN_ERR "-----------------------\n");
  3546. printk(KERN_ERR "A. Corruption after allocation\n");
  3547. p = kzalloc(16, GFP_KERNEL);
  3548. p[16] = 0x12;
  3549. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3550. " 0x12->0x%p\n\n", p + 16);
  3551. validate_slab_cache(kmalloc_caches[4]);
  3552. /* Hmmm... The next two are dangerous */
  3553. p = kzalloc(32, GFP_KERNEL);
  3554. p[32 + sizeof(void *)] = 0x34;
  3555. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3556. " 0x34 -> -0x%p\n", p);
  3557. printk(KERN_ERR
  3558. "If allocated object is overwritten then not detectable\n\n");
  3559. validate_slab_cache(kmalloc_caches[5]);
  3560. p = kzalloc(64, GFP_KERNEL);
  3561. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3562. *p = 0x56;
  3563. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3564. p);
  3565. printk(KERN_ERR
  3566. "If allocated object is overwritten then not detectable\n\n");
  3567. validate_slab_cache(kmalloc_caches[6]);
  3568. printk(KERN_ERR "\nB. Corruption after free\n");
  3569. p = kzalloc(128, GFP_KERNEL);
  3570. kfree(p);
  3571. *p = 0x78;
  3572. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3573. validate_slab_cache(kmalloc_caches[7]);
  3574. p = kzalloc(256, GFP_KERNEL);
  3575. kfree(p);
  3576. p[50] = 0x9a;
  3577. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3578. p);
  3579. validate_slab_cache(kmalloc_caches[8]);
  3580. p = kzalloc(512, GFP_KERNEL);
  3581. kfree(p);
  3582. p[512] = 0xab;
  3583. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3584. validate_slab_cache(kmalloc_caches[9]);
  3585. }
  3586. #else
  3587. #ifdef CONFIG_SYSFS
  3588. static void resiliency_test(void) {};
  3589. #endif
  3590. #endif
  3591. #ifdef CONFIG_SYSFS
  3592. enum slab_stat_type {
  3593. SL_ALL, /* All slabs */
  3594. SL_PARTIAL, /* Only partially allocated slabs */
  3595. SL_CPU, /* Only slabs used for cpu caches */
  3596. SL_OBJECTS, /* Determine allocated objects not slabs */
  3597. SL_TOTAL /* Determine object capacity not slabs */
  3598. };
  3599. #define SO_ALL (1 << SL_ALL)
  3600. #define SO_PARTIAL (1 << SL_PARTIAL)
  3601. #define SO_CPU (1 << SL_CPU)
  3602. #define SO_OBJECTS (1 << SL_OBJECTS)
  3603. #define SO_TOTAL (1 << SL_TOTAL)
  3604. static ssize_t show_slab_objects(struct kmem_cache *s,
  3605. char *buf, unsigned long flags)
  3606. {
  3607. unsigned long total = 0;
  3608. int node;
  3609. int x;
  3610. unsigned long *nodes;
  3611. nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3612. if (!nodes)
  3613. return -ENOMEM;
  3614. if (flags & SO_CPU) {
  3615. int cpu;
  3616. for_each_possible_cpu(cpu) {
  3617. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
  3618. cpu);
  3619. int node;
  3620. struct page *page;
  3621. page = ACCESS_ONCE(c->page);
  3622. if (!page)
  3623. continue;
  3624. node = page_to_nid(page);
  3625. if (flags & SO_TOTAL)
  3626. x = page->objects;
  3627. else if (flags & SO_OBJECTS)
  3628. x = page->inuse;
  3629. else
  3630. x = 1;
  3631. total += x;
  3632. nodes[node] += x;
  3633. page = ACCESS_ONCE(c->partial);
  3634. if (page) {
  3635. node = page_to_nid(page);
  3636. if (flags & SO_TOTAL)
  3637. WARN_ON_ONCE(1);
  3638. else if (flags & SO_OBJECTS)
  3639. WARN_ON_ONCE(1);
  3640. else
  3641. x = page->pages;
  3642. total += x;
  3643. nodes[node] += x;
  3644. }
  3645. }
  3646. }
  3647. lock_memory_hotplug();
  3648. #ifdef CONFIG_SLUB_DEBUG
  3649. if (flags & SO_ALL) {
  3650. for_each_node_state(node, N_NORMAL_MEMORY) {
  3651. struct kmem_cache_node *n = get_node(s, node);
  3652. if (flags & SO_TOTAL)
  3653. x = atomic_long_read(&n->total_objects);
  3654. else if (flags & SO_OBJECTS)
  3655. x = atomic_long_read(&n->total_objects) -
  3656. count_partial(n, count_free);
  3657. else
  3658. x = atomic_long_read(&n->nr_slabs);
  3659. total += x;
  3660. nodes[node] += x;
  3661. }
  3662. } else
  3663. #endif
  3664. if (flags & SO_PARTIAL) {
  3665. for_each_node_state(node, N_NORMAL_MEMORY) {
  3666. struct kmem_cache_node *n = get_node(s, node);
  3667. if (flags & SO_TOTAL)
  3668. x = count_partial(n, count_total);
  3669. else if (flags & SO_OBJECTS)
  3670. x = count_partial(n, count_inuse);
  3671. else
  3672. x = n->nr_partial;
  3673. total += x;
  3674. nodes[node] += x;
  3675. }
  3676. }
  3677. x = sprintf(buf, "%lu", total);
  3678. #ifdef CONFIG_NUMA
  3679. for_each_node_state(node, N_NORMAL_MEMORY)
  3680. if (nodes[node])
  3681. x += sprintf(buf + x, " N%d=%lu",
  3682. node, nodes[node]);
  3683. #endif
  3684. unlock_memory_hotplug();
  3685. kfree(nodes);
  3686. return x + sprintf(buf + x, "\n");
  3687. }
  3688. #ifdef CONFIG_SLUB_DEBUG
  3689. static int any_slab_objects(struct kmem_cache *s)
  3690. {
  3691. int node;
  3692. for_each_online_node(node) {
  3693. struct kmem_cache_node *n = get_node(s, node);
  3694. if (!n)
  3695. continue;
  3696. if (atomic_long_read(&n->total_objects))
  3697. return 1;
  3698. }
  3699. return 0;
  3700. }
  3701. #endif
  3702. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3703. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3704. struct slab_attribute {
  3705. struct attribute attr;
  3706. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3707. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3708. };
  3709. #define SLAB_ATTR_RO(_name) \
  3710. static struct slab_attribute _name##_attr = \
  3711. __ATTR(_name, 0400, _name##_show, NULL)
  3712. #define SLAB_ATTR(_name) \
  3713. static struct slab_attribute _name##_attr = \
  3714. __ATTR(_name, 0600, _name##_show, _name##_store)
  3715. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3716. {
  3717. return sprintf(buf, "%d\n", s->size);
  3718. }
  3719. SLAB_ATTR_RO(slab_size);
  3720. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3721. {
  3722. return sprintf(buf, "%d\n", s->align);
  3723. }
  3724. SLAB_ATTR_RO(align);
  3725. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3726. {
  3727. return sprintf(buf, "%d\n", s->object_size);
  3728. }
  3729. SLAB_ATTR_RO(object_size);
  3730. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3731. {
  3732. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3733. }
  3734. SLAB_ATTR_RO(objs_per_slab);
  3735. static ssize_t order_store(struct kmem_cache *s,
  3736. const char *buf, size_t length)
  3737. {
  3738. unsigned long order;
  3739. int err;
  3740. err = kstrtoul(buf, 10, &order);
  3741. if (err)
  3742. return err;
  3743. if (order > slub_max_order || order < slub_min_order)
  3744. return -EINVAL;
  3745. calculate_sizes(s, order);
  3746. return length;
  3747. }
  3748. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3749. {
  3750. return sprintf(buf, "%d\n", oo_order(s->oo));
  3751. }
  3752. SLAB_ATTR(order);
  3753. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3754. {
  3755. return sprintf(buf, "%lu\n", s->min_partial);
  3756. }
  3757. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3758. size_t length)
  3759. {
  3760. unsigned long min;
  3761. int err;
  3762. err = kstrtoul(buf, 10, &min);
  3763. if (err)
  3764. return err;
  3765. set_min_partial(s, min);
  3766. return length;
  3767. }
  3768. SLAB_ATTR(min_partial);
  3769. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3770. {
  3771. return sprintf(buf, "%u\n", s->cpu_partial);
  3772. }
  3773. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3774. size_t length)
  3775. {
  3776. unsigned long objects;
  3777. int err;
  3778. err = kstrtoul(buf, 10, &objects);
  3779. if (err)
  3780. return err;
  3781. if (objects && !kmem_cache_has_cpu_partial(s))
  3782. return -EINVAL;
  3783. s->cpu_partial = objects;
  3784. flush_all(s);
  3785. return length;
  3786. }
  3787. SLAB_ATTR(cpu_partial);
  3788. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3789. {
  3790. if (!s->ctor)
  3791. return 0;
  3792. return sprintf(buf, "%pS\n", s->ctor);
  3793. }
  3794. SLAB_ATTR_RO(ctor);
  3795. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3796. {
  3797. return sprintf(buf, "%d\n", s->refcount - 1);
  3798. }
  3799. SLAB_ATTR_RO(aliases);
  3800. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3801. {
  3802. return show_slab_objects(s, buf, SO_PARTIAL);
  3803. }
  3804. SLAB_ATTR_RO(partial);
  3805. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3806. {
  3807. return show_slab_objects(s, buf, SO_CPU);
  3808. }
  3809. SLAB_ATTR_RO(cpu_slabs);
  3810. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3811. {
  3812. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3813. }
  3814. SLAB_ATTR_RO(objects);
  3815. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3816. {
  3817. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3818. }
  3819. SLAB_ATTR_RO(objects_partial);
  3820. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3821. {
  3822. int objects = 0;
  3823. int pages = 0;
  3824. int cpu;
  3825. int len;
  3826. for_each_online_cpu(cpu) {
  3827. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3828. if (page) {
  3829. pages += page->pages;
  3830. objects += page->pobjects;
  3831. }
  3832. }
  3833. len = sprintf(buf, "%d(%d)", objects, pages);
  3834. #ifdef CONFIG_SMP
  3835. for_each_online_cpu(cpu) {
  3836. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3837. if (page && len < PAGE_SIZE - 20)
  3838. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3839. page->pobjects, page->pages);
  3840. }
  3841. #endif
  3842. return len + sprintf(buf + len, "\n");
  3843. }
  3844. SLAB_ATTR_RO(slabs_cpu_partial);
  3845. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3846. {
  3847. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3848. }
  3849. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3850. const char *buf, size_t length)
  3851. {
  3852. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3853. if (buf[0] == '1')
  3854. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3855. return length;
  3856. }
  3857. SLAB_ATTR(reclaim_account);
  3858. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3859. {
  3860. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3861. }
  3862. SLAB_ATTR_RO(hwcache_align);
  3863. #ifdef CONFIG_ZONE_DMA
  3864. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3865. {
  3866. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3867. }
  3868. SLAB_ATTR_RO(cache_dma);
  3869. #endif
  3870. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3871. {
  3872. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3873. }
  3874. SLAB_ATTR_RO(destroy_by_rcu);
  3875. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  3876. {
  3877. return sprintf(buf, "%d\n", s->reserved);
  3878. }
  3879. SLAB_ATTR_RO(reserved);
  3880. #ifdef CONFIG_SLUB_DEBUG
  3881. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3882. {
  3883. return show_slab_objects(s, buf, SO_ALL);
  3884. }
  3885. SLAB_ATTR_RO(slabs);
  3886. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3887. {
  3888. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3889. }
  3890. SLAB_ATTR_RO(total_objects);
  3891. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3892. {
  3893. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3894. }
  3895. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3896. const char *buf, size_t length)
  3897. {
  3898. s->flags &= ~SLAB_DEBUG_FREE;
  3899. if (buf[0] == '1') {
  3900. s->flags &= ~__CMPXCHG_DOUBLE;
  3901. s->flags |= SLAB_DEBUG_FREE;
  3902. }
  3903. return length;
  3904. }
  3905. SLAB_ATTR(sanity_checks);
  3906. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3907. {
  3908. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3909. }
  3910. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3911. size_t length)
  3912. {
  3913. s->flags &= ~SLAB_TRACE;
  3914. if (buf[0] == '1') {
  3915. s->flags &= ~__CMPXCHG_DOUBLE;
  3916. s->flags |= SLAB_TRACE;
  3917. }
  3918. return length;
  3919. }
  3920. SLAB_ATTR(trace);
  3921. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3922. {
  3923. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3924. }
  3925. static ssize_t red_zone_store(struct kmem_cache *s,
  3926. const char *buf, size_t length)
  3927. {
  3928. if (any_slab_objects(s))
  3929. return -EBUSY;
  3930. s->flags &= ~SLAB_RED_ZONE;
  3931. if (buf[0] == '1') {
  3932. s->flags &= ~__CMPXCHG_DOUBLE;
  3933. s->flags |= SLAB_RED_ZONE;
  3934. }
  3935. calculate_sizes(s, -1);
  3936. return length;
  3937. }
  3938. SLAB_ATTR(red_zone);
  3939. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3940. {
  3941. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3942. }
  3943. static ssize_t poison_store(struct kmem_cache *s,
  3944. const char *buf, size_t length)
  3945. {
  3946. if (any_slab_objects(s))
  3947. return -EBUSY;
  3948. s->flags &= ~SLAB_POISON;
  3949. if (buf[0] == '1') {
  3950. s->flags &= ~__CMPXCHG_DOUBLE;
  3951. s->flags |= SLAB_POISON;
  3952. }
  3953. calculate_sizes(s, -1);
  3954. return length;
  3955. }
  3956. SLAB_ATTR(poison);
  3957. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3958. {
  3959. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3960. }
  3961. static ssize_t store_user_store(struct kmem_cache *s,
  3962. const char *buf, size_t length)
  3963. {
  3964. if (any_slab_objects(s))
  3965. return -EBUSY;
  3966. s->flags &= ~SLAB_STORE_USER;
  3967. if (buf[0] == '1') {
  3968. s->flags &= ~__CMPXCHG_DOUBLE;
  3969. s->flags |= SLAB_STORE_USER;
  3970. }
  3971. calculate_sizes(s, -1);
  3972. return length;
  3973. }
  3974. SLAB_ATTR(store_user);
  3975. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3976. {
  3977. return 0;
  3978. }
  3979. static ssize_t validate_store(struct kmem_cache *s,
  3980. const char *buf, size_t length)
  3981. {
  3982. int ret = -EINVAL;
  3983. if (buf[0] == '1') {
  3984. ret = validate_slab_cache(s);
  3985. if (ret >= 0)
  3986. ret = length;
  3987. }
  3988. return ret;
  3989. }
  3990. SLAB_ATTR(validate);
  3991. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3992. {
  3993. if (!(s->flags & SLAB_STORE_USER))
  3994. return -ENOSYS;
  3995. return list_locations(s, buf, TRACK_ALLOC);
  3996. }
  3997. SLAB_ATTR_RO(alloc_calls);
  3998. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3999. {
  4000. if (!(s->flags & SLAB_STORE_USER))
  4001. return -ENOSYS;
  4002. return list_locations(s, buf, TRACK_FREE);
  4003. }
  4004. SLAB_ATTR_RO(free_calls);
  4005. #endif /* CONFIG_SLUB_DEBUG */
  4006. #ifdef CONFIG_FAILSLAB
  4007. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  4008. {
  4009. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  4010. }
  4011. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  4012. size_t length)
  4013. {
  4014. s->flags &= ~SLAB_FAILSLAB;
  4015. if (buf[0] == '1')
  4016. s->flags |= SLAB_FAILSLAB;
  4017. return length;
  4018. }
  4019. SLAB_ATTR(failslab);
  4020. #endif
  4021. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  4022. {
  4023. return 0;
  4024. }
  4025. static ssize_t shrink_store(struct kmem_cache *s,
  4026. const char *buf, size_t length)
  4027. {
  4028. if (buf[0] == '1') {
  4029. int rc = kmem_cache_shrink(s);
  4030. if (rc)
  4031. return rc;
  4032. } else
  4033. return -EINVAL;
  4034. return length;
  4035. }
  4036. SLAB_ATTR(shrink);
  4037. #ifdef CONFIG_NUMA
  4038. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4039. {
  4040. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4041. }
  4042. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4043. const char *buf, size_t length)
  4044. {
  4045. unsigned long ratio;
  4046. int err;
  4047. err = kstrtoul(buf, 10, &ratio);
  4048. if (err)
  4049. return err;
  4050. if (ratio <= 100)
  4051. s->remote_node_defrag_ratio = ratio * 10;
  4052. return length;
  4053. }
  4054. SLAB_ATTR(remote_node_defrag_ratio);
  4055. #endif
  4056. #ifdef CONFIG_SLUB_STATS
  4057. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4058. {
  4059. unsigned long sum = 0;
  4060. int cpu;
  4061. int len;
  4062. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4063. if (!data)
  4064. return -ENOMEM;
  4065. for_each_online_cpu(cpu) {
  4066. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4067. data[cpu] = x;
  4068. sum += x;
  4069. }
  4070. len = sprintf(buf, "%lu", sum);
  4071. #ifdef CONFIG_SMP
  4072. for_each_online_cpu(cpu) {
  4073. if (data[cpu] && len < PAGE_SIZE - 20)
  4074. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4075. }
  4076. #endif
  4077. kfree(data);
  4078. return len + sprintf(buf + len, "\n");
  4079. }
  4080. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4081. {
  4082. int cpu;
  4083. for_each_online_cpu(cpu)
  4084. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4085. }
  4086. #define STAT_ATTR(si, text) \
  4087. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4088. { \
  4089. return show_stat(s, buf, si); \
  4090. } \
  4091. static ssize_t text##_store(struct kmem_cache *s, \
  4092. const char *buf, size_t length) \
  4093. { \
  4094. if (buf[0] != '0') \
  4095. return -EINVAL; \
  4096. clear_stat(s, si); \
  4097. return length; \
  4098. } \
  4099. SLAB_ATTR(text); \
  4100. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4101. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4102. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4103. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4104. STAT_ATTR(FREE_FROZEN, free_frozen);
  4105. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4106. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4107. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4108. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4109. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4110. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4111. STAT_ATTR(FREE_SLAB, free_slab);
  4112. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4113. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4114. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4115. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4116. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4117. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4118. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4119. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4120. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4121. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4122. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4123. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4124. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4125. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4126. #endif
  4127. static struct attribute *slab_attrs[] = {
  4128. &slab_size_attr.attr,
  4129. &object_size_attr.attr,
  4130. &objs_per_slab_attr.attr,
  4131. &order_attr.attr,
  4132. &min_partial_attr.attr,
  4133. &cpu_partial_attr.attr,
  4134. &objects_attr.attr,
  4135. &objects_partial_attr.attr,
  4136. &partial_attr.attr,
  4137. &cpu_slabs_attr.attr,
  4138. &ctor_attr.attr,
  4139. &aliases_attr.attr,
  4140. &align_attr.attr,
  4141. &hwcache_align_attr.attr,
  4142. &reclaim_account_attr.attr,
  4143. &destroy_by_rcu_attr.attr,
  4144. &shrink_attr.attr,
  4145. &reserved_attr.attr,
  4146. &slabs_cpu_partial_attr.attr,
  4147. #ifdef CONFIG_SLUB_DEBUG
  4148. &total_objects_attr.attr,
  4149. &slabs_attr.attr,
  4150. &sanity_checks_attr.attr,
  4151. &trace_attr.attr,
  4152. &red_zone_attr.attr,
  4153. &poison_attr.attr,
  4154. &store_user_attr.attr,
  4155. &validate_attr.attr,
  4156. &alloc_calls_attr.attr,
  4157. &free_calls_attr.attr,
  4158. #endif
  4159. #ifdef CONFIG_ZONE_DMA
  4160. &cache_dma_attr.attr,
  4161. #endif
  4162. #ifdef CONFIG_NUMA
  4163. &remote_node_defrag_ratio_attr.attr,
  4164. #endif
  4165. #ifdef CONFIG_SLUB_STATS
  4166. &alloc_fastpath_attr.attr,
  4167. &alloc_slowpath_attr.attr,
  4168. &free_fastpath_attr.attr,
  4169. &free_slowpath_attr.attr,
  4170. &free_frozen_attr.attr,
  4171. &free_add_partial_attr.attr,
  4172. &free_remove_partial_attr.attr,
  4173. &alloc_from_partial_attr.attr,
  4174. &alloc_slab_attr.attr,
  4175. &alloc_refill_attr.attr,
  4176. &alloc_node_mismatch_attr.attr,
  4177. &free_slab_attr.attr,
  4178. &cpuslab_flush_attr.attr,
  4179. &deactivate_full_attr.attr,
  4180. &deactivate_empty_attr.attr,
  4181. &deactivate_to_head_attr.attr,
  4182. &deactivate_to_tail_attr.attr,
  4183. &deactivate_remote_frees_attr.attr,
  4184. &deactivate_bypass_attr.attr,
  4185. &order_fallback_attr.attr,
  4186. &cmpxchg_double_fail_attr.attr,
  4187. &cmpxchg_double_cpu_fail_attr.attr,
  4188. &cpu_partial_alloc_attr.attr,
  4189. &cpu_partial_free_attr.attr,
  4190. &cpu_partial_node_attr.attr,
  4191. &cpu_partial_drain_attr.attr,
  4192. #endif
  4193. #ifdef CONFIG_FAILSLAB
  4194. &failslab_attr.attr,
  4195. #endif
  4196. NULL
  4197. };
  4198. static struct attribute_group slab_attr_group = {
  4199. .attrs = slab_attrs,
  4200. };
  4201. static ssize_t slab_attr_show(struct kobject *kobj,
  4202. struct attribute *attr,
  4203. char *buf)
  4204. {
  4205. struct slab_attribute *attribute;
  4206. struct kmem_cache *s;
  4207. int err;
  4208. attribute = to_slab_attr(attr);
  4209. s = to_slab(kobj);
  4210. if (!attribute->show)
  4211. return -EIO;
  4212. err = attribute->show(s, buf);
  4213. return err;
  4214. }
  4215. static ssize_t slab_attr_store(struct kobject *kobj,
  4216. struct attribute *attr,
  4217. const char *buf, size_t len)
  4218. {
  4219. struct slab_attribute *attribute;
  4220. struct kmem_cache *s;
  4221. int err;
  4222. attribute = to_slab_attr(attr);
  4223. s = to_slab(kobj);
  4224. if (!attribute->store)
  4225. return -EIO;
  4226. err = attribute->store(s, buf, len);
  4227. #ifdef CONFIG_MEMCG_KMEM
  4228. if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
  4229. int i;
  4230. mutex_lock(&slab_mutex);
  4231. if (s->max_attr_size < len)
  4232. s->max_attr_size = len;
  4233. /*
  4234. * This is a best effort propagation, so this function's return
  4235. * value will be determined by the parent cache only. This is
  4236. * basically because not all attributes will have a well
  4237. * defined semantics for rollbacks - most of the actions will
  4238. * have permanent effects.
  4239. *
  4240. * Returning the error value of any of the children that fail
  4241. * is not 100 % defined, in the sense that users seeing the
  4242. * error code won't be able to know anything about the state of
  4243. * the cache.
  4244. *
  4245. * Only returning the error code for the parent cache at least
  4246. * has well defined semantics. The cache being written to
  4247. * directly either failed or succeeded, in which case we loop
  4248. * through the descendants with best-effort propagation.
  4249. */
  4250. for_each_memcg_cache_index(i) {
  4251. struct kmem_cache *c = cache_from_memcg_idx(s, i);
  4252. if (c)
  4253. attribute->store(c, buf, len);
  4254. }
  4255. mutex_unlock(&slab_mutex);
  4256. }
  4257. #endif
  4258. return err;
  4259. }
  4260. static void memcg_propagate_slab_attrs(struct kmem_cache *s)
  4261. {
  4262. #ifdef CONFIG_MEMCG_KMEM
  4263. int i;
  4264. char *buffer = NULL;
  4265. if (!is_root_cache(s))
  4266. return;
  4267. /*
  4268. * This mean this cache had no attribute written. Therefore, no point
  4269. * in copying default values around
  4270. */
  4271. if (!s->max_attr_size)
  4272. return;
  4273. for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
  4274. char mbuf[64];
  4275. char *buf;
  4276. struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
  4277. if (!attr || !attr->store || !attr->show)
  4278. continue;
  4279. /*
  4280. * It is really bad that we have to allocate here, so we will
  4281. * do it only as a fallback. If we actually allocate, though,
  4282. * we can just use the allocated buffer until the end.
  4283. *
  4284. * Most of the slub attributes will tend to be very small in
  4285. * size, but sysfs allows buffers up to a page, so they can
  4286. * theoretically happen.
  4287. */
  4288. if (buffer)
  4289. buf = buffer;
  4290. else if (s->max_attr_size < ARRAY_SIZE(mbuf))
  4291. buf = mbuf;
  4292. else {
  4293. buffer = (char *) get_zeroed_page(GFP_KERNEL);
  4294. if (WARN_ON(!buffer))
  4295. continue;
  4296. buf = buffer;
  4297. }
  4298. attr->show(s->memcg_params->root_cache, buf);
  4299. attr->store(s, buf, strlen(buf));
  4300. }
  4301. if (buffer)
  4302. free_page((unsigned long)buffer);
  4303. #endif
  4304. }
  4305. static const struct sysfs_ops slab_sysfs_ops = {
  4306. .show = slab_attr_show,
  4307. .store = slab_attr_store,
  4308. };
  4309. static struct kobj_type slab_ktype = {
  4310. .sysfs_ops = &slab_sysfs_ops,
  4311. };
  4312. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4313. {
  4314. struct kobj_type *ktype = get_ktype(kobj);
  4315. if (ktype == &slab_ktype)
  4316. return 1;
  4317. return 0;
  4318. }
  4319. static const struct kset_uevent_ops slab_uevent_ops = {
  4320. .filter = uevent_filter,
  4321. };
  4322. static struct kset *slab_kset;
  4323. #define ID_STR_LENGTH 64
  4324. /* Create a unique string id for a slab cache:
  4325. *
  4326. * Format :[flags-]size
  4327. */
  4328. static char *create_unique_id(struct kmem_cache *s)
  4329. {
  4330. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4331. char *p = name;
  4332. BUG_ON(!name);
  4333. *p++ = ':';
  4334. /*
  4335. * First flags affecting slabcache operations. We will only
  4336. * get here for aliasable slabs so we do not need to support
  4337. * too many flags. The flags here must cover all flags that
  4338. * are matched during merging to guarantee that the id is
  4339. * unique.
  4340. */
  4341. if (s->flags & SLAB_CACHE_DMA)
  4342. *p++ = 'd';
  4343. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4344. *p++ = 'a';
  4345. if (s->flags & SLAB_DEBUG_FREE)
  4346. *p++ = 'F';
  4347. if (!(s->flags & SLAB_NOTRACK))
  4348. *p++ = 't';
  4349. if (p != name + 1)
  4350. *p++ = '-';
  4351. p += sprintf(p, "%07d", s->size);
  4352. #ifdef CONFIG_MEMCG_KMEM
  4353. if (!is_root_cache(s))
  4354. p += sprintf(p, "-%08d",
  4355. memcg_cache_id(s->memcg_params->memcg));
  4356. #endif
  4357. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4358. return name;
  4359. }
  4360. static int sysfs_slab_add(struct kmem_cache *s)
  4361. {
  4362. int err;
  4363. const char *name;
  4364. int unmergeable = slab_unmergeable(s);
  4365. if (unmergeable) {
  4366. /*
  4367. * Slabcache can never be merged so we can use the name proper.
  4368. * This is typically the case for debug situations. In that
  4369. * case we can catch duplicate names easily.
  4370. */
  4371. sysfs_remove_link(&slab_kset->kobj, s->name);
  4372. name = s->name;
  4373. } else {
  4374. /*
  4375. * Create a unique name for the slab as a target
  4376. * for the symlinks.
  4377. */
  4378. name = create_unique_id(s);
  4379. }
  4380. s->kobj.kset = slab_kset;
  4381. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
  4382. if (err) {
  4383. kobject_put(&s->kobj);
  4384. return err;
  4385. }
  4386. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4387. if (err) {
  4388. kobject_del(&s->kobj);
  4389. kobject_put(&s->kobj);
  4390. return err;
  4391. }
  4392. kobject_uevent(&s->kobj, KOBJ_ADD);
  4393. if (!unmergeable) {
  4394. /* Setup first alias */
  4395. sysfs_slab_alias(s, s->name);
  4396. kfree(name);
  4397. }
  4398. return 0;
  4399. }
  4400. static void sysfs_slab_remove(struct kmem_cache *s)
  4401. {
  4402. if (slab_state < FULL)
  4403. /*
  4404. * Sysfs has not been setup yet so no need to remove the
  4405. * cache from sysfs.
  4406. */
  4407. return;
  4408. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4409. kobject_del(&s->kobj);
  4410. kobject_put(&s->kobj);
  4411. }
  4412. /*
  4413. * Need to buffer aliases during bootup until sysfs becomes
  4414. * available lest we lose that information.
  4415. */
  4416. struct saved_alias {
  4417. struct kmem_cache *s;
  4418. const char *name;
  4419. struct saved_alias *next;
  4420. };
  4421. static struct saved_alias *alias_list;
  4422. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4423. {
  4424. struct saved_alias *al;
  4425. if (slab_state == FULL) {
  4426. /*
  4427. * If we have a leftover link then remove it.
  4428. */
  4429. sysfs_remove_link(&slab_kset->kobj, name);
  4430. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4431. }
  4432. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4433. if (!al)
  4434. return -ENOMEM;
  4435. al->s = s;
  4436. al->name = name;
  4437. al->next = alias_list;
  4438. alias_list = al;
  4439. return 0;
  4440. }
  4441. static int __init slab_sysfs_init(void)
  4442. {
  4443. struct kmem_cache *s;
  4444. int err;
  4445. mutex_lock(&slab_mutex);
  4446. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4447. if (!slab_kset) {
  4448. mutex_unlock(&slab_mutex);
  4449. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4450. return -ENOSYS;
  4451. }
  4452. slab_state = FULL;
  4453. list_for_each_entry(s, &slab_caches, list) {
  4454. err = sysfs_slab_add(s);
  4455. if (err)
  4456. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4457. " to sysfs\n", s->name);
  4458. }
  4459. while (alias_list) {
  4460. struct saved_alias *al = alias_list;
  4461. alias_list = alias_list->next;
  4462. err = sysfs_slab_alias(al->s, al->name);
  4463. if (err)
  4464. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4465. " %s to sysfs\n", al->name);
  4466. kfree(al);
  4467. }
  4468. mutex_unlock(&slab_mutex);
  4469. resiliency_test();
  4470. return 0;
  4471. }
  4472. __initcall(slab_sysfs_init);
  4473. #endif /* CONFIG_SYSFS */
  4474. /*
  4475. * The /proc/slabinfo ABI
  4476. */
  4477. #ifdef CONFIG_SLABINFO
  4478. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
  4479. {
  4480. unsigned long nr_slabs = 0;
  4481. unsigned long nr_objs = 0;
  4482. unsigned long nr_free = 0;
  4483. int node;
  4484. for_each_online_node(node) {
  4485. struct kmem_cache_node *n = get_node(s, node);
  4486. if (!n)
  4487. continue;
  4488. nr_slabs += node_nr_slabs(n);
  4489. nr_objs += node_nr_objs(n);
  4490. nr_free += count_partial(n, count_free);
  4491. }
  4492. sinfo->active_objs = nr_objs - nr_free;
  4493. sinfo->num_objs = nr_objs;
  4494. sinfo->active_slabs = nr_slabs;
  4495. sinfo->num_slabs = nr_slabs;
  4496. sinfo->objects_per_slab = oo_objects(s->oo);
  4497. sinfo->cache_order = oo_order(s->oo);
  4498. }
  4499. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
  4500. {
  4501. }
  4502. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  4503. size_t count, loff_t *ppos)
  4504. {
  4505. return -EIO;
  4506. }
  4507. #endif /* CONFIG_SLABINFO */