flow_netlink.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670
  1. /*
  2. * Copyright (c) 2007-2013 Nicira, Inc.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of version 2 of the GNU General Public
  6. * License as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  16. * 02110-1301, USA
  17. */
  18. #include "flow.h"
  19. #include "datapath.h"
  20. #include <linux/uaccess.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/etherdevice.h>
  23. #include <linux/if_ether.h>
  24. #include <linux/if_vlan.h>
  25. #include <net/llc_pdu.h>
  26. #include <linux/kernel.h>
  27. #include <linux/jhash.h>
  28. #include <linux/jiffies.h>
  29. #include <linux/llc.h>
  30. #include <linux/module.h>
  31. #include <linux/in.h>
  32. #include <linux/rcupdate.h>
  33. #include <linux/if_arp.h>
  34. #include <linux/ip.h>
  35. #include <linux/ipv6.h>
  36. #include <linux/sctp.h>
  37. #include <linux/tcp.h>
  38. #include <linux/udp.h>
  39. #include <linux/icmp.h>
  40. #include <linux/icmpv6.h>
  41. #include <linux/rculist.h>
  42. #include <net/ip.h>
  43. #include <net/ipv6.h>
  44. #include <net/ndisc.h>
  45. #include "flow_netlink.h"
  46. static void update_range__(struct sw_flow_match *match,
  47. size_t offset, size_t size, bool is_mask)
  48. {
  49. struct sw_flow_key_range *range = NULL;
  50. size_t start = rounddown(offset, sizeof(long));
  51. size_t end = roundup(offset + size, sizeof(long));
  52. if (!is_mask)
  53. range = &match->range;
  54. else if (match->mask)
  55. range = &match->mask->range;
  56. if (!range)
  57. return;
  58. if (range->start == range->end) {
  59. range->start = start;
  60. range->end = end;
  61. return;
  62. }
  63. if (range->start > start)
  64. range->start = start;
  65. if (range->end < end)
  66. range->end = end;
  67. }
  68. #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
  69. do { \
  70. update_range__(match, offsetof(struct sw_flow_key, field), \
  71. sizeof((match)->key->field), is_mask); \
  72. if (is_mask) { \
  73. if ((match)->mask) \
  74. (match)->mask->key.field = value; \
  75. } else { \
  76. (match)->key->field = value; \
  77. } \
  78. } while (0)
  79. #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
  80. do { \
  81. update_range__(match, offsetof(struct sw_flow_key, field), \
  82. len, is_mask); \
  83. if (is_mask) { \
  84. if ((match)->mask) \
  85. memcpy(&(match)->mask->key.field, value_p, len);\
  86. } else { \
  87. memcpy(&(match)->key->field, value_p, len); \
  88. } \
  89. } while (0)
  90. static u16 range_n_bytes(const struct sw_flow_key_range *range)
  91. {
  92. return range->end - range->start;
  93. }
  94. static bool match_validate(const struct sw_flow_match *match,
  95. u64 key_attrs, u64 mask_attrs)
  96. {
  97. u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
  98. u64 mask_allowed = key_attrs; /* At most allow all key attributes */
  99. /* The following mask attributes allowed only if they
  100. * pass the validation tests. */
  101. mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
  102. | (1 << OVS_KEY_ATTR_IPV6)
  103. | (1 << OVS_KEY_ATTR_TCP)
  104. | (1 << OVS_KEY_ATTR_TCP_FLAGS)
  105. | (1 << OVS_KEY_ATTR_UDP)
  106. | (1 << OVS_KEY_ATTR_SCTP)
  107. | (1 << OVS_KEY_ATTR_ICMP)
  108. | (1 << OVS_KEY_ATTR_ICMPV6)
  109. | (1 << OVS_KEY_ATTR_ARP)
  110. | (1 << OVS_KEY_ATTR_ND));
  111. /* Always allowed mask fields. */
  112. mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
  113. | (1 << OVS_KEY_ATTR_IN_PORT)
  114. | (1 << OVS_KEY_ATTR_ETHERTYPE));
  115. /* Check key attributes. */
  116. if (match->key->eth.type == htons(ETH_P_ARP)
  117. || match->key->eth.type == htons(ETH_P_RARP)) {
  118. key_expected |= 1 << OVS_KEY_ATTR_ARP;
  119. if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
  120. mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
  121. }
  122. if (match->key->eth.type == htons(ETH_P_IP)) {
  123. key_expected |= 1 << OVS_KEY_ATTR_IPV4;
  124. if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
  125. mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
  126. if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
  127. if (match->key->ip.proto == IPPROTO_UDP) {
  128. key_expected |= 1 << OVS_KEY_ATTR_UDP;
  129. if (match->mask && (match->mask->key.ip.proto == 0xff))
  130. mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
  131. }
  132. if (match->key->ip.proto == IPPROTO_SCTP) {
  133. key_expected |= 1 << OVS_KEY_ATTR_SCTP;
  134. if (match->mask && (match->mask->key.ip.proto == 0xff))
  135. mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
  136. }
  137. if (match->key->ip.proto == IPPROTO_TCP) {
  138. key_expected |= 1 << OVS_KEY_ATTR_TCP;
  139. key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
  140. if (match->mask && (match->mask->key.ip.proto == 0xff)) {
  141. mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
  142. mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
  143. }
  144. }
  145. if (match->key->ip.proto == IPPROTO_ICMP) {
  146. key_expected |= 1 << OVS_KEY_ATTR_ICMP;
  147. if (match->mask && (match->mask->key.ip.proto == 0xff))
  148. mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
  149. }
  150. }
  151. }
  152. if (match->key->eth.type == htons(ETH_P_IPV6)) {
  153. key_expected |= 1 << OVS_KEY_ATTR_IPV6;
  154. if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
  155. mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
  156. if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
  157. if (match->key->ip.proto == IPPROTO_UDP) {
  158. key_expected |= 1 << OVS_KEY_ATTR_UDP;
  159. if (match->mask && (match->mask->key.ip.proto == 0xff))
  160. mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
  161. }
  162. if (match->key->ip.proto == IPPROTO_SCTP) {
  163. key_expected |= 1 << OVS_KEY_ATTR_SCTP;
  164. if (match->mask && (match->mask->key.ip.proto == 0xff))
  165. mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
  166. }
  167. if (match->key->ip.proto == IPPROTO_TCP) {
  168. key_expected |= 1 << OVS_KEY_ATTR_TCP;
  169. key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
  170. if (match->mask && (match->mask->key.ip.proto == 0xff)) {
  171. mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
  172. mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
  173. }
  174. }
  175. if (match->key->ip.proto == IPPROTO_ICMPV6) {
  176. key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
  177. if (match->mask && (match->mask->key.ip.proto == 0xff))
  178. mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
  179. if (match->key->ipv6.tp.src ==
  180. htons(NDISC_NEIGHBOUR_SOLICITATION) ||
  181. match->key->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
  182. key_expected |= 1 << OVS_KEY_ATTR_ND;
  183. if (match->mask && (match->mask->key.ipv6.tp.src == htons(0xffff)))
  184. mask_allowed |= 1 << OVS_KEY_ATTR_ND;
  185. }
  186. }
  187. }
  188. }
  189. if ((key_attrs & key_expected) != key_expected) {
  190. /* Key attributes check failed. */
  191. OVS_NLERR("Missing expected key attributes (key_attrs=%llx, expected=%llx).\n",
  192. key_attrs, key_expected);
  193. return false;
  194. }
  195. if ((mask_attrs & mask_allowed) != mask_attrs) {
  196. /* Mask attributes check failed. */
  197. OVS_NLERR("Contain more than allowed mask fields (mask_attrs=%llx, mask_allowed=%llx).\n",
  198. mask_attrs, mask_allowed);
  199. return false;
  200. }
  201. return true;
  202. }
  203. /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
  204. static const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
  205. [OVS_KEY_ATTR_ENCAP] = -1,
  206. [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
  207. [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
  208. [OVS_KEY_ATTR_SKB_MARK] = sizeof(u32),
  209. [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
  210. [OVS_KEY_ATTR_VLAN] = sizeof(__be16),
  211. [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
  212. [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
  213. [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
  214. [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
  215. [OVS_KEY_ATTR_TCP_FLAGS] = sizeof(__be16),
  216. [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
  217. [OVS_KEY_ATTR_SCTP] = sizeof(struct ovs_key_sctp),
  218. [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
  219. [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
  220. [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
  221. [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
  222. [OVS_KEY_ATTR_TUNNEL] = -1,
  223. };
  224. static bool is_all_zero(const u8 *fp, size_t size)
  225. {
  226. int i;
  227. if (!fp)
  228. return false;
  229. for (i = 0; i < size; i++)
  230. if (fp[i])
  231. return false;
  232. return true;
  233. }
  234. static bool is_all_set(const u8 *fp, size_t size)
  235. {
  236. int i;
  237. if (!fp)
  238. return false;
  239. for (i = 0; i < size; i++)
  240. if (fp[i] != 0xff)
  241. return false;
  242. return true;
  243. }
  244. static int __parse_flow_nlattrs(const struct nlattr *attr,
  245. const struct nlattr *a[],
  246. u64 *attrsp, bool nz)
  247. {
  248. const struct nlattr *nla;
  249. u64 attrs;
  250. int rem;
  251. attrs = *attrsp;
  252. nla_for_each_nested(nla, attr, rem) {
  253. u16 type = nla_type(nla);
  254. int expected_len;
  255. if (type > OVS_KEY_ATTR_MAX) {
  256. OVS_NLERR("Unknown key attribute (type=%d, max=%d).\n",
  257. type, OVS_KEY_ATTR_MAX);
  258. return -EINVAL;
  259. }
  260. if (attrs & (1 << type)) {
  261. OVS_NLERR("Duplicate key attribute (type %d).\n", type);
  262. return -EINVAL;
  263. }
  264. expected_len = ovs_key_lens[type];
  265. if (nla_len(nla) != expected_len && expected_len != -1) {
  266. OVS_NLERR("Key attribute has unexpected length (type=%d"
  267. ", length=%d, expected=%d).\n", type,
  268. nla_len(nla), expected_len);
  269. return -EINVAL;
  270. }
  271. if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
  272. attrs |= 1 << type;
  273. a[type] = nla;
  274. }
  275. }
  276. if (rem) {
  277. OVS_NLERR("Message has %d unknown bytes.\n", rem);
  278. return -EINVAL;
  279. }
  280. *attrsp = attrs;
  281. return 0;
  282. }
  283. static int parse_flow_mask_nlattrs(const struct nlattr *attr,
  284. const struct nlattr *a[], u64 *attrsp)
  285. {
  286. return __parse_flow_nlattrs(attr, a, attrsp, true);
  287. }
  288. static int parse_flow_nlattrs(const struct nlattr *attr,
  289. const struct nlattr *a[], u64 *attrsp)
  290. {
  291. return __parse_flow_nlattrs(attr, a, attrsp, false);
  292. }
  293. static int ipv4_tun_from_nlattr(const struct nlattr *attr,
  294. struct sw_flow_match *match, bool is_mask)
  295. {
  296. struct nlattr *a;
  297. int rem;
  298. bool ttl = false;
  299. __be16 tun_flags = 0;
  300. nla_for_each_nested(a, attr, rem) {
  301. int type = nla_type(a);
  302. static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
  303. [OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64),
  304. [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32),
  305. [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32),
  306. [OVS_TUNNEL_KEY_ATTR_TOS] = 1,
  307. [OVS_TUNNEL_KEY_ATTR_TTL] = 1,
  308. [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0,
  309. [OVS_TUNNEL_KEY_ATTR_CSUM] = 0,
  310. };
  311. if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
  312. OVS_NLERR("Unknown IPv4 tunnel attribute (type=%d, max=%d).\n",
  313. type, OVS_TUNNEL_KEY_ATTR_MAX);
  314. return -EINVAL;
  315. }
  316. if (ovs_tunnel_key_lens[type] != nla_len(a)) {
  317. OVS_NLERR("IPv4 tunnel attribute type has unexpected "
  318. " length (type=%d, length=%d, expected=%d).\n",
  319. type, nla_len(a), ovs_tunnel_key_lens[type]);
  320. return -EINVAL;
  321. }
  322. switch (type) {
  323. case OVS_TUNNEL_KEY_ATTR_ID:
  324. SW_FLOW_KEY_PUT(match, tun_key.tun_id,
  325. nla_get_be64(a), is_mask);
  326. tun_flags |= TUNNEL_KEY;
  327. break;
  328. case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
  329. SW_FLOW_KEY_PUT(match, tun_key.ipv4_src,
  330. nla_get_be32(a), is_mask);
  331. break;
  332. case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
  333. SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst,
  334. nla_get_be32(a), is_mask);
  335. break;
  336. case OVS_TUNNEL_KEY_ATTR_TOS:
  337. SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos,
  338. nla_get_u8(a), is_mask);
  339. break;
  340. case OVS_TUNNEL_KEY_ATTR_TTL:
  341. SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl,
  342. nla_get_u8(a), is_mask);
  343. ttl = true;
  344. break;
  345. case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
  346. tun_flags |= TUNNEL_DONT_FRAGMENT;
  347. break;
  348. case OVS_TUNNEL_KEY_ATTR_CSUM:
  349. tun_flags |= TUNNEL_CSUM;
  350. break;
  351. default:
  352. return -EINVAL;
  353. }
  354. }
  355. SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
  356. if (rem > 0) {
  357. OVS_NLERR("IPv4 tunnel attribute has %d unknown bytes.\n", rem);
  358. return -EINVAL;
  359. }
  360. if (!is_mask) {
  361. if (!match->key->tun_key.ipv4_dst) {
  362. OVS_NLERR("IPv4 tunnel destination address is zero.\n");
  363. return -EINVAL;
  364. }
  365. if (!ttl) {
  366. OVS_NLERR("IPv4 tunnel TTL not specified.\n");
  367. return -EINVAL;
  368. }
  369. }
  370. return 0;
  371. }
  372. static int ipv4_tun_to_nlattr(struct sk_buff *skb,
  373. const struct ovs_key_ipv4_tunnel *tun_key,
  374. const struct ovs_key_ipv4_tunnel *output)
  375. {
  376. struct nlattr *nla;
  377. nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
  378. if (!nla)
  379. return -EMSGSIZE;
  380. if (output->tun_flags & TUNNEL_KEY &&
  381. nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
  382. return -EMSGSIZE;
  383. if (output->ipv4_src &&
  384. nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src))
  385. return -EMSGSIZE;
  386. if (output->ipv4_dst &&
  387. nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst))
  388. return -EMSGSIZE;
  389. if (output->ipv4_tos &&
  390. nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos))
  391. return -EMSGSIZE;
  392. if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl))
  393. return -EMSGSIZE;
  394. if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
  395. nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
  396. return -EMSGSIZE;
  397. if ((output->tun_flags & TUNNEL_CSUM) &&
  398. nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
  399. return -EMSGSIZE;
  400. nla_nest_end(skb, nla);
  401. return 0;
  402. }
  403. static int metadata_from_nlattrs(struct sw_flow_match *match, u64 *attrs,
  404. const struct nlattr **a, bool is_mask)
  405. {
  406. if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
  407. SW_FLOW_KEY_PUT(match, phy.priority,
  408. nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
  409. *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
  410. }
  411. if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
  412. u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
  413. if (is_mask)
  414. in_port = 0xffffffff; /* Always exact match in_port. */
  415. else if (in_port >= DP_MAX_PORTS)
  416. return -EINVAL;
  417. SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
  418. *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
  419. } else if (!is_mask) {
  420. SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
  421. }
  422. if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
  423. uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
  424. SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
  425. *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
  426. }
  427. if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
  428. if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
  429. is_mask))
  430. return -EINVAL;
  431. *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
  432. }
  433. return 0;
  434. }
  435. static int ovs_key_from_nlattrs(struct sw_flow_match *match, bool *exact_5tuple,
  436. u64 attrs, const struct nlattr **a,
  437. bool is_mask)
  438. {
  439. int err;
  440. u64 orig_attrs = attrs;
  441. err = metadata_from_nlattrs(match, &attrs, a, is_mask);
  442. if (err)
  443. return err;
  444. if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
  445. const struct ovs_key_ethernet *eth_key;
  446. eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
  447. SW_FLOW_KEY_MEMCPY(match, eth.src,
  448. eth_key->eth_src, ETH_ALEN, is_mask);
  449. SW_FLOW_KEY_MEMCPY(match, eth.dst,
  450. eth_key->eth_dst, ETH_ALEN, is_mask);
  451. attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
  452. }
  453. if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
  454. __be16 tci;
  455. tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
  456. if (!(tci & htons(VLAN_TAG_PRESENT))) {
  457. if (is_mask)
  458. OVS_NLERR("VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.\n");
  459. else
  460. OVS_NLERR("VLAN TCI does not have VLAN_TAG_PRESENT bit set.\n");
  461. return -EINVAL;
  462. }
  463. SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
  464. attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
  465. } else if (!is_mask)
  466. SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
  467. if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
  468. __be16 eth_type;
  469. eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
  470. if (is_mask) {
  471. /* Always exact match EtherType. */
  472. eth_type = htons(0xffff);
  473. } else if (ntohs(eth_type) < ETH_P_802_3_MIN) {
  474. OVS_NLERR("EtherType is less than minimum (type=%x, min=%x).\n",
  475. ntohs(eth_type), ETH_P_802_3_MIN);
  476. return -EINVAL;
  477. }
  478. SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
  479. attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
  480. } else if (!is_mask) {
  481. SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
  482. }
  483. if (is_mask && exact_5tuple) {
  484. if (match->mask->key.eth.type != htons(0xffff))
  485. *exact_5tuple = false;
  486. }
  487. if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
  488. const struct ovs_key_ipv4 *ipv4_key;
  489. ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
  490. if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
  491. OVS_NLERR("Unknown IPv4 fragment type (value=%d, max=%d).\n",
  492. ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
  493. return -EINVAL;
  494. }
  495. SW_FLOW_KEY_PUT(match, ip.proto,
  496. ipv4_key->ipv4_proto, is_mask);
  497. SW_FLOW_KEY_PUT(match, ip.tos,
  498. ipv4_key->ipv4_tos, is_mask);
  499. SW_FLOW_KEY_PUT(match, ip.ttl,
  500. ipv4_key->ipv4_ttl, is_mask);
  501. SW_FLOW_KEY_PUT(match, ip.frag,
  502. ipv4_key->ipv4_frag, is_mask);
  503. SW_FLOW_KEY_PUT(match, ipv4.addr.src,
  504. ipv4_key->ipv4_src, is_mask);
  505. SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
  506. ipv4_key->ipv4_dst, is_mask);
  507. attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
  508. if (is_mask && exact_5tuple && *exact_5tuple) {
  509. if (ipv4_key->ipv4_proto != 0xff ||
  510. ipv4_key->ipv4_src != htonl(0xffffffff) ||
  511. ipv4_key->ipv4_dst != htonl(0xffffffff))
  512. *exact_5tuple = false;
  513. }
  514. }
  515. if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
  516. const struct ovs_key_ipv6 *ipv6_key;
  517. ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
  518. if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
  519. OVS_NLERR("Unknown IPv6 fragment type (value=%d, max=%d).\n",
  520. ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
  521. return -EINVAL;
  522. }
  523. SW_FLOW_KEY_PUT(match, ipv6.label,
  524. ipv6_key->ipv6_label, is_mask);
  525. SW_FLOW_KEY_PUT(match, ip.proto,
  526. ipv6_key->ipv6_proto, is_mask);
  527. SW_FLOW_KEY_PUT(match, ip.tos,
  528. ipv6_key->ipv6_tclass, is_mask);
  529. SW_FLOW_KEY_PUT(match, ip.ttl,
  530. ipv6_key->ipv6_hlimit, is_mask);
  531. SW_FLOW_KEY_PUT(match, ip.frag,
  532. ipv6_key->ipv6_frag, is_mask);
  533. SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
  534. ipv6_key->ipv6_src,
  535. sizeof(match->key->ipv6.addr.src),
  536. is_mask);
  537. SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
  538. ipv6_key->ipv6_dst,
  539. sizeof(match->key->ipv6.addr.dst),
  540. is_mask);
  541. attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
  542. if (is_mask && exact_5tuple && *exact_5tuple) {
  543. if (ipv6_key->ipv6_proto != 0xff ||
  544. !is_all_set((u8 *)ipv6_key->ipv6_src, sizeof(match->key->ipv6.addr.src)) ||
  545. !is_all_set((u8 *)ipv6_key->ipv6_dst, sizeof(match->key->ipv6.addr.dst)))
  546. *exact_5tuple = false;
  547. }
  548. }
  549. if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
  550. const struct ovs_key_arp *arp_key;
  551. arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
  552. if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
  553. OVS_NLERR("Unknown ARP opcode (opcode=%d).\n",
  554. arp_key->arp_op);
  555. return -EINVAL;
  556. }
  557. SW_FLOW_KEY_PUT(match, ipv4.addr.src,
  558. arp_key->arp_sip, is_mask);
  559. SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
  560. arp_key->arp_tip, is_mask);
  561. SW_FLOW_KEY_PUT(match, ip.proto,
  562. ntohs(arp_key->arp_op), is_mask);
  563. SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
  564. arp_key->arp_sha, ETH_ALEN, is_mask);
  565. SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
  566. arp_key->arp_tha, ETH_ALEN, is_mask);
  567. attrs &= ~(1 << OVS_KEY_ATTR_ARP);
  568. }
  569. if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
  570. const struct ovs_key_tcp *tcp_key;
  571. tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
  572. if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
  573. SW_FLOW_KEY_PUT(match, ipv4.tp.src,
  574. tcp_key->tcp_src, is_mask);
  575. SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
  576. tcp_key->tcp_dst, is_mask);
  577. } else {
  578. SW_FLOW_KEY_PUT(match, ipv6.tp.src,
  579. tcp_key->tcp_src, is_mask);
  580. SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
  581. tcp_key->tcp_dst, is_mask);
  582. }
  583. attrs &= ~(1 << OVS_KEY_ATTR_TCP);
  584. if (is_mask && exact_5tuple && *exact_5tuple &&
  585. (tcp_key->tcp_src != htons(0xffff) ||
  586. tcp_key->tcp_dst != htons(0xffff)))
  587. *exact_5tuple = false;
  588. }
  589. if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
  590. if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
  591. SW_FLOW_KEY_PUT(match, ipv4.tp.flags,
  592. nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
  593. is_mask);
  594. } else {
  595. SW_FLOW_KEY_PUT(match, ipv6.tp.flags,
  596. nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
  597. is_mask);
  598. }
  599. attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
  600. }
  601. if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
  602. const struct ovs_key_udp *udp_key;
  603. udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
  604. if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
  605. SW_FLOW_KEY_PUT(match, ipv4.tp.src,
  606. udp_key->udp_src, is_mask);
  607. SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
  608. udp_key->udp_dst, is_mask);
  609. } else {
  610. SW_FLOW_KEY_PUT(match, ipv6.tp.src,
  611. udp_key->udp_src, is_mask);
  612. SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
  613. udp_key->udp_dst, is_mask);
  614. }
  615. attrs &= ~(1 << OVS_KEY_ATTR_UDP);
  616. if (is_mask && exact_5tuple && *exact_5tuple &&
  617. (udp_key->udp_src != htons(0xffff) ||
  618. udp_key->udp_dst != htons(0xffff)))
  619. *exact_5tuple = false;
  620. }
  621. if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
  622. const struct ovs_key_sctp *sctp_key;
  623. sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
  624. if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
  625. SW_FLOW_KEY_PUT(match, ipv4.tp.src,
  626. sctp_key->sctp_src, is_mask);
  627. SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
  628. sctp_key->sctp_dst, is_mask);
  629. } else {
  630. SW_FLOW_KEY_PUT(match, ipv6.tp.src,
  631. sctp_key->sctp_src, is_mask);
  632. SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
  633. sctp_key->sctp_dst, is_mask);
  634. }
  635. attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
  636. }
  637. if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
  638. const struct ovs_key_icmp *icmp_key;
  639. icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
  640. SW_FLOW_KEY_PUT(match, ipv4.tp.src,
  641. htons(icmp_key->icmp_type), is_mask);
  642. SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
  643. htons(icmp_key->icmp_code), is_mask);
  644. attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
  645. }
  646. if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
  647. const struct ovs_key_icmpv6 *icmpv6_key;
  648. icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
  649. SW_FLOW_KEY_PUT(match, ipv6.tp.src,
  650. htons(icmpv6_key->icmpv6_type), is_mask);
  651. SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
  652. htons(icmpv6_key->icmpv6_code), is_mask);
  653. attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
  654. }
  655. if (attrs & (1 << OVS_KEY_ATTR_ND)) {
  656. const struct ovs_key_nd *nd_key;
  657. nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
  658. SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
  659. nd_key->nd_target,
  660. sizeof(match->key->ipv6.nd.target),
  661. is_mask);
  662. SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
  663. nd_key->nd_sll, ETH_ALEN, is_mask);
  664. SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
  665. nd_key->nd_tll, ETH_ALEN, is_mask);
  666. attrs &= ~(1 << OVS_KEY_ATTR_ND);
  667. }
  668. if (attrs != 0)
  669. return -EINVAL;
  670. return 0;
  671. }
  672. static void sw_flow_mask_set(struct sw_flow_mask *mask,
  673. struct sw_flow_key_range *range, u8 val)
  674. {
  675. u8 *m = (u8 *)&mask->key + range->start;
  676. mask->range = *range;
  677. memset(m, val, range_n_bytes(range));
  678. }
  679. /**
  680. * ovs_nla_get_match - parses Netlink attributes into a flow key and
  681. * mask. In case the 'mask' is NULL, the flow is treated as exact match
  682. * flow. Otherwise, it is treated as a wildcarded flow, except the mask
  683. * does not include any don't care bit.
  684. * @match: receives the extracted flow match information.
  685. * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
  686. * sequence. The fields should of the packet that triggered the creation
  687. * of this flow.
  688. * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
  689. * attribute specifies the mask field of the wildcarded flow.
  690. */
  691. int ovs_nla_get_match(struct sw_flow_match *match,
  692. bool *exact_5tuple,
  693. const struct nlattr *key,
  694. const struct nlattr *mask)
  695. {
  696. const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
  697. const struct nlattr *encap;
  698. u64 key_attrs = 0;
  699. u64 mask_attrs = 0;
  700. bool encap_valid = false;
  701. int err;
  702. err = parse_flow_nlattrs(key, a, &key_attrs);
  703. if (err)
  704. return err;
  705. if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
  706. (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
  707. (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
  708. __be16 tci;
  709. if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
  710. (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
  711. OVS_NLERR("Invalid Vlan frame.\n");
  712. return -EINVAL;
  713. }
  714. key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
  715. tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
  716. encap = a[OVS_KEY_ATTR_ENCAP];
  717. key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
  718. encap_valid = true;
  719. if (tci & htons(VLAN_TAG_PRESENT)) {
  720. err = parse_flow_nlattrs(encap, a, &key_attrs);
  721. if (err)
  722. return err;
  723. } else if (!tci) {
  724. /* Corner case for truncated 802.1Q header. */
  725. if (nla_len(encap)) {
  726. OVS_NLERR("Truncated 802.1Q header has non-zero encap attribute.\n");
  727. return -EINVAL;
  728. }
  729. } else {
  730. OVS_NLERR("Encap attribute is set for a non-VLAN frame.\n");
  731. return -EINVAL;
  732. }
  733. }
  734. err = ovs_key_from_nlattrs(match, NULL, key_attrs, a, false);
  735. if (err)
  736. return err;
  737. if (exact_5tuple)
  738. *exact_5tuple = true;
  739. if (mask) {
  740. err = parse_flow_mask_nlattrs(mask, a, &mask_attrs);
  741. if (err)
  742. return err;
  743. if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) {
  744. __be16 eth_type = 0;
  745. __be16 tci = 0;
  746. if (!encap_valid) {
  747. OVS_NLERR("Encap mask attribute is set for non-VLAN frame.\n");
  748. return -EINVAL;
  749. }
  750. mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
  751. if (a[OVS_KEY_ATTR_ETHERTYPE])
  752. eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
  753. if (eth_type == htons(0xffff)) {
  754. mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
  755. encap = a[OVS_KEY_ATTR_ENCAP];
  756. err = parse_flow_mask_nlattrs(encap, a, &mask_attrs);
  757. } else {
  758. OVS_NLERR("VLAN frames must have an exact match on the TPID (mask=%x).\n",
  759. ntohs(eth_type));
  760. return -EINVAL;
  761. }
  762. if (a[OVS_KEY_ATTR_VLAN])
  763. tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
  764. if (!(tci & htons(VLAN_TAG_PRESENT))) {
  765. OVS_NLERR("VLAN tag present bit must have an exact match (tci_mask=%x).\n", ntohs(tci));
  766. return -EINVAL;
  767. }
  768. }
  769. err = ovs_key_from_nlattrs(match, exact_5tuple, mask_attrs, a, true);
  770. if (err)
  771. return err;
  772. } else {
  773. /* Populate exact match flow's key mask. */
  774. if (match->mask)
  775. sw_flow_mask_set(match->mask, &match->range, 0xff);
  776. }
  777. if (!match_validate(match, key_attrs, mask_attrs))
  778. return -EINVAL;
  779. return 0;
  780. }
  781. /**
  782. * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
  783. * @flow: Receives extracted in_port, priority, tun_key and skb_mark.
  784. * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
  785. * sequence.
  786. *
  787. * This parses a series of Netlink attributes that form a flow key, which must
  788. * take the same form accepted by flow_from_nlattrs(), but only enough of it to
  789. * get the metadata, that is, the parts of the flow key that cannot be
  790. * extracted from the packet itself.
  791. */
  792. int ovs_nla_get_flow_metadata(struct sw_flow *flow,
  793. const struct nlattr *attr)
  794. {
  795. struct ovs_key_ipv4_tunnel *tun_key = &flow->key.tun_key;
  796. const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
  797. u64 attrs = 0;
  798. int err;
  799. struct sw_flow_match match;
  800. flow->key.phy.in_port = DP_MAX_PORTS;
  801. flow->key.phy.priority = 0;
  802. flow->key.phy.skb_mark = 0;
  803. memset(tun_key, 0, sizeof(flow->key.tun_key));
  804. err = parse_flow_nlattrs(attr, a, &attrs);
  805. if (err)
  806. return -EINVAL;
  807. memset(&match, 0, sizeof(match));
  808. match.key = &flow->key;
  809. err = metadata_from_nlattrs(&match, &attrs, a, false);
  810. if (err)
  811. return err;
  812. return 0;
  813. }
  814. int ovs_nla_put_flow(const struct sw_flow_key *swkey,
  815. const struct sw_flow_key *output, struct sk_buff *skb)
  816. {
  817. struct ovs_key_ethernet *eth_key;
  818. struct nlattr *nla, *encap;
  819. bool is_mask = (swkey != output);
  820. if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
  821. goto nla_put_failure;
  822. if ((swkey->tun_key.ipv4_dst || is_mask) &&
  823. ipv4_tun_to_nlattr(skb, &swkey->tun_key, &output->tun_key))
  824. goto nla_put_failure;
  825. if (swkey->phy.in_port == DP_MAX_PORTS) {
  826. if (is_mask && (output->phy.in_port == 0xffff))
  827. if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
  828. goto nla_put_failure;
  829. } else {
  830. u16 upper_u16;
  831. upper_u16 = !is_mask ? 0 : 0xffff;
  832. if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
  833. (upper_u16 << 16) | output->phy.in_port))
  834. goto nla_put_failure;
  835. }
  836. if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
  837. goto nla_put_failure;
  838. nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
  839. if (!nla)
  840. goto nla_put_failure;
  841. eth_key = nla_data(nla);
  842. memcpy(eth_key->eth_src, output->eth.src, ETH_ALEN);
  843. memcpy(eth_key->eth_dst, output->eth.dst, ETH_ALEN);
  844. if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
  845. __be16 eth_type;
  846. eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
  847. if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
  848. nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
  849. goto nla_put_failure;
  850. encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
  851. if (!swkey->eth.tci)
  852. goto unencap;
  853. } else
  854. encap = NULL;
  855. if (swkey->eth.type == htons(ETH_P_802_2)) {
  856. /*
  857. * Ethertype 802.2 is represented in the netlink with omitted
  858. * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
  859. * 0xffff in the mask attribute. Ethertype can also
  860. * be wildcarded.
  861. */
  862. if (is_mask && output->eth.type)
  863. if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
  864. output->eth.type))
  865. goto nla_put_failure;
  866. goto unencap;
  867. }
  868. if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
  869. goto nla_put_failure;
  870. if (swkey->eth.type == htons(ETH_P_IP)) {
  871. struct ovs_key_ipv4 *ipv4_key;
  872. nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
  873. if (!nla)
  874. goto nla_put_failure;
  875. ipv4_key = nla_data(nla);
  876. ipv4_key->ipv4_src = output->ipv4.addr.src;
  877. ipv4_key->ipv4_dst = output->ipv4.addr.dst;
  878. ipv4_key->ipv4_proto = output->ip.proto;
  879. ipv4_key->ipv4_tos = output->ip.tos;
  880. ipv4_key->ipv4_ttl = output->ip.ttl;
  881. ipv4_key->ipv4_frag = output->ip.frag;
  882. } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
  883. struct ovs_key_ipv6 *ipv6_key;
  884. nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
  885. if (!nla)
  886. goto nla_put_failure;
  887. ipv6_key = nla_data(nla);
  888. memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
  889. sizeof(ipv6_key->ipv6_src));
  890. memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
  891. sizeof(ipv6_key->ipv6_dst));
  892. ipv6_key->ipv6_label = output->ipv6.label;
  893. ipv6_key->ipv6_proto = output->ip.proto;
  894. ipv6_key->ipv6_tclass = output->ip.tos;
  895. ipv6_key->ipv6_hlimit = output->ip.ttl;
  896. ipv6_key->ipv6_frag = output->ip.frag;
  897. } else if (swkey->eth.type == htons(ETH_P_ARP) ||
  898. swkey->eth.type == htons(ETH_P_RARP)) {
  899. struct ovs_key_arp *arp_key;
  900. nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
  901. if (!nla)
  902. goto nla_put_failure;
  903. arp_key = nla_data(nla);
  904. memset(arp_key, 0, sizeof(struct ovs_key_arp));
  905. arp_key->arp_sip = output->ipv4.addr.src;
  906. arp_key->arp_tip = output->ipv4.addr.dst;
  907. arp_key->arp_op = htons(output->ip.proto);
  908. memcpy(arp_key->arp_sha, output->ipv4.arp.sha, ETH_ALEN);
  909. memcpy(arp_key->arp_tha, output->ipv4.arp.tha, ETH_ALEN);
  910. }
  911. if ((swkey->eth.type == htons(ETH_P_IP) ||
  912. swkey->eth.type == htons(ETH_P_IPV6)) &&
  913. swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
  914. if (swkey->ip.proto == IPPROTO_TCP) {
  915. struct ovs_key_tcp *tcp_key;
  916. nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
  917. if (!nla)
  918. goto nla_put_failure;
  919. tcp_key = nla_data(nla);
  920. if (swkey->eth.type == htons(ETH_P_IP)) {
  921. tcp_key->tcp_src = output->ipv4.tp.src;
  922. tcp_key->tcp_dst = output->ipv4.tp.dst;
  923. if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
  924. output->ipv4.tp.flags))
  925. goto nla_put_failure;
  926. } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
  927. tcp_key->tcp_src = output->ipv6.tp.src;
  928. tcp_key->tcp_dst = output->ipv6.tp.dst;
  929. if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
  930. output->ipv6.tp.flags))
  931. goto nla_put_failure;
  932. }
  933. } else if (swkey->ip.proto == IPPROTO_UDP) {
  934. struct ovs_key_udp *udp_key;
  935. nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
  936. if (!nla)
  937. goto nla_put_failure;
  938. udp_key = nla_data(nla);
  939. if (swkey->eth.type == htons(ETH_P_IP)) {
  940. udp_key->udp_src = output->ipv4.tp.src;
  941. udp_key->udp_dst = output->ipv4.tp.dst;
  942. } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
  943. udp_key->udp_src = output->ipv6.tp.src;
  944. udp_key->udp_dst = output->ipv6.tp.dst;
  945. }
  946. } else if (swkey->ip.proto == IPPROTO_SCTP) {
  947. struct ovs_key_sctp *sctp_key;
  948. nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
  949. if (!nla)
  950. goto nla_put_failure;
  951. sctp_key = nla_data(nla);
  952. if (swkey->eth.type == htons(ETH_P_IP)) {
  953. sctp_key->sctp_src = swkey->ipv4.tp.src;
  954. sctp_key->sctp_dst = swkey->ipv4.tp.dst;
  955. } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
  956. sctp_key->sctp_src = swkey->ipv6.tp.src;
  957. sctp_key->sctp_dst = swkey->ipv6.tp.dst;
  958. }
  959. } else if (swkey->eth.type == htons(ETH_P_IP) &&
  960. swkey->ip.proto == IPPROTO_ICMP) {
  961. struct ovs_key_icmp *icmp_key;
  962. nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
  963. if (!nla)
  964. goto nla_put_failure;
  965. icmp_key = nla_data(nla);
  966. icmp_key->icmp_type = ntohs(output->ipv4.tp.src);
  967. icmp_key->icmp_code = ntohs(output->ipv4.tp.dst);
  968. } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
  969. swkey->ip.proto == IPPROTO_ICMPV6) {
  970. struct ovs_key_icmpv6 *icmpv6_key;
  971. nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
  972. sizeof(*icmpv6_key));
  973. if (!nla)
  974. goto nla_put_failure;
  975. icmpv6_key = nla_data(nla);
  976. icmpv6_key->icmpv6_type = ntohs(output->ipv6.tp.src);
  977. icmpv6_key->icmpv6_code = ntohs(output->ipv6.tp.dst);
  978. if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
  979. icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
  980. struct ovs_key_nd *nd_key;
  981. nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
  982. if (!nla)
  983. goto nla_put_failure;
  984. nd_key = nla_data(nla);
  985. memcpy(nd_key->nd_target, &output->ipv6.nd.target,
  986. sizeof(nd_key->nd_target));
  987. memcpy(nd_key->nd_sll, output->ipv6.nd.sll, ETH_ALEN);
  988. memcpy(nd_key->nd_tll, output->ipv6.nd.tll, ETH_ALEN);
  989. }
  990. }
  991. }
  992. unencap:
  993. if (encap)
  994. nla_nest_end(skb, encap);
  995. return 0;
  996. nla_put_failure:
  997. return -EMSGSIZE;
  998. }
  999. #define MAX_ACTIONS_BUFSIZE (32 * 1024)
  1000. struct sw_flow_actions *ovs_nla_alloc_flow_actions(int size)
  1001. {
  1002. struct sw_flow_actions *sfa;
  1003. if (size > MAX_ACTIONS_BUFSIZE)
  1004. return ERR_PTR(-EINVAL);
  1005. sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
  1006. if (!sfa)
  1007. return ERR_PTR(-ENOMEM);
  1008. sfa->actions_len = 0;
  1009. return sfa;
  1010. }
  1011. /* Schedules 'sf_acts' to be freed after the next RCU grace period.
  1012. * The caller must hold rcu_read_lock for this to be sensible. */
  1013. void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
  1014. {
  1015. kfree_rcu(sf_acts, rcu);
  1016. }
  1017. static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
  1018. int attr_len)
  1019. {
  1020. struct sw_flow_actions *acts;
  1021. int new_acts_size;
  1022. int req_size = NLA_ALIGN(attr_len);
  1023. int next_offset = offsetof(struct sw_flow_actions, actions) +
  1024. (*sfa)->actions_len;
  1025. if (req_size <= (ksize(*sfa) - next_offset))
  1026. goto out;
  1027. new_acts_size = ksize(*sfa) * 2;
  1028. if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
  1029. if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
  1030. return ERR_PTR(-EMSGSIZE);
  1031. new_acts_size = MAX_ACTIONS_BUFSIZE;
  1032. }
  1033. acts = ovs_nla_alloc_flow_actions(new_acts_size);
  1034. if (IS_ERR(acts))
  1035. return (void *)acts;
  1036. memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
  1037. acts->actions_len = (*sfa)->actions_len;
  1038. kfree(*sfa);
  1039. *sfa = acts;
  1040. out:
  1041. (*sfa)->actions_len += req_size;
  1042. return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
  1043. }
  1044. static int add_action(struct sw_flow_actions **sfa, int attrtype, void *data, int len)
  1045. {
  1046. struct nlattr *a;
  1047. a = reserve_sfa_size(sfa, nla_attr_size(len));
  1048. if (IS_ERR(a))
  1049. return PTR_ERR(a);
  1050. a->nla_type = attrtype;
  1051. a->nla_len = nla_attr_size(len);
  1052. if (data)
  1053. memcpy(nla_data(a), data, len);
  1054. memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
  1055. return 0;
  1056. }
  1057. static inline int add_nested_action_start(struct sw_flow_actions **sfa,
  1058. int attrtype)
  1059. {
  1060. int used = (*sfa)->actions_len;
  1061. int err;
  1062. err = add_action(sfa, attrtype, NULL, 0);
  1063. if (err)
  1064. return err;
  1065. return used;
  1066. }
  1067. static inline void add_nested_action_end(struct sw_flow_actions *sfa,
  1068. int st_offset)
  1069. {
  1070. struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
  1071. st_offset);
  1072. a->nla_len = sfa->actions_len - st_offset;
  1073. }
  1074. static int validate_and_copy_sample(const struct nlattr *attr,
  1075. const struct sw_flow_key *key, int depth,
  1076. struct sw_flow_actions **sfa)
  1077. {
  1078. const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
  1079. const struct nlattr *probability, *actions;
  1080. const struct nlattr *a;
  1081. int rem, start, err, st_acts;
  1082. memset(attrs, 0, sizeof(attrs));
  1083. nla_for_each_nested(a, attr, rem) {
  1084. int type = nla_type(a);
  1085. if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
  1086. return -EINVAL;
  1087. attrs[type] = a;
  1088. }
  1089. if (rem)
  1090. return -EINVAL;
  1091. probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
  1092. if (!probability || nla_len(probability) != sizeof(u32))
  1093. return -EINVAL;
  1094. actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
  1095. if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
  1096. return -EINVAL;
  1097. /* validation done, copy sample action. */
  1098. start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE);
  1099. if (start < 0)
  1100. return start;
  1101. err = add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
  1102. nla_data(probability), sizeof(u32));
  1103. if (err)
  1104. return err;
  1105. st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS);
  1106. if (st_acts < 0)
  1107. return st_acts;
  1108. err = ovs_nla_copy_actions(actions, key, depth + 1, sfa);
  1109. if (err)
  1110. return err;
  1111. add_nested_action_end(*sfa, st_acts);
  1112. add_nested_action_end(*sfa, start);
  1113. return 0;
  1114. }
  1115. static int validate_tp_port(const struct sw_flow_key *flow_key)
  1116. {
  1117. if (flow_key->eth.type == htons(ETH_P_IP)) {
  1118. if (flow_key->ipv4.tp.src || flow_key->ipv4.tp.dst)
  1119. return 0;
  1120. } else if (flow_key->eth.type == htons(ETH_P_IPV6)) {
  1121. if (flow_key->ipv6.tp.src || flow_key->ipv6.tp.dst)
  1122. return 0;
  1123. }
  1124. return -EINVAL;
  1125. }
  1126. void ovs_match_init(struct sw_flow_match *match,
  1127. struct sw_flow_key *key,
  1128. struct sw_flow_mask *mask)
  1129. {
  1130. memset(match, 0, sizeof(*match));
  1131. match->key = key;
  1132. match->mask = mask;
  1133. memset(key, 0, sizeof(*key));
  1134. if (mask) {
  1135. memset(&mask->key, 0, sizeof(mask->key));
  1136. mask->range.start = mask->range.end = 0;
  1137. }
  1138. }
  1139. static int validate_and_copy_set_tun(const struct nlattr *attr,
  1140. struct sw_flow_actions **sfa)
  1141. {
  1142. struct sw_flow_match match;
  1143. struct sw_flow_key key;
  1144. int err, start;
  1145. ovs_match_init(&match, &key, NULL);
  1146. err = ipv4_tun_from_nlattr(nla_data(attr), &match, false);
  1147. if (err)
  1148. return err;
  1149. start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET);
  1150. if (start < 0)
  1151. return start;
  1152. err = add_action(sfa, OVS_KEY_ATTR_IPV4_TUNNEL, &match.key->tun_key,
  1153. sizeof(match.key->tun_key));
  1154. add_nested_action_end(*sfa, start);
  1155. return err;
  1156. }
  1157. static int validate_set(const struct nlattr *a,
  1158. const struct sw_flow_key *flow_key,
  1159. struct sw_flow_actions **sfa,
  1160. bool *set_tun)
  1161. {
  1162. const struct nlattr *ovs_key = nla_data(a);
  1163. int key_type = nla_type(ovs_key);
  1164. /* There can be only one key in a action */
  1165. if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
  1166. return -EINVAL;
  1167. if (key_type > OVS_KEY_ATTR_MAX ||
  1168. (ovs_key_lens[key_type] != nla_len(ovs_key) &&
  1169. ovs_key_lens[key_type] != -1))
  1170. return -EINVAL;
  1171. switch (key_type) {
  1172. const struct ovs_key_ipv4 *ipv4_key;
  1173. const struct ovs_key_ipv6 *ipv6_key;
  1174. int err;
  1175. case OVS_KEY_ATTR_PRIORITY:
  1176. case OVS_KEY_ATTR_SKB_MARK:
  1177. case OVS_KEY_ATTR_ETHERNET:
  1178. break;
  1179. case OVS_KEY_ATTR_TUNNEL:
  1180. *set_tun = true;
  1181. err = validate_and_copy_set_tun(a, sfa);
  1182. if (err)
  1183. return err;
  1184. break;
  1185. case OVS_KEY_ATTR_IPV4:
  1186. if (flow_key->eth.type != htons(ETH_P_IP))
  1187. return -EINVAL;
  1188. if (!flow_key->ip.proto)
  1189. return -EINVAL;
  1190. ipv4_key = nla_data(ovs_key);
  1191. if (ipv4_key->ipv4_proto != flow_key->ip.proto)
  1192. return -EINVAL;
  1193. if (ipv4_key->ipv4_frag != flow_key->ip.frag)
  1194. return -EINVAL;
  1195. break;
  1196. case OVS_KEY_ATTR_IPV6:
  1197. if (flow_key->eth.type != htons(ETH_P_IPV6))
  1198. return -EINVAL;
  1199. if (!flow_key->ip.proto)
  1200. return -EINVAL;
  1201. ipv6_key = nla_data(ovs_key);
  1202. if (ipv6_key->ipv6_proto != flow_key->ip.proto)
  1203. return -EINVAL;
  1204. if (ipv6_key->ipv6_frag != flow_key->ip.frag)
  1205. return -EINVAL;
  1206. if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
  1207. return -EINVAL;
  1208. break;
  1209. case OVS_KEY_ATTR_TCP:
  1210. if (flow_key->ip.proto != IPPROTO_TCP)
  1211. return -EINVAL;
  1212. return validate_tp_port(flow_key);
  1213. case OVS_KEY_ATTR_UDP:
  1214. if (flow_key->ip.proto != IPPROTO_UDP)
  1215. return -EINVAL;
  1216. return validate_tp_port(flow_key);
  1217. case OVS_KEY_ATTR_SCTP:
  1218. if (flow_key->ip.proto != IPPROTO_SCTP)
  1219. return -EINVAL;
  1220. return validate_tp_port(flow_key);
  1221. default:
  1222. return -EINVAL;
  1223. }
  1224. return 0;
  1225. }
  1226. static int validate_userspace(const struct nlattr *attr)
  1227. {
  1228. static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
  1229. [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
  1230. [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
  1231. };
  1232. struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
  1233. int error;
  1234. error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
  1235. attr, userspace_policy);
  1236. if (error)
  1237. return error;
  1238. if (!a[OVS_USERSPACE_ATTR_PID] ||
  1239. !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
  1240. return -EINVAL;
  1241. return 0;
  1242. }
  1243. static int copy_action(const struct nlattr *from,
  1244. struct sw_flow_actions **sfa)
  1245. {
  1246. int totlen = NLA_ALIGN(from->nla_len);
  1247. struct nlattr *to;
  1248. to = reserve_sfa_size(sfa, from->nla_len);
  1249. if (IS_ERR(to))
  1250. return PTR_ERR(to);
  1251. memcpy(to, from, totlen);
  1252. return 0;
  1253. }
  1254. int ovs_nla_copy_actions(const struct nlattr *attr,
  1255. const struct sw_flow_key *key,
  1256. int depth,
  1257. struct sw_flow_actions **sfa)
  1258. {
  1259. const struct nlattr *a;
  1260. int rem, err;
  1261. if (depth >= SAMPLE_ACTION_DEPTH)
  1262. return -EOVERFLOW;
  1263. nla_for_each_nested(a, attr, rem) {
  1264. /* Expected argument lengths, (u32)-1 for variable length. */
  1265. static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
  1266. [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
  1267. [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
  1268. [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
  1269. [OVS_ACTION_ATTR_POP_VLAN] = 0,
  1270. [OVS_ACTION_ATTR_SET] = (u32)-1,
  1271. [OVS_ACTION_ATTR_SAMPLE] = (u32)-1
  1272. };
  1273. const struct ovs_action_push_vlan *vlan;
  1274. int type = nla_type(a);
  1275. bool skip_copy;
  1276. if (type > OVS_ACTION_ATTR_MAX ||
  1277. (action_lens[type] != nla_len(a) &&
  1278. action_lens[type] != (u32)-1))
  1279. return -EINVAL;
  1280. skip_copy = false;
  1281. switch (type) {
  1282. case OVS_ACTION_ATTR_UNSPEC:
  1283. return -EINVAL;
  1284. case OVS_ACTION_ATTR_USERSPACE:
  1285. err = validate_userspace(a);
  1286. if (err)
  1287. return err;
  1288. break;
  1289. case OVS_ACTION_ATTR_OUTPUT:
  1290. if (nla_get_u32(a) >= DP_MAX_PORTS)
  1291. return -EINVAL;
  1292. break;
  1293. case OVS_ACTION_ATTR_POP_VLAN:
  1294. break;
  1295. case OVS_ACTION_ATTR_PUSH_VLAN:
  1296. vlan = nla_data(a);
  1297. if (vlan->vlan_tpid != htons(ETH_P_8021Q))
  1298. return -EINVAL;
  1299. if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
  1300. return -EINVAL;
  1301. break;
  1302. case OVS_ACTION_ATTR_SET:
  1303. err = validate_set(a, key, sfa, &skip_copy);
  1304. if (err)
  1305. return err;
  1306. break;
  1307. case OVS_ACTION_ATTR_SAMPLE:
  1308. err = validate_and_copy_sample(a, key, depth, sfa);
  1309. if (err)
  1310. return err;
  1311. skip_copy = true;
  1312. break;
  1313. default:
  1314. return -EINVAL;
  1315. }
  1316. if (!skip_copy) {
  1317. err = copy_action(a, sfa);
  1318. if (err)
  1319. return err;
  1320. }
  1321. }
  1322. if (rem > 0)
  1323. return -EINVAL;
  1324. return 0;
  1325. }
  1326. static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
  1327. {
  1328. const struct nlattr *a;
  1329. struct nlattr *start;
  1330. int err = 0, rem;
  1331. start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
  1332. if (!start)
  1333. return -EMSGSIZE;
  1334. nla_for_each_nested(a, attr, rem) {
  1335. int type = nla_type(a);
  1336. struct nlattr *st_sample;
  1337. switch (type) {
  1338. case OVS_SAMPLE_ATTR_PROBABILITY:
  1339. if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
  1340. sizeof(u32), nla_data(a)))
  1341. return -EMSGSIZE;
  1342. break;
  1343. case OVS_SAMPLE_ATTR_ACTIONS:
  1344. st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
  1345. if (!st_sample)
  1346. return -EMSGSIZE;
  1347. err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
  1348. if (err)
  1349. return err;
  1350. nla_nest_end(skb, st_sample);
  1351. break;
  1352. }
  1353. }
  1354. nla_nest_end(skb, start);
  1355. return err;
  1356. }
  1357. static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
  1358. {
  1359. const struct nlattr *ovs_key = nla_data(a);
  1360. int key_type = nla_type(ovs_key);
  1361. struct nlattr *start;
  1362. int err;
  1363. switch (key_type) {
  1364. case OVS_KEY_ATTR_IPV4_TUNNEL:
  1365. start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
  1366. if (!start)
  1367. return -EMSGSIZE;
  1368. err = ipv4_tun_to_nlattr(skb, nla_data(ovs_key),
  1369. nla_data(ovs_key));
  1370. if (err)
  1371. return err;
  1372. nla_nest_end(skb, start);
  1373. break;
  1374. default:
  1375. if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
  1376. return -EMSGSIZE;
  1377. break;
  1378. }
  1379. return 0;
  1380. }
  1381. int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
  1382. {
  1383. const struct nlattr *a;
  1384. int rem, err;
  1385. nla_for_each_attr(a, attr, len, rem) {
  1386. int type = nla_type(a);
  1387. switch (type) {
  1388. case OVS_ACTION_ATTR_SET:
  1389. err = set_action_to_attr(a, skb);
  1390. if (err)
  1391. return err;
  1392. break;
  1393. case OVS_ACTION_ATTR_SAMPLE:
  1394. err = sample_action_to_attr(a, skb);
  1395. if (err)
  1396. return err;
  1397. break;
  1398. default:
  1399. if (nla_put(skb, type, nla_len(a), nla_data(a)))
  1400. return -EMSGSIZE;
  1401. break;
  1402. }
  1403. }
  1404. return 0;
  1405. }