intel_ringbuffer.c 90 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. int __intel_ring_space(int head, int tail, int size)
  36. {
  37. int space = head - tail;
  38. if (space <= 0)
  39. space += size;
  40. return space - I915_RING_FREE_SPACE;
  41. }
  42. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  43. {
  44. if (ringbuf->last_retired_head != -1) {
  45. ringbuf->head = ringbuf->last_retired_head;
  46. ringbuf->last_retired_head = -1;
  47. }
  48. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  49. ringbuf->tail, ringbuf->size);
  50. }
  51. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  52. {
  53. intel_ring_update_space(ringbuf);
  54. return ringbuf->space;
  55. }
  56. bool intel_engine_stopped(struct intel_engine_cs *engine)
  57. {
  58. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  59. return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
  60. }
  61. static void __intel_ring_advance(struct intel_engine_cs *engine)
  62. {
  63. struct intel_ringbuffer *ringbuf = engine->buffer;
  64. ringbuf->tail &= ringbuf->size - 1;
  65. if (intel_engine_stopped(engine))
  66. return;
  67. engine->write_tail(engine, ringbuf->tail);
  68. }
  69. static int
  70. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  71. u32 invalidate_domains,
  72. u32 flush_domains)
  73. {
  74. struct intel_engine_cs *engine = req->engine;
  75. u32 cmd;
  76. int ret;
  77. cmd = MI_FLUSH;
  78. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  79. cmd |= MI_NO_WRITE_FLUSH;
  80. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  81. cmd |= MI_READ_FLUSH;
  82. ret = intel_ring_begin(req, 2);
  83. if (ret)
  84. return ret;
  85. intel_ring_emit(engine, cmd);
  86. intel_ring_emit(engine, MI_NOOP);
  87. intel_ring_advance(engine);
  88. return 0;
  89. }
  90. static int
  91. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  92. u32 invalidate_domains,
  93. u32 flush_domains)
  94. {
  95. struct intel_engine_cs *engine = req->engine;
  96. struct drm_device *dev = engine->dev;
  97. u32 cmd;
  98. int ret;
  99. /*
  100. * read/write caches:
  101. *
  102. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  103. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  104. * also flushed at 2d versus 3d pipeline switches.
  105. *
  106. * read-only caches:
  107. *
  108. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  109. * MI_READ_FLUSH is set, and is always flushed on 965.
  110. *
  111. * I915_GEM_DOMAIN_COMMAND may not exist?
  112. *
  113. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  114. * invalidated when MI_EXE_FLUSH is set.
  115. *
  116. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  117. * invalidated with every MI_FLUSH.
  118. *
  119. * TLBs:
  120. *
  121. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  122. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  123. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  124. * are flushed at any MI_FLUSH.
  125. */
  126. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  127. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  128. cmd &= ~MI_NO_WRITE_FLUSH;
  129. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  130. cmd |= MI_EXE_FLUSH;
  131. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  132. (IS_G4X(dev) || IS_GEN5(dev)))
  133. cmd |= MI_INVALIDATE_ISP;
  134. ret = intel_ring_begin(req, 2);
  135. if (ret)
  136. return ret;
  137. intel_ring_emit(engine, cmd);
  138. intel_ring_emit(engine, MI_NOOP);
  139. intel_ring_advance(engine);
  140. return 0;
  141. }
  142. /**
  143. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  144. * implementing two workarounds on gen6. From section 1.4.7.1
  145. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  146. *
  147. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  148. * produced by non-pipelined state commands), software needs to first
  149. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  150. * 0.
  151. *
  152. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  153. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  154. *
  155. * And the workaround for these two requires this workaround first:
  156. *
  157. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  158. * BEFORE the pipe-control with a post-sync op and no write-cache
  159. * flushes.
  160. *
  161. * And this last workaround is tricky because of the requirements on
  162. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  163. * volume 2 part 1:
  164. *
  165. * "1 of the following must also be set:
  166. * - Render Target Cache Flush Enable ([12] of DW1)
  167. * - Depth Cache Flush Enable ([0] of DW1)
  168. * - Stall at Pixel Scoreboard ([1] of DW1)
  169. * - Depth Stall ([13] of DW1)
  170. * - Post-Sync Operation ([13] of DW1)
  171. * - Notify Enable ([8] of DW1)"
  172. *
  173. * The cache flushes require the workaround flush that triggered this
  174. * one, so we can't use it. Depth stall would trigger the same.
  175. * Post-sync nonzero is what triggered this second workaround, so we
  176. * can't use that one either. Notify enable is IRQs, which aren't
  177. * really our business. That leaves only stall at scoreboard.
  178. */
  179. static int
  180. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  181. {
  182. struct intel_engine_cs *engine = req->engine;
  183. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  184. int ret;
  185. ret = intel_ring_begin(req, 6);
  186. if (ret)
  187. return ret;
  188. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  189. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  190. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  191. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  192. intel_ring_emit(engine, 0); /* low dword */
  193. intel_ring_emit(engine, 0); /* high dword */
  194. intel_ring_emit(engine, MI_NOOP);
  195. intel_ring_advance(engine);
  196. ret = intel_ring_begin(req, 6);
  197. if (ret)
  198. return ret;
  199. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  200. intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
  201. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  202. intel_ring_emit(engine, 0);
  203. intel_ring_emit(engine, 0);
  204. intel_ring_emit(engine, MI_NOOP);
  205. intel_ring_advance(engine);
  206. return 0;
  207. }
  208. static int
  209. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  210. u32 invalidate_domains, u32 flush_domains)
  211. {
  212. struct intel_engine_cs *engine = req->engine;
  213. u32 flags = 0;
  214. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  215. int ret;
  216. /* Force SNB workarounds for PIPE_CONTROL flushes */
  217. ret = intel_emit_post_sync_nonzero_flush(req);
  218. if (ret)
  219. return ret;
  220. /* Just flush everything. Experiments have shown that reducing the
  221. * number of bits based on the write domains has little performance
  222. * impact.
  223. */
  224. if (flush_domains) {
  225. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  226. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  227. /*
  228. * Ensure that any following seqno writes only happen
  229. * when the render cache is indeed flushed.
  230. */
  231. flags |= PIPE_CONTROL_CS_STALL;
  232. }
  233. if (invalidate_domains) {
  234. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  235. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  236. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  237. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  238. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  239. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  240. /*
  241. * TLB invalidate requires a post-sync write.
  242. */
  243. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  244. }
  245. ret = intel_ring_begin(req, 4);
  246. if (ret)
  247. return ret;
  248. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  249. intel_ring_emit(engine, flags);
  250. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  251. intel_ring_emit(engine, 0);
  252. intel_ring_advance(engine);
  253. return 0;
  254. }
  255. static int
  256. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  257. {
  258. struct intel_engine_cs *engine = req->engine;
  259. int ret;
  260. ret = intel_ring_begin(req, 4);
  261. if (ret)
  262. return ret;
  263. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  264. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  265. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  266. intel_ring_emit(engine, 0);
  267. intel_ring_emit(engine, 0);
  268. intel_ring_advance(engine);
  269. return 0;
  270. }
  271. static int
  272. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  273. u32 invalidate_domains, u32 flush_domains)
  274. {
  275. struct intel_engine_cs *engine = req->engine;
  276. u32 flags = 0;
  277. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  278. int ret;
  279. /*
  280. * Ensure that any following seqno writes only happen when the render
  281. * cache is indeed flushed.
  282. *
  283. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  284. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  285. * don't try to be clever and just set it unconditionally.
  286. */
  287. flags |= PIPE_CONTROL_CS_STALL;
  288. /* Just flush everything. Experiments have shown that reducing the
  289. * number of bits based on the write domains has little performance
  290. * impact.
  291. */
  292. if (flush_domains) {
  293. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  294. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  295. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  296. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  297. }
  298. if (invalidate_domains) {
  299. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  300. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  301. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  302. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  303. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  304. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  305. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  306. /*
  307. * TLB invalidate requires a post-sync write.
  308. */
  309. flags |= PIPE_CONTROL_QW_WRITE;
  310. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  311. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  312. /* Workaround: we must issue a pipe_control with CS-stall bit
  313. * set before a pipe_control command that has the state cache
  314. * invalidate bit set. */
  315. gen7_render_ring_cs_stall_wa(req);
  316. }
  317. ret = intel_ring_begin(req, 4);
  318. if (ret)
  319. return ret;
  320. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  321. intel_ring_emit(engine, flags);
  322. intel_ring_emit(engine, scratch_addr);
  323. intel_ring_emit(engine, 0);
  324. intel_ring_advance(engine);
  325. return 0;
  326. }
  327. static int
  328. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  329. u32 flags, u32 scratch_addr)
  330. {
  331. struct intel_engine_cs *engine = req->engine;
  332. int ret;
  333. ret = intel_ring_begin(req, 6);
  334. if (ret)
  335. return ret;
  336. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
  337. intel_ring_emit(engine, flags);
  338. intel_ring_emit(engine, scratch_addr);
  339. intel_ring_emit(engine, 0);
  340. intel_ring_emit(engine, 0);
  341. intel_ring_emit(engine, 0);
  342. intel_ring_advance(engine);
  343. return 0;
  344. }
  345. static int
  346. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  347. u32 invalidate_domains, u32 flush_domains)
  348. {
  349. u32 flags = 0;
  350. u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  351. int ret;
  352. flags |= PIPE_CONTROL_CS_STALL;
  353. if (flush_domains) {
  354. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  355. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  356. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  357. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  358. }
  359. if (invalidate_domains) {
  360. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  361. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  362. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  363. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  364. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  365. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  366. flags |= PIPE_CONTROL_QW_WRITE;
  367. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  368. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  369. ret = gen8_emit_pipe_control(req,
  370. PIPE_CONTROL_CS_STALL |
  371. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  372. 0);
  373. if (ret)
  374. return ret;
  375. }
  376. return gen8_emit_pipe_control(req, flags, scratch_addr);
  377. }
  378. static void ring_write_tail(struct intel_engine_cs *engine,
  379. u32 value)
  380. {
  381. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  382. I915_WRITE_TAIL(engine, value);
  383. }
  384. u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
  385. {
  386. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  387. u64 acthd;
  388. if (INTEL_INFO(engine->dev)->gen >= 8)
  389. acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
  390. RING_ACTHD_UDW(engine->mmio_base));
  391. else if (INTEL_INFO(engine->dev)->gen >= 4)
  392. acthd = I915_READ(RING_ACTHD(engine->mmio_base));
  393. else
  394. acthd = I915_READ(ACTHD);
  395. return acthd;
  396. }
  397. static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
  398. {
  399. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  400. u32 addr;
  401. addr = dev_priv->status_page_dmah->busaddr;
  402. if (INTEL_INFO(engine->dev)->gen >= 4)
  403. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  404. I915_WRITE(HWS_PGA, addr);
  405. }
  406. static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
  407. {
  408. struct drm_device *dev = engine->dev;
  409. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  410. i915_reg_t mmio;
  411. /* The ring status page addresses are no longer next to the rest of
  412. * the ring registers as of gen7.
  413. */
  414. if (IS_GEN7(dev)) {
  415. switch (engine->id) {
  416. case RCS:
  417. mmio = RENDER_HWS_PGA_GEN7;
  418. break;
  419. case BCS:
  420. mmio = BLT_HWS_PGA_GEN7;
  421. break;
  422. /*
  423. * VCS2 actually doesn't exist on Gen7. Only shut up
  424. * gcc switch check warning
  425. */
  426. case VCS2:
  427. case VCS:
  428. mmio = BSD_HWS_PGA_GEN7;
  429. break;
  430. case VECS:
  431. mmio = VEBOX_HWS_PGA_GEN7;
  432. break;
  433. }
  434. } else if (IS_GEN6(engine->dev)) {
  435. mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
  436. } else {
  437. /* XXX: gen8 returns to sanity */
  438. mmio = RING_HWS_PGA(engine->mmio_base);
  439. }
  440. I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
  441. POSTING_READ(mmio);
  442. /*
  443. * Flush the TLB for this page
  444. *
  445. * FIXME: These two bits have disappeared on gen8, so a question
  446. * arises: do we still need this and if so how should we go about
  447. * invalidating the TLB?
  448. */
  449. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  450. i915_reg_t reg = RING_INSTPM(engine->mmio_base);
  451. /* ring should be idle before issuing a sync flush*/
  452. WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
  453. I915_WRITE(reg,
  454. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  455. INSTPM_SYNC_FLUSH));
  456. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  457. 1000))
  458. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  459. engine->name);
  460. }
  461. }
  462. static bool stop_ring(struct intel_engine_cs *engine)
  463. {
  464. struct drm_i915_private *dev_priv = to_i915(engine->dev);
  465. if (!IS_GEN2(engine->dev)) {
  466. I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
  467. if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
  468. DRM_ERROR("%s : timed out trying to stop ring\n",
  469. engine->name);
  470. /* Sometimes we observe that the idle flag is not
  471. * set even though the ring is empty. So double
  472. * check before giving up.
  473. */
  474. if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
  475. return false;
  476. }
  477. }
  478. I915_WRITE_CTL(engine, 0);
  479. I915_WRITE_HEAD(engine, 0);
  480. engine->write_tail(engine, 0);
  481. if (!IS_GEN2(engine->dev)) {
  482. (void)I915_READ_CTL(engine);
  483. I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
  484. }
  485. return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
  486. }
  487. void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
  488. {
  489. memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
  490. }
  491. static int init_ring_common(struct intel_engine_cs *engine)
  492. {
  493. struct drm_device *dev = engine->dev;
  494. struct drm_i915_private *dev_priv = dev->dev_private;
  495. struct intel_ringbuffer *ringbuf = engine->buffer;
  496. struct drm_i915_gem_object *obj = ringbuf->obj;
  497. int ret = 0;
  498. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  499. if (!stop_ring(engine)) {
  500. /* G45 ring initialization often fails to reset head to zero */
  501. DRM_DEBUG_KMS("%s head not reset to zero "
  502. "ctl %08x head %08x tail %08x start %08x\n",
  503. engine->name,
  504. I915_READ_CTL(engine),
  505. I915_READ_HEAD(engine),
  506. I915_READ_TAIL(engine),
  507. I915_READ_START(engine));
  508. if (!stop_ring(engine)) {
  509. DRM_ERROR("failed to set %s head to zero "
  510. "ctl %08x head %08x tail %08x start %08x\n",
  511. engine->name,
  512. I915_READ_CTL(engine),
  513. I915_READ_HEAD(engine),
  514. I915_READ_TAIL(engine),
  515. I915_READ_START(engine));
  516. ret = -EIO;
  517. goto out;
  518. }
  519. }
  520. if (I915_NEED_GFX_HWS(dev))
  521. intel_ring_setup_status_page(engine);
  522. else
  523. ring_setup_phys_status_page(engine);
  524. /* Enforce ordering by reading HEAD register back */
  525. I915_READ_HEAD(engine);
  526. /* Initialize the ring. This must happen _after_ we've cleared the ring
  527. * registers with the above sequence (the readback of the HEAD registers
  528. * also enforces ordering), otherwise the hw might lose the new ring
  529. * register values. */
  530. I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
  531. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  532. if (I915_READ_HEAD(engine))
  533. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  534. engine->name, I915_READ_HEAD(engine));
  535. I915_WRITE_HEAD(engine, 0);
  536. (void)I915_READ_HEAD(engine);
  537. I915_WRITE_CTL(engine,
  538. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  539. | RING_VALID);
  540. /* If the head is still not zero, the ring is dead */
  541. if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
  542. I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
  543. (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
  544. DRM_ERROR("%s initialization failed "
  545. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  546. engine->name,
  547. I915_READ_CTL(engine),
  548. I915_READ_CTL(engine) & RING_VALID,
  549. I915_READ_HEAD(engine), I915_READ_TAIL(engine),
  550. I915_READ_START(engine),
  551. (unsigned long)i915_gem_obj_ggtt_offset(obj));
  552. ret = -EIO;
  553. goto out;
  554. }
  555. ringbuf->last_retired_head = -1;
  556. ringbuf->head = I915_READ_HEAD(engine);
  557. ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
  558. intel_ring_update_space(ringbuf);
  559. intel_engine_init_hangcheck(engine);
  560. out:
  561. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  562. return ret;
  563. }
  564. void
  565. intel_fini_pipe_control(struct intel_engine_cs *engine)
  566. {
  567. struct drm_device *dev = engine->dev;
  568. if (engine->scratch.obj == NULL)
  569. return;
  570. if (INTEL_INFO(dev)->gen >= 5) {
  571. kunmap(sg_page(engine->scratch.obj->pages->sgl));
  572. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  573. }
  574. drm_gem_object_unreference(&engine->scratch.obj->base);
  575. engine->scratch.obj = NULL;
  576. }
  577. int
  578. intel_init_pipe_control(struct intel_engine_cs *engine)
  579. {
  580. int ret;
  581. WARN_ON(engine->scratch.obj);
  582. engine->scratch.obj = i915_gem_object_create(engine->dev, 4096);
  583. if (IS_ERR(engine->scratch.obj)) {
  584. DRM_ERROR("Failed to allocate seqno page\n");
  585. ret = PTR_ERR(engine->scratch.obj);
  586. engine->scratch.obj = NULL;
  587. goto err;
  588. }
  589. ret = i915_gem_object_set_cache_level(engine->scratch.obj,
  590. I915_CACHE_LLC);
  591. if (ret)
  592. goto err_unref;
  593. ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
  594. if (ret)
  595. goto err_unref;
  596. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
  597. engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
  598. if (engine->scratch.cpu_page == NULL) {
  599. ret = -ENOMEM;
  600. goto err_unpin;
  601. }
  602. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  603. engine->name, engine->scratch.gtt_offset);
  604. return 0;
  605. err_unpin:
  606. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  607. err_unref:
  608. drm_gem_object_unreference(&engine->scratch.obj->base);
  609. err:
  610. return ret;
  611. }
  612. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  613. {
  614. int ret, i;
  615. struct intel_engine_cs *engine = req->engine;
  616. struct drm_device *dev = engine->dev;
  617. struct drm_i915_private *dev_priv = dev->dev_private;
  618. struct i915_workarounds *w = &dev_priv->workarounds;
  619. if (w->count == 0)
  620. return 0;
  621. engine->gpu_caches_dirty = true;
  622. ret = intel_ring_flush_all_caches(req);
  623. if (ret)
  624. return ret;
  625. ret = intel_ring_begin(req, (w->count * 2 + 2));
  626. if (ret)
  627. return ret;
  628. intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
  629. for (i = 0; i < w->count; i++) {
  630. intel_ring_emit_reg(engine, w->reg[i].addr);
  631. intel_ring_emit(engine, w->reg[i].value);
  632. }
  633. intel_ring_emit(engine, MI_NOOP);
  634. intel_ring_advance(engine);
  635. engine->gpu_caches_dirty = true;
  636. ret = intel_ring_flush_all_caches(req);
  637. if (ret)
  638. return ret;
  639. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  640. return 0;
  641. }
  642. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  643. {
  644. int ret;
  645. ret = intel_ring_workarounds_emit(req);
  646. if (ret != 0)
  647. return ret;
  648. ret = i915_gem_render_state_init(req);
  649. if (ret)
  650. return ret;
  651. return 0;
  652. }
  653. static int wa_add(struct drm_i915_private *dev_priv,
  654. i915_reg_t addr,
  655. const u32 mask, const u32 val)
  656. {
  657. const u32 idx = dev_priv->workarounds.count;
  658. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  659. return -ENOSPC;
  660. dev_priv->workarounds.reg[idx].addr = addr;
  661. dev_priv->workarounds.reg[idx].value = val;
  662. dev_priv->workarounds.reg[idx].mask = mask;
  663. dev_priv->workarounds.count++;
  664. return 0;
  665. }
  666. #define WA_REG(addr, mask, val) do { \
  667. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  668. if (r) \
  669. return r; \
  670. } while (0)
  671. #define WA_SET_BIT_MASKED(addr, mask) \
  672. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  673. #define WA_CLR_BIT_MASKED(addr, mask) \
  674. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  675. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  676. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  677. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  678. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  679. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  680. static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
  681. i915_reg_t reg)
  682. {
  683. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  684. struct i915_workarounds *wa = &dev_priv->workarounds;
  685. const uint32_t index = wa->hw_whitelist_count[engine->id];
  686. if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
  687. return -EINVAL;
  688. WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
  689. i915_mmio_reg_offset(reg));
  690. wa->hw_whitelist_count[engine->id]++;
  691. return 0;
  692. }
  693. static int gen8_init_workarounds(struct intel_engine_cs *engine)
  694. {
  695. struct drm_device *dev = engine->dev;
  696. struct drm_i915_private *dev_priv = dev->dev_private;
  697. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  698. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  699. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  700. /* WaDisablePartialInstShootdown:bdw,chv */
  701. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  702. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  703. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  704. * workaround for for a possible hang in the unlikely event a TLB
  705. * invalidation occurs during a PSD flush.
  706. */
  707. /* WaForceEnableNonCoherent:bdw,chv */
  708. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  709. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  710. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  711. HDC_FORCE_NON_COHERENT);
  712. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  713. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  714. * polygons in the same 8x4 pixel/sample area to be processed without
  715. * stalling waiting for the earlier ones to write to Hierarchical Z
  716. * buffer."
  717. *
  718. * This optimization is off by default for BDW and CHV; turn it on.
  719. */
  720. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  721. /* Wa4x4STCOptimizationDisable:bdw,chv */
  722. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  723. /*
  724. * BSpec recommends 8x4 when MSAA is used,
  725. * however in practice 16x4 seems fastest.
  726. *
  727. * Note that PS/WM thread counts depend on the WIZ hashing
  728. * disable bit, which we don't touch here, but it's good
  729. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  730. */
  731. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  732. GEN6_WIZ_HASHING_MASK,
  733. GEN6_WIZ_HASHING_16x4);
  734. return 0;
  735. }
  736. static int bdw_init_workarounds(struct intel_engine_cs *engine)
  737. {
  738. int ret;
  739. struct drm_device *dev = engine->dev;
  740. struct drm_i915_private *dev_priv = dev->dev_private;
  741. ret = gen8_init_workarounds(engine);
  742. if (ret)
  743. return ret;
  744. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  745. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  746. /* WaDisableDopClockGating:bdw */
  747. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  748. DOP_CLOCK_GATING_DISABLE);
  749. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  750. GEN8_SAMPLER_POWER_BYPASS_DIS);
  751. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  752. /* WaForceContextSaveRestoreNonCoherent:bdw */
  753. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  754. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  755. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  756. return 0;
  757. }
  758. static int chv_init_workarounds(struct intel_engine_cs *engine)
  759. {
  760. int ret;
  761. struct drm_device *dev = engine->dev;
  762. struct drm_i915_private *dev_priv = dev->dev_private;
  763. ret = gen8_init_workarounds(engine);
  764. if (ret)
  765. return ret;
  766. /* WaDisableThreadStallDopClockGating:chv */
  767. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  768. /* Improve HiZ throughput on CHV. */
  769. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  770. return 0;
  771. }
  772. static int gen9_init_workarounds(struct intel_engine_cs *engine)
  773. {
  774. struct drm_device *dev = engine->dev;
  775. struct drm_i915_private *dev_priv = dev->dev_private;
  776. uint32_t tmp;
  777. int ret;
  778. /* WaEnableLbsSlaRetryTimerDecrement:skl */
  779. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  780. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  781. /* WaDisableKillLogic:bxt,skl */
  782. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  783. ECOCHK_DIS_TLB);
  784. /* WaClearFlowControlGpgpuContextSave:skl,bxt */
  785. /* WaDisablePartialInstShootdown:skl,bxt */
  786. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  787. FLOW_CONTROL_ENABLE |
  788. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  789. /* Syncing dependencies between camera and graphics:skl,bxt */
  790. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  791. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  792. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  793. if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
  794. IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  795. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  796. GEN9_DG_MIRROR_FIX_ENABLE);
  797. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  798. if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
  799. IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  800. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  801. GEN9_RHWO_OPTIMIZATION_DISABLE);
  802. /*
  803. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  804. * but we do that in per ctx batchbuffer as there is an issue
  805. * with this register not getting restored on ctx restore
  806. */
  807. }
  808. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
  809. /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt */
  810. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  811. GEN9_ENABLE_YV12_BUGFIX |
  812. GEN9_ENABLE_GPGPU_PREEMPTION);
  813. /* Wa4x4STCOptimizationDisable:skl,bxt */
  814. /* WaDisablePartialResolveInVc:skl,bxt */
  815. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  816. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  817. /* WaCcsTlbPrefetchDisable:skl,bxt */
  818. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  819. GEN9_CCS_TLB_PREFETCH_ENABLE);
  820. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  821. if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
  822. IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  823. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  824. PIXEL_MASK_CAMMING_DISABLE);
  825. /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
  826. tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
  827. if (IS_SKL_REVID(dev, SKL_REVID_F0, REVID_FOREVER) ||
  828. IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
  829. tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
  830. WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
  831. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
  832. if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
  833. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  834. GEN8_SAMPLER_POWER_BYPASS_DIS);
  835. /* WaDisableSTUnitPowerOptimization:skl,bxt */
  836. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  837. /* WaOCLCoherentLineFlush:skl,bxt */
  838. I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
  839. GEN8_LQSC_FLUSH_COHERENT_LINES));
  840. /* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
  841. ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
  842. if (ret)
  843. return ret;
  844. /* WaAllowUMDToModifyHDCChicken1:skl,bxt */
  845. ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
  846. if (ret)
  847. return ret;
  848. return 0;
  849. }
  850. static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
  851. {
  852. struct drm_device *dev = engine->dev;
  853. struct drm_i915_private *dev_priv = dev->dev_private;
  854. u8 vals[3] = { 0, 0, 0 };
  855. unsigned int i;
  856. for (i = 0; i < 3; i++) {
  857. u8 ss;
  858. /*
  859. * Only consider slices where one, and only one, subslice has 7
  860. * EUs
  861. */
  862. if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
  863. continue;
  864. /*
  865. * subslice_7eu[i] != 0 (because of the check above) and
  866. * ss_max == 4 (maximum number of subslices possible per slice)
  867. *
  868. * -> 0 <= ss <= 3;
  869. */
  870. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  871. vals[i] = 3 - ss;
  872. }
  873. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  874. return 0;
  875. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  876. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  877. GEN9_IZ_HASHING_MASK(2) |
  878. GEN9_IZ_HASHING_MASK(1) |
  879. GEN9_IZ_HASHING_MASK(0),
  880. GEN9_IZ_HASHING(2, vals[2]) |
  881. GEN9_IZ_HASHING(1, vals[1]) |
  882. GEN9_IZ_HASHING(0, vals[0]));
  883. return 0;
  884. }
  885. static int skl_init_workarounds(struct intel_engine_cs *engine)
  886. {
  887. int ret;
  888. struct drm_device *dev = engine->dev;
  889. struct drm_i915_private *dev_priv = dev->dev_private;
  890. ret = gen9_init_workarounds(engine);
  891. if (ret)
  892. return ret;
  893. /*
  894. * Actual WA is to disable percontext preemption granularity control
  895. * until D0 which is the default case so this is equivalent to
  896. * !WaDisablePerCtxtPreemptionGranularityControl:skl
  897. */
  898. if (IS_SKL_REVID(dev, SKL_REVID_E0, REVID_FOREVER)) {
  899. I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
  900. _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
  901. }
  902. if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
  903. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  904. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  905. _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
  906. }
  907. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  908. * involving this register should also be added to WA batch as required.
  909. */
  910. if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
  911. /* WaDisableLSQCROPERFforOCL:skl */
  912. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  913. GEN8_LQSC_RO_PERF_DIS);
  914. /* WaEnableGapsTsvCreditFix:skl */
  915. if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
  916. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  917. GEN9_GAPS_TSV_CREDIT_DISABLE));
  918. }
  919. /* WaDisablePowerCompilerClockGating:skl */
  920. if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
  921. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  922. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  923. /* This is tied to WaForceContextSaveRestoreNonCoherent */
  924. if (IS_SKL_REVID(dev, 0, REVID_FOREVER)) {
  925. /*
  926. *Use Force Non-Coherent whenever executing a 3D context. This
  927. * is a workaround for a possible hang in the unlikely event
  928. * a TLB invalidation occurs during a PSD flush.
  929. */
  930. /* WaForceEnableNonCoherent:skl */
  931. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  932. HDC_FORCE_NON_COHERENT);
  933. /* WaDisableHDCInvalidation:skl */
  934. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  935. BDW_DISABLE_HDC_INVALIDATION);
  936. }
  937. /* WaBarrierPerformanceFixDisable:skl */
  938. if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
  939. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  940. HDC_FENCE_DEST_SLM_DISABLE |
  941. HDC_BARRIER_PERFORMANCE_DISABLE);
  942. /* WaDisableSbeCacheDispatchPortSharing:skl */
  943. if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
  944. WA_SET_BIT_MASKED(
  945. GEN7_HALF_SLICE_CHICKEN1,
  946. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  947. /* WaDisableLSQCROPERFforOCL:skl */
  948. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  949. if (ret)
  950. return ret;
  951. return skl_tune_iz_hashing(engine);
  952. }
  953. static int bxt_init_workarounds(struct intel_engine_cs *engine)
  954. {
  955. int ret;
  956. struct drm_device *dev = engine->dev;
  957. struct drm_i915_private *dev_priv = dev->dev_private;
  958. ret = gen9_init_workarounds(engine);
  959. if (ret)
  960. return ret;
  961. /* WaStoreMultiplePTEenable:bxt */
  962. /* This is a requirement according to Hardware specification */
  963. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  964. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  965. /* WaSetClckGatingDisableMedia:bxt */
  966. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  967. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  968. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  969. }
  970. /* WaDisableThreadStallDopClockGating:bxt */
  971. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  972. STALL_DOP_GATING_DISABLE);
  973. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  974. if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
  975. WA_SET_BIT_MASKED(
  976. GEN7_HALF_SLICE_CHICKEN1,
  977. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  978. }
  979. /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
  980. /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
  981. /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
  982. /* WaDisableLSQCROPERFforOCL:bxt */
  983. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  984. ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
  985. if (ret)
  986. return ret;
  987. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  988. if (ret)
  989. return ret;
  990. }
  991. /* WaProgramL3SqcReg1DefaultForPerf:bxt */
  992. if (IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
  993. I915_WRITE(GEN8_L3SQCREG1, BXT_WA_L3SQCREG1_DEFAULT);
  994. return 0;
  995. }
  996. int init_workarounds_ring(struct intel_engine_cs *engine)
  997. {
  998. struct drm_device *dev = engine->dev;
  999. struct drm_i915_private *dev_priv = dev->dev_private;
  1000. WARN_ON(engine->id != RCS);
  1001. dev_priv->workarounds.count = 0;
  1002. dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
  1003. if (IS_BROADWELL(dev))
  1004. return bdw_init_workarounds(engine);
  1005. if (IS_CHERRYVIEW(dev))
  1006. return chv_init_workarounds(engine);
  1007. if (IS_SKYLAKE(dev))
  1008. return skl_init_workarounds(engine);
  1009. if (IS_BROXTON(dev))
  1010. return bxt_init_workarounds(engine);
  1011. return 0;
  1012. }
  1013. static int init_render_ring(struct intel_engine_cs *engine)
  1014. {
  1015. struct drm_device *dev = engine->dev;
  1016. struct drm_i915_private *dev_priv = dev->dev_private;
  1017. int ret = init_ring_common(engine);
  1018. if (ret)
  1019. return ret;
  1020. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  1021. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  1022. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  1023. /* We need to disable the AsyncFlip performance optimisations in order
  1024. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  1025. * programmed to '1' on all products.
  1026. *
  1027. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  1028. */
  1029. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  1030. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  1031. /* Required for the hardware to program scanline values for waiting */
  1032. /* WaEnableFlushTlbInvalidationMode:snb */
  1033. if (INTEL_INFO(dev)->gen == 6)
  1034. I915_WRITE(GFX_MODE,
  1035. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  1036. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  1037. if (IS_GEN7(dev))
  1038. I915_WRITE(GFX_MODE_GEN7,
  1039. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  1040. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  1041. if (IS_GEN6(dev)) {
  1042. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  1043. * "If this bit is set, STCunit will have LRA as replacement
  1044. * policy. [...] This bit must be reset. LRA replacement
  1045. * policy is not supported."
  1046. */
  1047. I915_WRITE(CACHE_MODE_0,
  1048. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  1049. }
  1050. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  1051. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  1052. if (HAS_L3_DPF(dev))
  1053. I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
  1054. return init_workarounds_ring(engine);
  1055. }
  1056. static void render_ring_cleanup(struct intel_engine_cs *engine)
  1057. {
  1058. struct drm_device *dev = engine->dev;
  1059. struct drm_i915_private *dev_priv = dev->dev_private;
  1060. if (dev_priv->semaphore_obj) {
  1061. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  1062. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  1063. dev_priv->semaphore_obj = NULL;
  1064. }
  1065. intel_fini_pipe_control(engine);
  1066. }
  1067. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  1068. unsigned int num_dwords)
  1069. {
  1070. #define MBOX_UPDATE_DWORDS 8
  1071. struct intel_engine_cs *signaller = signaller_req->engine;
  1072. struct drm_device *dev = signaller->dev;
  1073. struct drm_i915_private *dev_priv = dev->dev_private;
  1074. struct intel_engine_cs *waiter;
  1075. enum intel_engine_id id;
  1076. int ret, num_rings;
  1077. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1078. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1079. #undef MBOX_UPDATE_DWORDS
  1080. ret = intel_ring_begin(signaller_req, num_dwords);
  1081. if (ret)
  1082. return ret;
  1083. for_each_engine_id(waiter, dev_priv, id) {
  1084. u32 seqno;
  1085. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1086. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1087. continue;
  1088. seqno = i915_gem_request_get_seqno(signaller_req);
  1089. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1090. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1091. PIPE_CONTROL_QW_WRITE |
  1092. PIPE_CONTROL_FLUSH_ENABLE);
  1093. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1094. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1095. intel_ring_emit(signaller, seqno);
  1096. intel_ring_emit(signaller, 0);
  1097. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1098. MI_SEMAPHORE_TARGET(waiter->id));
  1099. intel_ring_emit(signaller, 0);
  1100. }
  1101. return 0;
  1102. }
  1103. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1104. unsigned int num_dwords)
  1105. {
  1106. #define MBOX_UPDATE_DWORDS 6
  1107. struct intel_engine_cs *signaller = signaller_req->engine;
  1108. struct drm_device *dev = signaller->dev;
  1109. struct drm_i915_private *dev_priv = dev->dev_private;
  1110. struct intel_engine_cs *waiter;
  1111. enum intel_engine_id id;
  1112. int ret, num_rings;
  1113. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1114. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1115. #undef MBOX_UPDATE_DWORDS
  1116. ret = intel_ring_begin(signaller_req, num_dwords);
  1117. if (ret)
  1118. return ret;
  1119. for_each_engine_id(waiter, dev_priv, id) {
  1120. u32 seqno;
  1121. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1122. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1123. continue;
  1124. seqno = i915_gem_request_get_seqno(signaller_req);
  1125. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1126. MI_FLUSH_DW_OP_STOREDW);
  1127. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1128. MI_FLUSH_DW_USE_GTT);
  1129. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1130. intel_ring_emit(signaller, seqno);
  1131. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1132. MI_SEMAPHORE_TARGET(waiter->id));
  1133. intel_ring_emit(signaller, 0);
  1134. }
  1135. return 0;
  1136. }
  1137. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1138. unsigned int num_dwords)
  1139. {
  1140. struct intel_engine_cs *signaller = signaller_req->engine;
  1141. struct drm_device *dev = signaller->dev;
  1142. struct drm_i915_private *dev_priv = dev->dev_private;
  1143. struct intel_engine_cs *useless;
  1144. enum intel_engine_id id;
  1145. int ret, num_rings;
  1146. #define MBOX_UPDATE_DWORDS 3
  1147. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1148. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1149. #undef MBOX_UPDATE_DWORDS
  1150. ret = intel_ring_begin(signaller_req, num_dwords);
  1151. if (ret)
  1152. return ret;
  1153. for_each_engine_id(useless, dev_priv, id) {
  1154. i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
  1155. if (i915_mmio_reg_valid(mbox_reg)) {
  1156. u32 seqno = i915_gem_request_get_seqno(signaller_req);
  1157. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1158. intel_ring_emit_reg(signaller, mbox_reg);
  1159. intel_ring_emit(signaller, seqno);
  1160. }
  1161. }
  1162. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1163. if (num_rings % 2 == 0)
  1164. intel_ring_emit(signaller, MI_NOOP);
  1165. return 0;
  1166. }
  1167. /**
  1168. * gen6_add_request - Update the semaphore mailbox registers
  1169. *
  1170. * @request - request to write to the ring
  1171. *
  1172. * Update the mailbox registers in the *other* rings with the current seqno.
  1173. * This acts like a signal in the canonical semaphore.
  1174. */
  1175. static int
  1176. gen6_add_request(struct drm_i915_gem_request *req)
  1177. {
  1178. struct intel_engine_cs *engine = req->engine;
  1179. int ret;
  1180. if (engine->semaphore.signal)
  1181. ret = engine->semaphore.signal(req, 4);
  1182. else
  1183. ret = intel_ring_begin(req, 4);
  1184. if (ret)
  1185. return ret;
  1186. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1187. intel_ring_emit(engine,
  1188. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1189. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1190. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1191. __intel_ring_advance(engine);
  1192. return 0;
  1193. }
  1194. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  1195. u32 seqno)
  1196. {
  1197. struct drm_i915_private *dev_priv = dev->dev_private;
  1198. return dev_priv->last_seqno < seqno;
  1199. }
  1200. /**
  1201. * intel_ring_sync - sync the waiter to the signaller on seqno
  1202. *
  1203. * @waiter - ring that is waiting
  1204. * @signaller - ring which has, or will signal
  1205. * @seqno - seqno which the waiter will block on
  1206. */
  1207. static int
  1208. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1209. struct intel_engine_cs *signaller,
  1210. u32 seqno)
  1211. {
  1212. struct intel_engine_cs *waiter = waiter_req->engine;
  1213. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  1214. int ret;
  1215. ret = intel_ring_begin(waiter_req, 4);
  1216. if (ret)
  1217. return ret;
  1218. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1219. MI_SEMAPHORE_GLOBAL_GTT |
  1220. MI_SEMAPHORE_POLL |
  1221. MI_SEMAPHORE_SAD_GTE_SDD);
  1222. intel_ring_emit(waiter, seqno);
  1223. intel_ring_emit(waiter,
  1224. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1225. intel_ring_emit(waiter,
  1226. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1227. intel_ring_advance(waiter);
  1228. return 0;
  1229. }
  1230. static int
  1231. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1232. struct intel_engine_cs *signaller,
  1233. u32 seqno)
  1234. {
  1235. struct intel_engine_cs *waiter = waiter_req->engine;
  1236. u32 dw1 = MI_SEMAPHORE_MBOX |
  1237. MI_SEMAPHORE_COMPARE |
  1238. MI_SEMAPHORE_REGISTER;
  1239. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1240. int ret;
  1241. /* Throughout all of the GEM code, seqno passed implies our current
  1242. * seqno is >= the last seqno executed. However for hardware the
  1243. * comparison is strictly greater than.
  1244. */
  1245. seqno -= 1;
  1246. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1247. ret = intel_ring_begin(waiter_req, 4);
  1248. if (ret)
  1249. return ret;
  1250. /* If seqno wrap happened, omit the wait with no-ops */
  1251. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1252. intel_ring_emit(waiter, dw1 | wait_mbox);
  1253. intel_ring_emit(waiter, seqno);
  1254. intel_ring_emit(waiter, 0);
  1255. intel_ring_emit(waiter, MI_NOOP);
  1256. } else {
  1257. intel_ring_emit(waiter, MI_NOOP);
  1258. intel_ring_emit(waiter, MI_NOOP);
  1259. intel_ring_emit(waiter, MI_NOOP);
  1260. intel_ring_emit(waiter, MI_NOOP);
  1261. }
  1262. intel_ring_advance(waiter);
  1263. return 0;
  1264. }
  1265. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1266. do { \
  1267. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1268. PIPE_CONTROL_DEPTH_STALL); \
  1269. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1270. intel_ring_emit(ring__, 0); \
  1271. intel_ring_emit(ring__, 0); \
  1272. } while (0)
  1273. static int
  1274. pc_render_add_request(struct drm_i915_gem_request *req)
  1275. {
  1276. struct intel_engine_cs *engine = req->engine;
  1277. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1278. int ret;
  1279. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1280. * incoherent with writes to memory, i.e. completely fubar,
  1281. * so we need to use PIPE_NOTIFY instead.
  1282. *
  1283. * However, we also need to workaround the qword write
  1284. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1285. * memory before requesting an interrupt.
  1286. */
  1287. ret = intel_ring_begin(req, 32);
  1288. if (ret)
  1289. return ret;
  1290. intel_ring_emit(engine,
  1291. GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1292. PIPE_CONTROL_WRITE_FLUSH |
  1293. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1294. intel_ring_emit(engine,
  1295. engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1296. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1297. intel_ring_emit(engine, 0);
  1298. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1299. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1300. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1301. scratch_addr += 2 * CACHELINE_BYTES;
  1302. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1303. scratch_addr += 2 * CACHELINE_BYTES;
  1304. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1305. scratch_addr += 2 * CACHELINE_BYTES;
  1306. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1307. scratch_addr += 2 * CACHELINE_BYTES;
  1308. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1309. intel_ring_emit(engine,
  1310. GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1311. PIPE_CONTROL_WRITE_FLUSH |
  1312. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1313. PIPE_CONTROL_NOTIFY);
  1314. intel_ring_emit(engine,
  1315. engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1316. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1317. intel_ring_emit(engine, 0);
  1318. __intel_ring_advance(engine);
  1319. return 0;
  1320. }
  1321. static void
  1322. gen6_seqno_barrier(struct intel_engine_cs *engine)
  1323. {
  1324. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  1325. /* Workaround to force correct ordering between irq and seqno writes on
  1326. * ivb (and maybe also on snb) by reading from a CS register (like
  1327. * ACTHD) before reading the status page.
  1328. *
  1329. * Note that this effectively stalls the read by the time it takes to
  1330. * do a memory transaction, which more or less ensures that the write
  1331. * from the GPU has sufficient time to invalidate the CPU cacheline.
  1332. * Alternatively we could delay the interrupt from the CS ring to give
  1333. * the write time to land, but that would incur a delay after every
  1334. * batch i.e. much more frequent than a delay when waiting for the
  1335. * interrupt (with the same net latency).
  1336. *
  1337. * Also note that to prevent whole machine hangs on gen7, we have to
  1338. * take the spinlock to guard against concurrent cacheline access.
  1339. */
  1340. spin_lock_irq(&dev_priv->uncore.lock);
  1341. POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
  1342. spin_unlock_irq(&dev_priv->uncore.lock);
  1343. }
  1344. static u32
  1345. ring_get_seqno(struct intel_engine_cs *engine)
  1346. {
  1347. return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
  1348. }
  1349. static void
  1350. ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
  1351. {
  1352. intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
  1353. }
  1354. static u32
  1355. pc_render_get_seqno(struct intel_engine_cs *engine)
  1356. {
  1357. return engine->scratch.cpu_page[0];
  1358. }
  1359. static void
  1360. pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
  1361. {
  1362. engine->scratch.cpu_page[0] = seqno;
  1363. }
  1364. static bool
  1365. gen5_ring_get_irq(struct intel_engine_cs *engine)
  1366. {
  1367. struct drm_device *dev = engine->dev;
  1368. struct drm_i915_private *dev_priv = dev->dev_private;
  1369. unsigned long flags;
  1370. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1371. return false;
  1372. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1373. if (engine->irq_refcount++ == 0)
  1374. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1375. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1376. return true;
  1377. }
  1378. static void
  1379. gen5_ring_put_irq(struct intel_engine_cs *engine)
  1380. {
  1381. struct drm_device *dev = engine->dev;
  1382. struct drm_i915_private *dev_priv = dev->dev_private;
  1383. unsigned long flags;
  1384. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1385. if (--engine->irq_refcount == 0)
  1386. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1387. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1388. }
  1389. static bool
  1390. i9xx_ring_get_irq(struct intel_engine_cs *engine)
  1391. {
  1392. struct drm_device *dev = engine->dev;
  1393. struct drm_i915_private *dev_priv = dev->dev_private;
  1394. unsigned long flags;
  1395. if (!intel_irqs_enabled(dev_priv))
  1396. return false;
  1397. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1398. if (engine->irq_refcount++ == 0) {
  1399. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1400. I915_WRITE(IMR, dev_priv->irq_mask);
  1401. POSTING_READ(IMR);
  1402. }
  1403. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1404. return true;
  1405. }
  1406. static void
  1407. i9xx_ring_put_irq(struct intel_engine_cs *engine)
  1408. {
  1409. struct drm_device *dev = engine->dev;
  1410. struct drm_i915_private *dev_priv = dev->dev_private;
  1411. unsigned long flags;
  1412. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1413. if (--engine->irq_refcount == 0) {
  1414. dev_priv->irq_mask |= engine->irq_enable_mask;
  1415. I915_WRITE(IMR, dev_priv->irq_mask);
  1416. POSTING_READ(IMR);
  1417. }
  1418. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1419. }
  1420. static bool
  1421. i8xx_ring_get_irq(struct intel_engine_cs *engine)
  1422. {
  1423. struct drm_device *dev = engine->dev;
  1424. struct drm_i915_private *dev_priv = dev->dev_private;
  1425. unsigned long flags;
  1426. if (!intel_irqs_enabled(dev_priv))
  1427. return false;
  1428. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1429. if (engine->irq_refcount++ == 0) {
  1430. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1431. I915_WRITE16(IMR, dev_priv->irq_mask);
  1432. POSTING_READ16(IMR);
  1433. }
  1434. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1435. return true;
  1436. }
  1437. static void
  1438. i8xx_ring_put_irq(struct intel_engine_cs *engine)
  1439. {
  1440. struct drm_device *dev = engine->dev;
  1441. struct drm_i915_private *dev_priv = dev->dev_private;
  1442. unsigned long flags;
  1443. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1444. if (--engine->irq_refcount == 0) {
  1445. dev_priv->irq_mask |= engine->irq_enable_mask;
  1446. I915_WRITE16(IMR, dev_priv->irq_mask);
  1447. POSTING_READ16(IMR);
  1448. }
  1449. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1450. }
  1451. static int
  1452. bsd_ring_flush(struct drm_i915_gem_request *req,
  1453. u32 invalidate_domains,
  1454. u32 flush_domains)
  1455. {
  1456. struct intel_engine_cs *engine = req->engine;
  1457. int ret;
  1458. ret = intel_ring_begin(req, 2);
  1459. if (ret)
  1460. return ret;
  1461. intel_ring_emit(engine, MI_FLUSH);
  1462. intel_ring_emit(engine, MI_NOOP);
  1463. intel_ring_advance(engine);
  1464. return 0;
  1465. }
  1466. static int
  1467. i9xx_add_request(struct drm_i915_gem_request *req)
  1468. {
  1469. struct intel_engine_cs *engine = req->engine;
  1470. int ret;
  1471. ret = intel_ring_begin(req, 4);
  1472. if (ret)
  1473. return ret;
  1474. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1475. intel_ring_emit(engine,
  1476. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1477. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1478. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1479. __intel_ring_advance(engine);
  1480. return 0;
  1481. }
  1482. static bool
  1483. gen6_ring_get_irq(struct intel_engine_cs *engine)
  1484. {
  1485. struct drm_device *dev = engine->dev;
  1486. struct drm_i915_private *dev_priv = dev->dev_private;
  1487. unsigned long flags;
  1488. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1489. return false;
  1490. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1491. if (engine->irq_refcount++ == 0) {
  1492. if (HAS_L3_DPF(dev) && engine->id == RCS)
  1493. I915_WRITE_IMR(engine,
  1494. ~(engine->irq_enable_mask |
  1495. GT_PARITY_ERROR(dev)));
  1496. else
  1497. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1498. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1499. }
  1500. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1501. return true;
  1502. }
  1503. static void
  1504. gen6_ring_put_irq(struct intel_engine_cs *engine)
  1505. {
  1506. struct drm_device *dev = engine->dev;
  1507. struct drm_i915_private *dev_priv = dev->dev_private;
  1508. unsigned long flags;
  1509. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1510. if (--engine->irq_refcount == 0) {
  1511. if (HAS_L3_DPF(dev) && engine->id == RCS)
  1512. I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
  1513. else
  1514. I915_WRITE_IMR(engine, ~0);
  1515. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1516. }
  1517. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1518. }
  1519. static bool
  1520. hsw_vebox_get_irq(struct intel_engine_cs *engine)
  1521. {
  1522. struct drm_device *dev = engine->dev;
  1523. struct drm_i915_private *dev_priv = dev->dev_private;
  1524. unsigned long flags;
  1525. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1526. return false;
  1527. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1528. if (engine->irq_refcount++ == 0) {
  1529. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1530. gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
  1531. }
  1532. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1533. return true;
  1534. }
  1535. static void
  1536. hsw_vebox_put_irq(struct intel_engine_cs *engine)
  1537. {
  1538. struct drm_device *dev = engine->dev;
  1539. struct drm_i915_private *dev_priv = dev->dev_private;
  1540. unsigned long flags;
  1541. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1542. if (--engine->irq_refcount == 0) {
  1543. I915_WRITE_IMR(engine, ~0);
  1544. gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
  1545. }
  1546. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1547. }
  1548. static bool
  1549. gen8_ring_get_irq(struct intel_engine_cs *engine)
  1550. {
  1551. struct drm_device *dev = engine->dev;
  1552. struct drm_i915_private *dev_priv = dev->dev_private;
  1553. unsigned long flags;
  1554. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1555. return false;
  1556. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1557. if (engine->irq_refcount++ == 0) {
  1558. if (HAS_L3_DPF(dev) && engine->id == RCS) {
  1559. I915_WRITE_IMR(engine,
  1560. ~(engine->irq_enable_mask |
  1561. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1562. } else {
  1563. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1564. }
  1565. POSTING_READ(RING_IMR(engine->mmio_base));
  1566. }
  1567. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1568. return true;
  1569. }
  1570. static void
  1571. gen8_ring_put_irq(struct intel_engine_cs *engine)
  1572. {
  1573. struct drm_device *dev = engine->dev;
  1574. struct drm_i915_private *dev_priv = dev->dev_private;
  1575. unsigned long flags;
  1576. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1577. if (--engine->irq_refcount == 0) {
  1578. if (HAS_L3_DPF(dev) && engine->id == RCS) {
  1579. I915_WRITE_IMR(engine,
  1580. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1581. } else {
  1582. I915_WRITE_IMR(engine, ~0);
  1583. }
  1584. POSTING_READ(RING_IMR(engine->mmio_base));
  1585. }
  1586. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1587. }
  1588. static int
  1589. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1590. u64 offset, u32 length,
  1591. unsigned dispatch_flags)
  1592. {
  1593. struct intel_engine_cs *engine = req->engine;
  1594. int ret;
  1595. ret = intel_ring_begin(req, 2);
  1596. if (ret)
  1597. return ret;
  1598. intel_ring_emit(engine,
  1599. MI_BATCH_BUFFER_START |
  1600. MI_BATCH_GTT |
  1601. (dispatch_flags & I915_DISPATCH_SECURE ?
  1602. 0 : MI_BATCH_NON_SECURE_I965));
  1603. intel_ring_emit(engine, offset);
  1604. intel_ring_advance(engine);
  1605. return 0;
  1606. }
  1607. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1608. #define I830_BATCH_LIMIT (256*1024)
  1609. #define I830_TLB_ENTRIES (2)
  1610. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1611. static int
  1612. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1613. u64 offset, u32 len,
  1614. unsigned dispatch_flags)
  1615. {
  1616. struct intel_engine_cs *engine = req->engine;
  1617. u32 cs_offset = engine->scratch.gtt_offset;
  1618. int ret;
  1619. ret = intel_ring_begin(req, 6);
  1620. if (ret)
  1621. return ret;
  1622. /* Evict the invalid PTE TLBs */
  1623. intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1624. intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1625. intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1626. intel_ring_emit(engine, cs_offset);
  1627. intel_ring_emit(engine, 0xdeadbeef);
  1628. intel_ring_emit(engine, MI_NOOP);
  1629. intel_ring_advance(engine);
  1630. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1631. if (len > I830_BATCH_LIMIT)
  1632. return -ENOSPC;
  1633. ret = intel_ring_begin(req, 6 + 2);
  1634. if (ret)
  1635. return ret;
  1636. /* Blit the batch (which has now all relocs applied) to the
  1637. * stable batch scratch bo area (so that the CS never
  1638. * stumbles over its tlb invalidation bug) ...
  1639. */
  1640. intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1641. intel_ring_emit(engine,
  1642. BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1643. intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1644. intel_ring_emit(engine, cs_offset);
  1645. intel_ring_emit(engine, 4096);
  1646. intel_ring_emit(engine, offset);
  1647. intel_ring_emit(engine, MI_FLUSH);
  1648. intel_ring_emit(engine, MI_NOOP);
  1649. intel_ring_advance(engine);
  1650. /* ... and execute it. */
  1651. offset = cs_offset;
  1652. }
  1653. ret = intel_ring_begin(req, 2);
  1654. if (ret)
  1655. return ret;
  1656. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1657. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1658. 0 : MI_BATCH_NON_SECURE));
  1659. intel_ring_advance(engine);
  1660. return 0;
  1661. }
  1662. static int
  1663. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1664. u64 offset, u32 len,
  1665. unsigned dispatch_flags)
  1666. {
  1667. struct intel_engine_cs *engine = req->engine;
  1668. int ret;
  1669. ret = intel_ring_begin(req, 2);
  1670. if (ret)
  1671. return ret;
  1672. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1673. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1674. 0 : MI_BATCH_NON_SECURE));
  1675. intel_ring_advance(engine);
  1676. return 0;
  1677. }
  1678. static void cleanup_phys_status_page(struct intel_engine_cs *engine)
  1679. {
  1680. struct drm_i915_private *dev_priv = to_i915(engine->dev);
  1681. if (!dev_priv->status_page_dmah)
  1682. return;
  1683. drm_pci_free(engine->dev, dev_priv->status_page_dmah);
  1684. engine->status_page.page_addr = NULL;
  1685. }
  1686. static void cleanup_status_page(struct intel_engine_cs *engine)
  1687. {
  1688. struct drm_i915_gem_object *obj;
  1689. obj = engine->status_page.obj;
  1690. if (obj == NULL)
  1691. return;
  1692. kunmap(sg_page(obj->pages->sgl));
  1693. i915_gem_object_ggtt_unpin(obj);
  1694. drm_gem_object_unreference(&obj->base);
  1695. engine->status_page.obj = NULL;
  1696. }
  1697. static int init_status_page(struct intel_engine_cs *engine)
  1698. {
  1699. struct drm_i915_gem_object *obj = engine->status_page.obj;
  1700. if (obj == NULL) {
  1701. unsigned flags;
  1702. int ret;
  1703. obj = i915_gem_object_create(engine->dev, 4096);
  1704. if (IS_ERR(obj)) {
  1705. DRM_ERROR("Failed to allocate status page\n");
  1706. return PTR_ERR(obj);
  1707. }
  1708. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1709. if (ret)
  1710. goto err_unref;
  1711. flags = 0;
  1712. if (!HAS_LLC(engine->dev))
  1713. /* On g33, we cannot place HWS above 256MiB, so
  1714. * restrict its pinning to the low mappable arena.
  1715. * Though this restriction is not documented for
  1716. * gen4, gen5, or byt, they also behave similarly
  1717. * and hang if the HWS is placed at the top of the
  1718. * GTT. To generalise, it appears that all !llc
  1719. * platforms have issues with us placing the HWS
  1720. * above the mappable region (even though we never
  1721. * actualy map it).
  1722. */
  1723. flags |= PIN_MAPPABLE;
  1724. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1725. if (ret) {
  1726. err_unref:
  1727. drm_gem_object_unreference(&obj->base);
  1728. return ret;
  1729. }
  1730. engine->status_page.obj = obj;
  1731. }
  1732. engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1733. engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1734. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1735. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1736. engine->name, engine->status_page.gfx_addr);
  1737. return 0;
  1738. }
  1739. static int init_phys_status_page(struct intel_engine_cs *engine)
  1740. {
  1741. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  1742. if (!dev_priv->status_page_dmah) {
  1743. dev_priv->status_page_dmah =
  1744. drm_pci_alloc(engine->dev, PAGE_SIZE, PAGE_SIZE);
  1745. if (!dev_priv->status_page_dmah)
  1746. return -ENOMEM;
  1747. }
  1748. engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1749. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1750. return 0;
  1751. }
  1752. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1753. {
  1754. GEM_BUG_ON(ringbuf->vma == NULL);
  1755. GEM_BUG_ON(ringbuf->virtual_start == NULL);
  1756. if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
  1757. i915_gem_object_unpin_map(ringbuf->obj);
  1758. else
  1759. i915_vma_unpin_iomap(ringbuf->vma);
  1760. ringbuf->virtual_start = NULL;
  1761. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1762. ringbuf->vma = NULL;
  1763. }
  1764. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1765. struct intel_ringbuffer *ringbuf)
  1766. {
  1767. struct drm_i915_private *dev_priv = to_i915(dev);
  1768. struct drm_i915_gem_object *obj = ringbuf->obj;
  1769. /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
  1770. unsigned flags = PIN_OFFSET_BIAS | 4096;
  1771. void *addr;
  1772. int ret;
  1773. if (HAS_LLC(dev_priv) && !obj->stolen) {
  1774. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
  1775. if (ret)
  1776. return ret;
  1777. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1778. if (ret)
  1779. goto err_unpin;
  1780. addr = i915_gem_object_pin_map(obj);
  1781. if (IS_ERR(addr)) {
  1782. ret = PTR_ERR(addr);
  1783. goto err_unpin;
  1784. }
  1785. } else {
  1786. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
  1787. flags | PIN_MAPPABLE);
  1788. if (ret)
  1789. return ret;
  1790. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1791. if (ret)
  1792. goto err_unpin;
  1793. /* Access through the GTT requires the device to be awake. */
  1794. assert_rpm_wakelock_held(dev_priv);
  1795. addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
  1796. if (IS_ERR(addr)) {
  1797. ret = PTR_ERR(addr);
  1798. goto err_unpin;
  1799. }
  1800. }
  1801. ringbuf->virtual_start = addr;
  1802. ringbuf->vma = i915_gem_obj_to_ggtt(obj);
  1803. return 0;
  1804. err_unpin:
  1805. i915_gem_object_ggtt_unpin(obj);
  1806. return ret;
  1807. }
  1808. static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1809. {
  1810. drm_gem_object_unreference(&ringbuf->obj->base);
  1811. ringbuf->obj = NULL;
  1812. }
  1813. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1814. struct intel_ringbuffer *ringbuf)
  1815. {
  1816. struct drm_i915_gem_object *obj;
  1817. obj = NULL;
  1818. if (!HAS_LLC(dev))
  1819. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1820. if (obj == NULL)
  1821. obj = i915_gem_object_create(dev, ringbuf->size);
  1822. if (IS_ERR(obj))
  1823. return PTR_ERR(obj);
  1824. /* mark ring buffers as read-only from GPU side by default */
  1825. obj->gt_ro = 1;
  1826. ringbuf->obj = obj;
  1827. return 0;
  1828. }
  1829. struct intel_ringbuffer *
  1830. intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
  1831. {
  1832. struct intel_ringbuffer *ring;
  1833. int ret;
  1834. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1835. if (ring == NULL) {
  1836. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
  1837. engine->name);
  1838. return ERR_PTR(-ENOMEM);
  1839. }
  1840. ring->engine = engine;
  1841. list_add(&ring->link, &engine->buffers);
  1842. ring->size = size;
  1843. /* Workaround an erratum on the i830 which causes a hang if
  1844. * the TAIL pointer points to within the last 2 cachelines
  1845. * of the buffer.
  1846. */
  1847. ring->effective_size = size;
  1848. if (IS_I830(engine->dev) || IS_845G(engine->dev))
  1849. ring->effective_size -= 2 * CACHELINE_BYTES;
  1850. ring->last_retired_head = -1;
  1851. intel_ring_update_space(ring);
  1852. ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
  1853. if (ret) {
  1854. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
  1855. engine->name, ret);
  1856. list_del(&ring->link);
  1857. kfree(ring);
  1858. return ERR_PTR(ret);
  1859. }
  1860. return ring;
  1861. }
  1862. void
  1863. intel_ringbuffer_free(struct intel_ringbuffer *ring)
  1864. {
  1865. intel_destroy_ringbuffer_obj(ring);
  1866. list_del(&ring->link);
  1867. kfree(ring);
  1868. }
  1869. static int intel_init_ring_buffer(struct drm_device *dev,
  1870. struct intel_engine_cs *engine)
  1871. {
  1872. struct intel_ringbuffer *ringbuf;
  1873. int ret;
  1874. WARN_ON(engine->buffer);
  1875. engine->dev = dev;
  1876. INIT_LIST_HEAD(&engine->active_list);
  1877. INIT_LIST_HEAD(&engine->request_list);
  1878. INIT_LIST_HEAD(&engine->execlist_queue);
  1879. INIT_LIST_HEAD(&engine->buffers);
  1880. i915_gem_batch_pool_init(dev, &engine->batch_pool);
  1881. memset(engine->semaphore.sync_seqno, 0,
  1882. sizeof(engine->semaphore.sync_seqno));
  1883. init_waitqueue_head(&engine->irq_queue);
  1884. ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
  1885. if (IS_ERR(ringbuf)) {
  1886. ret = PTR_ERR(ringbuf);
  1887. goto error;
  1888. }
  1889. engine->buffer = ringbuf;
  1890. if (I915_NEED_GFX_HWS(dev)) {
  1891. ret = init_status_page(engine);
  1892. if (ret)
  1893. goto error;
  1894. } else {
  1895. WARN_ON(engine->id != RCS);
  1896. ret = init_phys_status_page(engine);
  1897. if (ret)
  1898. goto error;
  1899. }
  1900. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1901. if (ret) {
  1902. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1903. engine->name, ret);
  1904. intel_destroy_ringbuffer_obj(ringbuf);
  1905. goto error;
  1906. }
  1907. ret = i915_cmd_parser_init_ring(engine);
  1908. if (ret)
  1909. goto error;
  1910. return 0;
  1911. error:
  1912. intel_cleanup_engine(engine);
  1913. return ret;
  1914. }
  1915. void intel_cleanup_engine(struct intel_engine_cs *engine)
  1916. {
  1917. struct drm_i915_private *dev_priv;
  1918. if (!intel_engine_initialized(engine))
  1919. return;
  1920. dev_priv = to_i915(engine->dev);
  1921. if (engine->buffer) {
  1922. intel_stop_engine(engine);
  1923. WARN_ON(!IS_GEN2(engine->dev) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
  1924. intel_unpin_ringbuffer_obj(engine->buffer);
  1925. intel_ringbuffer_free(engine->buffer);
  1926. engine->buffer = NULL;
  1927. }
  1928. if (engine->cleanup)
  1929. engine->cleanup(engine);
  1930. if (I915_NEED_GFX_HWS(engine->dev)) {
  1931. cleanup_status_page(engine);
  1932. } else {
  1933. WARN_ON(engine->id != RCS);
  1934. cleanup_phys_status_page(engine);
  1935. }
  1936. i915_cmd_parser_fini_ring(engine);
  1937. i915_gem_batch_pool_fini(&engine->batch_pool);
  1938. engine->dev = NULL;
  1939. }
  1940. static int ring_wait_for_space(struct intel_engine_cs *engine, int n)
  1941. {
  1942. struct intel_ringbuffer *ringbuf = engine->buffer;
  1943. struct drm_i915_gem_request *request;
  1944. unsigned space;
  1945. int ret;
  1946. if (intel_ring_space(ringbuf) >= n)
  1947. return 0;
  1948. /* The whole point of reserving space is to not wait! */
  1949. WARN_ON(ringbuf->reserved_in_use);
  1950. list_for_each_entry(request, &engine->request_list, list) {
  1951. space = __intel_ring_space(request->postfix, ringbuf->tail,
  1952. ringbuf->size);
  1953. if (space >= n)
  1954. break;
  1955. }
  1956. if (WARN_ON(&request->list == &engine->request_list))
  1957. return -ENOSPC;
  1958. ret = i915_wait_request(request);
  1959. if (ret)
  1960. return ret;
  1961. ringbuf->space = space;
  1962. return 0;
  1963. }
  1964. static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
  1965. {
  1966. uint32_t __iomem *virt;
  1967. int rem = ringbuf->size - ringbuf->tail;
  1968. virt = ringbuf->virtual_start + ringbuf->tail;
  1969. rem /= 4;
  1970. while (rem--)
  1971. iowrite32(MI_NOOP, virt++);
  1972. ringbuf->tail = 0;
  1973. intel_ring_update_space(ringbuf);
  1974. }
  1975. int intel_engine_idle(struct intel_engine_cs *engine)
  1976. {
  1977. struct drm_i915_gem_request *req;
  1978. /* Wait upon the last request to be completed */
  1979. if (list_empty(&engine->request_list))
  1980. return 0;
  1981. req = list_entry(engine->request_list.prev,
  1982. struct drm_i915_gem_request,
  1983. list);
  1984. /* Make sure we do not trigger any retires */
  1985. return __i915_wait_request(req,
  1986. req->i915->mm.interruptible,
  1987. NULL, NULL);
  1988. }
  1989. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1990. {
  1991. request->ringbuf = request->engine->buffer;
  1992. return 0;
  1993. }
  1994. int intel_ring_reserve_space(struct drm_i915_gem_request *request)
  1995. {
  1996. /*
  1997. * The first call merely notes the reserve request and is common for
  1998. * all back ends. The subsequent localised _begin() call actually
  1999. * ensures that the reservation is available. Without the begin, if
  2000. * the request creator immediately submitted the request without
  2001. * adding any commands to it then there might not actually be
  2002. * sufficient room for the submission commands.
  2003. */
  2004. intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
  2005. return intel_ring_begin(request, 0);
  2006. }
  2007. void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
  2008. {
  2009. WARN_ON(ringbuf->reserved_size);
  2010. WARN_ON(ringbuf->reserved_in_use);
  2011. ringbuf->reserved_size = size;
  2012. }
  2013. void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
  2014. {
  2015. WARN_ON(ringbuf->reserved_in_use);
  2016. ringbuf->reserved_size = 0;
  2017. ringbuf->reserved_in_use = false;
  2018. }
  2019. void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
  2020. {
  2021. WARN_ON(ringbuf->reserved_in_use);
  2022. ringbuf->reserved_in_use = true;
  2023. ringbuf->reserved_tail = ringbuf->tail;
  2024. }
  2025. void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
  2026. {
  2027. WARN_ON(!ringbuf->reserved_in_use);
  2028. if (ringbuf->tail > ringbuf->reserved_tail) {
  2029. WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
  2030. "request reserved size too small: %d vs %d!\n",
  2031. ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
  2032. } else {
  2033. /*
  2034. * The ring was wrapped while the reserved space was in use.
  2035. * That means that some unknown amount of the ring tail was
  2036. * no-op filled and skipped. Thus simply adding the ring size
  2037. * to the tail and doing the above space check will not work.
  2038. * Rather than attempt to track how much tail was skipped,
  2039. * it is much simpler to say that also skipping the sanity
  2040. * check every once in a while is not a big issue.
  2041. */
  2042. }
  2043. ringbuf->reserved_size = 0;
  2044. ringbuf->reserved_in_use = false;
  2045. }
  2046. static int __intel_ring_prepare(struct intel_engine_cs *engine, int bytes)
  2047. {
  2048. struct intel_ringbuffer *ringbuf = engine->buffer;
  2049. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  2050. int remain_actual = ringbuf->size - ringbuf->tail;
  2051. int ret, total_bytes, wait_bytes = 0;
  2052. bool need_wrap = false;
  2053. if (ringbuf->reserved_in_use)
  2054. total_bytes = bytes;
  2055. else
  2056. total_bytes = bytes + ringbuf->reserved_size;
  2057. if (unlikely(bytes > remain_usable)) {
  2058. /*
  2059. * Not enough space for the basic request. So need to flush
  2060. * out the remainder and then wait for base + reserved.
  2061. */
  2062. wait_bytes = remain_actual + total_bytes;
  2063. need_wrap = true;
  2064. } else {
  2065. if (unlikely(total_bytes > remain_usable)) {
  2066. /*
  2067. * The base request will fit but the reserved space
  2068. * falls off the end. So don't need an immediate wrap
  2069. * and only need to effectively wait for the reserved
  2070. * size space from the start of ringbuffer.
  2071. */
  2072. wait_bytes = remain_actual + ringbuf->reserved_size;
  2073. } else if (total_bytes > ringbuf->space) {
  2074. /* No wrapping required, just waiting. */
  2075. wait_bytes = total_bytes;
  2076. }
  2077. }
  2078. if (wait_bytes) {
  2079. ret = ring_wait_for_space(engine, wait_bytes);
  2080. if (unlikely(ret))
  2081. return ret;
  2082. if (need_wrap)
  2083. __wrap_ring_buffer(ringbuf);
  2084. }
  2085. return 0;
  2086. }
  2087. int intel_ring_begin(struct drm_i915_gem_request *req,
  2088. int num_dwords)
  2089. {
  2090. struct intel_engine_cs *engine = req->engine;
  2091. int ret;
  2092. ret = __intel_ring_prepare(engine, num_dwords * sizeof(uint32_t));
  2093. if (ret)
  2094. return ret;
  2095. engine->buffer->space -= num_dwords * sizeof(uint32_t);
  2096. return 0;
  2097. }
  2098. /* Align the ring tail to a cacheline boundary */
  2099. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  2100. {
  2101. struct intel_engine_cs *engine = req->engine;
  2102. int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  2103. int ret;
  2104. if (num_dwords == 0)
  2105. return 0;
  2106. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  2107. ret = intel_ring_begin(req, num_dwords);
  2108. if (ret)
  2109. return ret;
  2110. while (num_dwords--)
  2111. intel_ring_emit(engine, MI_NOOP);
  2112. intel_ring_advance(engine);
  2113. return 0;
  2114. }
  2115. void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
  2116. {
  2117. struct drm_i915_private *dev_priv = to_i915(engine->dev);
  2118. /* Our semaphore implementation is strictly monotonic (i.e. we proceed
  2119. * so long as the semaphore value in the register/page is greater
  2120. * than the sync value), so whenever we reset the seqno,
  2121. * so long as we reset the tracking semaphore value to 0, it will
  2122. * always be before the next request's seqno. If we don't reset
  2123. * the semaphore value, then when the seqno moves backwards all
  2124. * future waits will complete instantly (causing rendering corruption).
  2125. */
  2126. if (INTEL_INFO(dev_priv)->gen == 6 || INTEL_INFO(dev_priv)->gen == 7) {
  2127. I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
  2128. I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
  2129. if (HAS_VEBOX(dev_priv))
  2130. I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
  2131. }
  2132. if (dev_priv->semaphore_obj) {
  2133. struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
  2134. struct page *page = i915_gem_object_get_dirty_page(obj, 0);
  2135. void *semaphores = kmap(page);
  2136. memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
  2137. 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
  2138. kunmap(page);
  2139. }
  2140. memset(engine->semaphore.sync_seqno, 0,
  2141. sizeof(engine->semaphore.sync_seqno));
  2142. engine->set_seqno(engine, seqno);
  2143. engine->last_submitted_seqno = seqno;
  2144. engine->hangcheck.seqno = seqno;
  2145. }
  2146. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
  2147. u32 value)
  2148. {
  2149. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  2150. /* Every tail move must follow the sequence below */
  2151. /* Disable notification that the ring is IDLE. The GT
  2152. * will then assume that it is busy and bring it out of rc6.
  2153. */
  2154. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2155. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2156. /* Clear the context id. Here be magic! */
  2157. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  2158. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  2159. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  2160. GEN6_BSD_SLEEP_INDICATOR) == 0,
  2161. 50))
  2162. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2163. /* Now that the ring is fully powered up, update the tail */
  2164. I915_WRITE_TAIL(engine, value);
  2165. POSTING_READ(RING_TAIL(engine->mmio_base));
  2166. /* Let the ring send IDLE messages to the GT again,
  2167. * and so let it sleep to conserve power when idle.
  2168. */
  2169. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2170. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2171. }
  2172. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  2173. u32 invalidate, u32 flush)
  2174. {
  2175. struct intel_engine_cs *engine = req->engine;
  2176. uint32_t cmd;
  2177. int ret;
  2178. ret = intel_ring_begin(req, 4);
  2179. if (ret)
  2180. return ret;
  2181. cmd = MI_FLUSH_DW;
  2182. if (INTEL_INFO(engine->dev)->gen >= 8)
  2183. cmd += 1;
  2184. /* We always require a command barrier so that subsequent
  2185. * commands, such as breadcrumb interrupts, are strictly ordered
  2186. * wrt the contents of the write cache being flushed to memory
  2187. * (and thus being coherent from the CPU).
  2188. */
  2189. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2190. /*
  2191. * Bspec vol 1c.5 - video engine command streamer:
  2192. * "If ENABLED, all TLBs will be invalidated once the flush
  2193. * operation is complete. This bit is only valid when the
  2194. * Post-Sync Operation field is a value of 1h or 3h."
  2195. */
  2196. if (invalidate & I915_GEM_GPU_DOMAINS)
  2197. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2198. intel_ring_emit(engine, cmd);
  2199. intel_ring_emit(engine,
  2200. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2201. if (INTEL_INFO(engine->dev)->gen >= 8) {
  2202. intel_ring_emit(engine, 0); /* upper addr */
  2203. intel_ring_emit(engine, 0); /* value */
  2204. } else {
  2205. intel_ring_emit(engine, 0);
  2206. intel_ring_emit(engine, MI_NOOP);
  2207. }
  2208. intel_ring_advance(engine);
  2209. return 0;
  2210. }
  2211. static int
  2212. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2213. u64 offset, u32 len,
  2214. unsigned dispatch_flags)
  2215. {
  2216. struct intel_engine_cs *engine = req->engine;
  2217. bool ppgtt = USES_PPGTT(engine->dev) &&
  2218. !(dispatch_flags & I915_DISPATCH_SECURE);
  2219. int ret;
  2220. ret = intel_ring_begin(req, 4);
  2221. if (ret)
  2222. return ret;
  2223. /* FIXME(BDW): Address space and security selectors. */
  2224. intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2225. (dispatch_flags & I915_DISPATCH_RS ?
  2226. MI_BATCH_RESOURCE_STREAMER : 0));
  2227. intel_ring_emit(engine, lower_32_bits(offset));
  2228. intel_ring_emit(engine, upper_32_bits(offset));
  2229. intel_ring_emit(engine, MI_NOOP);
  2230. intel_ring_advance(engine);
  2231. return 0;
  2232. }
  2233. static int
  2234. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2235. u64 offset, u32 len,
  2236. unsigned dispatch_flags)
  2237. {
  2238. struct intel_engine_cs *engine = req->engine;
  2239. int ret;
  2240. ret = intel_ring_begin(req, 2);
  2241. if (ret)
  2242. return ret;
  2243. intel_ring_emit(engine,
  2244. MI_BATCH_BUFFER_START |
  2245. (dispatch_flags & I915_DISPATCH_SECURE ?
  2246. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2247. (dispatch_flags & I915_DISPATCH_RS ?
  2248. MI_BATCH_RESOURCE_STREAMER : 0));
  2249. /* bit0-7 is the length on GEN6+ */
  2250. intel_ring_emit(engine, offset);
  2251. intel_ring_advance(engine);
  2252. return 0;
  2253. }
  2254. static int
  2255. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2256. u64 offset, u32 len,
  2257. unsigned dispatch_flags)
  2258. {
  2259. struct intel_engine_cs *engine = req->engine;
  2260. int ret;
  2261. ret = intel_ring_begin(req, 2);
  2262. if (ret)
  2263. return ret;
  2264. intel_ring_emit(engine,
  2265. MI_BATCH_BUFFER_START |
  2266. (dispatch_flags & I915_DISPATCH_SECURE ?
  2267. 0 : MI_BATCH_NON_SECURE_I965));
  2268. /* bit0-7 is the length on GEN6+ */
  2269. intel_ring_emit(engine, offset);
  2270. intel_ring_advance(engine);
  2271. return 0;
  2272. }
  2273. /* Blitter support (SandyBridge+) */
  2274. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2275. u32 invalidate, u32 flush)
  2276. {
  2277. struct intel_engine_cs *engine = req->engine;
  2278. struct drm_device *dev = engine->dev;
  2279. uint32_t cmd;
  2280. int ret;
  2281. ret = intel_ring_begin(req, 4);
  2282. if (ret)
  2283. return ret;
  2284. cmd = MI_FLUSH_DW;
  2285. if (INTEL_INFO(dev)->gen >= 8)
  2286. cmd += 1;
  2287. /* We always require a command barrier so that subsequent
  2288. * commands, such as breadcrumb interrupts, are strictly ordered
  2289. * wrt the contents of the write cache being flushed to memory
  2290. * (and thus being coherent from the CPU).
  2291. */
  2292. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2293. /*
  2294. * Bspec vol 1c.3 - blitter engine command streamer:
  2295. * "If ENABLED, all TLBs will be invalidated once the flush
  2296. * operation is complete. This bit is only valid when the
  2297. * Post-Sync Operation field is a value of 1h or 3h."
  2298. */
  2299. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2300. cmd |= MI_INVALIDATE_TLB;
  2301. intel_ring_emit(engine, cmd);
  2302. intel_ring_emit(engine,
  2303. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2304. if (INTEL_INFO(dev)->gen >= 8) {
  2305. intel_ring_emit(engine, 0); /* upper addr */
  2306. intel_ring_emit(engine, 0); /* value */
  2307. } else {
  2308. intel_ring_emit(engine, 0);
  2309. intel_ring_emit(engine, MI_NOOP);
  2310. }
  2311. intel_ring_advance(engine);
  2312. return 0;
  2313. }
  2314. int intel_init_render_ring_buffer(struct drm_device *dev)
  2315. {
  2316. struct drm_i915_private *dev_priv = dev->dev_private;
  2317. struct intel_engine_cs *engine = &dev_priv->engine[RCS];
  2318. struct drm_i915_gem_object *obj;
  2319. int ret;
  2320. engine->name = "render ring";
  2321. engine->id = RCS;
  2322. engine->exec_id = I915_EXEC_RENDER;
  2323. engine->mmio_base = RENDER_RING_BASE;
  2324. if (INTEL_INFO(dev)->gen >= 8) {
  2325. if (i915_semaphore_is_enabled(dev)) {
  2326. obj = i915_gem_object_create(dev, 4096);
  2327. if (IS_ERR(obj)) {
  2328. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2329. i915.semaphores = 0;
  2330. } else {
  2331. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2332. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2333. if (ret != 0) {
  2334. drm_gem_object_unreference(&obj->base);
  2335. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2336. i915.semaphores = 0;
  2337. } else
  2338. dev_priv->semaphore_obj = obj;
  2339. }
  2340. }
  2341. engine->init_context = intel_rcs_ctx_init;
  2342. engine->add_request = gen6_add_request;
  2343. engine->flush = gen8_render_ring_flush;
  2344. engine->irq_get = gen8_ring_get_irq;
  2345. engine->irq_put = gen8_ring_put_irq;
  2346. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2347. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2348. engine->get_seqno = ring_get_seqno;
  2349. engine->set_seqno = ring_set_seqno;
  2350. if (i915_semaphore_is_enabled(dev)) {
  2351. WARN_ON(!dev_priv->semaphore_obj);
  2352. engine->semaphore.sync_to = gen8_ring_sync;
  2353. engine->semaphore.signal = gen8_rcs_signal;
  2354. GEN8_RING_SEMAPHORE_INIT(engine);
  2355. }
  2356. } else if (INTEL_INFO(dev)->gen >= 6) {
  2357. engine->init_context = intel_rcs_ctx_init;
  2358. engine->add_request = gen6_add_request;
  2359. engine->flush = gen7_render_ring_flush;
  2360. if (INTEL_INFO(dev)->gen == 6)
  2361. engine->flush = gen6_render_ring_flush;
  2362. engine->irq_get = gen6_ring_get_irq;
  2363. engine->irq_put = gen6_ring_put_irq;
  2364. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2365. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2366. engine->get_seqno = ring_get_seqno;
  2367. engine->set_seqno = ring_set_seqno;
  2368. if (i915_semaphore_is_enabled(dev)) {
  2369. engine->semaphore.sync_to = gen6_ring_sync;
  2370. engine->semaphore.signal = gen6_signal;
  2371. /*
  2372. * The current semaphore is only applied on pre-gen8
  2373. * platform. And there is no VCS2 ring on the pre-gen8
  2374. * platform. So the semaphore between RCS and VCS2 is
  2375. * initialized as INVALID. Gen8 will initialize the
  2376. * sema between VCS2 and RCS later.
  2377. */
  2378. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2379. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2380. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2381. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2382. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2383. engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2384. engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2385. engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2386. engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2387. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2388. }
  2389. } else if (IS_GEN5(dev)) {
  2390. engine->add_request = pc_render_add_request;
  2391. engine->flush = gen4_render_ring_flush;
  2392. engine->get_seqno = pc_render_get_seqno;
  2393. engine->set_seqno = pc_render_set_seqno;
  2394. engine->irq_get = gen5_ring_get_irq;
  2395. engine->irq_put = gen5_ring_put_irq;
  2396. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2397. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2398. } else {
  2399. engine->add_request = i9xx_add_request;
  2400. if (INTEL_INFO(dev)->gen < 4)
  2401. engine->flush = gen2_render_ring_flush;
  2402. else
  2403. engine->flush = gen4_render_ring_flush;
  2404. engine->get_seqno = ring_get_seqno;
  2405. engine->set_seqno = ring_set_seqno;
  2406. if (IS_GEN2(dev)) {
  2407. engine->irq_get = i8xx_ring_get_irq;
  2408. engine->irq_put = i8xx_ring_put_irq;
  2409. } else {
  2410. engine->irq_get = i9xx_ring_get_irq;
  2411. engine->irq_put = i9xx_ring_put_irq;
  2412. }
  2413. engine->irq_enable_mask = I915_USER_INTERRUPT;
  2414. }
  2415. engine->write_tail = ring_write_tail;
  2416. if (IS_HASWELL(dev))
  2417. engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2418. else if (IS_GEN8(dev))
  2419. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2420. else if (INTEL_INFO(dev)->gen >= 6)
  2421. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2422. else if (INTEL_INFO(dev)->gen >= 4)
  2423. engine->dispatch_execbuffer = i965_dispatch_execbuffer;
  2424. else if (IS_I830(dev) || IS_845G(dev))
  2425. engine->dispatch_execbuffer = i830_dispatch_execbuffer;
  2426. else
  2427. engine->dispatch_execbuffer = i915_dispatch_execbuffer;
  2428. engine->init_hw = init_render_ring;
  2429. engine->cleanup = render_ring_cleanup;
  2430. /* Workaround batchbuffer to combat CS tlb bug. */
  2431. if (HAS_BROKEN_CS_TLB(dev)) {
  2432. obj = i915_gem_object_create(dev, I830_WA_SIZE);
  2433. if (IS_ERR(obj)) {
  2434. DRM_ERROR("Failed to allocate batch bo\n");
  2435. return PTR_ERR(obj);
  2436. }
  2437. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2438. if (ret != 0) {
  2439. drm_gem_object_unreference(&obj->base);
  2440. DRM_ERROR("Failed to ping batch bo\n");
  2441. return ret;
  2442. }
  2443. engine->scratch.obj = obj;
  2444. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2445. }
  2446. ret = intel_init_ring_buffer(dev, engine);
  2447. if (ret)
  2448. return ret;
  2449. if (INTEL_INFO(dev)->gen >= 5) {
  2450. ret = intel_init_pipe_control(engine);
  2451. if (ret)
  2452. return ret;
  2453. }
  2454. return 0;
  2455. }
  2456. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2457. {
  2458. struct drm_i915_private *dev_priv = dev->dev_private;
  2459. struct intel_engine_cs *engine = &dev_priv->engine[VCS];
  2460. engine->name = "bsd ring";
  2461. engine->id = VCS;
  2462. engine->exec_id = I915_EXEC_BSD;
  2463. engine->write_tail = ring_write_tail;
  2464. if (INTEL_INFO(dev)->gen >= 6) {
  2465. engine->mmio_base = GEN6_BSD_RING_BASE;
  2466. /* gen6 bsd needs a special wa for tail updates */
  2467. if (IS_GEN6(dev))
  2468. engine->write_tail = gen6_bsd_ring_write_tail;
  2469. engine->flush = gen6_bsd_ring_flush;
  2470. engine->add_request = gen6_add_request;
  2471. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2472. engine->get_seqno = ring_get_seqno;
  2473. engine->set_seqno = ring_set_seqno;
  2474. if (INTEL_INFO(dev)->gen >= 8) {
  2475. engine->irq_enable_mask =
  2476. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2477. engine->irq_get = gen8_ring_get_irq;
  2478. engine->irq_put = gen8_ring_put_irq;
  2479. engine->dispatch_execbuffer =
  2480. gen8_ring_dispatch_execbuffer;
  2481. if (i915_semaphore_is_enabled(dev)) {
  2482. engine->semaphore.sync_to = gen8_ring_sync;
  2483. engine->semaphore.signal = gen8_xcs_signal;
  2484. GEN8_RING_SEMAPHORE_INIT(engine);
  2485. }
  2486. } else {
  2487. engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2488. engine->irq_get = gen6_ring_get_irq;
  2489. engine->irq_put = gen6_ring_put_irq;
  2490. engine->dispatch_execbuffer =
  2491. gen6_ring_dispatch_execbuffer;
  2492. if (i915_semaphore_is_enabled(dev)) {
  2493. engine->semaphore.sync_to = gen6_ring_sync;
  2494. engine->semaphore.signal = gen6_signal;
  2495. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2496. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2497. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2498. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2499. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2500. engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2501. engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2502. engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2503. engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2504. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2505. }
  2506. }
  2507. } else {
  2508. engine->mmio_base = BSD_RING_BASE;
  2509. engine->flush = bsd_ring_flush;
  2510. engine->add_request = i9xx_add_request;
  2511. engine->get_seqno = ring_get_seqno;
  2512. engine->set_seqno = ring_set_seqno;
  2513. if (IS_GEN5(dev)) {
  2514. engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2515. engine->irq_get = gen5_ring_get_irq;
  2516. engine->irq_put = gen5_ring_put_irq;
  2517. } else {
  2518. engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2519. engine->irq_get = i9xx_ring_get_irq;
  2520. engine->irq_put = i9xx_ring_put_irq;
  2521. }
  2522. engine->dispatch_execbuffer = i965_dispatch_execbuffer;
  2523. }
  2524. engine->init_hw = init_ring_common;
  2525. return intel_init_ring_buffer(dev, engine);
  2526. }
  2527. /**
  2528. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2529. */
  2530. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2531. {
  2532. struct drm_i915_private *dev_priv = dev->dev_private;
  2533. struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
  2534. engine->name = "bsd2 ring";
  2535. engine->id = VCS2;
  2536. engine->exec_id = I915_EXEC_BSD;
  2537. engine->write_tail = ring_write_tail;
  2538. engine->mmio_base = GEN8_BSD2_RING_BASE;
  2539. engine->flush = gen6_bsd_ring_flush;
  2540. engine->add_request = gen6_add_request;
  2541. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2542. engine->get_seqno = ring_get_seqno;
  2543. engine->set_seqno = ring_set_seqno;
  2544. engine->irq_enable_mask =
  2545. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2546. engine->irq_get = gen8_ring_get_irq;
  2547. engine->irq_put = gen8_ring_put_irq;
  2548. engine->dispatch_execbuffer =
  2549. gen8_ring_dispatch_execbuffer;
  2550. if (i915_semaphore_is_enabled(dev)) {
  2551. engine->semaphore.sync_to = gen8_ring_sync;
  2552. engine->semaphore.signal = gen8_xcs_signal;
  2553. GEN8_RING_SEMAPHORE_INIT(engine);
  2554. }
  2555. engine->init_hw = init_ring_common;
  2556. return intel_init_ring_buffer(dev, engine);
  2557. }
  2558. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2559. {
  2560. struct drm_i915_private *dev_priv = dev->dev_private;
  2561. struct intel_engine_cs *engine = &dev_priv->engine[BCS];
  2562. engine->name = "blitter ring";
  2563. engine->id = BCS;
  2564. engine->exec_id = I915_EXEC_BLT;
  2565. engine->mmio_base = BLT_RING_BASE;
  2566. engine->write_tail = ring_write_tail;
  2567. engine->flush = gen6_ring_flush;
  2568. engine->add_request = gen6_add_request;
  2569. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2570. engine->get_seqno = ring_get_seqno;
  2571. engine->set_seqno = ring_set_seqno;
  2572. if (INTEL_INFO(dev)->gen >= 8) {
  2573. engine->irq_enable_mask =
  2574. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2575. engine->irq_get = gen8_ring_get_irq;
  2576. engine->irq_put = gen8_ring_put_irq;
  2577. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2578. if (i915_semaphore_is_enabled(dev)) {
  2579. engine->semaphore.sync_to = gen8_ring_sync;
  2580. engine->semaphore.signal = gen8_xcs_signal;
  2581. GEN8_RING_SEMAPHORE_INIT(engine);
  2582. }
  2583. } else {
  2584. engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2585. engine->irq_get = gen6_ring_get_irq;
  2586. engine->irq_put = gen6_ring_put_irq;
  2587. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2588. if (i915_semaphore_is_enabled(dev)) {
  2589. engine->semaphore.signal = gen6_signal;
  2590. engine->semaphore.sync_to = gen6_ring_sync;
  2591. /*
  2592. * The current semaphore is only applied on pre-gen8
  2593. * platform. And there is no VCS2 ring on the pre-gen8
  2594. * platform. So the semaphore between BCS and VCS2 is
  2595. * initialized as INVALID. Gen8 will initialize the
  2596. * sema between BCS and VCS2 later.
  2597. */
  2598. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2599. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2600. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2601. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2602. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2603. engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2604. engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2605. engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2606. engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2607. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2608. }
  2609. }
  2610. engine->init_hw = init_ring_common;
  2611. return intel_init_ring_buffer(dev, engine);
  2612. }
  2613. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2614. {
  2615. struct drm_i915_private *dev_priv = dev->dev_private;
  2616. struct intel_engine_cs *engine = &dev_priv->engine[VECS];
  2617. engine->name = "video enhancement ring";
  2618. engine->id = VECS;
  2619. engine->exec_id = I915_EXEC_VEBOX;
  2620. engine->mmio_base = VEBOX_RING_BASE;
  2621. engine->write_tail = ring_write_tail;
  2622. engine->flush = gen6_ring_flush;
  2623. engine->add_request = gen6_add_request;
  2624. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2625. engine->get_seqno = ring_get_seqno;
  2626. engine->set_seqno = ring_set_seqno;
  2627. if (INTEL_INFO(dev)->gen >= 8) {
  2628. engine->irq_enable_mask =
  2629. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2630. engine->irq_get = gen8_ring_get_irq;
  2631. engine->irq_put = gen8_ring_put_irq;
  2632. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2633. if (i915_semaphore_is_enabled(dev)) {
  2634. engine->semaphore.sync_to = gen8_ring_sync;
  2635. engine->semaphore.signal = gen8_xcs_signal;
  2636. GEN8_RING_SEMAPHORE_INIT(engine);
  2637. }
  2638. } else {
  2639. engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2640. engine->irq_get = hsw_vebox_get_irq;
  2641. engine->irq_put = hsw_vebox_put_irq;
  2642. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2643. if (i915_semaphore_is_enabled(dev)) {
  2644. engine->semaphore.sync_to = gen6_ring_sync;
  2645. engine->semaphore.signal = gen6_signal;
  2646. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2647. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2648. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2649. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2650. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2651. engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2652. engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2653. engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2654. engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2655. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2656. }
  2657. }
  2658. engine->init_hw = init_ring_common;
  2659. return intel_init_ring_buffer(dev, engine);
  2660. }
  2661. int
  2662. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2663. {
  2664. struct intel_engine_cs *engine = req->engine;
  2665. int ret;
  2666. if (!engine->gpu_caches_dirty)
  2667. return 0;
  2668. ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2669. if (ret)
  2670. return ret;
  2671. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2672. engine->gpu_caches_dirty = false;
  2673. return 0;
  2674. }
  2675. int
  2676. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2677. {
  2678. struct intel_engine_cs *engine = req->engine;
  2679. uint32_t flush_domains;
  2680. int ret;
  2681. flush_domains = 0;
  2682. if (engine->gpu_caches_dirty)
  2683. flush_domains = I915_GEM_GPU_DOMAINS;
  2684. ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2685. if (ret)
  2686. return ret;
  2687. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2688. engine->gpu_caches_dirty = false;
  2689. return 0;
  2690. }
  2691. void
  2692. intel_stop_engine(struct intel_engine_cs *engine)
  2693. {
  2694. int ret;
  2695. if (!intel_engine_initialized(engine))
  2696. return;
  2697. ret = intel_engine_idle(engine);
  2698. if (ret)
  2699. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2700. engine->name, ret);
  2701. stop_ring(engine);
  2702. }