rt.c 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371
  1. /*
  2. * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
  3. * policies)
  4. */
  5. #include "sched.h"
  6. #include <linux/slab.h>
  7. #include <linux/irq_work.h>
  8. int sched_rr_timeslice = RR_TIMESLICE;
  9. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  10. struct rt_bandwidth def_rt_bandwidth;
  11. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  12. {
  13. struct rt_bandwidth *rt_b =
  14. container_of(timer, struct rt_bandwidth, rt_period_timer);
  15. int idle = 0;
  16. int overrun;
  17. raw_spin_lock(&rt_b->rt_runtime_lock);
  18. for (;;) {
  19. overrun = hrtimer_forward_now(timer, rt_b->rt_period);
  20. if (!overrun)
  21. break;
  22. raw_spin_unlock(&rt_b->rt_runtime_lock);
  23. idle = do_sched_rt_period_timer(rt_b, overrun);
  24. raw_spin_lock(&rt_b->rt_runtime_lock);
  25. }
  26. if (idle)
  27. rt_b->rt_period_active = 0;
  28. raw_spin_unlock(&rt_b->rt_runtime_lock);
  29. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  30. }
  31. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  32. {
  33. rt_b->rt_period = ns_to_ktime(period);
  34. rt_b->rt_runtime = runtime;
  35. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  36. hrtimer_init(&rt_b->rt_period_timer,
  37. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  38. rt_b->rt_period_timer.function = sched_rt_period_timer;
  39. }
  40. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  41. {
  42. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  43. return;
  44. raw_spin_lock(&rt_b->rt_runtime_lock);
  45. if (!rt_b->rt_period_active) {
  46. rt_b->rt_period_active = 1;
  47. /*
  48. * SCHED_DEADLINE updates the bandwidth, as a run away
  49. * RT task with a DL task could hog a CPU. But DL does
  50. * not reset the period. If a deadline task was running
  51. * without an RT task running, it can cause RT tasks to
  52. * throttle when they start up. Kick the timer right away
  53. * to update the period.
  54. */
  55. hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
  56. hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
  57. }
  58. raw_spin_unlock(&rt_b->rt_runtime_lock);
  59. }
  60. #if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
  61. static void push_irq_work_func(struct irq_work *work);
  62. #endif
  63. void init_rt_rq(struct rt_rq *rt_rq)
  64. {
  65. struct rt_prio_array *array;
  66. int i;
  67. array = &rt_rq->active;
  68. for (i = 0; i < MAX_RT_PRIO; i++) {
  69. INIT_LIST_HEAD(array->queue + i);
  70. __clear_bit(i, array->bitmap);
  71. }
  72. /* delimiter for bitsearch: */
  73. __set_bit(MAX_RT_PRIO, array->bitmap);
  74. #if defined CONFIG_SMP
  75. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  76. rt_rq->highest_prio.next = MAX_RT_PRIO;
  77. rt_rq->rt_nr_migratory = 0;
  78. rt_rq->overloaded = 0;
  79. plist_head_init(&rt_rq->pushable_tasks);
  80. #ifdef HAVE_RT_PUSH_IPI
  81. rt_rq->push_flags = 0;
  82. rt_rq->push_cpu = nr_cpu_ids;
  83. raw_spin_lock_init(&rt_rq->push_lock);
  84. init_irq_work(&rt_rq->push_work, push_irq_work_func);
  85. #endif
  86. #endif /* CONFIG_SMP */
  87. /* We start is dequeued state, because no RT tasks are queued */
  88. rt_rq->rt_queued = 0;
  89. rt_rq->rt_time = 0;
  90. rt_rq->rt_throttled = 0;
  91. rt_rq->rt_runtime = 0;
  92. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  93. }
  94. #ifdef CONFIG_RT_GROUP_SCHED
  95. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  96. {
  97. hrtimer_cancel(&rt_b->rt_period_timer);
  98. }
  99. #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
  100. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  101. {
  102. #ifdef CONFIG_SCHED_DEBUG
  103. WARN_ON_ONCE(!rt_entity_is_task(rt_se));
  104. #endif
  105. return container_of(rt_se, struct task_struct, rt);
  106. }
  107. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  108. {
  109. return rt_rq->rq;
  110. }
  111. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  112. {
  113. return rt_se->rt_rq;
  114. }
  115. static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
  116. {
  117. struct rt_rq *rt_rq = rt_se->rt_rq;
  118. return rt_rq->rq;
  119. }
  120. void free_rt_sched_group(struct task_group *tg)
  121. {
  122. int i;
  123. if (tg->rt_se)
  124. destroy_rt_bandwidth(&tg->rt_bandwidth);
  125. for_each_possible_cpu(i) {
  126. if (tg->rt_rq)
  127. kfree(tg->rt_rq[i]);
  128. if (tg->rt_se)
  129. kfree(tg->rt_se[i]);
  130. }
  131. kfree(tg->rt_rq);
  132. kfree(tg->rt_se);
  133. }
  134. void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  135. struct sched_rt_entity *rt_se, int cpu,
  136. struct sched_rt_entity *parent)
  137. {
  138. struct rq *rq = cpu_rq(cpu);
  139. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  140. rt_rq->rt_nr_boosted = 0;
  141. rt_rq->rq = rq;
  142. rt_rq->tg = tg;
  143. tg->rt_rq[cpu] = rt_rq;
  144. tg->rt_se[cpu] = rt_se;
  145. if (!rt_se)
  146. return;
  147. if (!parent)
  148. rt_se->rt_rq = &rq->rt;
  149. else
  150. rt_se->rt_rq = parent->my_q;
  151. rt_se->my_q = rt_rq;
  152. rt_se->parent = parent;
  153. INIT_LIST_HEAD(&rt_se->run_list);
  154. }
  155. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  156. {
  157. struct rt_rq *rt_rq;
  158. struct sched_rt_entity *rt_se;
  159. int i;
  160. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  161. if (!tg->rt_rq)
  162. goto err;
  163. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  164. if (!tg->rt_se)
  165. goto err;
  166. init_rt_bandwidth(&tg->rt_bandwidth,
  167. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  168. for_each_possible_cpu(i) {
  169. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  170. GFP_KERNEL, cpu_to_node(i));
  171. if (!rt_rq)
  172. goto err;
  173. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  174. GFP_KERNEL, cpu_to_node(i));
  175. if (!rt_se)
  176. goto err_free_rq;
  177. init_rt_rq(rt_rq);
  178. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  179. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  180. }
  181. return 1;
  182. err_free_rq:
  183. kfree(rt_rq);
  184. err:
  185. return 0;
  186. }
  187. #else /* CONFIG_RT_GROUP_SCHED */
  188. #define rt_entity_is_task(rt_se) (1)
  189. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  190. {
  191. return container_of(rt_se, struct task_struct, rt);
  192. }
  193. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  194. {
  195. return container_of(rt_rq, struct rq, rt);
  196. }
  197. static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
  198. {
  199. struct task_struct *p = rt_task_of(rt_se);
  200. return task_rq(p);
  201. }
  202. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  203. {
  204. struct rq *rq = rq_of_rt_se(rt_se);
  205. return &rq->rt;
  206. }
  207. void free_rt_sched_group(struct task_group *tg) { }
  208. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  209. {
  210. return 1;
  211. }
  212. #endif /* CONFIG_RT_GROUP_SCHED */
  213. #ifdef CONFIG_SMP
  214. static void pull_rt_task(struct rq *this_rq);
  215. static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
  216. {
  217. /* Try to pull RT tasks here if we lower this rq's prio */
  218. return rq->rt.highest_prio.curr > prev->prio;
  219. }
  220. static inline int rt_overloaded(struct rq *rq)
  221. {
  222. return atomic_read(&rq->rd->rto_count);
  223. }
  224. static inline void rt_set_overload(struct rq *rq)
  225. {
  226. if (!rq->online)
  227. return;
  228. cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
  229. /*
  230. * Make sure the mask is visible before we set
  231. * the overload count. That is checked to determine
  232. * if we should look at the mask. It would be a shame
  233. * if we looked at the mask, but the mask was not
  234. * updated yet.
  235. *
  236. * Matched by the barrier in pull_rt_task().
  237. */
  238. smp_wmb();
  239. atomic_inc(&rq->rd->rto_count);
  240. }
  241. static inline void rt_clear_overload(struct rq *rq)
  242. {
  243. if (!rq->online)
  244. return;
  245. /* the order here really doesn't matter */
  246. atomic_dec(&rq->rd->rto_count);
  247. cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
  248. }
  249. static void update_rt_migration(struct rt_rq *rt_rq)
  250. {
  251. if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
  252. if (!rt_rq->overloaded) {
  253. rt_set_overload(rq_of_rt_rq(rt_rq));
  254. rt_rq->overloaded = 1;
  255. }
  256. } else if (rt_rq->overloaded) {
  257. rt_clear_overload(rq_of_rt_rq(rt_rq));
  258. rt_rq->overloaded = 0;
  259. }
  260. }
  261. static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  262. {
  263. struct task_struct *p;
  264. if (!rt_entity_is_task(rt_se))
  265. return;
  266. p = rt_task_of(rt_se);
  267. rt_rq = &rq_of_rt_rq(rt_rq)->rt;
  268. rt_rq->rt_nr_total++;
  269. if (tsk_nr_cpus_allowed(p) > 1)
  270. rt_rq->rt_nr_migratory++;
  271. update_rt_migration(rt_rq);
  272. }
  273. static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  274. {
  275. struct task_struct *p;
  276. if (!rt_entity_is_task(rt_se))
  277. return;
  278. p = rt_task_of(rt_se);
  279. rt_rq = &rq_of_rt_rq(rt_rq)->rt;
  280. rt_rq->rt_nr_total--;
  281. if (tsk_nr_cpus_allowed(p) > 1)
  282. rt_rq->rt_nr_migratory--;
  283. update_rt_migration(rt_rq);
  284. }
  285. static inline int has_pushable_tasks(struct rq *rq)
  286. {
  287. return !plist_head_empty(&rq->rt.pushable_tasks);
  288. }
  289. static DEFINE_PER_CPU(struct callback_head, rt_push_head);
  290. static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
  291. static void push_rt_tasks(struct rq *);
  292. static void pull_rt_task(struct rq *);
  293. static inline void queue_push_tasks(struct rq *rq)
  294. {
  295. if (!has_pushable_tasks(rq))
  296. return;
  297. queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
  298. }
  299. static inline void queue_pull_task(struct rq *rq)
  300. {
  301. queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
  302. }
  303. static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
  304. {
  305. plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
  306. plist_node_init(&p->pushable_tasks, p->prio);
  307. plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
  308. /* Update the highest prio pushable task */
  309. if (p->prio < rq->rt.highest_prio.next)
  310. rq->rt.highest_prio.next = p->prio;
  311. }
  312. static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
  313. {
  314. plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
  315. /* Update the new highest prio pushable task */
  316. if (has_pushable_tasks(rq)) {
  317. p = plist_first_entry(&rq->rt.pushable_tasks,
  318. struct task_struct, pushable_tasks);
  319. rq->rt.highest_prio.next = p->prio;
  320. } else
  321. rq->rt.highest_prio.next = MAX_RT_PRIO;
  322. }
  323. #else
  324. static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
  325. {
  326. }
  327. static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
  328. {
  329. }
  330. static inline
  331. void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  332. {
  333. }
  334. static inline
  335. void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  336. {
  337. }
  338. static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
  339. {
  340. return false;
  341. }
  342. static inline void pull_rt_task(struct rq *this_rq)
  343. {
  344. }
  345. static inline void queue_push_tasks(struct rq *rq)
  346. {
  347. }
  348. #endif /* CONFIG_SMP */
  349. static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
  350. static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
  351. static inline int on_rt_rq(struct sched_rt_entity *rt_se)
  352. {
  353. return rt_se->on_rq;
  354. }
  355. #ifdef CONFIG_RT_GROUP_SCHED
  356. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  357. {
  358. if (!rt_rq->tg)
  359. return RUNTIME_INF;
  360. return rt_rq->rt_runtime;
  361. }
  362. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  363. {
  364. return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
  365. }
  366. typedef struct task_group *rt_rq_iter_t;
  367. static inline struct task_group *next_task_group(struct task_group *tg)
  368. {
  369. do {
  370. tg = list_entry_rcu(tg->list.next,
  371. typeof(struct task_group), list);
  372. } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
  373. if (&tg->list == &task_groups)
  374. tg = NULL;
  375. return tg;
  376. }
  377. #define for_each_rt_rq(rt_rq, iter, rq) \
  378. for (iter = container_of(&task_groups, typeof(*iter), list); \
  379. (iter = next_task_group(iter)) && \
  380. (rt_rq = iter->rt_rq[cpu_of(rq)]);)
  381. #define for_each_sched_rt_entity(rt_se) \
  382. for (; rt_se; rt_se = rt_se->parent)
  383. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  384. {
  385. return rt_se->my_q;
  386. }
  387. static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
  388. static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
  389. static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  390. {
  391. struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
  392. struct rq *rq = rq_of_rt_rq(rt_rq);
  393. struct sched_rt_entity *rt_se;
  394. int cpu = cpu_of(rq);
  395. rt_se = rt_rq->tg->rt_se[cpu];
  396. if (rt_rq->rt_nr_running) {
  397. if (!rt_se)
  398. enqueue_top_rt_rq(rt_rq);
  399. else if (!on_rt_rq(rt_se))
  400. enqueue_rt_entity(rt_se, 0);
  401. if (rt_rq->highest_prio.curr < curr->prio)
  402. resched_curr(rq);
  403. }
  404. }
  405. static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  406. {
  407. struct sched_rt_entity *rt_se;
  408. int cpu = cpu_of(rq_of_rt_rq(rt_rq));
  409. rt_se = rt_rq->tg->rt_se[cpu];
  410. if (!rt_se)
  411. dequeue_top_rt_rq(rt_rq);
  412. else if (on_rt_rq(rt_se))
  413. dequeue_rt_entity(rt_se, 0);
  414. }
  415. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  416. {
  417. return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
  418. }
  419. static int rt_se_boosted(struct sched_rt_entity *rt_se)
  420. {
  421. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  422. struct task_struct *p;
  423. if (rt_rq)
  424. return !!rt_rq->rt_nr_boosted;
  425. p = rt_task_of(rt_se);
  426. return p->prio != p->normal_prio;
  427. }
  428. #ifdef CONFIG_SMP
  429. static inline const struct cpumask *sched_rt_period_mask(void)
  430. {
  431. return this_rq()->rd->span;
  432. }
  433. #else
  434. static inline const struct cpumask *sched_rt_period_mask(void)
  435. {
  436. return cpu_online_mask;
  437. }
  438. #endif
  439. static inline
  440. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  441. {
  442. return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
  443. }
  444. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  445. {
  446. return &rt_rq->tg->rt_bandwidth;
  447. }
  448. #else /* !CONFIG_RT_GROUP_SCHED */
  449. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  450. {
  451. return rt_rq->rt_runtime;
  452. }
  453. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  454. {
  455. return ktime_to_ns(def_rt_bandwidth.rt_period);
  456. }
  457. typedef struct rt_rq *rt_rq_iter_t;
  458. #define for_each_rt_rq(rt_rq, iter, rq) \
  459. for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
  460. #define for_each_sched_rt_entity(rt_se) \
  461. for (; rt_se; rt_se = NULL)
  462. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  463. {
  464. return NULL;
  465. }
  466. static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  467. {
  468. struct rq *rq = rq_of_rt_rq(rt_rq);
  469. if (!rt_rq->rt_nr_running)
  470. return;
  471. enqueue_top_rt_rq(rt_rq);
  472. resched_curr(rq);
  473. }
  474. static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  475. {
  476. dequeue_top_rt_rq(rt_rq);
  477. }
  478. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  479. {
  480. return rt_rq->rt_throttled;
  481. }
  482. static inline const struct cpumask *sched_rt_period_mask(void)
  483. {
  484. return cpu_online_mask;
  485. }
  486. static inline
  487. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  488. {
  489. return &cpu_rq(cpu)->rt;
  490. }
  491. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  492. {
  493. return &def_rt_bandwidth;
  494. }
  495. #endif /* CONFIG_RT_GROUP_SCHED */
  496. bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
  497. {
  498. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  499. return (hrtimer_active(&rt_b->rt_period_timer) ||
  500. rt_rq->rt_time < rt_b->rt_runtime);
  501. }
  502. #ifdef CONFIG_SMP
  503. /*
  504. * We ran out of runtime, see if we can borrow some from our neighbours.
  505. */
  506. static void do_balance_runtime(struct rt_rq *rt_rq)
  507. {
  508. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  509. struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
  510. int i, weight;
  511. u64 rt_period;
  512. weight = cpumask_weight(rd->span);
  513. raw_spin_lock(&rt_b->rt_runtime_lock);
  514. rt_period = ktime_to_ns(rt_b->rt_period);
  515. for_each_cpu(i, rd->span) {
  516. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  517. s64 diff;
  518. if (iter == rt_rq)
  519. continue;
  520. raw_spin_lock(&iter->rt_runtime_lock);
  521. /*
  522. * Either all rqs have inf runtime and there's nothing to steal
  523. * or __disable_runtime() below sets a specific rq to inf to
  524. * indicate its been disabled and disalow stealing.
  525. */
  526. if (iter->rt_runtime == RUNTIME_INF)
  527. goto next;
  528. /*
  529. * From runqueues with spare time, take 1/n part of their
  530. * spare time, but no more than our period.
  531. */
  532. diff = iter->rt_runtime - iter->rt_time;
  533. if (diff > 0) {
  534. diff = div_u64((u64)diff, weight);
  535. if (rt_rq->rt_runtime + diff > rt_period)
  536. diff = rt_period - rt_rq->rt_runtime;
  537. iter->rt_runtime -= diff;
  538. rt_rq->rt_runtime += diff;
  539. if (rt_rq->rt_runtime == rt_period) {
  540. raw_spin_unlock(&iter->rt_runtime_lock);
  541. break;
  542. }
  543. }
  544. next:
  545. raw_spin_unlock(&iter->rt_runtime_lock);
  546. }
  547. raw_spin_unlock(&rt_b->rt_runtime_lock);
  548. }
  549. /*
  550. * Ensure this RQ takes back all the runtime it lend to its neighbours.
  551. */
  552. static void __disable_runtime(struct rq *rq)
  553. {
  554. struct root_domain *rd = rq->rd;
  555. rt_rq_iter_t iter;
  556. struct rt_rq *rt_rq;
  557. if (unlikely(!scheduler_running))
  558. return;
  559. for_each_rt_rq(rt_rq, iter, rq) {
  560. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  561. s64 want;
  562. int i;
  563. raw_spin_lock(&rt_b->rt_runtime_lock);
  564. raw_spin_lock(&rt_rq->rt_runtime_lock);
  565. /*
  566. * Either we're all inf and nobody needs to borrow, or we're
  567. * already disabled and thus have nothing to do, or we have
  568. * exactly the right amount of runtime to take out.
  569. */
  570. if (rt_rq->rt_runtime == RUNTIME_INF ||
  571. rt_rq->rt_runtime == rt_b->rt_runtime)
  572. goto balanced;
  573. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  574. /*
  575. * Calculate the difference between what we started out with
  576. * and what we current have, that's the amount of runtime
  577. * we lend and now have to reclaim.
  578. */
  579. want = rt_b->rt_runtime - rt_rq->rt_runtime;
  580. /*
  581. * Greedy reclaim, take back as much as we can.
  582. */
  583. for_each_cpu(i, rd->span) {
  584. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  585. s64 diff;
  586. /*
  587. * Can't reclaim from ourselves or disabled runqueues.
  588. */
  589. if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
  590. continue;
  591. raw_spin_lock(&iter->rt_runtime_lock);
  592. if (want > 0) {
  593. diff = min_t(s64, iter->rt_runtime, want);
  594. iter->rt_runtime -= diff;
  595. want -= diff;
  596. } else {
  597. iter->rt_runtime -= want;
  598. want -= want;
  599. }
  600. raw_spin_unlock(&iter->rt_runtime_lock);
  601. if (!want)
  602. break;
  603. }
  604. raw_spin_lock(&rt_rq->rt_runtime_lock);
  605. /*
  606. * We cannot be left wanting - that would mean some runtime
  607. * leaked out of the system.
  608. */
  609. BUG_ON(want);
  610. balanced:
  611. /*
  612. * Disable all the borrow logic by pretending we have inf
  613. * runtime - in which case borrowing doesn't make sense.
  614. */
  615. rt_rq->rt_runtime = RUNTIME_INF;
  616. rt_rq->rt_throttled = 0;
  617. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  618. raw_spin_unlock(&rt_b->rt_runtime_lock);
  619. /* Make rt_rq available for pick_next_task() */
  620. sched_rt_rq_enqueue(rt_rq);
  621. }
  622. }
  623. static void __enable_runtime(struct rq *rq)
  624. {
  625. rt_rq_iter_t iter;
  626. struct rt_rq *rt_rq;
  627. if (unlikely(!scheduler_running))
  628. return;
  629. /*
  630. * Reset each runqueue's bandwidth settings
  631. */
  632. for_each_rt_rq(rt_rq, iter, rq) {
  633. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  634. raw_spin_lock(&rt_b->rt_runtime_lock);
  635. raw_spin_lock(&rt_rq->rt_runtime_lock);
  636. rt_rq->rt_runtime = rt_b->rt_runtime;
  637. rt_rq->rt_time = 0;
  638. rt_rq->rt_throttled = 0;
  639. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  640. raw_spin_unlock(&rt_b->rt_runtime_lock);
  641. }
  642. }
  643. static void balance_runtime(struct rt_rq *rt_rq)
  644. {
  645. if (!sched_feat(RT_RUNTIME_SHARE))
  646. return;
  647. if (rt_rq->rt_time > rt_rq->rt_runtime) {
  648. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  649. do_balance_runtime(rt_rq);
  650. raw_spin_lock(&rt_rq->rt_runtime_lock);
  651. }
  652. }
  653. #else /* !CONFIG_SMP */
  654. static inline void balance_runtime(struct rt_rq *rt_rq) {}
  655. #endif /* CONFIG_SMP */
  656. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
  657. {
  658. int i, idle = 1, throttled = 0;
  659. const struct cpumask *span;
  660. span = sched_rt_period_mask();
  661. #ifdef CONFIG_RT_GROUP_SCHED
  662. /*
  663. * FIXME: isolated CPUs should really leave the root task group,
  664. * whether they are isolcpus or were isolated via cpusets, lest
  665. * the timer run on a CPU which does not service all runqueues,
  666. * potentially leaving other CPUs indefinitely throttled. If
  667. * isolation is really required, the user will turn the throttle
  668. * off to kill the perturbations it causes anyway. Meanwhile,
  669. * this maintains functionality for boot and/or troubleshooting.
  670. */
  671. if (rt_b == &root_task_group.rt_bandwidth)
  672. span = cpu_online_mask;
  673. #endif
  674. for_each_cpu(i, span) {
  675. int enqueue = 0;
  676. struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
  677. struct rq *rq = rq_of_rt_rq(rt_rq);
  678. raw_spin_lock(&rq->lock);
  679. if (rt_rq->rt_time) {
  680. u64 runtime;
  681. raw_spin_lock(&rt_rq->rt_runtime_lock);
  682. if (rt_rq->rt_throttled)
  683. balance_runtime(rt_rq);
  684. runtime = rt_rq->rt_runtime;
  685. rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
  686. if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
  687. rt_rq->rt_throttled = 0;
  688. enqueue = 1;
  689. /*
  690. * When we're idle and a woken (rt) task is
  691. * throttled check_preempt_curr() will set
  692. * skip_update and the time between the wakeup
  693. * and this unthrottle will get accounted as
  694. * 'runtime'.
  695. */
  696. if (rt_rq->rt_nr_running && rq->curr == rq->idle)
  697. rq_clock_skip_update(rq, false);
  698. }
  699. if (rt_rq->rt_time || rt_rq->rt_nr_running)
  700. idle = 0;
  701. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  702. } else if (rt_rq->rt_nr_running) {
  703. idle = 0;
  704. if (!rt_rq_throttled(rt_rq))
  705. enqueue = 1;
  706. }
  707. if (rt_rq->rt_throttled)
  708. throttled = 1;
  709. if (enqueue)
  710. sched_rt_rq_enqueue(rt_rq);
  711. raw_spin_unlock(&rq->lock);
  712. }
  713. if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
  714. return 1;
  715. return idle;
  716. }
  717. static inline int rt_se_prio(struct sched_rt_entity *rt_se)
  718. {
  719. #ifdef CONFIG_RT_GROUP_SCHED
  720. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  721. if (rt_rq)
  722. return rt_rq->highest_prio.curr;
  723. #endif
  724. return rt_task_of(rt_se)->prio;
  725. }
  726. static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
  727. {
  728. u64 runtime = sched_rt_runtime(rt_rq);
  729. if (rt_rq->rt_throttled)
  730. return rt_rq_throttled(rt_rq);
  731. if (runtime >= sched_rt_period(rt_rq))
  732. return 0;
  733. balance_runtime(rt_rq);
  734. runtime = sched_rt_runtime(rt_rq);
  735. if (runtime == RUNTIME_INF)
  736. return 0;
  737. if (rt_rq->rt_time > runtime) {
  738. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  739. /*
  740. * Don't actually throttle groups that have no runtime assigned
  741. * but accrue some time due to boosting.
  742. */
  743. if (likely(rt_b->rt_runtime)) {
  744. rt_rq->rt_throttled = 1;
  745. printk_deferred_once("sched: RT throttling activated\n");
  746. } else {
  747. /*
  748. * In case we did anyway, make it go away,
  749. * replenishment is a joke, since it will replenish us
  750. * with exactly 0 ns.
  751. */
  752. rt_rq->rt_time = 0;
  753. }
  754. if (rt_rq_throttled(rt_rq)) {
  755. sched_rt_rq_dequeue(rt_rq);
  756. return 1;
  757. }
  758. }
  759. return 0;
  760. }
  761. /*
  762. * Update the current task's runtime statistics. Skip current tasks that
  763. * are not in our scheduling class.
  764. */
  765. static void update_curr_rt(struct rq *rq)
  766. {
  767. struct task_struct *curr = rq->curr;
  768. struct sched_rt_entity *rt_se = &curr->rt;
  769. u64 delta_exec;
  770. if (curr->sched_class != &rt_sched_class)
  771. return;
  772. delta_exec = rq_clock_task(rq) - curr->se.exec_start;
  773. if (unlikely((s64)delta_exec <= 0))
  774. return;
  775. /* Kick cpufreq (see the comment in linux/cpufreq.h). */
  776. if (cpu_of(rq) == smp_processor_id())
  777. cpufreq_trigger_update(rq_clock(rq));
  778. schedstat_set(curr->se.statistics.exec_max,
  779. max(curr->se.statistics.exec_max, delta_exec));
  780. curr->se.sum_exec_runtime += delta_exec;
  781. account_group_exec_runtime(curr, delta_exec);
  782. curr->se.exec_start = rq_clock_task(rq);
  783. cpuacct_charge(curr, delta_exec);
  784. sched_rt_avg_update(rq, delta_exec);
  785. if (!rt_bandwidth_enabled())
  786. return;
  787. for_each_sched_rt_entity(rt_se) {
  788. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  789. if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
  790. raw_spin_lock(&rt_rq->rt_runtime_lock);
  791. rt_rq->rt_time += delta_exec;
  792. if (sched_rt_runtime_exceeded(rt_rq))
  793. resched_curr(rq);
  794. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  795. }
  796. }
  797. }
  798. static void
  799. dequeue_top_rt_rq(struct rt_rq *rt_rq)
  800. {
  801. struct rq *rq = rq_of_rt_rq(rt_rq);
  802. BUG_ON(&rq->rt != rt_rq);
  803. if (!rt_rq->rt_queued)
  804. return;
  805. BUG_ON(!rq->nr_running);
  806. sub_nr_running(rq, rt_rq->rt_nr_running);
  807. rt_rq->rt_queued = 0;
  808. }
  809. static void
  810. enqueue_top_rt_rq(struct rt_rq *rt_rq)
  811. {
  812. struct rq *rq = rq_of_rt_rq(rt_rq);
  813. BUG_ON(&rq->rt != rt_rq);
  814. if (rt_rq->rt_queued)
  815. return;
  816. if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
  817. return;
  818. add_nr_running(rq, rt_rq->rt_nr_running);
  819. rt_rq->rt_queued = 1;
  820. }
  821. #if defined CONFIG_SMP
  822. static void
  823. inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
  824. {
  825. struct rq *rq = rq_of_rt_rq(rt_rq);
  826. #ifdef CONFIG_RT_GROUP_SCHED
  827. /*
  828. * Change rq's cpupri only if rt_rq is the top queue.
  829. */
  830. if (&rq->rt != rt_rq)
  831. return;
  832. #endif
  833. if (rq->online && prio < prev_prio)
  834. cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
  835. }
  836. static void
  837. dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
  838. {
  839. struct rq *rq = rq_of_rt_rq(rt_rq);
  840. #ifdef CONFIG_RT_GROUP_SCHED
  841. /*
  842. * Change rq's cpupri only if rt_rq is the top queue.
  843. */
  844. if (&rq->rt != rt_rq)
  845. return;
  846. #endif
  847. if (rq->online && rt_rq->highest_prio.curr != prev_prio)
  848. cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
  849. }
  850. #else /* CONFIG_SMP */
  851. static inline
  852. void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
  853. static inline
  854. void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
  855. #endif /* CONFIG_SMP */
  856. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  857. static void
  858. inc_rt_prio(struct rt_rq *rt_rq, int prio)
  859. {
  860. int prev_prio = rt_rq->highest_prio.curr;
  861. if (prio < prev_prio)
  862. rt_rq->highest_prio.curr = prio;
  863. inc_rt_prio_smp(rt_rq, prio, prev_prio);
  864. }
  865. static void
  866. dec_rt_prio(struct rt_rq *rt_rq, int prio)
  867. {
  868. int prev_prio = rt_rq->highest_prio.curr;
  869. if (rt_rq->rt_nr_running) {
  870. WARN_ON(prio < prev_prio);
  871. /*
  872. * This may have been our highest task, and therefore
  873. * we may have some recomputation to do
  874. */
  875. if (prio == prev_prio) {
  876. struct rt_prio_array *array = &rt_rq->active;
  877. rt_rq->highest_prio.curr =
  878. sched_find_first_bit(array->bitmap);
  879. }
  880. } else
  881. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  882. dec_rt_prio_smp(rt_rq, prio, prev_prio);
  883. }
  884. #else
  885. static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
  886. static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
  887. #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
  888. #ifdef CONFIG_RT_GROUP_SCHED
  889. static void
  890. inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  891. {
  892. if (rt_se_boosted(rt_se))
  893. rt_rq->rt_nr_boosted++;
  894. if (rt_rq->tg)
  895. start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
  896. }
  897. static void
  898. dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  899. {
  900. if (rt_se_boosted(rt_se))
  901. rt_rq->rt_nr_boosted--;
  902. WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
  903. }
  904. #else /* CONFIG_RT_GROUP_SCHED */
  905. static void
  906. inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  907. {
  908. start_rt_bandwidth(&def_rt_bandwidth);
  909. }
  910. static inline
  911. void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
  912. #endif /* CONFIG_RT_GROUP_SCHED */
  913. static inline
  914. unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
  915. {
  916. struct rt_rq *group_rq = group_rt_rq(rt_se);
  917. if (group_rq)
  918. return group_rq->rt_nr_running;
  919. else
  920. return 1;
  921. }
  922. static inline
  923. unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
  924. {
  925. struct rt_rq *group_rq = group_rt_rq(rt_se);
  926. struct task_struct *tsk;
  927. if (group_rq)
  928. return group_rq->rr_nr_running;
  929. tsk = rt_task_of(rt_se);
  930. return (tsk->policy == SCHED_RR) ? 1 : 0;
  931. }
  932. static inline
  933. void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  934. {
  935. int prio = rt_se_prio(rt_se);
  936. WARN_ON(!rt_prio(prio));
  937. rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
  938. rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
  939. inc_rt_prio(rt_rq, prio);
  940. inc_rt_migration(rt_se, rt_rq);
  941. inc_rt_group(rt_se, rt_rq);
  942. }
  943. static inline
  944. void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  945. {
  946. WARN_ON(!rt_prio(rt_se_prio(rt_se)));
  947. WARN_ON(!rt_rq->rt_nr_running);
  948. rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
  949. rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
  950. dec_rt_prio(rt_rq, rt_se_prio(rt_se));
  951. dec_rt_migration(rt_se, rt_rq);
  952. dec_rt_group(rt_se, rt_rq);
  953. }
  954. /*
  955. * Change rt_se->run_list location unless SAVE && !MOVE
  956. *
  957. * assumes ENQUEUE/DEQUEUE flags match
  958. */
  959. static inline bool move_entity(unsigned int flags)
  960. {
  961. if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
  962. return false;
  963. return true;
  964. }
  965. static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
  966. {
  967. list_del_init(&rt_se->run_list);
  968. if (list_empty(array->queue + rt_se_prio(rt_se)))
  969. __clear_bit(rt_se_prio(rt_se), array->bitmap);
  970. rt_se->on_list = 0;
  971. }
  972. static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
  973. {
  974. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  975. struct rt_prio_array *array = &rt_rq->active;
  976. struct rt_rq *group_rq = group_rt_rq(rt_se);
  977. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  978. /*
  979. * Don't enqueue the group if its throttled, or when empty.
  980. * The latter is a consequence of the former when a child group
  981. * get throttled and the current group doesn't have any other
  982. * active members.
  983. */
  984. if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
  985. if (rt_se->on_list)
  986. __delist_rt_entity(rt_se, array);
  987. return;
  988. }
  989. if (move_entity(flags)) {
  990. WARN_ON_ONCE(rt_se->on_list);
  991. if (flags & ENQUEUE_HEAD)
  992. list_add(&rt_se->run_list, queue);
  993. else
  994. list_add_tail(&rt_se->run_list, queue);
  995. __set_bit(rt_se_prio(rt_se), array->bitmap);
  996. rt_se->on_list = 1;
  997. }
  998. rt_se->on_rq = 1;
  999. inc_rt_tasks(rt_se, rt_rq);
  1000. }
  1001. static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
  1002. {
  1003. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  1004. struct rt_prio_array *array = &rt_rq->active;
  1005. if (move_entity(flags)) {
  1006. WARN_ON_ONCE(!rt_se->on_list);
  1007. __delist_rt_entity(rt_se, array);
  1008. }
  1009. rt_se->on_rq = 0;
  1010. dec_rt_tasks(rt_se, rt_rq);
  1011. }
  1012. /*
  1013. * Because the prio of an upper entry depends on the lower
  1014. * entries, we must remove entries top - down.
  1015. */
  1016. static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
  1017. {
  1018. struct sched_rt_entity *back = NULL;
  1019. for_each_sched_rt_entity(rt_se) {
  1020. rt_se->back = back;
  1021. back = rt_se;
  1022. }
  1023. dequeue_top_rt_rq(rt_rq_of_se(back));
  1024. for (rt_se = back; rt_se; rt_se = rt_se->back) {
  1025. if (on_rt_rq(rt_se))
  1026. __dequeue_rt_entity(rt_se, flags);
  1027. }
  1028. }
  1029. static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
  1030. {
  1031. struct rq *rq = rq_of_rt_se(rt_se);
  1032. dequeue_rt_stack(rt_se, flags);
  1033. for_each_sched_rt_entity(rt_se)
  1034. __enqueue_rt_entity(rt_se, flags);
  1035. enqueue_top_rt_rq(&rq->rt);
  1036. }
  1037. static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
  1038. {
  1039. struct rq *rq = rq_of_rt_se(rt_se);
  1040. dequeue_rt_stack(rt_se, flags);
  1041. for_each_sched_rt_entity(rt_se) {
  1042. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  1043. if (rt_rq && rt_rq->rt_nr_running)
  1044. __enqueue_rt_entity(rt_se, flags);
  1045. }
  1046. enqueue_top_rt_rq(&rq->rt);
  1047. }
  1048. /*
  1049. * Adding/removing a task to/from a priority array:
  1050. */
  1051. static void
  1052. enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
  1053. {
  1054. struct sched_rt_entity *rt_se = &p->rt;
  1055. if (flags & ENQUEUE_WAKEUP)
  1056. rt_se->timeout = 0;
  1057. enqueue_rt_entity(rt_se, flags);
  1058. if (!task_current(rq, p) && tsk_nr_cpus_allowed(p) > 1)
  1059. enqueue_pushable_task(rq, p);
  1060. }
  1061. static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
  1062. {
  1063. struct sched_rt_entity *rt_se = &p->rt;
  1064. update_curr_rt(rq);
  1065. dequeue_rt_entity(rt_se, flags);
  1066. dequeue_pushable_task(rq, p);
  1067. }
  1068. /*
  1069. * Put task to the head or the end of the run list without the overhead of
  1070. * dequeue followed by enqueue.
  1071. */
  1072. static void
  1073. requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
  1074. {
  1075. if (on_rt_rq(rt_se)) {
  1076. struct rt_prio_array *array = &rt_rq->active;
  1077. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  1078. if (head)
  1079. list_move(&rt_se->run_list, queue);
  1080. else
  1081. list_move_tail(&rt_se->run_list, queue);
  1082. }
  1083. }
  1084. static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
  1085. {
  1086. struct sched_rt_entity *rt_se = &p->rt;
  1087. struct rt_rq *rt_rq;
  1088. for_each_sched_rt_entity(rt_se) {
  1089. rt_rq = rt_rq_of_se(rt_se);
  1090. requeue_rt_entity(rt_rq, rt_se, head);
  1091. }
  1092. }
  1093. static void yield_task_rt(struct rq *rq)
  1094. {
  1095. requeue_task_rt(rq, rq->curr, 0);
  1096. }
  1097. #ifdef CONFIG_SMP
  1098. static int find_lowest_rq(struct task_struct *task);
  1099. static int
  1100. select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
  1101. {
  1102. struct task_struct *curr;
  1103. struct rq *rq;
  1104. /* For anything but wake ups, just return the task_cpu */
  1105. if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
  1106. goto out;
  1107. rq = cpu_rq(cpu);
  1108. rcu_read_lock();
  1109. curr = READ_ONCE(rq->curr); /* unlocked access */
  1110. /*
  1111. * If the current task on @p's runqueue is an RT task, then
  1112. * try to see if we can wake this RT task up on another
  1113. * runqueue. Otherwise simply start this RT task
  1114. * on its current runqueue.
  1115. *
  1116. * We want to avoid overloading runqueues. If the woken
  1117. * task is a higher priority, then it will stay on this CPU
  1118. * and the lower prio task should be moved to another CPU.
  1119. * Even though this will probably make the lower prio task
  1120. * lose its cache, we do not want to bounce a higher task
  1121. * around just because it gave up its CPU, perhaps for a
  1122. * lock?
  1123. *
  1124. * For equal prio tasks, we just let the scheduler sort it out.
  1125. *
  1126. * Otherwise, just let it ride on the affined RQ and the
  1127. * post-schedule router will push the preempted task away
  1128. *
  1129. * This test is optimistic, if we get it wrong the load-balancer
  1130. * will have to sort it out.
  1131. */
  1132. if (curr && unlikely(rt_task(curr)) &&
  1133. (tsk_nr_cpus_allowed(curr) < 2 ||
  1134. curr->prio <= p->prio)) {
  1135. int target = find_lowest_rq(p);
  1136. /*
  1137. * Don't bother moving it if the destination CPU is
  1138. * not running a lower priority task.
  1139. */
  1140. if (target != -1 &&
  1141. p->prio < cpu_rq(target)->rt.highest_prio.curr)
  1142. cpu = target;
  1143. }
  1144. rcu_read_unlock();
  1145. out:
  1146. return cpu;
  1147. }
  1148. static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
  1149. {
  1150. /*
  1151. * Current can't be migrated, useless to reschedule,
  1152. * let's hope p can move out.
  1153. */
  1154. if (tsk_nr_cpus_allowed(rq->curr) == 1 ||
  1155. !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
  1156. return;
  1157. /*
  1158. * p is migratable, so let's not schedule it and
  1159. * see if it is pushed or pulled somewhere else.
  1160. */
  1161. if (tsk_nr_cpus_allowed(p) != 1
  1162. && cpupri_find(&rq->rd->cpupri, p, NULL))
  1163. return;
  1164. /*
  1165. * There appears to be other cpus that can accept
  1166. * current and none to run 'p', so lets reschedule
  1167. * to try and push current away:
  1168. */
  1169. requeue_task_rt(rq, p, 1);
  1170. resched_curr(rq);
  1171. }
  1172. #endif /* CONFIG_SMP */
  1173. /*
  1174. * Preempt the current task with a newly woken task if needed:
  1175. */
  1176. static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
  1177. {
  1178. if (p->prio < rq->curr->prio) {
  1179. resched_curr(rq);
  1180. return;
  1181. }
  1182. #ifdef CONFIG_SMP
  1183. /*
  1184. * If:
  1185. *
  1186. * - the newly woken task is of equal priority to the current task
  1187. * - the newly woken task is non-migratable while current is migratable
  1188. * - current will be preempted on the next reschedule
  1189. *
  1190. * we should check to see if current can readily move to a different
  1191. * cpu. If so, we will reschedule to allow the push logic to try
  1192. * to move current somewhere else, making room for our non-migratable
  1193. * task.
  1194. */
  1195. if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
  1196. check_preempt_equal_prio(rq, p);
  1197. #endif
  1198. }
  1199. static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
  1200. struct rt_rq *rt_rq)
  1201. {
  1202. struct rt_prio_array *array = &rt_rq->active;
  1203. struct sched_rt_entity *next = NULL;
  1204. struct list_head *queue;
  1205. int idx;
  1206. idx = sched_find_first_bit(array->bitmap);
  1207. BUG_ON(idx >= MAX_RT_PRIO);
  1208. queue = array->queue + idx;
  1209. next = list_entry(queue->next, struct sched_rt_entity, run_list);
  1210. return next;
  1211. }
  1212. static struct task_struct *_pick_next_task_rt(struct rq *rq)
  1213. {
  1214. struct sched_rt_entity *rt_se;
  1215. struct task_struct *p;
  1216. struct rt_rq *rt_rq = &rq->rt;
  1217. do {
  1218. rt_se = pick_next_rt_entity(rq, rt_rq);
  1219. BUG_ON(!rt_se);
  1220. rt_rq = group_rt_rq(rt_se);
  1221. } while (rt_rq);
  1222. p = rt_task_of(rt_se);
  1223. p->se.exec_start = rq_clock_task(rq);
  1224. return p;
  1225. }
  1226. static struct task_struct *
  1227. pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
  1228. {
  1229. struct task_struct *p;
  1230. struct rt_rq *rt_rq = &rq->rt;
  1231. if (need_pull_rt_task(rq, prev)) {
  1232. /*
  1233. * This is OK, because current is on_cpu, which avoids it being
  1234. * picked for load-balance and preemption/IRQs are still
  1235. * disabled avoiding further scheduler activity on it and we're
  1236. * being very careful to re-start the picking loop.
  1237. */
  1238. lockdep_unpin_lock(&rq->lock, cookie);
  1239. pull_rt_task(rq);
  1240. lockdep_repin_lock(&rq->lock, cookie);
  1241. /*
  1242. * pull_rt_task() can drop (and re-acquire) rq->lock; this
  1243. * means a dl or stop task can slip in, in which case we need
  1244. * to re-start task selection.
  1245. */
  1246. if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
  1247. rq->dl.dl_nr_running))
  1248. return RETRY_TASK;
  1249. }
  1250. /*
  1251. * We may dequeue prev's rt_rq in put_prev_task().
  1252. * So, we update time before rt_nr_running check.
  1253. */
  1254. if (prev->sched_class == &rt_sched_class)
  1255. update_curr_rt(rq);
  1256. if (!rt_rq->rt_queued)
  1257. return NULL;
  1258. put_prev_task(rq, prev);
  1259. p = _pick_next_task_rt(rq);
  1260. /* The running task is never eligible for pushing */
  1261. dequeue_pushable_task(rq, p);
  1262. queue_push_tasks(rq);
  1263. return p;
  1264. }
  1265. static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
  1266. {
  1267. update_curr_rt(rq);
  1268. /*
  1269. * The previous task needs to be made eligible for pushing
  1270. * if it is still active
  1271. */
  1272. if (on_rt_rq(&p->rt) && tsk_nr_cpus_allowed(p) > 1)
  1273. enqueue_pushable_task(rq, p);
  1274. }
  1275. #ifdef CONFIG_SMP
  1276. /* Only try algorithms three times */
  1277. #define RT_MAX_TRIES 3
  1278. static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
  1279. {
  1280. if (!task_running(rq, p) &&
  1281. cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
  1282. return 1;
  1283. return 0;
  1284. }
  1285. /*
  1286. * Return the highest pushable rq's task, which is suitable to be executed
  1287. * on the cpu, NULL otherwise
  1288. */
  1289. static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
  1290. {
  1291. struct plist_head *head = &rq->rt.pushable_tasks;
  1292. struct task_struct *p;
  1293. if (!has_pushable_tasks(rq))
  1294. return NULL;
  1295. plist_for_each_entry(p, head, pushable_tasks) {
  1296. if (pick_rt_task(rq, p, cpu))
  1297. return p;
  1298. }
  1299. return NULL;
  1300. }
  1301. static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
  1302. static int find_lowest_rq(struct task_struct *task)
  1303. {
  1304. struct sched_domain *sd;
  1305. struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
  1306. int this_cpu = smp_processor_id();
  1307. int cpu = task_cpu(task);
  1308. /* Make sure the mask is initialized first */
  1309. if (unlikely(!lowest_mask))
  1310. return -1;
  1311. if (tsk_nr_cpus_allowed(task) == 1)
  1312. return -1; /* No other targets possible */
  1313. if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
  1314. return -1; /* No targets found */
  1315. /*
  1316. * At this point we have built a mask of cpus representing the
  1317. * lowest priority tasks in the system. Now we want to elect
  1318. * the best one based on our affinity and topology.
  1319. *
  1320. * We prioritize the last cpu that the task executed on since
  1321. * it is most likely cache-hot in that location.
  1322. */
  1323. if (cpumask_test_cpu(cpu, lowest_mask))
  1324. return cpu;
  1325. /*
  1326. * Otherwise, we consult the sched_domains span maps to figure
  1327. * out which cpu is logically closest to our hot cache data.
  1328. */
  1329. if (!cpumask_test_cpu(this_cpu, lowest_mask))
  1330. this_cpu = -1; /* Skip this_cpu opt if not among lowest */
  1331. rcu_read_lock();
  1332. for_each_domain(cpu, sd) {
  1333. if (sd->flags & SD_WAKE_AFFINE) {
  1334. int best_cpu;
  1335. /*
  1336. * "this_cpu" is cheaper to preempt than a
  1337. * remote processor.
  1338. */
  1339. if (this_cpu != -1 &&
  1340. cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
  1341. rcu_read_unlock();
  1342. return this_cpu;
  1343. }
  1344. best_cpu = cpumask_first_and(lowest_mask,
  1345. sched_domain_span(sd));
  1346. if (best_cpu < nr_cpu_ids) {
  1347. rcu_read_unlock();
  1348. return best_cpu;
  1349. }
  1350. }
  1351. }
  1352. rcu_read_unlock();
  1353. /*
  1354. * And finally, if there were no matches within the domains
  1355. * just give the caller *something* to work with from the compatible
  1356. * locations.
  1357. */
  1358. if (this_cpu != -1)
  1359. return this_cpu;
  1360. cpu = cpumask_any(lowest_mask);
  1361. if (cpu < nr_cpu_ids)
  1362. return cpu;
  1363. return -1;
  1364. }
  1365. /* Will lock the rq it finds */
  1366. static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
  1367. {
  1368. struct rq *lowest_rq = NULL;
  1369. int tries;
  1370. int cpu;
  1371. for (tries = 0; tries < RT_MAX_TRIES; tries++) {
  1372. cpu = find_lowest_rq(task);
  1373. if ((cpu == -1) || (cpu == rq->cpu))
  1374. break;
  1375. lowest_rq = cpu_rq(cpu);
  1376. if (lowest_rq->rt.highest_prio.curr <= task->prio) {
  1377. /*
  1378. * Target rq has tasks of equal or higher priority,
  1379. * retrying does not release any lock and is unlikely
  1380. * to yield a different result.
  1381. */
  1382. lowest_rq = NULL;
  1383. break;
  1384. }
  1385. /* if the prio of this runqueue changed, try again */
  1386. if (double_lock_balance(rq, lowest_rq)) {
  1387. /*
  1388. * We had to unlock the run queue. In
  1389. * the mean time, task could have
  1390. * migrated already or had its affinity changed.
  1391. * Also make sure that it wasn't scheduled on its rq.
  1392. */
  1393. if (unlikely(task_rq(task) != rq ||
  1394. !cpumask_test_cpu(lowest_rq->cpu,
  1395. tsk_cpus_allowed(task)) ||
  1396. task_running(rq, task) ||
  1397. !rt_task(task) ||
  1398. !task_on_rq_queued(task))) {
  1399. double_unlock_balance(rq, lowest_rq);
  1400. lowest_rq = NULL;
  1401. break;
  1402. }
  1403. }
  1404. /* If this rq is still suitable use it. */
  1405. if (lowest_rq->rt.highest_prio.curr > task->prio)
  1406. break;
  1407. /* try again */
  1408. double_unlock_balance(rq, lowest_rq);
  1409. lowest_rq = NULL;
  1410. }
  1411. return lowest_rq;
  1412. }
  1413. static struct task_struct *pick_next_pushable_task(struct rq *rq)
  1414. {
  1415. struct task_struct *p;
  1416. if (!has_pushable_tasks(rq))
  1417. return NULL;
  1418. p = plist_first_entry(&rq->rt.pushable_tasks,
  1419. struct task_struct, pushable_tasks);
  1420. BUG_ON(rq->cpu != task_cpu(p));
  1421. BUG_ON(task_current(rq, p));
  1422. BUG_ON(tsk_nr_cpus_allowed(p) <= 1);
  1423. BUG_ON(!task_on_rq_queued(p));
  1424. BUG_ON(!rt_task(p));
  1425. return p;
  1426. }
  1427. /*
  1428. * If the current CPU has more than one RT task, see if the non
  1429. * running task can migrate over to a CPU that is running a task
  1430. * of lesser priority.
  1431. */
  1432. static int push_rt_task(struct rq *rq)
  1433. {
  1434. struct task_struct *next_task;
  1435. struct rq *lowest_rq;
  1436. int ret = 0;
  1437. if (!rq->rt.overloaded)
  1438. return 0;
  1439. next_task = pick_next_pushable_task(rq);
  1440. if (!next_task)
  1441. return 0;
  1442. retry:
  1443. if (unlikely(next_task == rq->curr)) {
  1444. WARN_ON(1);
  1445. return 0;
  1446. }
  1447. /*
  1448. * It's possible that the next_task slipped in of
  1449. * higher priority than current. If that's the case
  1450. * just reschedule current.
  1451. */
  1452. if (unlikely(next_task->prio < rq->curr->prio)) {
  1453. resched_curr(rq);
  1454. return 0;
  1455. }
  1456. /* We might release rq lock */
  1457. get_task_struct(next_task);
  1458. /* find_lock_lowest_rq locks the rq if found */
  1459. lowest_rq = find_lock_lowest_rq(next_task, rq);
  1460. if (!lowest_rq) {
  1461. struct task_struct *task;
  1462. /*
  1463. * find_lock_lowest_rq releases rq->lock
  1464. * so it is possible that next_task has migrated.
  1465. *
  1466. * We need to make sure that the task is still on the same
  1467. * run-queue and is also still the next task eligible for
  1468. * pushing.
  1469. */
  1470. task = pick_next_pushable_task(rq);
  1471. if (task_cpu(next_task) == rq->cpu && task == next_task) {
  1472. /*
  1473. * The task hasn't migrated, and is still the next
  1474. * eligible task, but we failed to find a run-queue
  1475. * to push it to. Do not retry in this case, since
  1476. * other cpus will pull from us when ready.
  1477. */
  1478. goto out;
  1479. }
  1480. if (!task)
  1481. /* No more tasks, just exit */
  1482. goto out;
  1483. /*
  1484. * Something has shifted, try again.
  1485. */
  1486. put_task_struct(next_task);
  1487. next_task = task;
  1488. goto retry;
  1489. }
  1490. deactivate_task(rq, next_task, 0);
  1491. set_task_cpu(next_task, lowest_rq->cpu);
  1492. activate_task(lowest_rq, next_task, 0);
  1493. ret = 1;
  1494. resched_curr(lowest_rq);
  1495. double_unlock_balance(rq, lowest_rq);
  1496. out:
  1497. put_task_struct(next_task);
  1498. return ret;
  1499. }
  1500. static void push_rt_tasks(struct rq *rq)
  1501. {
  1502. /* push_rt_task will return true if it moved an RT */
  1503. while (push_rt_task(rq))
  1504. ;
  1505. }
  1506. #ifdef HAVE_RT_PUSH_IPI
  1507. /*
  1508. * The search for the next cpu always starts at rq->cpu and ends
  1509. * when we reach rq->cpu again. It will never return rq->cpu.
  1510. * This returns the next cpu to check, or nr_cpu_ids if the loop
  1511. * is complete.
  1512. *
  1513. * rq->rt.push_cpu holds the last cpu returned by this function,
  1514. * or if this is the first instance, it must hold rq->cpu.
  1515. */
  1516. static int rto_next_cpu(struct rq *rq)
  1517. {
  1518. int prev_cpu = rq->rt.push_cpu;
  1519. int cpu;
  1520. cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
  1521. /*
  1522. * If the previous cpu is less than the rq's CPU, then it already
  1523. * passed the end of the mask, and has started from the beginning.
  1524. * We end if the next CPU is greater or equal to rq's CPU.
  1525. */
  1526. if (prev_cpu < rq->cpu) {
  1527. if (cpu >= rq->cpu)
  1528. return nr_cpu_ids;
  1529. } else if (cpu >= nr_cpu_ids) {
  1530. /*
  1531. * We passed the end of the mask, start at the beginning.
  1532. * If the result is greater or equal to the rq's CPU, then
  1533. * the loop is finished.
  1534. */
  1535. cpu = cpumask_first(rq->rd->rto_mask);
  1536. if (cpu >= rq->cpu)
  1537. return nr_cpu_ids;
  1538. }
  1539. rq->rt.push_cpu = cpu;
  1540. /* Return cpu to let the caller know if the loop is finished or not */
  1541. return cpu;
  1542. }
  1543. static int find_next_push_cpu(struct rq *rq)
  1544. {
  1545. struct rq *next_rq;
  1546. int cpu;
  1547. while (1) {
  1548. cpu = rto_next_cpu(rq);
  1549. if (cpu >= nr_cpu_ids)
  1550. break;
  1551. next_rq = cpu_rq(cpu);
  1552. /* Make sure the next rq can push to this rq */
  1553. if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
  1554. break;
  1555. }
  1556. return cpu;
  1557. }
  1558. #define RT_PUSH_IPI_EXECUTING 1
  1559. #define RT_PUSH_IPI_RESTART 2
  1560. static void tell_cpu_to_push(struct rq *rq)
  1561. {
  1562. int cpu;
  1563. if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
  1564. raw_spin_lock(&rq->rt.push_lock);
  1565. /* Make sure it's still executing */
  1566. if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
  1567. /*
  1568. * Tell the IPI to restart the loop as things have
  1569. * changed since it started.
  1570. */
  1571. rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
  1572. raw_spin_unlock(&rq->rt.push_lock);
  1573. return;
  1574. }
  1575. raw_spin_unlock(&rq->rt.push_lock);
  1576. }
  1577. /* When here, there's no IPI going around */
  1578. rq->rt.push_cpu = rq->cpu;
  1579. cpu = find_next_push_cpu(rq);
  1580. if (cpu >= nr_cpu_ids)
  1581. return;
  1582. rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
  1583. irq_work_queue_on(&rq->rt.push_work, cpu);
  1584. }
  1585. /* Called from hardirq context */
  1586. static void try_to_push_tasks(void *arg)
  1587. {
  1588. struct rt_rq *rt_rq = arg;
  1589. struct rq *rq, *src_rq;
  1590. int this_cpu;
  1591. int cpu;
  1592. this_cpu = rt_rq->push_cpu;
  1593. /* Paranoid check */
  1594. BUG_ON(this_cpu != smp_processor_id());
  1595. rq = cpu_rq(this_cpu);
  1596. src_rq = rq_of_rt_rq(rt_rq);
  1597. again:
  1598. if (has_pushable_tasks(rq)) {
  1599. raw_spin_lock(&rq->lock);
  1600. push_rt_task(rq);
  1601. raw_spin_unlock(&rq->lock);
  1602. }
  1603. /* Pass the IPI to the next rt overloaded queue */
  1604. raw_spin_lock(&rt_rq->push_lock);
  1605. /*
  1606. * If the source queue changed since the IPI went out,
  1607. * we need to restart the search from that CPU again.
  1608. */
  1609. if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
  1610. rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
  1611. rt_rq->push_cpu = src_rq->cpu;
  1612. }
  1613. cpu = find_next_push_cpu(src_rq);
  1614. if (cpu >= nr_cpu_ids)
  1615. rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
  1616. raw_spin_unlock(&rt_rq->push_lock);
  1617. if (cpu >= nr_cpu_ids)
  1618. return;
  1619. /*
  1620. * It is possible that a restart caused this CPU to be
  1621. * chosen again. Don't bother with an IPI, just see if we
  1622. * have more to push.
  1623. */
  1624. if (unlikely(cpu == rq->cpu))
  1625. goto again;
  1626. /* Try the next RT overloaded CPU */
  1627. irq_work_queue_on(&rt_rq->push_work, cpu);
  1628. }
  1629. static void push_irq_work_func(struct irq_work *work)
  1630. {
  1631. struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
  1632. try_to_push_tasks(rt_rq);
  1633. }
  1634. #endif /* HAVE_RT_PUSH_IPI */
  1635. static void pull_rt_task(struct rq *this_rq)
  1636. {
  1637. int this_cpu = this_rq->cpu, cpu;
  1638. bool resched = false;
  1639. struct task_struct *p;
  1640. struct rq *src_rq;
  1641. if (likely(!rt_overloaded(this_rq)))
  1642. return;
  1643. /*
  1644. * Match the barrier from rt_set_overloaded; this guarantees that if we
  1645. * see overloaded we must also see the rto_mask bit.
  1646. */
  1647. smp_rmb();
  1648. #ifdef HAVE_RT_PUSH_IPI
  1649. if (sched_feat(RT_PUSH_IPI)) {
  1650. tell_cpu_to_push(this_rq);
  1651. return;
  1652. }
  1653. #endif
  1654. for_each_cpu(cpu, this_rq->rd->rto_mask) {
  1655. if (this_cpu == cpu)
  1656. continue;
  1657. src_rq = cpu_rq(cpu);
  1658. /*
  1659. * Don't bother taking the src_rq->lock if the next highest
  1660. * task is known to be lower-priority than our current task.
  1661. * This may look racy, but if this value is about to go
  1662. * logically higher, the src_rq will push this task away.
  1663. * And if its going logically lower, we do not care
  1664. */
  1665. if (src_rq->rt.highest_prio.next >=
  1666. this_rq->rt.highest_prio.curr)
  1667. continue;
  1668. /*
  1669. * We can potentially drop this_rq's lock in
  1670. * double_lock_balance, and another CPU could
  1671. * alter this_rq
  1672. */
  1673. double_lock_balance(this_rq, src_rq);
  1674. /*
  1675. * We can pull only a task, which is pushable
  1676. * on its rq, and no others.
  1677. */
  1678. p = pick_highest_pushable_task(src_rq, this_cpu);
  1679. /*
  1680. * Do we have an RT task that preempts
  1681. * the to-be-scheduled task?
  1682. */
  1683. if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
  1684. WARN_ON(p == src_rq->curr);
  1685. WARN_ON(!task_on_rq_queued(p));
  1686. /*
  1687. * There's a chance that p is higher in priority
  1688. * than what's currently running on its cpu.
  1689. * This is just that p is wakeing up and hasn't
  1690. * had a chance to schedule. We only pull
  1691. * p if it is lower in priority than the
  1692. * current task on the run queue
  1693. */
  1694. if (p->prio < src_rq->curr->prio)
  1695. goto skip;
  1696. resched = true;
  1697. deactivate_task(src_rq, p, 0);
  1698. set_task_cpu(p, this_cpu);
  1699. activate_task(this_rq, p, 0);
  1700. /*
  1701. * We continue with the search, just in
  1702. * case there's an even higher prio task
  1703. * in another runqueue. (low likelihood
  1704. * but possible)
  1705. */
  1706. }
  1707. skip:
  1708. double_unlock_balance(this_rq, src_rq);
  1709. }
  1710. if (resched)
  1711. resched_curr(this_rq);
  1712. }
  1713. /*
  1714. * If we are not running and we are not going to reschedule soon, we should
  1715. * try to push tasks away now
  1716. */
  1717. static void task_woken_rt(struct rq *rq, struct task_struct *p)
  1718. {
  1719. if (!task_running(rq, p) &&
  1720. !test_tsk_need_resched(rq->curr) &&
  1721. tsk_nr_cpus_allowed(p) > 1 &&
  1722. (dl_task(rq->curr) || rt_task(rq->curr)) &&
  1723. (tsk_nr_cpus_allowed(rq->curr) < 2 ||
  1724. rq->curr->prio <= p->prio))
  1725. push_rt_tasks(rq);
  1726. }
  1727. /* Assumes rq->lock is held */
  1728. static void rq_online_rt(struct rq *rq)
  1729. {
  1730. if (rq->rt.overloaded)
  1731. rt_set_overload(rq);
  1732. __enable_runtime(rq);
  1733. cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
  1734. }
  1735. /* Assumes rq->lock is held */
  1736. static void rq_offline_rt(struct rq *rq)
  1737. {
  1738. if (rq->rt.overloaded)
  1739. rt_clear_overload(rq);
  1740. __disable_runtime(rq);
  1741. cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
  1742. }
  1743. /*
  1744. * When switch from the rt queue, we bring ourselves to a position
  1745. * that we might want to pull RT tasks from other runqueues.
  1746. */
  1747. static void switched_from_rt(struct rq *rq, struct task_struct *p)
  1748. {
  1749. /*
  1750. * If there are other RT tasks then we will reschedule
  1751. * and the scheduling of the other RT tasks will handle
  1752. * the balancing. But if we are the last RT task
  1753. * we may need to handle the pulling of RT tasks
  1754. * now.
  1755. */
  1756. if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
  1757. return;
  1758. queue_pull_task(rq);
  1759. }
  1760. void __init init_sched_rt_class(void)
  1761. {
  1762. unsigned int i;
  1763. for_each_possible_cpu(i) {
  1764. zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
  1765. GFP_KERNEL, cpu_to_node(i));
  1766. }
  1767. }
  1768. #endif /* CONFIG_SMP */
  1769. /*
  1770. * When switching a task to RT, we may overload the runqueue
  1771. * with RT tasks. In this case we try to push them off to
  1772. * other runqueues.
  1773. */
  1774. static void switched_to_rt(struct rq *rq, struct task_struct *p)
  1775. {
  1776. /*
  1777. * If we are already running, then there's nothing
  1778. * that needs to be done. But if we are not running
  1779. * we may need to preempt the current running task.
  1780. * If that current running task is also an RT task
  1781. * then see if we can move to another run queue.
  1782. */
  1783. if (task_on_rq_queued(p) && rq->curr != p) {
  1784. #ifdef CONFIG_SMP
  1785. if (tsk_nr_cpus_allowed(p) > 1 && rq->rt.overloaded)
  1786. queue_push_tasks(rq);
  1787. #else
  1788. if (p->prio < rq->curr->prio)
  1789. resched_curr(rq);
  1790. #endif /* CONFIG_SMP */
  1791. }
  1792. }
  1793. /*
  1794. * Priority of the task has changed. This may cause
  1795. * us to initiate a push or pull.
  1796. */
  1797. static void
  1798. prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
  1799. {
  1800. if (!task_on_rq_queued(p))
  1801. return;
  1802. if (rq->curr == p) {
  1803. #ifdef CONFIG_SMP
  1804. /*
  1805. * If our priority decreases while running, we
  1806. * may need to pull tasks to this runqueue.
  1807. */
  1808. if (oldprio < p->prio)
  1809. queue_pull_task(rq);
  1810. /*
  1811. * If there's a higher priority task waiting to run
  1812. * then reschedule.
  1813. */
  1814. if (p->prio > rq->rt.highest_prio.curr)
  1815. resched_curr(rq);
  1816. #else
  1817. /* For UP simply resched on drop of prio */
  1818. if (oldprio < p->prio)
  1819. resched_curr(rq);
  1820. #endif /* CONFIG_SMP */
  1821. } else {
  1822. /*
  1823. * This task is not running, but if it is
  1824. * greater than the current running task
  1825. * then reschedule.
  1826. */
  1827. if (p->prio < rq->curr->prio)
  1828. resched_curr(rq);
  1829. }
  1830. }
  1831. static void watchdog(struct rq *rq, struct task_struct *p)
  1832. {
  1833. unsigned long soft, hard;
  1834. /* max may change after cur was read, this will be fixed next tick */
  1835. soft = task_rlimit(p, RLIMIT_RTTIME);
  1836. hard = task_rlimit_max(p, RLIMIT_RTTIME);
  1837. if (soft != RLIM_INFINITY) {
  1838. unsigned long next;
  1839. if (p->rt.watchdog_stamp != jiffies) {
  1840. p->rt.timeout++;
  1841. p->rt.watchdog_stamp = jiffies;
  1842. }
  1843. next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
  1844. if (p->rt.timeout > next)
  1845. p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
  1846. }
  1847. }
  1848. static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
  1849. {
  1850. struct sched_rt_entity *rt_se = &p->rt;
  1851. update_curr_rt(rq);
  1852. watchdog(rq, p);
  1853. /*
  1854. * RR tasks need a special form of timeslice management.
  1855. * FIFO tasks have no timeslices.
  1856. */
  1857. if (p->policy != SCHED_RR)
  1858. return;
  1859. if (--p->rt.time_slice)
  1860. return;
  1861. p->rt.time_slice = sched_rr_timeslice;
  1862. /*
  1863. * Requeue to the end of queue if we (and all of our ancestors) are not
  1864. * the only element on the queue
  1865. */
  1866. for_each_sched_rt_entity(rt_se) {
  1867. if (rt_se->run_list.prev != rt_se->run_list.next) {
  1868. requeue_task_rt(rq, p, 0);
  1869. resched_curr(rq);
  1870. return;
  1871. }
  1872. }
  1873. }
  1874. static void set_curr_task_rt(struct rq *rq)
  1875. {
  1876. struct task_struct *p = rq->curr;
  1877. p->se.exec_start = rq_clock_task(rq);
  1878. /* The running task is never eligible for pushing */
  1879. dequeue_pushable_task(rq, p);
  1880. }
  1881. static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
  1882. {
  1883. /*
  1884. * Time slice is 0 for SCHED_FIFO tasks
  1885. */
  1886. if (task->policy == SCHED_RR)
  1887. return sched_rr_timeslice;
  1888. else
  1889. return 0;
  1890. }
  1891. const struct sched_class rt_sched_class = {
  1892. .next = &fair_sched_class,
  1893. .enqueue_task = enqueue_task_rt,
  1894. .dequeue_task = dequeue_task_rt,
  1895. .yield_task = yield_task_rt,
  1896. .check_preempt_curr = check_preempt_curr_rt,
  1897. .pick_next_task = pick_next_task_rt,
  1898. .put_prev_task = put_prev_task_rt,
  1899. #ifdef CONFIG_SMP
  1900. .select_task_rq = select_task_rq_rt,
  1901. .set_cpus_allowed = set_cpus_allowed_common,
  1902. .rq_online = rq_online_rt,
  1903. .rq_offline = rq_offline_rt,
  1904. .task_woken = task_woken_rt,
  1905. .switched_from = switched_from_rt,
  1906. #endif
  1907. .set_curr_task = set_curr_task_rt,
  1908. .task_tick = task_tick_rt,
  1909. .get_rr_interval = get_rr_interval_rt,
  1910. .prio_changed = prio_changed_rt,
  1911. .switched_to = switched_to_rt,
  1912. .update_curr = update_curr_rt,
  1913. };
  1914. #ifdef CONFIG_SCHED_DEBUG
  1915. extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
  1916. void print_rt_stats(struct seq_file *m, int cpu)
  1917. {
  1918. rt_rq_iter_t iter;
  1919. struct rt_rq *rt_rq;
  1920. rcu_read_lock();
  1921. for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
  1922. print_rt_rq(m, cpu, rt_rq);
  1923. rcu_read_unlock();
  1924. }
  1925. #endif /* CONFIG_SCHED_DEBUG */