disk-io.c 125 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/slab.h>
  28. #include <linux/migrate.h>
  29. #include <linux/ratelimit.h>
  30. #include <linux/uuid.h>
  31. #include <linux/semaphore.h>
  32. #include <asm/unaligned.h>
  33. #include "ctree.h"
  34. #include "disk-io.h"
  35. #include "hash.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "locking.h"
  41. #include "tree-log.h"
  42. #include "free-space-cache.h"
  43. #include "free-space-tree.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #include "compression.h"
  52. #ifdef CONFIG_X86
  53. #include <asm/cpufeature.h>
  54. #endif
  55. #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
  56. BTRFS_HEADER_FLAG_RELOC |\
  57. BTRFS_SUPER_FLAG_ERROR |\
  58. BTRFS_SUPER_FLAG_SEEDING |\
  59. BTRFS_SUPER_FLAG_METADUMP)
  60. static const struct extent_io_ops btree_extent_io_ops;
  61. static void end_workqueue_fn(struct btrfs_work *work);
  62. static void free_fs_root(struct btrfs_root *root);
  63. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  64. int read_only);
  65. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  66. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  67. struct btrfs_fs_info *fs_info);
  68. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  69. static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  70. struct extent_io_tree *dirty_pages,
  71. int mark);
  72. static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  73. struct extent_io_tree *pinned_extents);
  74. static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  75. static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  76. /*
  77. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  78. * is complete. This is used during reads to verify checksums, and it is used
  79. * by writes to insert metadata for new file extents after IO is complete.
  80. */
  81. struct btrfs_end_io_wq {
  82. struct bio *bio;
  83. bio_end_io_t *end_io;
  84. void *private;
  85. struct btrfs_fs_info *info;
  86. int error;
  87. enum btrfs_wq_endio_type metadata;
  88. struct list_head list;
  89. struct btrfs_work work;
  90. };
  91. static struct kmem_cache *btrfs_end_io_wq_cache;
  92. int __init btrfs_end_io_wq_init(void)
  93. {
  94. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  95. sizeof(struct btrfs_end_io_wq),
  96. 0,
  97. SLAB_MEM_SPREAD,
  98. NULL);
  99. if (!btrfs_end_io_wq_cache)
  100. return -ENOMEM;
  101. return 0;
  102. }
  103. void btrfs_end_io_wq_exit(void)
  104. {
  105. kmem_cache_destroy(btrfs_end_io_wq_cache);
  106. }
  107. /*
  108. * async submit bios are used to offload expensive checksumming
  109. * onto the worker threads. They checksum file and metadata bios
  110. * just before they are sent down the IO stack.
  111. */
  112. struct async_submit_bio {
  113. struct inode *inode;
  114. struct bio *bio;
  115. struct list_head list;
  116. extent_submit_bio_hook_t *submit_bio_start;
  117. extent_submit_bio_hook_t *submit_bio_done;
  118. int mirror_num;
  119. unsigned long bio_flags;
  120. /*
  121. * bio_offset is optional, can be used if the pages in the bio
  122. * can't tell us where in the file the bio should go
  123. */
  124. u64 bio_offset;
  125. struct btrfs_work work;
  126. int error;
  127. };
  128. /*
  129. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  130. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  131. * the level the eb occupies in the tree.
  132. *
  133. * Different roots are used for different purposes and may nest inside each
  134. * other and they require separate keysets. As lockdep keys should be
  135. * static, assign keysets according to the purpose of the root as indicated
  136. * by btrfs_root->objectid. This ensures that all special purpose roots
  137. * have separate keysets.
  138. *
  139. * Lock-nesting across peer nodes is always done with the immediate parent
  140. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  141. * subclass to avoid triggering lockdep warning in such cases.
  142. *
  143. * The key is set by the readpage_end_io_hook after the buffer has passed
  144. * csum validation but before the pages are unlocked. It is also set by
  145. * btrfs_init_new_buffer on freshly allocated blocks.
  146. *
  147. * We also add a check to make sure the highest level of the tree is the
  148. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  149. * needs update as well.
  150. */
  151. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  152. # if BTRFS_MAX_LEVEL != 8
  153. # error
  154. # endif
  155. static struct btrfs_lockdep_keyset {
  156. u64 id; /* root objectid */
  157. const char *name_stem; /* lock name stem */
  158. char names[BTRFS_MAX_LEVEL + 1][20];
  159. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  160. } btrfs_lockdep_keysets[] = {
  161. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  162. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  163. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  164. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  165. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  166. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  167. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  168. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  169. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  170. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  171. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  172. { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
  173. { .id = 0, .name_stem = "tree" },
  174. };
  175. void __init btrfs_init_lockdep(void)
  176. {
  177. int i, j;
  178. /* initialize lockdep class names */
  179. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  180. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  181. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  182. snprintf(ks->names[j], sizeof(ks->names[j]),
  183. "btrfs-%s-%02d", ks->name_stem, j);
  184. }
  185. }
  186. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  187. int level)
  188. {
  189. struct btrfs_lockdep_keyset *ks;
  190. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  191. /* find the matching keyset, id 0 is the default entry */
  192. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  193. if (ks->id == objectid)
  194. break;
  195. lockdep_set_class_and_name(&eb->lock,
  196. &ks->keys[level], ks->names[level]);
  197. }
  198. #endif
  199. /*
  200. * extents on the btree inode are pretty simple, there's one extent
  201. * that covers the entire device
  202. */
  203. static struct extent_map *btree_get_extent(struct inode *inode,
  204. struct page *page, size_t pg_offset, u64 start, u64 len,
  205. int create)
  206. {
  207. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  208. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  209. struct extent_map *em;
  210. int ret;
  211. read_lock(&em_tree->lock);
  212. em = lookup_extent_mapping(em_tree, start, len);
  213. if (em) {
  214. em->bdev = fs_info->fs_devices->latest_bdev;
  215. read_unlock(&em_tree->lock);
  216. goto out;
  217. }
  218. read_unlock(&em_tree->lock);
  219. em = alloc_extent_map();
  220. if (!em) {
  221. em = ERR_PTR(-ENOMEM);
  222. goto out;
  223. }
  224. em->start = 0;
  225. em->len = (u64)-1;
  226. em->block_len = (u64)-1;
  227. em->block_start = 0;
  228. em->bdev = fs_info->fs_devices->latest_bdev;
  229. write_lock(&em_tree->lock);
  230. ret = add_extent_mapping(em_tree, em, 0);
  231. if (ret == -EEXIST) {
  232. free_extent_map(em);
  233. em = lookup_extent_mapping(em_tree, start, len);
  234. if (!em)
  235. em = ERR_PTR(-EIO);
  236. } else if (ret) {
  237. free_extent_map(em);
  238. em = ERR_PTR(ret);
  239. }
  240. write_unlock(&em_tree->lock);
  241. out:
  242. return em;
  243. }
  244. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  245. {
  246. return btrfs_crc32c(seed, data, len);
  247. }
  248. void btrfs_csum_final(u32 crc, u8 *result)
  249. {
  250. put_unaligned_le32(~crc, result);
  251. }
  252. /*
  253. * compute the csum for a btree block, and either verify it or write it
  254. * into the csum field of the block.
  255. */
  256. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  257. struct extent_buffer *buf,
  258. int verify)
  259. {
  260. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  261. char *result = NULL;
  262. unsigned long len;
  263. unsigned long cur_len;
  264. unsigned long offset = BTRFS_CSUM_SIZE;
  265. char *kaddr;
  266. unsigned long map_start;
  267. unsigned long map_len;
  268. int err;
  269. u32 crc = ~(u32)0;
  270. unsigned long inline_result;
  271. len = buf->len - offset;
  272. while (len > 0) {
  273. err = map_private_extent_buffer(buf, offset, 32,
  274. &kaddr, &map_start, &map_len);
  275. if (err)
  276. return err;
  277. cur_len = min(len, map_len - (offset - map_start));
  278. crc = btrfs_csum_data(kaddr + offset - map_start,
  279. crc, cur_len);
  280. len -= cur_len;
  281. offset += cur_len;
  282. }
  283. if (csum_size > sizeof(inline_result)) {
  284. result = kzalloc(csum_size, GFP_NOFS);
  285. if (!result)
  286. return -ENOMEM;
  287. } else {
  288. result = (char *)&inline_result;
  289. }
  290. btrfs_csum_final(crc, result);
  291. if (verify) {
  292. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  293. u32 val;
  294. u32 found = 0;
  295. memcpy(&found, result, csum_size);
  296. read_extent_buffer(buf, &val, 0, csum_size);
  297. btrfs_warn_rl(fs_info,
  298. "%s checksum verify failed on %llu wanted %X found %X level %d",
  299. fs_info->sb->s_id, buf->start,
  300. val, found, btrfs_header_level(buf));
  301. if (result != (char *)&inline_result)
  302. kfree(result);
  303. return -EUCLEAN;
  304. }
  305. } else {
  306. write_extent_buffer(buf, result, 0, csum_size);
  307. }
  308. if (result != (char *)&inline_result)
  309. kfree(result);
  310. return 0;
  311. }
  312. /*
  313. * we can't consider a given block up to date unless the transid of the
  314. * block matches the transid in the parent node's pointer. This is how we
  315. * detect blocks that either didn't get written at all or got written
  316. * in the wrong place.
  317. */
  318. static int verify_parent_transid(struct extent_io_tree *io_tree,
  319. struct extent_buffer *eb, u64 parent_transid,
  320. int atomic)
  321. {
  322. struct extent_state *cached_state = NULL;
  323. int ret;
  324. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  325. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  326. return 0;
  327. if (atomic)
  328. return -EAGAIN;
  329. if (need_lock) {
  330. btrfs_tree_read_lock(eb);
  331. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  332. }
  333. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  334. &cached_state);
  335. if (extent_buffer_uptodate(eb) &&
  336. btrfs_header_generation(eb) == parent_transid) {
  337. ret = 0;
  338. goto out;
  339. }
  340. btrfs_err_rl(eb->fs_info,
  341. "parent transid verify failed on %llu wanted %llu found %llu",
  342. eb->start,
  343. parent_transid, btrfs_header_generation(eb));
  344. ret = 1;
  345. /*
  346. * Things reading via commit roots that don't have normal protection,
  347. * like send, can have a really old block in cache that may point at a
  348. * block that has been freed and re-allocated. So don't clear uptodate
  349. * if we find an eb that is under IO (dirty/writeback) because we could
  350. * end up reading in the stale data and then writing it back out and
  351. * making everybody very sad.
  352. */
  353. if (!extent_buffer_under_io(eb))
  354. clear_extent_buffer_uptodate(eb);
  355. out:
  356. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  357. &cached_state, GFP_NOFS);
  358. if (need_lock)
  359. btrfs_tree_read_unlock_blocking(eb);
  360. return ret;
  361. }
  362. /*
  363. * Return 0 if the superblock checksum type matches the checksum value of that
  364. * algorithm. Pass the raw disk superblock data.
  365. */
  366. static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
  367. char *raw_disk_sb)
  368. {
  369. struct btrfs_super_block *disk_sb =
  370. (struct btrfs_super_block *)raw_disk_sb;
  371. u16 csum_type = btrfs_super_csum_type(disk_sb);
  372. int ret = 0;
  373. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  374. u32 crc = ~(u32)0;
  375. const int csum_size = sizeof(crc);
  376. char result[csum_size];
  377. /*
  378. * The super_block structure does not span the whole
  379. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  380. * is filled with zeros and is included in the checksum.
  381. */
  382. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  383. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  384. btrfs_csum_final(crc, result);
  385. if (memcmp(raw_disk_sb, result, csum_size))
  386. ret = 1;
  387. }
  388. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  389. btrfs_err(fs_info, "unsupported checksum algorithm %u",
  390. csum_type);
  391. ret = 1;
  392. }
  393. return ret;
  394. }
  395. /*
  396. * helper to read a given tree block, doing retries as required when
  397. * the checksums don't match and we have alternate mirrors to try.
  398. */
  399. static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
  400. struct extent_buffer *eb,
  401. u64 parent_transid)
  402. {
  403. struct extent_io_tree *io_tree;
  404. int failed = 0;
  405. int ret;
  406. int num_copies = 0;
  407. int mirror_num = 0;
  408. int failed_mirror = 0;
  409. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  410. io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
  411. while (1) {
  412. ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
  413. btree_get_extent, mirror_num);
  414. if (!ret) {
  415. if (!verify_parent_transid(io_tree, eb,
  416. parent_transid, 0))
  417. break;
  418. else
  419. ret = -EIO;
  420. }
  421. /*
  422. * This buffer's crc is fine, but its contents are corrupted, so
  423. * there is no reason to read the other copies, they won't be
  424. * any less wrong.
  425. */
  426. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  427. break;
  428. num_copies = btrfs_num_copies(fs_info,
  429. eb->start, eb->len);
  430. if (num_copies == 1)
  431. break;
  432. if (!failed_mirror) {
  433. failed = 1;
  434. failed_mirror = eb->read_mirror;
  435. }
  436. mirror_num++;
  437. if (mirror_num == failed_mirror)
  438. mirror_num++;
  439. if (mirror_num > num_copies)
  440. break;
  441. }
  442. if (failed && !ret && failed_mirror)
  443. repair_eb_io_failure(fs_info, eb, failed_mirror);
  444. return ret;
  445. }
  446. /*
  447. * checksum a dirty tree block before IO. This has extra checks to make sure
  448. * we only fill in the checksum field in the first page of a multi-page block
  449. */
  450. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  451. {
  452. u64 start = page_offset(page);
  453. u64 found_start;
  454. struct extent_buffer *eb;
  455. eb = (struct extent_buffer *)page->private;
  456. if (page != eb->pages[0])
  457. return 0;
  458. found_start = btrfs_header_bytenr(eb);
  459. /*
  460. * Please do not consolidate these warnings into a single if.
  461. * It is useful to know what went wrong.
  462. */
  463. if (WARN_ON(found_start != start))
  464. return -EUCLEAN;
  465. if (WARN_ON(!PageUptodate(page)))
  466. return -EUCLEAN;
  467. ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
  468. btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
  469. return csum_tree_block(fs_info, eb, 0);
  470. }
  471. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  472. struct extent_buffer *eb)
  473. {
  474. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  475. u8 fsid[BTRFS_UUID_SIZE];
  476. int ret = 1;
  477. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  478. while (fs_devices) {
  479. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  480. ret = 0;
  481. break;
  482. }
  483. fs_devices = fs_devices->seed;
  484. }
  485. return ret;
  486. }
  487. #define CORRUPT(reason, eb, root, slot) \
  488. btrfs_crit(root->fs_info, \
  489. "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \
  490. btrfs_header_level(eb) == 0 ? "leaf" : "node", \
  491. reason, btrfs_header_bytenr(eb), root->objectid, slot)
  492. static noinline int check_leaf(struct btrfs_root *root,
  493. struct extent_buffer *leaf)
  494. {
  495. struct btrfs_fs_info *fs_info = root->fs_info;
  496. struct btrfs_key key;
  497. struct btrfs_key leaf_key;
  498. u32 nritems = btrfs_header_nritems(leaf);
  499. int slot;
  500. if (nritems == 0) {
  501. struct btrfs_root *check_root;
  502. key.objectid = btrfs_header_owner(leaf);
  503. key.type = BTRFS_ROOT_ITEM_KEY;
  504. key.offset = (u64)-1;
  505. check_root = btrfs_get_fs_root(fs_info, &key, false);
  506. /*
  507. * The only reason we also check NULL here is that during
  508. * open_ctree() some roots has not yet been set up.
  509. */
  510. if (!IS_ERR_OR_NULL(check_root)) {
  511. /* if leaf is the root, then it's fine */
  512. if (leaf->start !=
  513. btrfs_root_bytenr(&check_root->root_item)) {
  514. CORRUPT("non-root leaf's nritems is 0",
  515. leaf, root, 0);
  516. return -EIO;
  517. }
  518. }
  519. return 0;
  520. }
  521. /* Check the 0 item */
  522. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  523. BTRFS_LEAF_DATA_SIZE(fs_info)) {
  524. CORRUPT("invalid item offset size pair", leaf, root, 0);
  525. return -EIO;
  526. }
  527. /*
  528. * Check to make sure each items keys are in the correct order and their
  529. * offsets make sense. We only have to loop through nritems-1 because
  530. * we check the current slot against the next slot, which verifies the
  531. * next slot's offset+size makes sense and that the current's slot
  532. * offset is correct.
  533. */
  534. for (slot = 0; slot < nritems - 1; slot++) {
  535. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  536. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  537. /* Make sure the keys are in the right order */
  538. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  539. CORRUPT("bad key order", leaf, root, slot);
  540. return -EIO;
  541. }
  542. /*
  543. * Make sure the offset and ends are right, remember that the
  544. * item data starts at the end of the leaf and grows towards the
  545. * front.
  546. */
  547. if (btrfs_item_offset_nr(leaf, slot) !=
  548. btrfs_item_end_nr(leaf, slot + 1)) {
  549. CORRUPT("slot offset bad", leaf, root, slot);
  550. return -EIO;
  551. }
  552. /*
  553. * Check to make sure that we don't point outside of the leaf,
  554. * just in case all the items are consistent to each other, but
  555. * all point outside of the leaf.
  556. */
  557. if (btrfs_item_end_nr(leaf, slot) >
  558. BTRFS_LEAF_DATA_SIZE(fs_info)) {
  559. CORRUPT("slot end outside of leaf", leaf, root, slot);
  560. return -EIO;
  561. }
  562. }
  563. return 0;
  564. }
  565. static int check_node(struct btrfs_root *root, struct extent_buffer *node)
  566. {
  567. unsigned long nr = btrfs_header_nritems(node);
  568. struct btrfs_key key, next_key;
  569. int slot;
  570. u64 bytenr;
  571. int ret = 0;
  572. if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
  573. btrfs_crit(root->fs_info,
  574. "corrupt node: block %llu root %llu nritems %lu",
  575. node->start, root->objectid, nr);
  576. return -EIO;
  577. }
  578. for (slot = 0; slot < nr - 1; slot++) {
  579. bytenr = btrfs_node_blockptr(node, slot);
  580. btrfs_node_key_to_cpu(node, &key, slot);
  581. btrfs_node_key_to_cpu(node, &next_key, slot + 1);
  582. if (!bytenr) {
  583. CORRUPT("invalid item slot", node, root, slot);
  584. ret = -EIO;
  585. goto out;
  586. }
  587. if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
  588. CORRUPT("bad key order", node, root, slot);
  589. ret = -EIO;
  590. goto out;
  591. }
  592. }
  593. out:
  594. return ret;
  595. }
  596. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  597. u64 phy_offset, struct page *page,
  598. u64 start, u64 end, int mirror)
  599. {
  600. u64 found_start;
  601. int found_level;
  602. struct extent_buffer *eb;
  603. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  604. struct btrfs_fs_info *fs_info = root->fs_info;
  605. int ret = 0;
  606. int reads_done;
  607. if (!page->private)
  608. goto out;
  609. eb = (struct extent_buffer *)page->private;
  610. /* the pending IO might have been the only thing that kept this buffer
  611. * in memory. Make sure we have a ref for all this other checks
  612. */
  613. extent_buffer_get(eb);
  614. reads_done = atomic_dec_and_test(&eb->io_pages);
  615. if (!reads_done)
  616. goto err;
  617. eb->read_mirror = mirror;
  618. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  619. ret = -EIO;
  620. goto err;
  621. }
  622. found_start = btrfs_header_bytenr(eb);
  623. if (found_start != eb->start) {
  624. btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
  625. found_start, eb->start);
  626. ret = -EIO;
  627. goto err;
  628. }
  629. if (check_tree_block_fsid(fs_info, eb)) {
  630. btrfs_err_rl(fs_info, "bad fsid on block %llu",
  631. eb->start);
  632. ret = -EIO;
  633. goto err;
  634. }
  635. found_level = btrfs_header_level(eb);
  636. if (found_level >= BTRFS_MAX_LEVEL) {
  637. btrfs_err(fs_info, "bad tree block level %d",
  638. (int)btrfs_header_level(eb));
  639. ret = -EIO;
  640. goto err;
  641. }
  642. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  643. eb, found_level);
  644. ret = csum_tree_block(fs_info, eb, 1);
  645. if (ret)
  646. goto err;
  647. /*
  648. * If this is a leaf block and it is corrupt, set the corrupt bit so
  649. * that we don't try and read the other copies of this block, just
  650. * return -EIO.
  651. */
  652. if (found_level == 0 && check_leaf(root, eb)) {
  653. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  654. ret = -EIO;
  655. }
  656. if (found_level > 0 && check_node(root, eb))
  657. ret = -EIO;
  658. if (!ret)
  659. set_extent_buffer_uptodate(eb);
  660. err:
  661. if (reads_done &&
  662. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  663. btree_readahead_hook(fs_info, eb, ret);
  664. if (ret) {
  665. /*
  666. * our io error hook is going to dec the io pages
  667. * again, we have to make sure it has something
  668. * to decrement
  669. */
  670. atomic_inc(&eb->io_pages);
  671. clear_extent_buffer_uptodate(eb);
  672. }
  673. free_extent_buffer(eb);
  674. out:
  675. return ret;
  676. }
  677. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  678. {
  679. struct extent_buffer *eb;
  680. eb = (struct extent_buffer *)page->private;
  681. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  682. eb->read_mirror = failed_mirror;
  683. atomic_dec(&eb->io_pages);
  684. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  685. btree_readahead_hook(eb->fs_info, eb, -EIO);
  686. return -EIO; /* we fixed nothing */
  687. }
  688. static void end_workqueue_bio(struct bio *bio)
  689. {
  690. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  691. struct btrfs_fs_info *fs_info;
  692. struct btrfs_workqueue *wq;
  693. btrfs_work_func_t func;
  694. fs_info = end_io_wq->info;
  695. end_io_wq->error = bio->bi_error;
  696. if (bio_op(bio) == REQ_OP_WRITE) {
  697. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  698. wq = fs_info->endio_meta_write_workers;
  699. func = btrfs_endio_meta_write_helper;
  700. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  701. wq = fs_info->endio_freespace_worker;
  702. func = btrfs_freespace_write_helper;
  703. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  704. wq = fs_info->endio_raid56_workers;
  705. func = btrfs_endio_raid56_helper;
  706. } else {
  707. wq = fs_info->endio_write_workers;
  708. func = btrfs_endio_write_helper;
  709. }
  710. } else {
  711. if (unlikely(end_io_wq->metadata ==
  712. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  713. wq = fs_info->endio_repair_workers;
  714. func = btrfs_endio_repair_helper;
  715. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  716. wq = fs_info->endio_raid56_workers;
  717. func = btrfs_endio_raid56_helper;
  718. } else if (end_io_wq->metadata) {
  719. wq = fs_info->endio_meta_workers;
  720. func = btrfs_endio_meta_helper;
  721. } else {
  722. wq = fs_info->endio_workers;
  723. func = btrfs_endio_helper;
  724. }
  725. }
  726. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  727. btrfs_queue_work(wq, &end_io_wq->work);
  728. }
  729. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  730. enum btrfs_wq_endio_type metadata)
  731. {
  732. struct btrfs_end_io_wq *end_io_wq;
  733. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  734. if (!end_io_wq)
  735. return -ENOMEM;
  736. end_io_wq->private = bio->bi_private;
  737. end_io_wq->end_io = bio->bi_end_io;
  738. end_io_wq->info = info;
  739. end_io_wq->error = 0;
  740. end_io_wq->bio = bio;
  741. end_io_wq->metadata = metadata;
  742. bio->bi_private = end_io_wq;
  743. bio->bi_end_io = end_workqueue_bio;
  744. return 0;
  745. }
  746. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  747. {
  748. unsigned long limit = min_t(unsigned long,
  749. info->thread_pool_size,
  750. info->fs_devices->open_devices);
  751. return 256 * limit;
  752. }
  753. static void run_one_async_start(struct btrfs_work *work)
  754. {
  755. struct async_submit_bio *async;
  756. int ret;
  757. async = container_of(work, struct async_submit_bio, work);
  758. ret = async->submit_bio_start(async->inode, async->bio,
  759. async->mirror_num, async->bio_flags,
  760. async->bio_offset);
  761. if (ret)
  762. async->error = ret;
  763. }
  764. static void run_one_async_done(struct btrfs_work *work)
  765. {
  766. struct btrfs_fs_info *fs_info;
  767. struct async_submit_bio *async;
  768. int limit;
  769. async = container_of(work, struct async_submit_bio, work);
  770. fs_info = BTRFS_I(async->inode)->root->fs_info;
  771. limit = btrfs_async_submit_limit(fs_info);
  772. limit = limit * 2 / 3;
  773. /*
  774. * atomic_dec_return implies a barrier for waitqueue_active
  775. */
  776. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  777. waitqueue_active(&fs_info->async_submit_wait))
  778. wake_up(&fs_info->async_submit_wait);
  779. /* If an error occurred we just want to clean up the bio and move on */
  780. if (async->error) {
  781. async->bio->bi_error = async->error;
  782. bio_endio(async->bio);
  783. return;
  784. }
  785. async->submit_bio_done(async->inode, async->bio, async->mirror_num,
  786. async->bio_flags, async->bio_offset);
  787. }
  788. static void run_one_async_free(struct btrfs_work *work)
  789. {
  790. struct async_submit_bio *async;
  791. async = container_of(work, struct async_submit_bio, work);
  792. kfree(async);
  793. }
  794. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  795. struct bio *bio, int mirror_num,
  796. unsigned long bio_flags,
  797. u64 bio_offset,
  798. extent_submit_bio_hook_t *submit_bio_start,
  799. extent_submit_bio_hook_t *submit_bio_done)
  800. {
  801. struct async_submit_bio *async;
  802. async = kmalloc(sizeof(*async), GFP_NOFS);
  803. if (!async)
  804. return -ENOMEM;
  805. async->inode = inode;
  806. async->bio = bio;
  807. async->mirror_num = mirror_num;
  808. async->submit_bio_start = submit_bio_start;
  809. async->submit_bio_done = submit_bio_done;
  810. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  811. run_one_async_done, run_one_async_free);
  812. async->bio_flags = bio_flags;
  813. async->bio_offset = bio_offset;
  814. async->error = 0;
  815. atomic_inc(&fs_info->nr_async_submits);
  816. if (bio->bi_opf & REQ_SYNC)
  817. btrfs_set_work_high_priority(&async->work);
  818. btrfs_queue_work(fs_info->workers, &async->work);
  819. while (atomic_read(&fs_info->async_submit_draining) &&
  820. atomic_read(&fs_info->nr_async_submits)) {
  821. wait_event(fs_info->async_submit_wait,
  822. (atomic_read(&fs_info->nr_async_submits) == 0));
  823. }
  824. return 0;
  825. }
  826. static int btree_csum_one_bio(struct bio *bio)
  827. {
  828. struct bio_vec *bvec;
  829. struct btrfs_root *root;
  830. int i, ret = 0;
  831. bio_for_each_segment_all(bvec, bio, i) {
  832. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  833. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  834. if (ret)
  835. break;
  836. }
  837. return ret;
  838. }
  839. static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
  840. int mirror_num, unsigned long bio_flags,
  841. u64 bio_offset)
  842. {
  843. /*
  844. * when we're called for a write, we're already in the async
  845. * submission context. Just jump into btrfs_map_bio
  846. */
  847. return btree_csum_one_bio(bio);
  848. }
  849. static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
  850. int mirror_num, unsigned long bio_flags,
  851. u64 bio_offset)
  852. {
  853. int ret;
  854. /*
  855. * when we're called for a write, we're already in the async
  856. * submission context. Just jump into btrfs_map_bio
  857. */
  858. ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
  859. if (ret) {
  860. bio->bi_error = ret;
  861. bio_endio(bio);
  862. }
  863. return ret;
  864. }
  865. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  866. {
  867. if (bio_flags & EXTENT_BIO_TREE_LOG)
  868. return 0;
  869. #ifdef CONFIG_X86
  870. if (static_cpu_has(X86_FEATURE_XMM4_2))
  871. return 0;
  872. #endif
  873. return 1;
  874. }
  875. static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
  876. int mirror_num, unsigned long bio_flags,
  877. u64 bio_offset)
  878. {
  879. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  880. int async = check_async_write(inode, bio_flags);
  881. int ret;
  882. if (bio_op(bio) != REQ_OP_WRITE) {
  883. /*
  884. * called for a read, do the setup so that checksum validation
  885. * can happen in the async kernel threads
  886. */
  887. ret = btrfs_bio_wq_end_io(fs_info, bio,
  888. BTRFS_WQ_ENDIO_METADATA);
  889. if (ret)
  890. goto out_w_error;
  891. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  892. } else if (!async) {
  893. ret = btree_csum_one_bio(bio);
  894. if (ret)
  895. goto out_w_error;
  896. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  897. } else {
  898. /*
  899. * kthread helpers are used to submit writes so that
  900. * checksumming can happen in parallel across all CPUs
  901. */
  902. ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0,
  903. bio_offset,
  904. __btree_submit_bio_start,
  905. __btree_submit_bio_done);
  906. }
  907. if (ret)
  908. goto out_w_error;
  909. return 0;
  910. out_w_error:
  911. bio->bi_error = ret;
  912. bio_endio(bio);
  913. return ret;
  914. }
  915. #ifdef CONFIG_MIGRATION
  916. static int btree_migratepage(struct address_space *mapping,
  917. struct page *newpage, struct page *page,
  918. enum migrate_mode mode)
  919. {
  920. /*
  921. * we can't safely write a btree page from here,
  922. * we haven't done the locking hook
  923. */
  924. if (PageDirty(page))
  925. return -EAGAIN;
  926. /*
  927. * Buffers may be managed in a filesystem specific way.
  928. * We must have no buffers or drop them.
  929. */
  930. if (page_has_private(page) &&
  931. !try_to_release_page(page, GFP_KERNEL))
  932. return -EAGAIN;
  933. return migrate_page(mapping, newpage, page, mode);
  934. }
  935. #endif
  936. static int btree_writepages(struct address_space *mapping,
  937. struct writeback_control *wbc)
  938. {
  939. struct btrfs_fs_info *fs_info;
  940. int ret;
  941. if (wbc->sync_mode == WB_SYNC_NONE) {
  942. if (wbc->for_kupdate)
  943. return 0;
  944. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  945. /* this is a bit racy, but that's ok */
  946. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  947. BTRFS_DIRTY_METADATA_THRESH);
  948. if (ret < 0)
  949. return 0;
  950. }
  951. return btree_write_cache_pages(mapping, wbc);
  952. }
  953. static int btree_readpage(struct file *file, struct page *page)
  954. {
  955. struct extent_io_tree *tree;
  956. tree = &BTRFS_I(page->mapping->host)->io_tree;
  957. return extent_read_full_page(tree, page, btree_get_extent, 0);
  958. }
  959. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  960. {
  961. if (PageWriteback(page) || PageDirty(page))
  962. return 0;
  963. return try_release_extent_buffer(page);
  964. }
  965. static void btree_invalidatepage(struct page *page, unsigned int offset,
  966. unsigned int length)
  967. {
  968. struct extent_io_tree *tree;
  969. tree = &BTRFS_I(page->mapping->host)->io_tree;
  970. extent_invalidatepage(tree, page, offset);
  971. btree_releasepage(page, GFP_NOFS);
  972. if (PagePrivate(page)) {
  973. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  974. "page private not zero on page %llu",
  975. (unsigned long long)page_offset(page));
  976. ClearPagePrivate(page);
  977. set_page_private(page, 0);
  978. put_page(page);
  979. }
  980. }
  981. static int btree_set_page_dirty(struct page *page)
  982. {
  983. #ifdef DEBUG
  984. struct extent_buffer *eb;
  985. BUG_ON(!PagePrivate(page));
  986. eb = (struct extent_buffer *)page->private;
  987. BUG_ON(!eb);
  988. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  989. BUG_ON(!atomic_read(&eb->refs));
  990. btrfs_assert_tree_locked(eb);
  991. #endif
  992. return __set_page_dirty_nobuffers(page);
  993. }
  994. static const struct address_space_operations btree_aops = {
  995. .readpage = btree_readpage,
  996. .writepages = btree_writepages,
  997. .releasepage = btree_releasepage,
  998. .invalidatepage = btree_invalidatepage,
  999. #ifdef CONFIG_MIGRATION
  1000. .migratepage = btree_migratepage,
  1001. #endif
  1002. .set_page_dirty = btree_set_page_dirty,
  1003. };
  1004. void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
  1005. {
  1006. struct extent_buffer *buf = NULL;
  1007. struct inode *btree_inode = fs_info->btree_inode;
  1008. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  1009. if (IS_ERR(buf))
  1010. return;
  1011. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  1012. buf, WAIT_NONE, btree_get_extent, 0);
  1013. free_extent_buffer(buf);
  1014. }
  1015. int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
  1016. int mirror_num, struct extent_buffer **eb)
  1017. {
  1018. struct extent_buffer *buf = NULL;
  1019. struct inode *btree_inode = fs_info->btree_inode;
  1020. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  1021. int ret;
  1022. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  1023. if (IS_ERR(buf))
  1024. return 0;
  1025. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  1026. ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
  1027. btree_get_extent, mirror_num);
  1028. if (ret) {
  1029. free_extent_buffer(buf);
  1030. return ret;
  1031. }
  1032. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  1033. free_extent_buffer(buf);
  1034. return -EIO;
  1035. } else if (extent_buffer_uptodate(buf)) {
  1036. *eb = buf;
  1037. } else {
  1038. free_extent_buffer(buf);
  1039. }
  1040. return 0;
  1041. }
  1042. struct extent_buffer *btrfs_find_create_tree_block(
  1043. struct btrfs_fs_info *fs_info,
  1044. u64 bytenr)
  1045. {
  1046. if (btrfs_is_testing(fs_info))
  1047. return alloc_test_extent_buffer(fs_info, bytenr);
  1048. return alloc_extent_buffer(fs_info, bytenr);
  1049. }
  1050. int btrfs_write_tree_block(struct extent_buffer *buf)
  1051. {
  1052. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  1053. buf->start + buf->len - 1);
  1054. }
  1055. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  1056. {
  1057. return filemap_fdatawait_range(buf->pages[0]->mapping,
  1058. buf->start, buf->start + buf->len - 1);
  1059. }
  1060. struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
  1061. u64 parent_transid)
  1062. {
  1063. struct extent_buffer *buf = NULL;
  1064. int ret;
  1065. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  1066. if (IS_ERR(buf))
  1067. return buf;
  1068. ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
  1069. if (ret) {
  1070. free_extent_buffer(buf);
  1071. return ERR_PTR(ret);
  1072. }
  1073. return buf;
  1074. }
  1075. void clean_tree_block(struct btrfs_trans_handle *trans,
  1076. struct btrfs_fs_info *fs_info,
  1077. struct extent_buffer *buf)
  1078. {
  1079. if (btrfs_header_generation(buf) ==
  1080. fs_info->running_transaction->transid) {
  1081. btrfs_assert_tree_locked(buf);
  1082. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1083. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1084. -buf->len,
  1085. fs_info->dirty_metadata_batch);
  1086. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1087. btrfs_set_lock_blocking(buf);
  1088. clear_extent_buffer_dirty(buf);
  1089. }
  1090. }
  1091. }
  1092. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1093. {
  1094. struct btrfs_subvolume_writers *writers;
  1095. int ret;
  1096. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1097. if (!writers)
  1098. return ERR_PTR(-ENOMEM);
  1099. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  1100. if (ret < 0) {
  1101. kfree(writers);
  1102. return ERR_PTR(ret);
  1103. }
  1104. init_waitqueue_head(&writers->wait);
  1105. return writers;
  1106. }
  1107. static void
  1108. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1109. {
  1110. percpu_counter_destroy(&writers->counter);
  1111. kfree(writers);
  1112. }
  1113. static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1114. u64 objectid)
  1115. {
  1116. bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
  1117. root->node = NULL;
  1118. root->commit_root = NULL;
  1119. root->state = 0;
  1120. root->orphan_cleanup_state = 0;
  1121. root->objectid = objectid;
  1122. root->last_trans = 0;
  1123. root->highest_objectid = 0;
  1124. root->nr_delalloc_inodes = 0;
  1125. root->nr_ordered_extents = 0;
  1126. root->name = NULL;
  1127. root->inode_tree = RB_ROOT;
  1128. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1129. root->block_rsv = NULL;
  1130. root->orphan_block_rsv = NULL;
  1131. INIT_LIST_HEAD(&root->dirty_list);
  1132. INIT_LIST_HEAD(&root->root_list);
  1133. INIT_LIST_HEAD(&root->delalloc_inodes);
  1134. INIT_LIST_HEAD(&root->delalloc_root);
  1135. INIT_LIST_HEAD(&root->ordered_extents);
  1136. INIT_LIST_HEAD(&root->ordered_root);
  1137. INIT_LIST_HEAD(&root->logged_list[0]);
  1138. INIT_LIST_HEAD(&root->logged_list[1]);
  1139. spin_lock_init(&root->orphan_lock);
  1140. spin_lock_init(&root->inode_lock);
  1141. spin_lock_init(&root->delalloc_lock);
  1142. spin_lock_init(&root->ordered_extent_lock);
  1143. spin_lock_init(&root->accounting_lock);
  1144. spin_lock_init(&root->log_extents_lock[0]);
  1145. spin_lock_init(&root->log_extents_lock[1]);
  1146. mutex_init(&root->objectid_mutex);
  1147. mutex_init(&root->log_mutex);
  1148. mutex_init(&root->ordered_extent_mutex);
  1149. mutex_init(&root->delalloc_mutex);
  1150. init_waitqueue_head(&root->log_writer_wait);
  1151. init_waitqueue_head(&root->log_commit_wait[0]);
  1152. init_waitqueue_head(&root->log_commit_wait[1]);
  1153. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1154. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1155. atomic_set(&root->log_commit[0], 0);
  1156. atomic_set(&root->log_commit[1], 0);
  1157. atomic_set(&root->log_writers, 0);
  1158. atomic_set(&root->log_batch, 0);
  1159. atomic_set(&root->orphan_inodes, 0);
  1160. atomic_set(&root->refs, 1);
  1161. atomic_set(&root->will_be_snapshoted, 0);
  1162. atomic_set(&root->qgroup_meta_rsv, 0);
  1163. root->log_transid = 0;
  1164. root->log_transid_committed = -1;
  1165. root->last_log_commit = 0;
  1166. if (!dummy)
  1167. extent_io_tree_init(&root->dirty_log_pages,
  1168. fs_info->btree_inode->i_mapping);
  1169. memset(&root->root_key, 0, sizeof(root->root_key));
  1170. memset(&root->root_item, 0, sizeof(root->root_item));
  1171. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1172. if (!dummy)
  1173. root->defrag_trans_start = fs_info->generation;
  1174. else
  1175. root->defrag_trans_start = 0;
  1176. root->root_key.objectid = objectid;
  1177. root->anon_dev = 0;
  1178. spin_lock_init(&root->root_item_lock);
  1179. }
  1180. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
  1181. gfp_t flags)
  1182. {
  1183. struct btrfs_root *root = kzalloc(sizeof(*root), flags);
  1184. if (root)
  1185. root->fs_info = fs_info;
  1186. return root;
  1187. }
  1188. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1189. /* Should only be used by the testing infrastructure */
  1190. struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
  1191. {
  1192. struct btrfs_root *root;
  1193. if (!fs_info)
  1194. return ERR_PTR(-EINVAL);
  1195. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1196. if (!root)
  1197. return ERR_PTR(-ENOMEM);
  1198. /* We don't use the stripesize in selftest, set it as sectorsize */
  1199. __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1200. root->alloc_bytenr = 0;
  1201. return root;
  1202. }
  1203. #endif
  1204. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1205. struct btrfs_fs_info *fs_info,
  1206. u64 objectid)
  1207. {
  1208. struct extent_buffer *leaf;
  1209. struct btrfs_root *tree_root = fs_info->tree_root;
  1210. struct btrfs_root *root;
  1211. struct btrfs_key key;
  1212. int ret = 0;
  1213. uuid_le uuid;
  1214. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1215. if (!root)
  1216. return ERR_PTR(-ENOMEM);
  1217. __setup_root(root, fs_info, objectid);
  1218. root->root_key.objectid = objectid;
  1219. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1220. root->root_key.offset = 0;
  1221. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1222. if (IS_ERR(leaf)) {
  1223. ret = PTR_ERR(leaf);
  1224. leaf = NULL;
  1225. goto fail;
  1226. }
  1227. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1228. btrfs_set_header_bytenr(leaf, leaf->start);
  1229. btrfs_set_header_generation(leaf, trans->transid);
  1230. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1231. btrfs_set_header_owner(leaf, objectid);
  1232. root->node = leaf;
  1233. write_extent_buffer_fsid(leaf, fs_info->fsid);
  1234. write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
  1235. btrfs_mark_buffer_dirty(leaf);
  1236. root->commit_root = btrfs_root_node(root);
  1237. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1238. root->root_item.flags = 0;
  1239. root->root_item.byte_limit = 0;
  1240. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1241. btrfs_set_root_generation(&root->root_item, trans->transid);
  1242. btrfs_set_root_level(&root->root_item, 0);
  1243. btrfs_set_root_refs(&root->root_item, 1);
  1244. btrfs_set_root_used(&root->root_item, leaf->len);
  1245. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1246. btrfs_set_root_dirid(&root->root_item, 0);
  1247. uuid_le_gen(&uuid);
  1248. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1249. root->root_item.drop_level = 0;
  1250. key.objectid = objectid;
  1251. key.type = BTRFS_ROOT_ITEM_KEY;
  1252. key.offset = 0;
  1253. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1254. if (ret)
  1255. goto fail;
  1256. btrfs_tree_unlock(leaf);
  1257. return root;
  1258. fail:
  1259. if (leaf) {
  1260. btrfs_tree_unlock(leaf);
  1261. free_extent_buffer(root->commit_root);
  1262. free_extent_buffer(leaf);
  1263. }
  1264. kfree(root);
  1265. return ERR_PTR(ret);
  1266. }
  1267. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1268. struct btrfs_fs_info *fs_info)
  1269. {
  1270. struct btrfs_root *root;
  1271. struct extent_buffer *leaf;
  1272. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1273. if (!root)
  1274. return ERR_PTR(-ENOMEM);
  1275. __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1276. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1277. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1278. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1279. /*
  1280. * DON'T set REF_COWS for log trees
  1281. *
  1282. * log trees do not get reference counted because they go away
  1283. * before a real commit is actually done. They do store pointers
  1284. * to file data extents, and those reference counts still get
  1285. * updated (along with back refs to the log tree).
  1286. */
  1287. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1288. NULL, 0, 0, 0);
  1289. if (IS_ERR(leaf)) {
  1290. kfree(root);
  1291. return ERR_CAST(leaf);
  1292. }
  1293. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1294. btrfs_set_header_bytenr(leaf, leaf->start);
  1295. btrfs_set_header_generation(leaf, trans->transid);
  1296. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1297. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1298. root->node = leaf;
  1299. write_extent_buffer_fsid(root->node, fs_info->fsid);
  1300. btrfs_mark_buffer_dirty(root->node);
  1301. btrfs_tree_unlock(root->node);
  1302. return root;
  1303. }
  1304. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1305. struct btrfs_fs_info *fs_info)
  1306. {
  1307. struct btrfs_root *log_root;
  1308. log_root = alloc_log_tree(trans, fs_info);
  1309. if (IS_ERR(log_root))
  1310. return PTR_ERR(log_root);
  1311. WARN_ON(fs_info->log_root_tree);
  1312. fs_info->log_root_tree = log_root;
  1313. return 0;
  1314. }
  1315. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1316. struct btrfs_root *root)
  1317. {
  1318. struct btrfs_fs_info *fs_info = root->fs_info;
  1319. struct btrfs_root *log_root;
  1320. struct btrfs_inode_item *inode_item;
  1321. log_root = alloc_log_tree(trans, fs_info);
  1322. if (IS_ERR(log_root))
  1323. return PTR_ERR(log_root);
  1324. log_root->last_trans = trans->transid;
  1325. log_root->root_key.offset = root->root_key.objectid;
  1326. inode_item = &log_root->root_item.inode;
  1327. btrfs_set_stack_inode_generation(inode_item, 1);
  1328. btrfs_set_stack_inode_size(inode_item, 3);
  1329. btrfs_set_stack_inode_nlink(inode_item, 1);
  1330. btrfs_set_stack_inode_nbytes(inode_item,
  1331. fs_info->nodesize);
  1332. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1333. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1334. WARN_ON(root->log_root);
  1335. root->log_root = log_root;
  1336. root->log_transid = 0;
  1337. root->log_transid_committed = -1;
  1338. root->last_log_commit = 0;
  1339. return 0;
  1340. }
  1341. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1342. struct btrfs_key *key)
  1343. {
  1344. struct btrfs_root *root;
  1345. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1346. struct btrfs_path *path;
  1347. u64 generation;
  1348. int ret;
  1349. path = btrfs_alloc_path();
  1350. if (!path)
  1351. return ERR_PTR(-ENOMEM);
  1352. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1353. if (!root) {
  1354. ret = -ENOMEM;
  1355. goto alloc_fail;
  1356. }
  1357. __setup_root(root, fs_info, key->objectid);
  1358. ret = btrfs_find_root(tree_root, key, path,
  1359. &root->root_item, &root->root_key);
  1360. if (ret) {
  1361. if (ret > 0)
  1362. ret = -ENOENT;
  1363. goto find_fail;
  1364. }
  1365. generation = btrfs_root_generation(&root->root_item);
  1366. root->node = read_tree_block(fs_info,
  1367. btrfs_root_bytenr(&root->root_item),
  1368. generation);
  1369. if (IS_ERR(root->node)) {
  1370. ret = PTR_ERR(root->node);
  1371. goto find_fail;
  1372. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1373. ret = -EIO;
  1374. free_extent_buffer(root->node);
  1375. goto find_fail;
  1376. }
  1377. root->commit_root = btrfs_root_node(root);
  1378. out:
  1379. btrfs_free_path(path);
  1380. return root;
  1381. find_fail:
  1382. kfree(root);
  1383. alloc_fail:
  1384. root = ERR_PTR(ret);
  1385. goto out;
  1386. }
  1387. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1388. struct btrfs_key *location)
  1389. {
  1390. struct btrfs_root *root;
  1391. root = btrfs_read_tree_root(tree_root, location);
  1392. if (IS_ERR(root))
  1393. return root;
  1394. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1395. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1396. btrfs_check_and_init_root_item(&root->root_item);
  1397. }
  1398. return root;
  1399. }
  1400. int btrfs_init_fs_root(struct btrfs_root *root)
  1401. {
  1402. int ret;
  1403. struct btrfs_subvolume_writers *writers;
  1404. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1405. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1406. GFP_NOFS);
  1407. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1408. ret = -ENOMEM;
  1409. goto fail;
  1410. }
  1411. writers = btrfs_alloc_subvolume_writers();
  1412. if (IS_ERR(writers)) {
  1413. ret = PTR_ERR(writers);
  1414. goto fail;
  1415. }
  1416. root->subv_writers = writers;
  1417. btrfs_init_free_ino_ctl(root);
  1418. spin_lock_init(&root->ino_cache_lock);
  1419. init_waitqueue_head(&root->ino_cache_wait);
  1420. ret = get_anon_bdev(&root->anon_dev);
  1421. if (ret)
  1422. goto fail;
  1423. mutex_lock(&root->objectid_mutex);
  1424. ret = btrfs_find_highest_objectid(root,
  1425. &root->highest_objectid);
  1426. if (ret) {
  1427. mutex_unlock(&root->objectid_mutex);
  1428. goto fail;
  1429. }
  1430. ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  1431. mutex_unlock(&root->objectid_mutex);
  1432. return 0;
  1433. fail:
  1434. /* the caller is responsible to call free_fs_root */
  1435. return ret;
  1436. }
  1437. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1438. u64 root_id)
  1439. {
  1440. struct btrfs_root *root;
  1441. spin_lock(&fs_info->fs_roots_radix_lock);
  1442. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1443. (unsigned long)root_id);
  1444. spin_unlock(&fs_info->fs_roots_radix_lock);
  1445. return root;
  1446. }
  1447. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1448. struct btrfs_root *root)
  1449. {
  1450. int ret;
  1451. ret = radix_tree_preload(GFP_NOFS);
  1452. if (ret)
  1453. return ret;
  1454. spin_lock(&fs_info->fs_roots_radix_lock);
  1455. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1456. (unsigned long)root->root_key.objectid,
  1457. root);
  1458. if (ret == 0)
  1459. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1460. spin_unlock(&fs_info->fs_roots_radix_lock);
  1461. radix_tree_preload_end();
  1462. return ret;
  1463. }
  1464. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1465. struct btrfs_key *location,
  1466. bool check_ref)
  1467. {
  1468. struct btrfs_root *root;
  1469. struct btrfs_path *path;
  1470. struct btrfs_key key;
  1471. int ret;
  1472. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1473. return fs_info->tree_root;
  1474. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1475. return fs_info->extent_root;
  1476. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1477. return fs_info->chunk_root;
  1478. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1479. return fs_info->dev_root;
  1480. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1481. return fs_info->csum_root;
  1482. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1483. return fs_info->quota_root ? fs_info->quota_root :
  1484. ERR_PTR(-ENOENT);
  1485. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1486. return fs_info->uuid_root ? fs_info->uuid_root :
  1487. ERR_PTR(-ENOENT);
  1488. if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  1489. return fs_info->free_space_root ? fs_info->free_space_root :
  1490. ERR_PTR(-ENOENT);
  1491. again:
  1492. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1493. if (root) {
  1494. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1495. return ERR_PTR(-ENOENT);
  1496. return root;
  1497. }
  1498. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1499. if (IS_ERR(root))
  1500. return root;
  1501. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1502. ret = -ENOENT;
  1503. goto fail;
  1504. }
  1505. ret = btrfs_init_fs_root(root);
  1506. if (ret)
  1507. goto fail;
  1508. path = btrfs_alloc_path();
  1509. if (!path) {
  1510. ret = -ENOMEM;
  1511. goto fail;
  1512. }
  1513. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1514. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1515. key.offset = location->objectid;
  1516. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1517. btrfs_free_path(path);
  1518. if (ret < 0)
  1519. goto fail;
  1520. if (ret == 0)
  1521. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1522. ret = btrfs_insert_fs_root(fs_info, root);
  1523. if (ret) {
  1524. if (ret == -EEXIST) {
  1525. free_fs_root(root);
  1526. goto again;
  1527. }
  1528. goto fail;
  1529. }
  1530. return root;
  1531. fail:
  1532. free_fs_root(root);
  1533. return ERR_PTR(ret);
  1534. }
  1535. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1536. {
  1537. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1538. int ret = 0;
  1539. struct btrfs_device *device;
  1540. struct backing_dev_info *bdi;
  1541. rcu_read_lock();
  1542. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1543. if (!device->bdev)
  1544. continue;
  1545. bdi = blk_get_backing_dev_info(device->bdev);
  1546. if (bdi_congested(bdi, bdi_bits)) {
  1547. ret = 1;
  1548. break;
  1549. }
  1550. }
  1551. rcu_read_unlock();
  1552. return ret;
  1553. }
  1554. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1555. {
  1556. int err;
  1557. err = bdi_setup_and_register(bdi, "btrfs");
  1558. if (err)
  1559. return err;
  1560. bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
  1561. bdi->congested_fn = btrfs_congested_fn;
  1562. bdi->congested_data = info;
  1563. bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  1564. return 0;
  1565. }
  1566. /*
  1567. * called by the kthread helper functions to finally call the bio end_io
  1568. * functions. This is where read checksum verification actually happens
  1569. */
  1570. static void end_workqueue_fn(struct btrfs_work *work)
  1571. {
  1572. struct bio *bio;
  1573. struct btrfs_end_io_wq *end_io_wq;
  1574. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1575. bio = end_io_wq->bio;
  1576. bio->bi_error = end_io_wq->error;
  1577. bio->bi_private = end_io_wq->private;
  1578. bio->bi_end_io = end_io_wq->end_io;
  1579. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1580. bio_endio(bio);
  1581. }
  1582. static int cleaner_kthread(void *arg)
  1583. {
  1584. struct btrfs_root *root = arg;
  1585. struct btrfs_fs_info *fs_info = root->fs_info;
  1586. int again;
  1587. struct btrfs_trans_handle *trans;
  1588. do {
  1589. again = 0;
  1590. /* Make the cleaner go to sleep early. */
  1591. if (btrfs_need_cleaner_sleep(fs_info))
  1592. goto sleep;
  1593. /*
  1594. * Do not do anything if we might cause open_ctree() to block
  1595. * before we have finished mounting the filesystem.
  1596. */
  1597. if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
  1598. goto sleep;
  1599. if (!mutex_trylock(&fs_info->cleaner_mutex))
  1600. goto sleep;
  1601. /*
  1602. * Avoid the problem that we change the status of the fs
  1603. * during the above check and trylock.
  1604. */
  1605. if (btrfs_need_cleaner_sleep(fs_info)) {
  1606. mutex_unlock(&fs_info->cleaner_mutex);
  1607. goto sleep;
  1608. }
  1609. mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
  1610. btrfs_run_delayed_iputs(fs_info);
  1611. mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
  1612. again = btrfs_clean_one_deleted_snapshot(root);
  1613. mutex_unlock(&fs_info->cleaner_mutex);
  1614. /*
  1615. * The defragger has dealt with the R/O remount and umount,
  1616. * needn't do anything special here.
  1617. */
  1618. btrfs_run_defrag_inodes(fs_info);
  1619. /*
  1620. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1621. * with relocation (btrfs_relocate_chunk) and relocation
  1622. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1623. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1624. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1625. * unused block groups.
  1626. */
  1627. btrfs_delete_unused_bgs(fs_info);
  1628. sleep:
  1629. if (!again) {
  1630. set_current_state(TASK_INTERRUPTIBLE);
  1631. if (!kthread_should_stop())
  1632. schedule();
  1633. __set_current_state(TASK_RUNNING);
  1634. }
  1635. } while (!kthread_should_stop());
  1636. /*
  1637. * Transaction kthread is stopped before us and wakes us up.
  1638. * However we might have started a new transaction and COWed some
  1639. * tree blocks when deleting unused block groups for example. So
  1640. * make sure we commit the transaction we started to have a clean
  1641. * shutdown when evicting the btree inode - if it has dirty pages
  1642. * when we do the final iput() on it, eviction will trigger a
  1643. * writeback for it which will fail with null pointer dereferences
  1644. * since work queues and other resources were already released and
  1645. * destroyed by the time the iput/eviction/writeback is made.
  1646. */
  1647. trans = btrfs_attach_transaction(root);
  1648. if (IS_ERR(trans)) {
  1649. if (PTR_ERR(trans) != -ENOENT)
  1650. btrfs_err(fs_info,
  1651. "cleaner transaction attach returned %ld",
  1652. PTR_ERR(trans));
  1653. } else {
  1654. int ret;
  1655. ret = btrfs_commit_transaction(trans);
  1656. if (ret)
  1657. btrfs_err(fs_info,
  1658. "cleaner open transaction commit returned %d",
  1659. ret);
  1660. }
  1661. return 0;
  1662. }
  1663. static int transaction_kthread(void *arg)
  1664. {
  1665. struct btrfs_root *root = arg;
  1666. struct btrfs_fs_info *fs_info = root->fs_info;
  1667. struct btrfs_trans_handle *trans;
  1668. struct btrfs_transaction *cur;
  1669. u64 transid;
  1670. unsigned long now;
  1671. unsigned long delay;
  1672. bool cannot_commit;
  1673. do {
  1674. cannot_commit = false;
  1675. delay = HZ * fs_info->commit_interval;
  1676. mutex_lock(&fs_info->transaction_kthread_mutex);
  1677. spin_lock(&fs_info->trans_lock);
  1678. cur = fs_info->running_transaction;
  1679. if (!cur) {
  1680. spin_unlock(&fs_info->trans_lock);
  1681. goto sleep;
  1682. }
  1683. now = get_seconds();
  1684. if (cur->state < TRANS_STATE_BLOCKED &&
  1685. (now < cur->start_time ||
  1686. now - cur->start_time < fs_info->commit_interval)) {
  1687. spin_unlock(&fs_info->trans_lock);
  1688. delay = HZ * 5;
  1689. goto sleep;
  1690. }
  1691. transid = cur->transid;
  1692. spin_unlock(&fs_info->trans_lock);
  1693. /* If the file system is aborted, this will always fail. */
  1694. trans = btrfs_attach_transaction(root);
  1695. if (IS_ERR(trans)) {
  1696. if (PTR_ERR(trans) != -ENOENT)
  1697. cannot_commit = true;
  1698. goto sleep;
  1699. }
  1700. if (transid == trans->transid) {
  1701. btrfs_commit_transaction(trans);
  1702. } else {
  1703. btrfs_end_transaction(trans);
  1704. }
  1705. sleep:
  1706. wake_up_process(fs_info->cleaner_kthread);
  1707. mutex_unlock(&fs_info->transaction_kthread_mutex);
  1708. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1709. &fs_info->fs_state)))
  1710. btrfs_cleanup_transaction(fs_info);
  1711. set_current_state(TASK_INTERRUPTIBLE);
  1712. if (!kthread_should_stop() &&
  1713. (!btrfs_transaction_blocked(fs_info) ||
  1714. cannot_commit))
  1715. schedule_timeout(delay);
  1716. __set_current_state(TASK_RUNNING);
  1717. } while (!kthread_should_stop());
  1718. return 0;
  1719. }
  1720. /*
  1721. * this will find the highest generation in the array of
  1722. * root backups. The index of the highest array is returned,
  1723. * or -1 if we can't find anything.
  1724. *
  1725. * We check to make sure the array is valid by comparing the
  1726. * generation of the latest root in the array with the generation
  1727. * in the super block. If they don't match we pitch it.
  1728. */
  1729. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1730. {
  1731. u64 cur;
  1732. int newest_index = -1;
  1733. struct btrfs_root_backup *root_backup;
  1734. int i;
  1735. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1736. root_backup = info->super_copy->super_roots + i;
  1737. cur = btrfs_backup_tree_root_gen(root_backup);
  1738. if (cur == newest_gen)
  1739. newest_index = i;
  1740. }
  1741. /* check to see if we actually wrapped around */
  1742. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1743. root_backup = info->super_copy->super_roots;
  1744. cur = btrfs_backup_tree_root_gen(root_backup);
  1745. if (cur == newest_gen)
  1746. newest_index = 0;
  1747. }
  1748. return newest_index;
  1749. }
  1750. /*
  1751. * find the oldest backup so we know where to store new entries
  1752. * in the backup array. This will set the backup_root_index
  1753. * field in the fs_info struct
  1754. */
  1755. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1756. u64 newest_gen)
  1757. {
  1758. int newest_index = -1;
  1759. newest_index = find_newest_super_backup(info, newest_gen);
  1760. /* if there was garbage in there, just move along */
  1761. if (newest_index == -1) {
  1762. info->backup_root_index = 0;
  1763. } else {
  1764. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1765. }
  1766. }
  1767. /*
  1768. * copy all the root pointers into the super backup array.
  1769. * this will bump the backup pointer by one when it is
  1770. * done
  1771. */
  1772. static void backup_super_roots(struct btrfs_fs_info *info)
  1773. {
  1774. int next_backup;
  1775. struct btrfs_root_backup *root_backup;
  1776. int last_backup;
  1777. next_backup = info->backup_root_index;
  1778. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1779. BTRFS_NUM_BACKUP_ROOTS;
  1780. /*
  1781. * just overwrite the last backup if we're at the same generation
  1782. * this happens only at umount
  1783. */
  1784. root_backup = info->super_for_commit->super_roots + last_backup;
  1785. if (btrfs_backup_tree_root_gen(root_backup) ==
  1786. btrfs_header_generation(info->tree_root->node))
  1787. next_backup = last_backup;
  1788. root_backup = info->super_for_commit->super_roots + next_backup;
  1789. /*
  1790. * make sure all of our padding and empty slots get zero filled
  1791. * regardless of which ones we use today
  1792. */
  1793. memset(root_backup, 0, sizeof(*root_backup));
  1794. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1795. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1796. btrfs_set_backup_tree_root_gen(root_backup,
  1797. btrfs_header_generation(info->tree_root->node));
  1798. btrfs_set_backup_tree_root_level(root_backup,
  1799. btrfs_header_level(info->tree_root->node));
  1800. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1801. btrfs_set_backup_chunk_root_gen(root_backup,
  1802. btrfs_header_generation(info->chunk_root->node));
  1803. btrfs_set_backup_chunk_root_level(root_backup,
  1804. btrfs_header_level(info->chunk_root->node));
  1805. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1806. btrfs_set_backup_extent_root_gen(root_backup,
  1807. btrfs_header_generation(info->extent_root->node));
  1808. btrfs_set_backup_extent_root_level(root_backup,
  1809. btrfs_header_level(info->extent_root->node));
  1810. /*
  1811. * we might commit during log recovery, which happens before we set
  1812. * the fs_root. Make sure it is valid before we fill it in.
  1813. */
  1814. if (info->fs_root && info->fs_root->node) {
  1815. btrfs_set_backup_fs_root(root_backup,
  1816. info->fs_root->node->start);
  1817. btrfs_set_backup_fs_root_gen(root_backup,
  1818. btrfs_header_generation(info->fs_root->node));
  1819. btrfs_set_backup_fs_root_level(root_backup,
  1820. btrfs_header_level(info->fs_root->node));
  1821. }
  1822. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1823. btrfs_set_backup_dev_root_gen(root_backup,
  1824. btrfs_header_generation(info->dev_root->node));
  1825. btrfs_set_backup_dev_root_level(root_backup,
  1826. btrfs_header_level(info->dev_root->node));
  1827. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1828. btrfs_set_backup_csum_root_gen(root_backup,
  1829. btrfs_header_generation(info->csum_root->node));
  1830. btrfs_set_backup_csum_root_level(root_backup,
  1831. btrfs_header_level(info->csum_root->node));
  1832. btrfs_set_backup_total_bytes(root_backup,
  1833. btrfs_super_total_bytes(info->super_copy));
  1834. btrfs_set_backup_bytes_used(root_backup,
  1835. btrfs_super_bytes_used(info->super_copy));
  1836. btrfs_set_backup_num_devices(root_backup,
  1837. btrfs_super_num_devices(info->super_copy));
  1838. /*
  1839. * if we don't copy this out to the super_copy, it won't get remembered
  1840. * for the next commit
  1841. */
  1842. memcpy(&info->super_copy->super_roots,
  1843. &info->super_for_commit->super_roots,
  1844. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1845. }
  1846. /*
  1847. * this copies info out of the root backup array and back into
  1848. * the in-memory super block. It is meant to help iterate through
  1849. * the array, so you send it the number of backups you've already
  1850. * tried and the last backup index you used.
  1851. *
  1852. * this returns -1 when it has tried all the backups
  1853. */
  1854. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1855. struct btrfs_super_block *super,
  1856. int *num_backups_tried, int *backup_index)
  1857. {
  1858. struct btrfs_root_backup *root_backup;
  1859. int newest = *backup_index;
  1860. if (*num_backups_tried == 0) {
  1861. u64 gen = btrfs_super_generation(super);
  1862. newest = find_newest_super_backup(info, gen);
  1863. if (newest == -1)
  1864. return -1;
  1865. *backup_index = newest;
  1866. *num_backups_tried = 1;
  1867. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1868. /* we've tried all the backups, all done */
  1869. return -1;
  1870. } else {
  1871. /* jump to the next oldest backup */
  1872. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1873. BTRFS_NUM_BACKUP_ROOTS;
  1874. *backup_index = newest;
  1875. *num_backups_tried += 1;
  1876. }
  1877. root_backup = super->super_roots + newest;
  1878. btrfs_set_super_generation(super,
  1879. btrfs_backup_tree_root_gen(root_backup));
  1880. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1881. btrfs_set_super_root_level(super,
  1882. btrfs_backup_tree_root_level(root_backup));
  1883. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1884. /*
  1885. * fixme: the total bytes and num_devices need to match or we should
  1886. * need a fsck
  1887. */
  1888. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1889. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1890. return 0;
  1891. }
  1892. /* helper to cleanup workers */
  1893. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1894. {
  1895. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1896. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1897. btrfs_destroy_workqueue(fs_info->workers);
  1898. btrfs_destroy_workqueue(fs_info->endio_workers);
  1899. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1900. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1901. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1902. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1903. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1904. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1905. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1906. btrfs_destroy_workqueue(fs_info->submit_workers);
  1907. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1908. btrfs_destroy_workqueue(fs_info->caching_workers);
  1909. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1910. btrfs_destroy_workqueue(fs_info->flush_workers);
  1911. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1912. btrfs_destroy_workqueue(fs_info->extent_workers);
  1913. }
  1914. static void free_root_extent_buffers(struct btrfs_root *root)
  1915. {
  1916. if (root) {
  1917. free_extent_buffer(root->node);
  1918. free_extent_buffer(root->commit_root);
  1919. root->node = NULL;
  1920. root->commit_root = NULL;
  1921. }
  1922. }
  1923. /* helper to cleanup tree roots */
  1924. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1925. {
  1926. free_root_extent_buffers(info->tree_root);
  1927. free_root_extent_buffers(info->dev_root);
  1928. free_root_extent_buffers(info->extent_root);
  1929. free_root_extent_buffers(info->csum_root);
  1930. free_root_extent_buffers(info->quota_root);
  1931. free_root_extent_buffers(info->uuid_root);
  1932. if (chunk_root)
  1933. free_root_extent_buffers(info->chunk_root);
  1934. free_root_extent_buffers(info->free_space_root);
  1935. }
  1936. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1937. {
  1938. int ret;
  1939. struct btrfs_root *gang[8];
  1940. int i;
  1941. while (!list_empty(&fs_info->dead_roots)) {
  1942. gang[0] = list_entry(fs_info->dead_roots.next,
  1943. struct btrfs_root, root_list);
  1944. list_del(&gang[0]->root_list);
  1945. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1946. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1947. } else {
  1948. free_extent_buffer(gang[0]->node);
  1949. free_extent_buffer(gang[0]->commit_root);
  1950. btrfs_put_fs_root(gang[0]);
  1951. }
  1952. }
  1953. while (1) {
  1954. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1955. (void **)gang, 0,
  1956. ARRAY_SIZE(gang));
  1957. if (!ret)
  1958. break;
  1959. for (i = 0; i < ret; i++)
  1960. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1961. }
  1962. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1963. btrfs_free_log_root_tree(NULL, fs_info);
  1964. btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
  1965. }
  1966. }
  1967. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1968. {
  1969. mutex_init(&fs_info->scrub_lock);
  1970. atomic_set(&fs_info->scrubs_running, 0);
  1971. atomic_set(&fs_info->scrub_pause_req, 0);
  1972. atomic_set(&fs_info->scrubs_paused, 0);
  1973. atomic_set(&fs_info->scrub_cancel_req, 0);
  1974. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1975. fs_info->scrub_workers_refcnt = 0;
  1976. }
  1977. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1978. {
  1979. spin_lock_init(&fs_info->balance_lock);
  1980. mutex_init(&fs_info->balance_mutex);
  1981. atomic_set(&fs_info->balance_running, 0);
  1982. atomic_set(&fs_info->balance_pause_req, 0);
  1983. atomic_set(&fs_info->balance_cancel_req, 0);
  1984. fs_info->balance_ctl = NULL;
  1985. init_waitqueue_head(&fs_info->balance_wait_q);
  1986. }
  1987. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
  1988. {
  1989. struct inode *inode = fs_info->btree_inode;
  1990. inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1991. set_nlink(inode, 1);
  1992. /*
  1993. * we set the i_size on the btree inode to the max possible int.
  1994. * the real end of the address space is determined by all of
  1995. * the devices in the system
  1996. */
  1997. inode->i_size = OFFSET_MAX;
  1998. inode->i_mapping->a_ops = &btree_aops;
  1999. RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
  2000. extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping);
  2001. BTRFS_I(inode)->io_tree.track_uptodate = 0;
  2002. extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
  2003. BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
  2004. BTRFS_I(inode)->root = fs_info->tree_root;
  2005. memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
  2006. set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
  2007. btrfs_insert_inode_hash(inode);
  2008. }
  2009. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  2010. {
  2011. fs_info->dev_replace.lock_owner = 0;
  2012. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2013. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2014. rwlock_init(&fs_info->dev_replace.lock);
  2015. atomic_set(&fs_info->dev_replace.read_locks, 0);
  2016. atomic_set(&fs_info->dev_replace.blocking_readers, 0);
  2017. init_waitqueue_head(&fs_info->replace_wait);
  2018. init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
  2019. }
  2020. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  2021. {
  2022. spin_lock_init(&fs_info->qgroup_lock);
  2023. mutex_init(&fs_info->qgroup_ioctl_lock);
  2024. fs_info->qgroup_tree = RB_ROOT;
  2025. fs_info->qgroup_op_tree = RB_ROOT;
  2026. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2027. fs_info->qgroup_seq = 1;
  2028. fs_info->qgroup_ulist = NULL;
  2029. fs_info->qgroup_rescan_running = false;
  2030. mutex_init(&fs_info->qgroup_rescan_lock);
  2031. }
  2032. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  2033. struct btrfs_fs_devices *fs_devices)
  2034. {
  2035. int max_active = fs_info->thread_pool_size;
  2036. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  2037. fs_info->workers =
  2038. btrfs_alloc_workqueue(fs_info, "worker",
  2039. flags | WQ_HIGHPRI, max_active, 16);
  2040. fs_info->delalloc_workers =
  2041. btrfs_alloc_workqueue(fs_info, "delalloc",
  2042. flags, max_active, 2);
  2043. fs_info->flush_workers =
  2044. btrfs_alloc_workqueue(fs_info, "flush_delalloc",
  2045. flags, max_active, 0);
  2046. fs_info->caching_workers =
  2047. btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
  2048. /*
  2049. * a higher idle thresh on the submit workers makes it much more
  2050. * likely that bios will be send down in a sane order to the
  2051. * devices
  2052. */
  2053. fs_info->submit_workers =
  2054. btrfs_alloc_workqueue(fs_info, "submit", flags,
  2055. min_t(u64, fs_devices->num_devices,
  2056. max_active), 64);
  2057. fs_info->fixup_workers =
  2058. btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
  2059. /*
  2060. * endios are largely parallel and should have a very
  2061. * low idle thresh
  2062. */
  2063. fs_info->endio_workers =
  2064. btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
  2065. fs_info->endio_meta_workers =
  2066. btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
  2067. max_active, 4);
  2068. fs_info->endio_meta_write_workers =
  2069. btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
  2070. max_active, 2);
  2071. fs_info->endio_raid56_workers =
  2072. btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
  2073. max_active, 4);
  2074. fs_info->endio_repair_workers =
  2075. btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
  2076. fs_info->rmw_workers =
  2077. btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
  2078. fs_info->endio_write_workers =
  2079. btrfs_alloc_workqueue(fs_info, "endio-write", flags,
  2080. max_active, 2);
  2081. fs_info->endio_freespace_worker =
  2082. btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
  2083. max_active, 0);
  2084. fs_info->delayed_workers =
  2085. btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
  2086. max_active, 0);
  2087. fs_info->readahead_workers =
  2088. btrfs_alloc_workqueue(fs_info, "readahead", flags,
  2089. max_active, 2);
  2090. fs_info->qgroup_rescan_workers =
  2091. btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
  2092. fs_info->extent_workers =
  2093. btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
  2094. min_t(u64, fs_devices->num_devices,
  2095. max_active), 8);
  2096. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2097. fs_info->submit_workers && fs_info->flush_workers &&
  2098. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2099. fs_info->endio_meta_write_workers &&
  2100. fs_info->endio_repair_workers &&
  2101. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2102. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2103. fs_info->caching_workers && fs_info->readahead_workers &&
  2104. fs_info->fixup_workers && fs_info->delayed_workers &&
  2105. fs_info->extent_workers &&
  2106. fs_info->qgroup_rescan_workers)) {
  2107. return -ENOMEM;
  2108. }
  2109. return 0;
  2110. }
  2111. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  2112. struct btrfs_fs_devices *fs_devices)
  2113. {
  2114. int ret;
  2115. struct btrfs_root *log_tree_root;
  2116. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2117. u64 bytenr = btrfs_super_log_root(disk_super);
  2118. if (fs_devices->rw_devices == 0) {
  2119. btrfs_warn(fs_info, "log replay required on RO media");
  2120. return -EIO;
  2121. }
  2122. log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2123. if (!log_tree_root)
  2124. return -ENOMEM;
  2125. __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2126. log_tree_root->node = read_tree_block(fs_info, bytenr,
  2127. fs_info->generation + 1);
  2128. if (IS_ERR(log_tree_root->node)) {
  2129. btrfs_warn(fs_info, "failed to read log tree");
  2130. ret = PTR_ERR(log_tree_root->node);
  2131. kfree(log_tree_root);
  2132. return ret;
  2133. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2134. btrfs_err(fs_info, "failed to read log tree");
  2135. free_extent_buffer(log_tree_root->node);
  2136. kfree(log_tree_root);
  2137. return -EIO;
  2138. }
  2139. /* returns with log_tree_root freed on success */
  2140. ret = btrfs_recover_log_trees(log_tree_root);
  2141. if (ret) {
  2142. btrfs_handle_fs_error(fs_info, ret,
  2143. "Failed to recover log tree");
  2144. free_extent_buffer(log_tree_root->node);
  2145. kfree(log_tree_root);
  2146. return ret;
  2147. }
  2148. if (fs_info->sb->s_flags & MS_RDONLY) {
  2149. ret = btrfs_commit_super(fs_info);
  2150. if (ret)
  2151. return ret;
  2152. }
  2153. return 0;
  2154. }
  2155. static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
  2156. {
  2157. struct btrfs_root *tree_root = fs_info->tree_root;
  2158. struct btrfs_root *root;
  2159. struct btrfs_key location;
  2160. int ret;
  2161. BUG_ON(!fs_info->tree_root);
  2162. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2163. location.type = BTRFS_ROOT_ITEM_KEY;
  2164. location.offset = 0;
  2165. root = btrfs_read_tree_root(tree_root, &location);
  2166. if (IS_ERR(root))
  2167. return PTR_ERR(root);
  2168. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2169. fs_info->extent_root = root;
  2170. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2171. root = btrfs_read_tree_root(tree_root, &location);
  2172. if (IS_ERR(root))
  2173. return PTR_ERR(root);
  2174. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2175. fs_info->dev_root = root;
  2176. btrfs_init_devices_late(fs_info);
  2177. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2178. root = btrfs_read_tree_root(tree_root, &location);
  2179. if (IS_ERR(root))
  2180. return PTR_ERR(root);
  2181. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2182. fs_info->csum_root = root;
  2183. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2184. root = btrfs_read_tree_root(tree_root, &location);
  2185. if (!IS_ERR(root)) {
  2186. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2187. set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
  2188. fs_info->quota_root = root;
  2189. }
  2190. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2191. root = btrfs_read_tree_root(tree_root, &location);
  2192. if (IS_ERR(root)) {
  2193. ret = PTR_ERR(root);
  2194. if (ret != -ENOENT)
  2195. return ret;
  2196. } else {
  2197. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2198. fs_info->uuid_root = root;
  2199. }
  2200. if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2201. location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
  2202. root = btrfs_read_tree_root(tree_root, &location);
  2203. if (IS_ERR(root))
  2204. return PTR_ERR(root);
  2205. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2206. fs_info->free_space_root = root;
  2207. }
  2208. return 0;
  2209. }
  2210. int open_ctree(struct super_block *sb,
  2211. struct btrfs_fs_devices *fs_devices,
  2212. char *options)
  2213. {
  2214. u32 sectorsize;
  2215. u32 nodesize;
  2216. u32 stripesize;
  2217. u64 generation;
  2218. u64 features;
  2219. struct btrfs_key location;
  2220. struct buffer_head *bh;
  2221. struct btrfs_super_block *disk_super;
  2222. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2223. struct btrfs_root *tree_root;
  2224. struct btrfs_root *chunk_root;
  2225. int ret;
  2226. int err = -EINVAL;
  2227. int num_backups_tried = 0;
  2228. int backup_index = 0;
  2229. int max_active;
  2230. int clear_free_space_tree = 0;
  2231. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2232. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2233. if (!tree_root || !chunk_root) {
  2234. err = -ENOMEM;
  2235. goto fail;
  2236. }
  2237. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2238. if (ret) {
  2239. err = ret;
  2240. goto fail;
  2241. }
  2242. ret = setup_bdi(fs_info, &fs_info->bdi);
  2243. if (ret) {
  2244. err = ret;
  2245. goto fail_srcu;
  2246. }
  2247. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2248. if (ret) {
  2249. err = ret;
  2250. goto fail_bdi;
  2251. }
  2252. fs_info->dirty_metadata_batch = PAGE_SIZE *
  2253. (1 + ilog2(nr_cpu_ids));
  2254. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2255. if (ret) {
  2256. err = ret;
  2257. goto fail_dirty_metadata_bytes;
  2258. }
  2259. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2260. if (ret) {
  2261. err = ret;
  2262. goto fail_delalloc_bytes;
  2263. }
  2264. fs_info->btree_inode = new_inode(sb);
  2265. if (!fs_info->btree_inode) {
  2266. err = -ENOMEM;
  2267. goto fail_bio_counter;
  2268. }
  2269. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2270. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2271. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2272. INIT_LIST_HEAD(&fs_info->trans_list);
  2273. INIT_LIST_HEAD(&fs_info->dead_roots);
  2274. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2275. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2276. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2277. spin_lock_init(&fs_info->delalloc_root_lock);
  2278. spin_lock_init(&fs_info->trans_lock);
  2279. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2280. spin_lock_init(&fs_info->delayed_iput_lock);
  2281. spin_lock_init(&fs_info->defrag_inodes_lock);
  2282. spin_lock_init(&fs_info->free_chunk_lock);
  2283. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2284. spin_lock_init(&fs_info->super_lock);
  2285. spin_lock_init(&fs_info->qgroup_op_lock);
  2286. spin_lock_init(&fs_info->buffer_lock);
  2287. spin_lock_init(&fs_info->unused_bgs_lock);
  2288. rwlock_init(&fs_info->tree_mod_log_lock);
  2289. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2290. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2291. mutex_init(&fs_info->reloc_mutex);
  2292. mutex_init(&fs_info->delalloc_root_mutex);
  2293. mutex_init(&fs_info->cleaner_delayed_iput_mutex);
  2294. seqlock_init(&fs_info->profiles_lock);
  2295. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2296. INIT_LIST_HEAD(&fs_info->space_info);
  2297. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2298. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2299. btrfs_mapping_init(&fs_info->mapping_tree);
  2300. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2301. BTRFS_BLOCK_RSV_GLOBAL);
  2302. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  2303. BTRFS_BLOCK_RSV_DELALLOC);
  2304. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2305. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2306. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2307. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2308. BTRFS_BLOCK_RSV_DELOPS);
  2309. atomic_set(&fs_info->nr_async_submits, 0);
  2310. atomic_set(&fs_info->async_delalloc_pages, 0);
  2311. atomic_set(&fs_info->async_submit_draining, 0);
  2312. atomic_set(&fs_info->nr_async_bios, 0);
  2313. atomic_set(&fs_info->defrag_running, 0);
  2314. atomic_set(&fs_info->qgroup_op_seq, 0);
  2315. atomic_set(&fs_info->reada_works_cnt, 0);
  2316. atomic64_set(&fs_info->tree_mod_seq, 0);
  2317. fs_info->fs_frozen = 0;
  2318. fs_info->sb = sb;
  2319. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2320. fs_info->metadata_ratio = 0;
  2321. fs_info->defrag_inodes = RB_ROOT;
  2322. fs_info->free_chunk_space = 0;
  2323. fs_info->tree_mod_log = RB_ROOT;
  2324. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2325. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2326. /* readahead state */
  2327. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
  2328. spin_lock_init(&fs_info->reada_lock);
  2329. fs_info->thread_pool_size = min_t(unsigned long,
  2330. num_online_cpus() + 2, 8);
  2331. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2332. spin_lock_init(&fs_info->ordered_root_lock);
  2333. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2334. GFP_KERNEL);
  2335. if (!fs_info->delayed_root) {
  2336. err = -ENOMEM;
  2337. goto fail_iput;
  2338. }
  2339. btrfs_init_delayed_root(fs_info->delayed_root);
  2340. btrfs_init_scrub(fs_info);
  2341. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2342. fs_info->check_integrity_print_mask = 0;
  2343. #endif
  2344. btrfs_init_balance(fs_info);
  2345. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2346. sb->s_blocksize = 4096;
  2347. sb->s_blocksize_bits = blksize_bits(4096);
  2348. sb->s_bdi = &fs_info->bdi;
  2349. btrfs_init_btree_inode(fs_info);
  2350. spin_lock_init(&fs_info->block_group_cache_lock);
  2351. fs_info->block_group_cache_tree = RB_ROOT;
  2352. fs_info->first_logical_byte = (u64)-1;
  2353. extent_io_tree_init(&fs_info->freed_extents[0],
  2354. fs_info->btree_inode->i_mapping);
  2355. extent_io_tree_init(&fs_info->freed_extents[1],
  2356. fs_info->btree_inode->i_mapping);
  2357. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2358. set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
  2359. mutex_init(&fs_info->ordered_operations_mutex);
  2360. mutex_init(&fs_info->tree_log_mutex);
  2361. mutex_init(&fs_info->chunk_mutex);
  2362. mutex_init(&fs_info->transaction_kthread_mutex);
  2363. mutex_init(&fs_info->cleaner_mutex);
  2364. mutex_init(&fs_info->volume_mutex);
  2365. mutex_init(&fs_info->ro_block_group_mutex);
  2366. init_rwsem(&fs_info->commit_root_sem);
  2367. init_rwsem(&fs_info->cleanup_work_sem);
  2368. init_rwsem(&fs_info->subvol_sem);
  2369. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2370. btrfs_init_dev_replace_locks(fs_info);
  2371. btrfs_init_qgroup(fs_info);
  2372. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2373. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2374. init_waitqueue_head(&fs_info->transaction_throttle);
  2375. init_waitqueue_head(&fs_info->transaction_wait);
  2376. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2377. init_waitqueue_head(&fs_info->async_submit_wait);
  2378. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2379. /* Usable values until the real ones are cached from the superblock */
  2380. fs_info->nodesize = 4096;
  2381. fs_info->sectorsize = 4096;
  2382. fs_info->stripesize = 4096;
  2383. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2384. if (ret) {
  2385. err = ret;
  2386. goto fail_alloc;
  2387. }
  2388. __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2389. invalidate_bdev(fs_devices->latest_bdev);
  2390. /*
  2391. * Read super block and check the signature bytes only
  2392. */
  2393. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2394. if (IS_ERR(bh)) {
  2395. err = PTR_ERR(bh);
  2396. goto fail_alloc;
  2397. }
  2398. /*
  2399. * We want to check superblock checksum, the type is stored inside.
  2400. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2401. */
  2402. if (btrfs_check_super_csum(fs_info, bh->b_data)) {
  2403. btrfs_err(fs_info, "superblock checksum mismatch");
  2404. err = -EINVAL;
  2405. brelse(bh);
  2406. goto fail_alloc;
  2407. }
  2408. /*
  2409. * super_copy is zeroed at allocation time and we never touch the
  2410. * following bytes up to INFO_SIZE, the checksum is calculated from
  2411. * the whole block of INFO_SIZE
  2412. */
  2413. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2414. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2415. sizeof(*fs_info->super_for_commit));
  2416. brelse(bh);
  2417. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2418. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2419. if (ret) {
  2420. btrfs_err(fs_info, "superblock contains fatal errors");
  2421. err = -EINVAL;
  2422. goto fail_alloc;
  2423. }
  2424. disk_super = fs_info->super_copy;
  2425. if (!btrfs_super_root(disk_super))
  2426. goto fail_alloc;
  2427. /* check FS state, whether FS is broken. */
  2428. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2429. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2430. /*
  2431. * run through our array of backup supers and setup
  2432. * our ring pointer to the oldest one
  2433. */
  2434. generation = btrfs_super_generation(disk_super);
  2435. find_oldest_super_backup(fs_info, generation);
  2436. /*
  2437. * In the long term, we'll store the compression type in the super
  2438. * block, and it'll be used for per file compression control.
  2439. */
  2440. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2441. ret = btrfs_parse_options(fs_info, options, sb->s_flags);
  2442. if (ret) {
  2443. err = ret;
  2444. goto fail_alloc;
  2445. }
  2446. features = btrfs_super_incompat_flags(disk_super) &
  2447. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2448. if (features) {
  2449. btrfs_err(fs_info,
  2450. "cannot mount because of unsupported optional features (%llx)",
  2451. features);
  2452. err = -EINVAL;
  2453. goto fail_alloc;
  2454. }
  2455. features = btrfs_super_incompat_flags(disk_super);
  2456. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2457. if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2458. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2459. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2460. btrfs_info(fs_info, "has skinny extents");
  2461. /*
  2462. * flag our filesystem as having big metadata blocks if
  2463. * they are bigger than the page size
  2464. */
  2465. if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
  2466. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2467. btrfs_info(fs_info,
  2468. "flagging fs with big metadata feature");
  2469. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2470. }
  2471. nodesize = btrfs_super_nodesize(disk_super);
  2472. sectorsize = btrfs_super_sectorsize(disk_super);
  2473. stripesize = sectorsize;
  2474. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2475. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2476. /* Cache block sizes */
  2477. fs_info->nodesize = nodesize;
  2478. fs_info->sectorsize = sectorsize;
  2479. fs_info->stripesize = stripesize;
  2480. /*
  2481. * mixed block groups end up with duplicate but slightly offset
  2482. * extent buffers for the same range. It leads to corruptions
  2483. */
  2484. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2485. (sectorsize != nodesize)) {
  2486. btrfs_err(fs_info,
  2487. "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
  2488. nodesize, sectorsize);
  2489. goto fail_alloc;
  2490. }
  2491. /*
  2492. * Needn't use the lock because there is no other task which will
  2493. * update the flag.
  2494. */
  2495. btrfs_set_super_incompat_flags(disk_super, features);
  2496. features = btrfs_super_compat_ro_flags(disk_super) &
  2497. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2498. if (!(sb->s_flags & MS_RDONLY) && features) {
  2499. btrfs_err(fs_info,
  2500. "cannot mount read-write because of unsupported optional features (%llx)",
  2501. features);
  2502. err = -EINVAL;
  2503. goto fail_alloc;
  2504. }
  2505. max_active = fs_info->thread_pool_size;
  2506. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2507. if (ret) {
  2508. err = ret;
  2509. goto fail_sb_buffer;
  2510. }
  2511. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2512. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2513. SZ_4M / PAGE_SIZE);
  2514. sb->s_blocksize = sectorsize;
  2515. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2516. mutex_lock(&fs_info->chunk_mutex);
  2517. ret = btrfs_read_sys_array(fs_info);
  2518. mutex_unlock(&fs_info->chunk_mutex);
  2519. if (ret) {
  2520. btrfs_err(fs_info, "failed to read the system array: %d", ret);
  2521. goto fail_sb_buffer;
  2522. }
  2523. generation = btrfs_super_chunk_root_generation(disk_super);
  2524. __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2525. chunk_root->node = read_tree_block(fs_info,
  2526. btrfs_super_chunk_root(disk_super),
  2527. generation);
  2528. if (IS_ERR(chunk_root->node) ||
  2529. !extent_buffer_uptodate(chunk_root->node)) {
  2530. btrfs_err(fs_info, "failed to read chunk root");
  2531. if (!IS_ERR(chunk_root->node))
  2532. free_extent_buffer(chunk_root->node);
  2533. chunk_root->node = NULL;
  2534. goto fail_tree_roots;
  2535. }
  2536. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2537. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2538. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2539. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2540. ret = btrfs_read_chunk_tree(fs_info);
  2541. if (ret) {
  2542. btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
  2543. goto fail_tree_roots;
  2544. }
  2545. /*
  2546. * keep the device that is marked to be the target device for the
  2547. * dev_replace procedure
  2548. */
  2549. btrfs_close_extra_devices(fs_devices, 0);
  2550. if (!fs_devices->latest_bdev) {
  2551. btrfs_err(fs_info, "failed to read devices");
  2552. goto fail_tree_roots;
  2553. }
  2554. retry_root_backup:
  2555. generation = btrfs_super_generation(disk_super);
  2556. tree_root->node = read_tree_block(fs_info,
  2557. btrfs_super_root(disk_super),
  2558. generation);
  2559. if (IS_ERR(tree_root->node) ||
  2560. !extent_buffer_uptodate(tree_root->node)) {
  2561. btrfs_warn(fs_info, "failed to read tree root");
  2562. if (!IS_ERR(tree_root->node))
  2563. free_extent_buffer(tree_root->node);
  2564. tree_root->node = NULL;
  2565. goto recovery_tree_root;
  2566. }
  2567. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2568. tree_root->commit_root = btrfs_root_node(tree_root);
  2569. btrfs_set_root_refs(&tree_root->root_item, 1);
  2570. mutex_lock(&tree_root->objectid_mutex);
  2571. ret = btrfs_find_highest_objectid(tree_root,
  2572. &tree_root->highest_objectid);
  2573. if (ret) {
  2574. mutex_unlock(&tree_root->objectid_mutex);
  2575. goto recovery_tree_root;
  2576. }
  2577. ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  2578. mutex_unlock(&tree_root->objectid_mutex);
  2579. ret = btrfs_read_roots(fs_info);
  2580. if (ret)
  2581. goto recovery_tree_root;
  2582. fs_info->generation = generation;
  2583. fs_info->last_trans_committed = generation;
  2584. ret = btrfs_recover_balance(fs_info);
  2585. if (ret) {
  2586. btrfs_err(fs_info, "failed to recover balance: %d", ret);
  2587. goto fail_block_groups;
  2588. }
  2589. ret = btrfs_init_dev_stats(fs_info);
  2590. if (ret) {
  2591. btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
  2592. goto fail_block_groups;
  2593. }
  2594. ret = btrfs_init_dev_replace(fs_info);
  2595. if (ret) {
  2596. btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
  2597. goto fail_block_groups;
  2598. }
  2599. btrfs_close_extra_devices(fs_devices, 1);
  2600. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2601. if (ret) {
  2602. btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
  2603. ret);
  2604. goto fail_block_groups;
  2605. }
  2606. ret = btrfs_sysfs_add_device(fs_devices);
  2607. if (ret) {
  2608. btrfs_err(fs_info, "failed to init sysfs device interface: %d",
  2609. ret);
  2610. goto fail_fsdev_sysfs;
  2611. }
  2612. ret = btrfs_sysfs_add_mounted(fs_info);
  2613. if (ret) {
  2614. btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
  2615. goto fail_fsdev_sysfs;
  2616. }
  2617. ret = btrfs_init_space_info(fs_info);
  2618. if (ret) {
  2619. btrfs_err(fs_info, "failed to initialize space info: %d", ret);
  2620. goto fail_sysfs;
  2621. }
  2622. ret = btrfs_read_block_groups(fs_info);
  2623. if (ret) {
  2624. btrfs_err(fs_info, "failed to read block groups: %d", ret);
  2625. goto fail_sysfs;
  2626. }
  2627. fs_info->num_tolerated_disk_barrier_failures =
  2628. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2629. if (fs_info->fs_devices->missing_devices >
  2630. fs_info->num_tolerated_disk_barrier_failures &&
  2631. !(sb->s_flags & MS_RDONLY)) {
  2632. btrfs_warn(fs_info,
  2633. "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
  2634. fs_info->fs_devices->missing_devices,
  2635. fs_info->num_tolerated_disk_barrier_failures);
  2636. goto fail_sysfs;
  2637. }
  2638. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2639. "btrfs-cleaner");
  2640. if (IS_ERR(fs_info->cleaner_kthread))
  2641. goto fail_sysfs;
  2642. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2643. tree_root,
  2644. "btrfs-transaction");
  2645. if (IS_ERR(fs_info->transaction_kthread))
  2646. goto fail_cleaner;
  2647. if (!btrfs_test_opt(fs_info, SSD) &&
  2648. !btrfs_test_opt(fs_info, NOSSD) &&
  2649. !fs_info->fs_devices->rotating) {
  2650. btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
  2651. btrfs_set_opt(fs_info->mount_opt, SSD);
  2652. }
  2653. /*
  2654. * Mount does not set all options immediately, we can do it now and do
  2655. * not have to wait for transaction commit
  2656. */
  2657. btrfs_apply_pending_changes(fs_info);
  2658. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2659. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
  2660. ret = btrfsic_mount(fs_info, fs_devices,
  2661. btrfs_test_opt(fs_info,
  2662. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2663. 1 : 0,
  2664. fs_info->check_integrity_print_mask);
  2665. if (ret)
  2666. btrfs_warn(fs_info,
  2667. "failed to initialize integrity check module: %d",
  2668. ret);
  2669. }
  2670. #endif
  2671. ret = btrfs_read_qgroup_config(fs_info);
  2672. if (ret)
  2673. goto fail_trans_kthread;
  2674. /* do not make disk changes in broken FS or nologreplay is given */
  2675. if (btrfs_super_log_root(disk_super) != 0 &&
  2676. !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
  2677. ret = btrfs_replay_log(fs_info, fs_devices);
  2678. if (ret) {
  2679. err = ret;
  2680. goto fail_qgroup;
  2681. }
  2682. }
  2683. ret = btrfs_find_orphan_roots(fs_info);
  2684. if (ret)
  2685. goto fail_qgroup;
  2686. if (!(sb->s_flags & MS_RDONLY)) {
  2687. ret = btrfs_cleanup_fs_roots(fs_info);
  2688. if (ret)
  2689. goto fail_qgroup;
  2690. mutex_lock(&fs_info->cleaner_mutex);
  2691. ret = btrfs_recover_relocation(tree_root);
  2692. mutex_unlock(&fs_info->cleaner_mutex);
  2693. if (ret < 0) {
  2694. btrfs_warn(fs_info, "failed to recover relocation: %d",
  2695. ret);
  2696. err = -EINVAL;
  2697. goto fail_qgroup;
  2698. }
  2699. }
  2700. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2701. location.type = BTRFS_ROOT_ITEM_KEY;
  2702. location.offset = 0;
  2703. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2704. if (IS_ERR(fs_info->fs_root)) {
  2705. err = PTR_ERR(fs_info->fs_root);
  2706. goto fail_qgroup;
  2707. }
  2708. if (sb->s_flags & MS_RDONLY)
  2709. return 0;
  2710. if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
  2711. btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2712. clear_free_space_tree = 1;
  2713. } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
  2714. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
  2715. btrfs_warn(fs_info, "free space tree is invalid");
  2716. clear_free_space_tree = 1;
  2717. }
  2718. if (clear_free_space_tree) {
  2719. btrfs_info(fs_info, "clearing free space tree");
  2720. ret = btrfs_clear_free_space_tree(fs_info);
  2721. if (ret) {
  2722. btrfs_warn(fs_info,
  2723. "failed to clear free space tree: %d", ret);
  2724. close_ctree(fs_info);
  2725. return ret;
  2726. }
  2727. }
  2728. if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
  2729. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2730. btrfs_info(fs_info, "creating free space tree");
  2731. ret = btrfs_create_free_space_tree(fs_info);
  2732. if (ret) {
  2733. btrfs_warn(fs_info,
  2734. "failed to create free space tree: %d", ret);
  2735. close_ctree(fs_info);
  2736. return ret;
  2737. }
  2738. }
  2739. down_read(&fs_info->cleanup_work_sem);
  2740. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2741. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2742. up_read(&fs_info->cleanup_work_sem);
  2743. close_ctree(fs_info);
  2744. return ret;
  2745. }
  2746. up_read(&fs_info->cleanup_work_sem);
  2747. ret = btrfs_resume_balance_async(fs_info);
  2748. if (ret) {
  2749. btrfs_warn(fs_info, "failed to resume balance: %d", ret);
  2750. close_ctree(fs_info);
  2751. return ret;
  2752. }
  2753. ret = btrfs_resume_dev_replace_async(fs_info);
  2754. if (ret) {
  2755. btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
  2756. close_ctree(fs_info);
  2757. return ret;
  2758. }
  2759. btrfs_qgroup_rescan_resume(fs_info);
  2760. if (!fs_info->uuid_root) {
  2761. btrfs_info(fs_info, "creating UUID tree");
  2762. ret = btrfs_create_uuid_tree(fs_info);
  2763. if (ret) {
  2764. btrfs_warn(fs_info,
  2765. "failed to create the UUID tree: %d", ret);
  2766. close_ctree(fs_info);
  2767. return ret;
  2768. }
  2769. } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
  2770. fs_info->generation !=
  2771. btrfs_super_uuid_tree_generation(disk_super)) {
  2772. btrfs_info(fs_info, "checking UUID tree");
  2773. ret = btrfs_check_uuid_tree(fs_info);
  2774. if (ret) {
  2775. btrfs_warn(fs_info,
  2776. "failed to check the UUID tree: %d", ret);
  2777. close_ctree(fs_info);
  2778. return ret;
  2779. }
  2780. } else {
  2781. set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
  2782. }
  2783. set_bit(BTRFS_FS_OPEN, &fs_info->flags);
  2784. /*
  2785. * backuproot only affect mount behavior, and if open_ctree succeeded,
  2786. * no need to keep the flag
  2787. */
  2788. btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
  2789. return 0;
  2790. fail_qgroup:
  2791. btrfs_free_qgroup_config(fs_info);
  2792. fail_trans_kthread:
  2793. kthread_stop(fs_info->transaction_kthread);
  2794. btrfs_cleanup_transaction(fs_info);
  2795. btrfs_free_fs_roots(fs_info);
  2796. fail_cleaner:
  2797. kthread_stop(fs_info->cleaner_kthread);
  2798. /*
  2799. * make sure we're done with the btree inode before we stop our
  2800. * kthreads
  2801. */
  2802. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2803. fail_sysfs:
  2804. btrfs_sysfs_remove_mounted(fs_info);
  2805. fail_fsdev_sysfs:
  2806. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2807. fail_block_groups:
  2808. btrfs_put_block_group_cache(fs_info);
  2809. btrfs_free_block_groups(fs_info);
  2810. fail_tree_roots:
  2811. free_root_pointers(fs_info, 1);
  2812. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2813. fail_sb_buffer:
  2814. btrfs_stop_all_workers(fs_info);
  2815. fail_alloc:
  2816. fail_iput:
  2817. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2818. iput(fs_info->btree_inode);
  2819. fail_bio_counter:
  2820. percpu_counter_destroy(&fs_info->bio_counter);
  2821. fail_delalloc_bytes:
  2822. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2823. fail_dirty_metadata_bytes:
  2824. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2825. fail_bdi:
  2826. bdi_destroy(&fs_info->bdi);
  2827. fail_srcu:
  2828. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2829. fail:
  2830. btrfs_free_stripe_hash_table(fs_info);
  2831. btrfs_close_devices(fs_info->fs_devices);
  2832. return err;
  2833. recovery_tree_root:
  2834. if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
  2835. goto fail_tree_roots;
  2836. free_root_pointers(fs_info, 0);
  2837. /* don't use the log in recovery mode, it won't be valid */
  2838. btrfs_set_super_log_root(disk_super, 0);
  2839. /* we can't trust the free space cache either */
  2840. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2841. ret = next_root_backup(fs_info, fs_info->super_copy,
  2842. &num_backups_tried, &backup_index);
  2843. if (ret == -1)
  2844. goto fail_block_groups;
  2845. goto retry_root_backup;
  2846. }
  2847. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2848. {
  2849. if (uptodate) {
  2850. set_buffer_uptodate(bh);
  2851. } else {
  2852. struct btrfs_device *device = (struct btrfs_device *)
  2853. bh->b_private;
  2854. btrfs_warn_rl_in_rcu(device->fs_info,
  2855. "lost page write due to IO error on %s",
  2856. rcu_str_deref(device->name));
  2857. /* note, we don't set_buffer_write_io_error because we have
  2858. * our own ways of dealing with the IO errors
  2859. */
  2860. clear_buffer_uptodate(bh);
  2861. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2862. }
  2863. unlock_buffer(bh);
  2864. put_bh(bh);
  2865. }
  2866. int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
  2867. struct buffer_head **bh_ret)
  2868. {
  2869. struct buffer_head *bh;
  2870. struct btrfs_super_block *super;
  2871. u64 bytenr;
  2872. bytenr = btrfs_sb_offset(copy_num);
  2873. if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
  2874. return -EINVAL;
  2875. bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
  2876. /*
  2877. * If we fail to read from the underlying devices, as of now
  2878. * the best option we have is to mark it EIO.
  2879. */
  2880. if (!bh)
  2881. return -EIO;
  2882. super = (struct btrfs_super_block *)bh->b_data;
  2883. if (btrfs_super_bytenr(super) != bytenr ||
  2884. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2885. brelse(bh);
  2886. return -EINVAL;
  2887. }
  2888. *bh_ret = bh;
  2889. return 0;
  2890. }
  2891. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2892. {
  2893. struct buffer_head *bh;
  2894. struct buffer_head *latest = NULL;
  2895. struct btrfs_super_block *super;
  2896. int i;
  2897. u64 transid = 0;
  2898. int ret = -EINVAL;
  2899. /* we would like to check all the supers, but that would make
  2900. * a btrfs mount succeed after a mkfs from a different FS.
  2901. * So, we need to add a special mount option to scan for
  2902. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2903. */
  2904. for (i = 0; i < 1; i++) {
  2905. ret = btrfs_read_dev_one_super(bdev, i, &bh);
  2906. if (ret)
  2907. continue;
  2908. super = (struct btrfs_super_block *)bh->b_data;
  2909. if (!latest || btrfs_super_generation(super) > transid) {
  2910. brelse(latest);
  2911. latest = bh;
  2912. transid = btrfs_super_generation(super);
  2913. } else {
  2914. brelse(bh);
  2915. }
  2916. }
  2917. if (!latest)
  2918. return ERR_PTR(ret);
  2919. return latest;
  2920. }
  2921. /*
  2922. * this should be called twice, once with wait == 0 and
  2923. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2924. * we write are pinned.
  2925. *
  2926. * They are released when wait == 1 is done.
  2927. * max_mirrors must be the same for both runs, and it indicates how
  2928. * many supers on this one device should be written.
  2929. *
  2930. * max_mirrors == 0 means to write them all.
  2931. */
  2932. static int write_dev_supers(struct btrfs_device *device,
  2933. struct btrfs_super_block *sb,
  2934. int do_barriers, int wait, int max_mirrors)
  2935. {
  2936. struct buffer_head *bh;
  2937. int i;
  2938. int ret;
  2939. int errors = 0;
  2940. u32 crc;
  2941. u64 bytenr;
  2942. if (max_mirrors == 0)
  2943. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2944. for (i = 0; i < max_mirrors; i++) {
  2945. bytenr = btrfs_sb_offset(i);
  2946. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2947. device->commit_total_bytes)
  2948. break;
  2949. if (wait) {
  2950. bh = __find_get_block(device->bdev, bytenr / 4096,
  2951. BTRFS_SUPER_INFO_SIZE);
  2952. if (!bh) {
  2953. errors++;
  2954. continue;
  2955. }
  2956. wait_on_buffer(bh);
  2957. if (!buffer_uptodate(bh))
  2958. errors++;
  2959. /* drop our reference */
  2960. brelse(bh);
  2961. /* drop the reference from the wait == 0 run */
  2962. brelse(bh);
  2963. continue;
  2964. } else {
  2965. btrfs_set_super_bytenr(sb, bytenr);
  2966. crc = ~(u32)0;
  2967. crc = btrfs_csum_data((char *)sb +
  2968. BTRFS_CSUM_SIZE, crc,
  2969. BTRFS_SUPER_INFO_SIZE -
  2970. BTRFS_CSUM_SIZE);
  2971. btrfs_csum_final(crc, sb->csum);
  2972. /*
  2973. * one reference for us, and we leave it for the
  2974. * caller
  2975. */
  2976. bh = __getblk(device->bdev, bytenr / 4096,
  2977. BTRFS_SUPER_INFO_SIZE);
  2978. if (!bh) {
  2979. btrfs_err(device->fs_info,
  2980. "couldn't get super buffer head for bytenr %llu",
  2981. bytenr);
  2982. errors++;
  2983. continue;
  2984. }
  2985. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2986. /* one reference for submit_bh */
  2987. get_bh(bh);
  2988. set_buffer_uptodate(bh);
  2989. lock_buffer(bh);
  2990. bh->b_end_io = btrfs_end_buffer_write_sync;
  2991. bh->b_private = device;
  2992. }
  2993. /*
  2994. * we fua the first super. The others we allow
  2995. * to go down lazy.
  2996. */
  2997. if (i == 0)
  2998. ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
  2999. else
  3000. ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
  3001. if (ret)
  3002. errors++;
  3003. }
  3004. return errors < i ? 0 : -1;
  3005. }
  3006. /*
  3007. * endio for the write_dev_flush, this will wake anyone waiting
  3008. * for the barrier when it is done
  3009. */
  3010. static void btrfs_end_empty_barrier(struct bio *bio)
  3011. {
  3012. if (bio->bi_private)
  3013. complete(bio->bi_private);
  3014. bio_put(bio);
  3015. }
  3016. /*
  3017. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  3018. * sent down. With wait == 1, it waits for the previous flush.
  3019. *
  3020. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  3021. * capable
  3022. */
  3023. static int write_dev_flush(struct btrfs_device *device, int wait)
  3024. {
  3025. struct bio *bio;
  3026. int ret = 0;
  3027. if (device->nobarriers)
  3028. return 0;
  3029. if (wait) {
  3030. bio = device->flush_bio;
  3031. if (!bio)
  3032. return 0;
  3033. wait_for_completion(&device->flush_wait);
  3034. if (bio->bi_error) {
  3035. ret = bio->bi_error;
  3036. btrfs_dev_stat_inc_and_print(device,
  3037. BTRFS_DEV_STAT_FLUSH_ERRS);
  3038. }
  3039. /* drop the reference from the wait == 0 run */
  3040. bio_put(bio);
  3041. device->flush_bio = NULL;
  3042. return ret;
  3043. }
  3044. /*
  3045. * one reference for us, and we leave it for the
  3046. * caller
  3047. */
  3048. device->flush_bio = NULL;
  3049. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  3050. if (!bio)
  3051. return -ENOMEM;
  3052. bio->bi_end_io = btrfs_end_empty_barrier;
  3053. bio->bi_bdev = device->bdev;
  3054. bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
  3055. init_completion(&device->flush_wait);
  3056. bio->bi_private = &device->flush_wait;
  3057. device->flush_bio = bio;
  3058. bio_get(bio);
  3059. btrfsic_submit_bio(bio);
  3060. return 0;
  3061. }
  3062. /*
  3063. * send an empty flush down to each device in parallel,
  3064. * then wait for them
  3065. */
  3066. static int barrier_all_devices(struct btrfs_fs_info *info)
  3067. {
  3068. struct list_head *head;
  3069. struct btrfs_device *dev;
  3070. int errors_send = 0;
  3071. int errors_wait = 0;
  3072. int ret;
  3073. /* send down all the barriers */
  3074. head = &info->fs_devices->devices;
  3075. list_for_each_entry_rcu(dev, head, dev_list) {
  3076. if (dev->missing)
  3077. continue;
  3078. if (!dev->bdev) {
  3079. errors_send++;
  3080. continue;
  3081. }
  3082. if (!dev->in_fs_metadata || !dev->writeable)
  3083. continue;
  3084. ret = write_dev_flush(dev, 0);
  3085. if (ret)
  3086. errors_send++;
  3087. }
  3088. /* wait for all the barriers */
  3089. list_for_each_entry_rcu(dev, head, dev_list) {
  3090. if (dev->missing)
  3091. continue;
  3092. if (!dev->bdev) {
  3093. errors_wait++;
  3094. continue;
  3095. }
  3096. if (!dev->in_fs_metadata || !dev->writeable)
  3097. continue;
  3098. ret = write_dev_flush(dev, 1);
  3099. if (ret)
  3100. errors_wait++;
  3101. }
  3102. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  3103. errors_wait > info->num_tolerated_disk_barrier_failures)
  3104. return -EIO;
  3105. return 0;
  3106. }
  3107. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  3108. {
  3109. int raid_type;
  3110. int min_tolerated = INT_MAX;
  3111. if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
  3112. (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
  3113. min_tolerated = min(min_tolerated,
  3114. btrfs_raid_array[BTRFS_RAID_SINGLE].
  3115. tolerated_failures);
  3116. for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  3117. if (raid_type == BTRFS_RAID_SINGLE)
  3118. continue;
  3119. if (!(flags & btrfs_raid_group[raid_type]))
  3120. continue;
  3121. min_tolerated = min(min_tolerated,
  3122. btrfs_raid_array[raid_type].
  3123. tolerated_failures);
  3124. }
  3125. if (min_tolerated == INT_MAX) {
  3126. pr_warn("BTRFS: unknown raid flag: %llu", flags);
  3127. min_tolerated = 0;
  3128. }
  3129. return min_tolerated;
  3130. }
  3131. int btrfs_calc_num_tolerated_disk_barrier_failures(
  3132. struct btrfs_fs_info *fs_info)
  3133. {
  3134. struct btrfs_ioctl_space_info space;
  3135. struct btrfs_space_info *sinfo;
  3136. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  3137. BTRFS_BLOCK_GROUP_SYSTEM,
  3138. BTRFS_BLOCK_GROUP_METADATA,
  3139. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  3140. int i;
  3141. int c;
  3142. int num_tolerated_disk_barrier_failures =
  3143. (int)fs_info->fs_devices->num_devices;
  3144. for (i = 0; i < ARRAY_SIZE(types); i++) {
  3145. struct btrfs_space_info *tmp;
  3146. sinfo = NULL;
  3147. rcu_read_lock();
  3148. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  3149. if (tmp->flags == types[i]) {
  3150. sinfo = tmp;
  3151. break;
  3152. }
  3153. }
  3154. rcu_read_unlock();
  3155. if (!sinfo)
  3156. continue;
  3157. down_read(&sinfo->groups_sem);
  3158. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  3159. u64 flags;
  3160. if (list_empty(&sinfo->block_groups[c]))
  3161. continue;
  3162. btrfs_get_block_group_info(&sinfo->block_groups[c],
  3163. &space);
  3164. if (space.total_bytes == 0 || space.used_bytes == 0)
  3165. continue;
  3166. flags = space.flags;
  3167. num_tolerated_disk_barrier_failures = min(
  3168. num_tolerated_disk_barrier_failures,
  3169. btrfs_get_num_tolerated_disk_barrier_failures(
  3170. flags));
  3171. }
  3172. up_read(&sinfo->groups_sem);
  3173. }
  3174. return num_tolerated_disk_barrier_failures;
  3175. }
  3176. static int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
  3177. {
  3178. struct list_head *head;
  3179. struct btrfs_device *dev;
  3180. struct btrfs_super_block *sb;
  3181. struct btrfs_dev_item *dev_item;
  3182. int ret;
  3183. int do_barriers;
  3184. int max_errors;
  3185. int total_errors = 0;
  3186. u64 flags;
  3187. do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
  3188. backup_super_roots(fs_info);
  3189. sb = fs_info->super_for_commit;
  3190. dev_item = &sb->dev_item;
  3191. mutex_lock(&fs_info->fs_devices->device_list_mutex);
  3192. head = &fs_info->fs_devices->devices;
  3193. max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
  3194. if (do_barriers) {
  3195. ret = barrier_all_devices(fs_info);
  3196. if (ret) {
  3197. mutex_unlock(
  3198. &fs_info->fs_devices->device_list_mutex);
  3199. btrfs_handle_fs_error(fs_info, ret,
  3200. "errors while submitting device barriers.");
  3201. return ret;
  3202. }
  3203. }
  3204. list_for_each_entry_rcu(dev, head, dev_list) {
  3205. if (!dev->bdev) {
  3206. total_errors++;
  3207. continue;
  3208. }
  3209. if (!dev->in_fs_metadata || !dev->writeable)
  3210. continue;
  3211. btrfs_set_stack_device_generation(dev_item, 0);
  3212. btrfs_set_stack_device_type(dev_item, dev->type);
  3213. btrfs_set_stack_device_id(dev_item, dev->devid);
  3214. btrfs_set_stack_device_total_bytes(dev_item,
  3215. dev->commit_total_bytes);
  3216. btrfs_set_stack_device_bytes_used(dev_item,
  3217. dev->commit_bytes_used);
  3218. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3219. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3220. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3221. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3222. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3223. flags = btrfs_super_flags(sb);
  3224. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3225. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  3226. if (ret)
  3227. total_errors++;
  3228. }
  3229. if (total_errors > max_errors) {
  3230. btrfs_err(fs_info, "%d errors while writing supers",
  3231. total_errors);
  3232. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3233. /* FUA is masked off if unsupported and can't be the reason */
  3234. btrfs_handle_fs_error(fs_info, -EIO,
  3235. "%d errors while writing supers",
  3236. total_errors);
  3237. return -EIO;
  3238. }
  3239. total_errors = 0;
  3240. list_for_each_entry_rcu(dev, head, dev_list) {
  3241. if (!dev->bdev)
  3242. continue;
  3243. if (!dev->in_fs_metadata || !dev->writeable)
  3244. continue;
  3245. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3246. if (ret)
  3247. total_errors++;
  3248. }
  3249. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3250. if (total_errors > max_errors) {
  3251. btrfs_handle_fs_error(fs_info, -EIO,
  3252. "%d errors while writing supers",
  3253. total_errors);
  3254. return -EIO;
  3255. }
  3256. return 0;
  3257. }
  3258. int write_ctree_super(struct btrfs_trans_handle *trans,
  3259. struct btrfs_fs_info *fs_info, int max_mirrors)
  3260. {
  3261. return write_all_supers(fs_info, max_mirrors);
  3262. }
  3263. /* Drop a fs root from the radix tree and free it. */
  3264. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3265. struct btrfs_root *root)
  3266. {
  3267. spin_lock(&fs_info->fs_roots_radix_lock);
  3268. radix_tree_delete(&fs_info->fs_roots_radix,
  3269. (unsigned long)root->root_key.objectid);
  3270. spin_unlock(&fs_info->fs_roots_radix_lock);
  3271. if (btrfs_root_refs(&root->root_item) == 0)
  3272. synchronize_srcu(&fs_info->subvol_srcu);
  3273. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  3274. btrfs_free_log(NULL, root);
  3275. if (root->reloc_root) {
  3276. free_extent_buffer(root->reloc_root->node);
  3277. free_extent_buffer(root->reloc_root->commit_root);
  3278. btrfs_put_fs_root(root->reloc_root);
  3279. root->reloc_root = NULL;
  3280. }
  3281. }
  3282. if (root->free_ino_pinned)
  3283. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3284. if (root->free_ino_ctl)
  3285. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3286. free_fs_root(root);
  3287. }
  3288. static void free_fs_root(struct btrfs_root *root)
  3289. {
  3290. iput(root->ino_cache_inode);
  3291. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3292. btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
  3293. root->orphan_block_rsv = NULL;
  3294. if (root->anon_dev)
  3295. free_anon_bdev(root->anon_dev);
  3296. if (root->subv_writers)
  3297. btrfs_free_subvolume_writers(root->subv_writers);
  3298. free_extent_buffer(root->node);
  3299. free_extent_buffer(root->commit_root);
  3300. kfree(root->free_ino_ctl);
  3301. kfree(root->free_ino_pinned);
  3302. kfree(root->name);
  3303. btrfs_put_fs_root(root);
  3304. }
  3305. void btrfs_free_fs_root(struct btrfs_root *root)
  3306. {
  3307. free_fs_root(root);
  3308. }
  3309. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3310. {
  3311. u64 root_objectid = 0;
  3312. struct btrfs_root *gang[8];
  3313. int i = 0;
  3314. int err = 0;
  3315. unsigned int ret = 0;
  3316. int index;
  3317. while (1) {
  3318. index = srcu_read_lock(&fs_info->subvol_srcu);
  3319. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3320. (void **)gang, root_objectid,
  3321. ARRAY_SIZE(gang));
  3322. if (!ret) {
  3323. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3324. break;
  3325. }
  3326. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3327. for (i = 0; i < ret; i++) {
  3328. /* Avoid to grab roots in dead_roots */
  3329. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3330. gang[i] = NULL;
  3331. continue;
  3332. }
  3333. /* grab all the search result for later use */
  3334. gang[i] = btrfs_grab_fs_root(gang[i]);
  3335. }
  3336. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3337. for (i = 0; i < ret; i++) {
  3338. if (!gang[i])
  3339. continue;
  3340. root_objectid = gang[i]->root_key.objectid;
  3341. err = btrfs_orphan_cleanup(gang[i]);
  3342. if (err)
  3343. break;
  3344. btrfs_put_fs_root(gang[i]);
  3345. }
  3346. root_objectid++;
  3347. }
  3348. /* release the uncleaned roots due to error */
  3349. for (; i < ret; i++) {
  3350. if (gang[i])
  3351. btrfs_put_fs_root(gang[i]);
  3352. }
  3353. return err;
  3354. }
  3355. int btrfs_commit_super(struct btrfs_fs_info *fs_info)
  3356. {
  3357. struct btrfs_root *root = fs_info->tree_root;
  3358. struct btrfs_trans_handle *trans;
  3359. mutex_lock(&fs_info->cleaner_mutex);
  3360. btrfs_run_delayed_iputs(fs_info);
  3361. mutex_unlock(&fs_info->cleaner_mutex);
  3362. wake_up_process(fs_info->cleaner_kthread);
  3363. /* wait until ongoing cleanup work done */
  3364. down_write(&fs_info->cleanup_work_sem);
  3365. up_write(&fs_info->cleanup_work_sem);
  3366. trans = btrfs_join_transaction(root);
  3367. if (IS_ERR(trans))
  3368. return PTR_ERR(trans);
  3369. return btrfs_commit_transaction(trans);
  3370. }
  3371. void close_ctree(struct btrfs_fs_info *fs_info)
  3372. {
  3373. struct btrfs_root *root = fs_info->tree_root;
  3374. int ret;
  3375. set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
  3376. /* wait for the qgroup rescan worker to stop */
  3377. btrfs_qgroup_wait_for_completion(fs_info, false);
  3378. /* wait for the uuid_scan task to finish */
  3379. down(&fs_info->uuid_tree_rescan_sem);
  3380. /* avoid complains from lockdep et al., set sem back to initial state */
  3381. up(&fs_info->uuid_tree_rescan_sem);
  3382. /* pause restriper - we want to resume on mount */
  3383. btrfs_pause_balance(fs_info);
  3384. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3385. btrfs_scrub_cancel(fs_info);
  3386. /* wait for any defraggers to finish */
  3387. wait_event(fs_info->transaction_wait,
  3388. (atomic_read(&fs_info->defrag_running) == 0));
  3389. /* clear out the rbtree of defraggable inodes */
  3390. btrfs_cleanup_defrag_inodes(fs_info);
  3391. cancel_work_sync(&fs_info->async_reclaim_work);
  3392. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3393. /*
  3394. * If the cleaner thread is stopped and there are
  3395. * block groups queued for removal, the deletion will be
  3396. * skipped when we quit the cleaner thread.
  3397. */
  3398. btrfs_delete_unused_bgs(fs_info);
  3399. ret = btrfs_commit_super(fs_info);
  3400. if (ret)
  3401. btrfs_err(fs_info, "commit super ret %d", ret);
  3402. }
  3403. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3404. btrfs_error_commit_super(fs_info);
  3405. kthread_stop(fs_info->transaction_kthread);
  3406. kthread_stop(fs_info->cleaner_kthread);
  3407. set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
  3408. btrfs_free_qgroup_config(fs_info);
  3409. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3410. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3411. percpu_counter_sum(&fs_info->delalloc_bytes));
  3412. }
  3413. btrfs_sysfs_remove_mounted(fs_info);
  3414. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3415. btrfs_free_fs_roots(fs_info);
  3416. btrfs_put_block_group_cache(fs_info);
  3417. btrfs_free_block_groups(fs_info);
  3418. /*
  3419. * we must make sure there is not any read request to
  3420. * submit after we stopping all workers.
  3421. */
  3422. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3423. btrfs_stop_all_workers(fs_info);
  3424. clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
  3425. free_root_pointers(fs_info, 1);
  3426. iput(fs_info->btree_inode);
  3427. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3428. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
  3429. btrfsic_unmount(fs_info->fs_devices);
  3430. #endif
  3431. btrfs_close_devices(fs_info->fs_devices);
  3432. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3433. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3434. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3435. percpu_counter_destroy(&fs_info->bio_counter);
  3436. bdi_destroy(&fs_info->bdi);
  3437. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3438. btrfs_free_stripe_hash_table(fs_info);
  3439. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3440. root->orphan_block_rsv = NULL;
  3441. lock_chunks(fs_info);
  3442. while (!list_empty(&fs_info->pinned_chunks)) {
  3443. struct extent_map *em;
  3444. em = list_first_entry(&fs_info->pinned_chunks,
  3445. struct extent_map, list);
  3446. list_del_init(&em->list);
  3447. free_extent_map(em);
  3448. }
  3449. unlock_chunks(fs_info);
  3450. }
  3451. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3452. int atomic)
  3453. {
  3454. int ret;
  3455. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3456. ret = extent_buffer_uptodate(buf);
  3457. if (!ret)
  3458. return ret;
  3459. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3460. parent_transid, atomic);
  3461. if (ret == -EAGAIN)
  3462. return ret;
  3463. return !ret;
  3464. }
  3465. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3466. {
  3467. struct btrfs_fs_info *fs_info;
  3468. struct btrfs_root *root;
  3469. u64 transid = btrfs_header_generation(buf);
  3470. int was_dirty;
  3471. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3472. /*
  3473. * This is a fast path so only do this check if we have sanity tests
  3474. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3475. * outside of the sanity tests.
  3476. */
  3477. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3478. return;
  3479. #endif
  3480. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3481. fs_info = root->fs_info;
  3482. btrfs_assert_tree_locked(buf);
  3483. if (transid != fs_info->generation)
  3484. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
  3485. buf->start, transid, fs_info->generation);
  3486. was_dirty = set_extent_buffer_dirty(buf);
  3487. if (!was_dirty)
  3488. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  3489. buf->len,
  3490. fs_info->dirty_metadata_batch);
  3491. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3492. if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
  3493. btrfs_print_leaf(fs_info, buf);
  3494. ASSERT(0);
  3495. }
  3496. #endif
  3497. }
  3498. static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
  3499. int flush_delayed)
  3500. {
  3501. /*
  3502. * looks as though older kernels can get into trouble with
  3503. * this code, they end up stuck in balance_dirty_pages forever
  3504. */
  3505. int ret;
  3506. if (current->flags & PF_MEMALLOC)
  3507. return;
  3508. if (flush_delayed)
  3509. btrfs_balance_delayed_items(fs_info);
  3510. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  3511. BTRFS_DIRTY_METADATA_THRESH);
  3512. if (ret > 0) {
  3513. balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
  3514. }
  3515. }
  3516. void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
  3517. {
  3518. __btrfs_btree_balance_dirty(fs_info, 1);
  3519. }
  3520. void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
  3521. {
  3522. __btrfs_btree_balance_dirty(fs_info, 0);
  3523. }
  3524. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3525. {
  3526. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3527. struct btrfs_fs_info *fs_info = root->fs_info;
  3528. return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
  3529. }
  3530. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3531. int read_only)
  3532. {
  3533. struct btrfs_super_block *sb = fs_info->super_copy;
  3534. u64 nodesize = btrfs_super_nodesize(sb);
  3535. u64 sectorsize = btrfs_super_sectorsize(sb);
  3536. int ret = 0;
  3537. if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
  3538. btrfs_err(fs_info, "no valid FS found");
  3539. ret = -EINVAL;
  3540. }
  3541. if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
  3542. btrfs_warn(fs_info, "unrecognized super flag: %llu",
  3543. btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
  3544. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3545. btrfs_err(fs_info, "tree_root level too big: %d >= %d",
  3546. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3547. ret = -EINVAL;
  3548. }
  3549. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3550. btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
  3551. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3552. ret = -EINVAL;
  3553. }
  3554. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3555. btrfs_err(fs_info, "log_root level too big: %d >= %d",
  3556. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3557. ret = -EINVAL;
  3558. }
  3559. /*
  3560. * Check sectorsize and nodesize first, other check will need it.
  3561. * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
  3562. */
  3563. if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
  3564. sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3565. btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
  3566. ret = -EINVAL;
  3567. }
  3568. /* Only PAGE SIZE is supported yet */
  3569. if (sectorsize != PAGE_SIZE) {
  3570. btrfs_err(fs_info,
  3571. "sectorsize %llu not supported yet, only support %lu",
  3572. sectorsize, PAGE_SIZE);
  3573. ret = -EINVAL;
  3574. }
  3575. if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
  3576. nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3577. btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
  3578. ret = -EINVAL;
  3579. }
  3580. if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
  3581. btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
  3582. le32_to_cpu(sb->__unused_leafsize), nodesize);
  3583. ret = -EINVAL;
  3584. }
  3585. /* Root alignment check */
  3586. if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
  3587. btrfs_warn(fs_info, "tree_root block unaligned: %llu",
  3588. btrfs_super_root(sb));
  3589. ret = -EINVAL;
  3590. }
  3591. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
  3592. btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
  3593. btrfs_super_chunk_root(sb));
  3594. ret = -EINVAL;
  3595. }
  3596. if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
  3597. btrfs_warn(fs_info, "log_root block unaligned: %llu",
  3598. btrfs_super_log_root(sb));
  3599. ret = -EINVAL;
  3600. }
  3601. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
  3602. btrfs_err(fs_info,
  3603. "dev_item UUID does not match fsid: %pU != %pU",
  3604. fs_info->fsid, sb->dev_item.fsid);
  3605. ret = -EINVAL;
  3606. }
  3607. /*
  3608. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3609. * done later
  3610. */
  3611. if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
  3612. btrfs_err(fs_info, "bytes_used is too small %llu",
  3613. btrfs_super_bytes_used(sb));
  3614. ret = -EINVAL;
  3615. }
  3616. if (!is_power_of_2(btrfs_super_stripesize(sb))) {
  3617. btrfs_err(fs_info, "invalid stripesize %u",
  3618. btrfs_super_stripesize(sb));
  3619. ret = -EINVAL;
  3620. }
  3621. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3622. btrfs_warn(fs_info, "suspicious number of devices: %llu",
  3623. btrfs_super_num_devices(sb));
  3624. if (btrfs_super_num_devices(sb) == 0) {
  3625. btrfs_err(fs_info, "number of devices is 0");
  3626. ret = -EINVAL;
  3627. }
  3628. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3629. btrfs_err(fs_info, "super offset mismatch %llu != %u",
  3630. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3631. ret = -EINVAL;
  3632. }
  3633. /*
  3634. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3635. * and one chunk
  3636. */
  3637. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3638. btrfs_err(fs_info, "system chunk array too big %u > %u",
  3639. btrfs_super_sys_array_size(sb),
  3640. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3641. ret = -EINVAL;
  3642. }
  3643. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3644. + sizeof(struct btrfs_chunk)) {
  3645. btrfs_err(fs_info, "system chunk array too small %u < %zu",
  3646. btrfs_super_sys_array_size(sb),
  3647. sizeof(struct btrfs_disk_key)
  3648. + sizeof(struct btrfs_chunk));
  3649. ret = -EINVAL;
  3650. }
  3651. /*
  3652. * The generation is a global counter, we'll trust it more than the others
  3653. * but it's still possible that it's the one that's wrong.
  3654. */
  3655. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3656. btrfs_warn(fs_info,
  3657. "suspicious: generation < chunk_root_generation: %llu < %llu",
  3658. btrfs_super_generation(sb),
  3659. btrfs_super_chunk_root_generation(sb));
  3660. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3661. && btrfs_super_cache_generation(sb) != (u64)-1)
  3662. btrfs_warn(fs_info,
  3663. "suspicious: generation < cache_generation: %llu < %llu",
  3664. btrfs_super_generation(sb),
  3665. btrfs_super_cache_generation(sb));
  3666. return ret;
  3667. }
  3668. static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
  3669. {
  3670. mutex_lock(&fs_info->cleaner_mutex);
  3671. btrfs_run_delayed_iputs(fs_info);
  3672. mutex_unlock(&fs_info->cleaner_mutex);
  3673. down_write(&fs_info->cleanup_work_sem);
  3674. up_write(&fs_info->cleanup_work_sem);
  3675. /* cleanup FS via transaction */
  3676. btrfs_cleanup_transaction(fs_info);
  3677. }
  3678. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3679. {
  3680. struct btrfs_ordered_extent *ordered;
  3681. spin_lock(&root->ordered_extent_lock);
  3682. /*
  3683. * This will just short circuit the ordered completion stuff which will
  3684. * make sure the ordered extent gets properly cleaned up.
  3685. */
  3686. list_for_each_entry(ordered, &root->ordered_extents,
  3687. root_extent_list)
  3688. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3689. spin_unlock(&root->ordered_extent_lock);
  3690. }
  3691. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3692. {
  3693. struct btrfs_root *root;
  3694. struct list_head splice;
  3695. INIT_LIST_HEAD(&splice);
  3696. spin_lock(&fs_info->ordered_root_lock);
  3697. list_splice_init(&fs_info->ordered_roots, &splice);
  3698. while (!list_empty(&splice)) {
  3699. root = list_first_entry(&splice, struct btrfs_root,
  3700. ordered_root);
  3701. list_move_tail(&root->ordered_root,
  3702. &fs_info->ordered_roots);
  3703. spin_unlock(&fs_info->ordered_root_lock);
  3704. btrfs_destroy_ordered_extents(root);
  3705. cond_resched();
  3706. spin_lock(&fs_info->ordered_root_lock);
  3707. }
  3708. spin_unlock(&fs_info->ordered_root_lock);
  3709. }
  3710. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3711. struct btrfs_fs_info *fs_info)
  3712. {
  3713. struct rb_node *node;
  3714. struct btrfs_delayed_ref_root *delayed_refs;
  3715. struct btrfs_delayed_ref_node *ref;
  3716. int ret = 0;
  3717. delayed_refs = &trans->delayed_refs;
  3718. spin_lock(&delayed_refs->lock);
  3719. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3720. spin_unlock(&delayed_refs->lock);
  3721. btrfs_info(fs_info, "delayed_refs has NO entry");
  3722. return ret;
  3723. }
  3724. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3725. struct btrfs_delayed_ref_head *head;
  3726. struct btrfs_delayed_ref_node *tmp;
  3727. bool pin_bytes = false;
  3728. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3729. href_node);
  3730. if (!mutex_trylock(&head->mutex)) {
  3731. atomic_inc(&head->node.refs);
  3732. spin_unlock(&delayed_refs->lock);
  3733. mutex_lock(&head->mutex);
  3734. mutex_unlock(&head->mutex);
  3735. btrfs_put_delayed_ref(&head->node);
  3736. spin_lock(&delayed_refs->lock);
  3737. continue;
  3738. }
  3739. spin_lock(&head->lock);
  3740. list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
  3741. list) {
  3742. ref->in_tree = 0;
  3743. list_del(&ref->list);
  3744. if (!list_empty(&ref->add_list))
  3745. list_del(&ref->add_list);
  3746. atomic_dec(&delayed_refs->num_entries);
  3747. btrfs_put_delayed_ref(ref);
  3748. }
  3749. if (head->must_insert_reserved)
  3750. pin_bytes = true;
  3751. btrfs_free_delayed_extent_op(head->extent_op);
  3752. delayed_refs->num_heads--;
  3753. if (head->processing == 0)
  3754. delayed_refs->num_heads_ready--;
  3755. atomic_dec(&delayed_refs->num_entries);
  3756. head->node.in_tree = 0;
  3757. rb_erase(&head->href_node, &delayed_refs->href_root);
  3758. spin_unlock(&head->lock);
  3759. spin_unlock(&delayed_refs->lock);
  3760. mutex_unlock(&head->mutex);
  3761. if (pin_bytes)
  3762. btrfs_pin_extent(fs_info, head->node.bytenr,
  3763. head->node.num_bytes, 1);
  3764. btrfs_put_delayed_ref(&head->node);
  3765. cond_resched();
  3766. spin_lock(&delayed_refs->lock);
  3767. }
  3768. spin_unlock(&delayed_refs->lock);
  3769. return ret;
  3770. }
  3771. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3772. {
  3773. struct btrfs_inode *btrfs_inode;
  3774. struct list_head splice;
  3775. INIT_LIST_HEAD(&splice);
  3776. spin_lock(&root->delalloc_lock);
  3777. list_splice_init(&root->delalloc_inodes, &splice);
  3778. while (!list_empty(&splice)) {
  3779. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3780. delalloc_inodes);
  3781. list_del_init(&btrfs_inode->delalloc_inodes);
  3782. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3783. &btrfs_inode->runtime_flags);
  3784. spin_unlock(&root->delalloc_lock);
  3785. btrfs_invalidate_inodes(btrfs_inode->root);
  3786. spin_lock(&root->delalloc_lock);
  3787. }
  3788. spin_unlock(&root->delalloc_lock);
  3789. }
  3790. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3791. {
  3792. struct btrfs_root *root;
  3793. struct list_head splice;
  3794. INIT_LIST_HEAD(&splice);
  3795. spin_lock(&fs_info->delalloc_root_lock);
  3796. list_splice_init(&fs_info->delalloc_roots, &splice);
  3797. while (!list_empty(&splice)) {
  3798. root = list_first_entry(&splice, struct btrfs_root,
  3799. delalloc_root);
  3800. list_del_init(&root->delalloc_root);
  3801. root = btrfs_grab_fs_root(root);
  3802. BUG_ON(!root);
  3803. spin_unlock(&fs_info->delalloc_root_lock);
  3804. btrfs_destroy_delalloc_inodes(root);
  3805. btrfs_put_fs_root(root);
  3806. spin_lock(&fs_info->delalloc_root_lock);
  3807. }
  3808. spin_unlock(&fs_info->delalloc_root_lock);
  3809. }
  3810. static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  3811. struct extent_io_tree *dirty_pages,
  3812. int mark)
  3813. {
  3814. int ret;
  3815. struct extent_buffer *eb;
  3816. u64 start = 0;
  3817. u64 end;
  3818. while (1) {
  3819. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3820. mark, NULL);
  3821. if (ret)
  3822. break;
  3823. clear_extent_bits(dirty_pages, start, end, mark);
  3824. while (start <= end) {
  3825. eb = find_extent_buffer(fs_info, start);
  3826. start += fs_info->nodesize;
  3827. if (!eb)
  3828. continue;
  3829. wait_on_extent_buffer_writeback(eb);
  3830. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3831. &eb->bflags))
  3832. clear_extent_buffer_dirty(eb);
  3833. free_extent_buffer_stale(eb);
  3834. }
  3835. }
  3836. return ret;
  3837. }
  3838. static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  3839. struct extent_io_tree *pinned_extents)
  3840. {
  3841. struct extent_io_tree *unpin;
  3842. u64 start;
  3843. u64 end;
  3844. int ret;
  3845. bool loop = true;
  3846. unpin = pinned_extents;
  3847. again:
  3848. while (1) {
  3849. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3850. EXTENT_DIRTY, NULL);
  3851. if (ret)
  3852. break;
  3853. clear_extent_dirty(unpin, start, end);
  3854. btrfs_error_unpin_extent_range(fs_info, start, end);
  3855. cond_resched();
  3856. }
  3857. if (loop) {
  3858. if (unpin == &fs_info->freed_extents[0])
  3859. unpin = &fs_info->freed_extents[1];
  3860. else
  3861. unpin = &fs_info->freed_extents[0];
  3862. loop = false;
  3863. goto again;
  3864. }
  3865. return 0;
  3866. }
  3867. static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
  3868. {
  3869. struct inode *inode;
  3870. inode = cache->io_ctl.inode;
  3871. if (inode) {
  3872. invalidate_inode_pages2(inode->i_mapping);
  3873. BTRFS_I(inode)->generation = 0;
  3874. cache->io_ctl.inode = NULL;
  3875. iput(inode);
  3876. }
  3877. btrfs_put_block_group(cache);
  3878. }
  3879. void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
  3880. struct btrfs_fs_info *fs_info)
  3881. {
  3882. struct btrfs_block_group_cache *cache;
  3883. spin_lock(&cur_trans->dirty_bgs_lock);
  3884. while (!list_empty(&cur_trans->dirty_bgs)) {
  3885. cache = list_first_entry(&cur_trans->dirty_bgs,
  3886. struct btrfs_block_group_cache,
  3887. dirty_list);
  3888. if (!cache) {
  3889. btrfs_err(fs_info, "orphan block group dirty_bgs list");
  3890. spin_unlock(&cur_trans->dirty_bgs_lock);
  3891. return;
  3892. }
  3893. if (!list_empty(&cache->io_list)) {
  3894. spin_unlock(&cur_trans->dirty_bgs_lock);
  3895. list_del_init(&cache->io_list);
  3896. btrfs_cleanup_bg_io(cache);
  3897. spin_lock(&cur_trans->dirty_bgs_lock);
  3898. }
  3899. list_del_init(&cache->dirty_list);
  3900. spin_lock(&cache->lock);
  3901. cache->disk_cache_state = BTRFS_DC_ERROR;
  3902. spin_unlock(&cache->lock);
  3903. spin_unlock(&cur_trans->dirty_bgs_lock);
  3904. btrfs_put_block_group(cache);
  3905. spin_lock(&cur_trans->dirty_bgs_lock);
  3906. }
  3907. spin_unlock(&cur_trans->dirty_bgs_lock);
  3908. while (!list_empty(&cur_trans->io_bgs)) {
  3909. cache = list_first_entry(&cur_trans->io_bgs,
  3910. struct btrfs_block_group_cache,
  3911. io_list);
  3912. if (!cache) {
  3913. btrfs_err(fs_info, "orphan block group on io_bgs list");
  3914. return;
  3915. }
  3916. list_del_init(&cache->io_list);
  3917. spin_lock(&cache->lock);
  3918. cache->disk_cache_state = BTRFS_DC_ERROR;
  3919. spin_unlock(&cache->lock);
  3920. btrfs_cleanup_bg_io(cache);
  3921. }
  3922. }
  3923. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3924. struct btrfs_fs_info *fs_info)
  3925. {
  3926. btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
  3927. ASSERT(list_empty(&cur_trans->dirty_bgs));
  3928. ASSERT(list_empty(&cur_trans->io_bgs));
  3929. btrfs_destroy_delayed_refs(cur_trans, fs_info);
  3930. cur_trans->state = TRANS_STATE_COMMIT_START;
  3931. wake_up(&fs_info->transaction_blocked_wait);
  3932. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3933. wake_up(&fs_info->transaction_wait);
  3934. btrfs_destroy_delayed_inodes(fs_info);
  3935. btrfs_assert_delayed_root_empty(fs_info);
  3936. btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
  3937. EXTENT_DIRTY);
  3938. btrfs_destroy_pinned_extent(fs_info,
  3939. fs_info->pinned_extents);
  3940. cur_trans->state =TRANS_STATE_COMPLETED;
  3941. wake_up(&cur_trans->commit_wait);
  3942. /*
  3943. memset(cur_trans, 0, sizeof(*cur_trans));
  3944. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3945. */
  3946. }
  3947. static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
  3948. {
  3949. struct btrfs_transaction *t;
  3950. mutex_lock(&fs_info->transaction_kthread_mutex);
  3951. spin_lock(&fs_info->trans_lock);
  3952. while (!list_empty(&fs_info->trans_list)) {
  3953. t = list_first_entry(&fs_info->trans_list,
  3954. struct btrfs_transaction, list);
  3955. if (t->state >= TRANS_STATE_COMMIT_START) {
  3956. atomic_inc(&t->use_count);
  3957. spin_unlock(&fs_info->trans_lock);
  3958. btrfs_wait_for_commit(fs_info, t->transid);
  3959. btrfs_put_transaction(t);
  3960. spin_lock(&fs_info->trans_lock);
  3961. continue;
  3962. }
  3963. if (t == fs_info->running_transaction) {
  3964. t->state = TRANS_STATE_COMMIT_DOING;
  3965. spin_unlock(&fs_info->trans_lock);
  3966. /*
  3967. * We wait for 0 num_writers since we don't hold a trans
  3968. * handle open currently for this transaction.
  3969. */
  3970. wait_event(t->writer_wait,
  3971. atomic_read(&t->num_writers) == 0);
  3972. } else {
  3973. spin_unlock(&fs_info->trans_lock);
  3974. }
  3975. btrfs_cleanup_one_transaction(t, fs_info);
  3976. spin_lock(&fs_info->trans_lock);
  3977. if (t == fs_info->running_transaction)
  3978. fs_info->running_transaction = NULL;
  3979. list_del_init(&t->list);
  3980. spin_unlock(&fs_info->trans_lock);
  3981. btrfs_put_transaction(t);
  3982. trace_btrfs_transaction_commit(fs_info->tree_root);
  3983. spin_lock(&fs_info->trans_lock);
  3984. }
  3985. spin_unlock(&fs_info->trans_lock);
  3986. btrfs_destroy_all_ordered_extents(fs_info);
  3987. btrfs_destroy_delayed_inodes(fs_info);
  3988. btrfs_assert_delayed_root_empty(fs_info);
  3989. btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
  3990. btrfs_destroy_all_delalloc_inodes(fs_info);
  3991. mutex_unlock(&fs_info->transaction_kthread_mutex);
  3992. return 0;
  3993. }
  3994. static const struct extent_io_ops btree_extent_io_ops = {
  3995. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3996. .readpage_io_failed_hook = btree_io_failed_hook,
  3997. .submit_bio_hook = btree_submit_bio_hook,
  3998. /* note we're sharing with inode.c for the merge bio hook */
  3999. .merge_bio_hook = btrfs_merge_bio_hook,
  4000. };