skbuff.h 82 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/kmemcheck.h>
  17. #include <linux/compiler.h>
  18. #include <linux/time.h>
  19. #include <linux/bug.h>
  20. #include <linux/cache.h>
  21. #include <linux/atomic.h>
  22. #include <asm/types.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/net.h>
  25. #include <linux/textsearch.h>
  26. #include <net/checksum.h>
  27. #include <linux/rcupdate.h>
  28. #include <linux/dmaengine.h>
  29. #include <linux/hrtimer.h>
  30. #include <linux/dma-mapping.h>
  31. #include <linux/netdev_features.h>
  32. #include <net/flow_keys.h>
  33. /* A. Checksumming of received packets by device.
  34. *
  35. * CHECKSUM_NONE:
  36. *
  37. * Device failed to checksum this packet e.g. due to lack of capabilities.
  38. * The packet contains full (though not verified) checksum in packet but
  39. * not in skb->csum. Thus, skb->csum is undefined in this case.
  40. *
  41. * CHECKSUM_UNNECESSARY:
  42. *
  43. * The hardware you're dealing with doesn't calculate the full checksum
  44. * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
  45. * for specific protocols e.g. TCP/UDP/SCTP, then, for such packets it will
  46. * set CHECKSUM_UNNECESSARY if their checksums are okay. skb->csum is still
  47. * undefined in this case though. It is a bad option, but, unfortunately,
  48. * nowadays most vendors do this. Apparently with the secret goal to sell
  49. * you new devices, when you will add new protocol to your host, f.e. IPv6 8)
  50. *
  51. * CHECKSUM_COMPLETE:
  52. *
  53. * This is the most generic way. The device supplied checksum of the _whole_
  54. * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
  55. * hardware doesn't need to parse L3/L4 headers to implement this.
  56. *
  57. * Note: Even if device supports only some protocols, but is able to produce
  58. * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
  59. *
  60. * CHECKSUM_PARTIAL:
  61. *
  62. * This is identical to the case for output below. This may occur on a packet
  63. * received directly from another Linux OS, e.g., a virtualized Linux kernel
  64. * on the same host. The packet can be treated in the same way as
  65. * CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the
  66. * checksum must be filled in by the OS or the hardware.
  67. *
  68. * B. Checksumming on output.
  69. *
  70. * CHECKSUM_NONE:
  71. *
  72. * The skb was already checksummed by the protocol, or a checksum is not
  73. * required.
  74. *
  75. * CHECKSUM_PARTIAL:
  76. *
  77. * The device is required to checksum the packet as seen by hard_start_xmit()
  78. * from skb->csum_start up to the end, and to record/write the checksum at
  79. * offset skb->csum_start + skb->csum_offset.
  80. *
  81. * The device must show its capabilities in dev->features, set up at device
  82. * setup time, e.g. netdev_features.h:
  83. *
  84. * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything.
  85. * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
  86. * IPv4. Sigh. Vendors like this way for an unknown reason.
  87. * Though, see comment above about CHECKSUM_UNNECESSARY. 8)
  88. * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
  89. * NETIF_F_... - Well, you get the picture.
  90. *
  91. * CHECKSUM_UNNECESSARY:
  92. *
  93. * Normally, the device will do per protocol specific checksumming. Protocol
  94. * implementations that do not want the NIC to perform the checksum
  95. * calculation should use this flag in their outgoing skbs.
  96. *
  97. * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
  98. * offload. Correspondingly, the FCoE protocol driver
  99. * stack should use CHECKSUM_UNNECESSARY.
  100. *
  101. * Any questions? No questions, good. --ANK
  102. */
  103. /* Don't change this without changing skb_csum_unnecessary! */
  104. #define CHECKSUM_NONE 0
  105. #define CHECKSUM_UNNECESSARY 1
  106. #define CHECKSUM_COMPLETE 2
  107. #define CHECKSUM_PARTIAL 3
  108. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  109. ~(SMP_CACHE_BYTES - 1))
  110. #define SKB_WITH_OVERHEAD(X) \
  111. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  112. #define SKB_MAX_ORDER(X, ORDER) \
  113. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  114. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  115. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  116. /* return minimum truesize of one skb containing X bytes of data */
  117. #define SKB_TRUESIZE(X) ((X) + \
  118. SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
  119. SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  120. struct net_device;
  121. struct scatterlist;
  122. struct pipe_inode_info;
  123. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  124. struct nf_conntrack {
  125. atomic_t use;
  126. };
  127. #endif
  128. #ifdef CONFIG_BRIDGE_NETFILTER
  129. struct nf_bridge_info {
  130. atomic_t use;
  131. unsigned int mask;
  132. struct net_device *physindev;
  133. struct net_device *physoutdev;
  134. unsigned long data[32 / sizeof(unsigned long)];
  135. };
  136. #endif
  137. struct sk_buff_head {
  138. /* These two members must be first. */
  139. struct sk_buff *next;
  140. struct sk_buff *prev;
  141. __u32 qlen;
  142. spinlock_t lock;
  143. };
  144. struct sk_buff;
  145. /* To allow 64K frame to be packed as single skb without frag_list we
  146. * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
  147. * buffers which do not start on a page boundary.
  148. *
  149. * Since GRO uses frags we allocate at least 16 regardless of page
  150. * size.
  151. */
  152. #if (65536/PAGE_SIZE + 1) < 16
  153. #define MAX_SKB_FRAGS 16UL
  154. #else
  155. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
  156. #endif
  157. typedef struct skb_frag_struct skb_frag_t;
  158. struct skb_frag_struct {
  159. struct {
  160. struct page *p;
  161. } page;
  162. #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
  163. __u32 page_offset;
  164. __u32 size;
  165. #else
  166. __u16 page_offset;
  167. __u16 size;
  168. #endif
  169. };
  170. static inline unsigned int skb_frag_size(const skb_frag_t *frag)
  171. {
  172. return frag->size;
  173. }
  174. static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
  175. {
  176. frag->size = size;
  177. }
  178. static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
  179. {
  180. frag->size += delta;
  181. }
  182. static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
  183. {
  184. frag->size -= delta;
  185. }
  186. #define HAVE_HW_TIME_STAMP
  187. /**
  188. * struct skb_shared_hwtstamps - hardware time stamps
  189. * @hwtstamp: hardware time stamp transformed into duration
  190. * since arbitrary point in time
  191. * @syststamp: hwtstamp transformed to system time base
  192. *
  193. * Software time stamps generated by ktime_get_real() are stored in
  194. * skb->tstamp. The relation between the different kinds of time
  195. * stamps is as follows:
  196. *
  197. * syststamp and tstamp can be compared against each other in
  198. * arbitrary combinations. The accuracy of a
  199. * syststamp/tstamp/"syststamp from other device" comparison is
  200. * limited by the accuracy of the transformation into system time
  201. * base. This depends on the device driver and its underlying
  202. * hardware.
  203. *
  204. * hwtstamps can only be compared against other hwtstamps from
  205. * the same device.
  206. *
  207. * This structure is attached to packets as part of the
  208. * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
  209. */
  210. struct skb_shared_hwtstamps {
  211. ktime_t hwtstamp;
  212. ktime_t syststamp;
  213. };
  214. /* Definitions for tx_flags in struct skb_shared_info */
  215. enum {
  216. /* generate hardware time stamp */
  217. SKBTX_HW_TSTAMP = 1 << 0,
  218. /* generate software time stamp */
  219. SKBTX_SW_TSTAMP = 1 << 1,
  220. /* device driver is going to provide hardware time stamp */
  221. SKBTX_IN_PROGRESS = 1 << 2,
  222. /* device driver supports TX zero-copy buffers */
  223. SKBTX_DEV_ZEROCOPY = 1 << 3,
  224. /* generate wifi status information (where possible) */
  225. SKBTX_WIFI_STATUS = 1 << 4,
  226. /* This indicates at least one fragment might be overwritten
  227. * (as in vmsplice(), sendfile() ...)
  228. * If we need to compute a TX checksum, we'll need to copy
  229. * all frags to avoid possible bad checksum
  230. */
  231. SKBTX_SHARED_FRAG = 1 << 5,
  232. };
  233. /*
  234. * The callback notifies userspace to release buffers when skb DMA is done in
  235. * lower device, the skb last reference should be 0 when calling this.
  236. * The zerocopy_success argument is true if zero copy transmit occurred,
  237. * false on data copy or out of memory error caused by data copy attempt.
  238. * The ctx field is used to track device context.
  239. * The desc field is used to track userspace buffer index.
  240. */
  241. struct ubuf_info {
  242. void (*callback)(struct ubuf_info *, bool zerocopy_success);
  243. void *ctx;
  244. unsigned long desc;
  245. };
  246. /* This data is invariant across clones and lives at
  247. * the end of the header data, ie. at skb->end.
  248. */
  249. struct skb_shared_info {
  250. unsigned char nr_frags;
  251. __u8 tx_flags;
  252. unsigned short gso_size;
  253. /* Warning: this field is not always filled in (UFO)! */
  254. unsigned short gso_segs;
  255. unsigned short gso_type;
  256. struct sk_buff *frag_list;
  257. struct skb_shared_hwtstamps hwtstamps;
  258. __be32 ip6_frag_id;
  259. /*
  260. * Warning : all fields before dataref are cleared in __alloc_skb()
  261. */
  262. atomic_t dataref;
  263. /* Intermediate layers must ensure that destructor_arg
  264. * remains valid until skb destructor */
  265. void * destructor_arg;
  266. /* must be last field, see pskb_expand_head() */
  267. skb_frag_t frags[MAX_SKB_FRAGS];
  268. };
  269. /* We divide dataref into two halves. The higher 16 bits hold references
  270. * to the payload part of skb->data. The lower 16 bits hold references to
  271. * the entire skb->data. A clone of a headerless skb holds the length of
  272. * the header in skb->hdr_len.
  273. *
  274. * All users must obey the rule that the skb->data reference count must be
  275. * greater than or equal to the payload reference count.
  276. *
  277. * Holding a reference to the payload part means that the user does not
  278. * care about modifications to the header part of skb->data.
  279. */
  280. #define SKB_DATAREF_SHIFT 16
  281. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  282. enum {
  283. SKB_FCLONE_UNAVAILABLE,
  284. SKB_FCLONE_ORIG,
  285. SKB_FCLONE_CLONE,
  286. };
  287. enum {
  288. SKB_GSO_TCPV4 = 1 << 0,
  289. SKB_GSO_UDP = 1 << 1,
  290. /* This indicates the skb is from an untrusted source. */
  291. SKB_GSO_DODGY = 1 << 2,
  292. /* This indicates the tcp segment has CWR set. */
  293. SKB_GSO_TCP_ECN = 1 << 3,
  294. SKB_GSO_TCPV6 = 1 << 4,
  295. SKB_GSO_FCOE = 1 << 5,
  296. SKB_GSO_GRE = 1 << 6,
  297. SKB_GSO_IPIP = 1 << 7,
  298. SKB_GSO_SIT = 1 << 8,
  299. SKB_GSO_UDP_TUNNEL = 1 << 9,
  300. SKB_GSO_MPLS = 1 << 10,
  301. };
  302. #if BITS_PER_LONG > 32
  303. #define NET_SKBUFF_DATA_USES_OFFSET 1
  304. #endif
  305. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  306. typedef unsigned int sk_buff_data_t;
  307. #else
  308. typedef unsigned char *sk_buff_data_t;
  309. #endif
  310. /**
  311. * struct sk_buff - socket buffer
  312. * @next: Next buffer in list
  313. * @prev: Previous buffer in list
  314. * @tstamp: Time we arrived
  315. * @sk: Socket we are owned by
  316. * @dev: Device we arrived on/are leaving by
  317. * @cb: Control buffer. Free for use by every layer. Put private vars here
  318. * @_skb_refdst: destination entry (with norefcount bit)
  319. * @sp: the security path, used for xfrm
  320. * @len: Length of actual data
  321. * @data_len: Data length
  322. * @mac_len: Length of link layer header
  323. * @hdr_len: writable header length of cloned skb
  324. * @csum: Checksum (must include start/offset pair)
  325. * @csum_start: Offset from skb->head where checksumming should start
  326. * @csum_offset: Offset from csum_start where checksum should be stored
  327. * @priority: Packet queueing priority
  328. * @local_df: allow local fragmentation
  329. * @cloned: Head may be cloned (check refcnt to be sure)
  330. * @ip_summed: Driver fed us an IP checksum
  331. * @nohdr: Payload reference only, must not modify header
  332. * @nfctinfo: Relationship of this skb to the connection
  333. * @pkt_type: Packet class
  334. * @fclone: skbuff clone status
  335. * @ipvs_property: skbuff is owned by ipvs
  336. * @peeked: this packet has been seen already, so stats have been
  337. * done for it, don't do them again
  338. * @nf_trace: netfilter packet trace flag
  339. * @protocol: Packet protocol from driver
  340. * @destructor: Destruct function
  341. * @nfct: Associated connection, if any
  342. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  343. * @skb_iif: ifindex of device we arrived on
  344. * @tc_index: Traffic control index
  345. * @tc_verd: traffic control verdict
  346. * @rxhash: the packet hash computed on receive
  347. * @queue_mapping: Queue mapping for multiqueue devices
  348. * @ndisc_nodetype: router type (from link layer)
  349. * @ooo_okay: allow the mapping of a socket to a queue to be changed
  350. * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
  351. * ports.
  352. * @wifi_acked_valid: wifi_acked was set
  353. * @wifi_acked: whether frame was acked on wifi or not
  354. * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
  355. * @dma_cookie: a cookie to one of several possible DMA operations
  356. * done by skb DMA functions
  357. * @napi_id: id of the NAPI struct this skb came from
  358. * @secmark: security marking
  359. * @mark: Generic packet mark
  360. * @dropcount: total number of sk_receive_queue overflows
  361. * @vlan_proto: vlan encapsulation protocol
  362. * @vlan_tci: vlan tag control information
  363. * @inner_protocol: Protocol (encapsulation)
  364. * @inner_transport_header: Inner transport layer header (encapsulation)
  365. * @inner_network_header: Network layer header (encapsulation)
  366. * @inner_mac_header: Link layer header (encapsulation)
  367. * @transport_header: Transport layer header
  368. * @network_header: Network layer header
  369. * @mac_header: Link layer header
  370. * @tail: Tail pointer
  371. * @end: End pointer
  372. * @head: Head of buffer
  373. * @data: Data head pointer
  374. * @truesize: Buffer size
  375. * @users: User count - see {datagram,tcp}.c
  376. */
  377. struct sk_buff {
  378. /* These two members must be first. */
  379. struct sk_buff *next;
  380. struct sk_buff *prev;
  381. ktime_t tstamp;
  382. struct sock *sk;
  383. struct net_device *dev;
  384. /*
  385. * This is the control buffer. It is free to use for every
  386. * layer. Please put your private variables there. If you
  387. * want to keep them across layers you have to do a skb_clone()
  388. * first. This is owned by whoever has the skb queued ATM.
  389. */
  390. char cb[48] __aligned(8);
  391. unsigned long _skb_refdst;
  392. #ifdef CONFIG_XFRM
  393. struct sec_path *sp;
  394. #endif
  395. unsigned int len,
  396. data_len;
  397. __u16 mac_len,
  398. hdr_len;
  399. union {
  400. __wsum csum;
  401. struct {
  402. __u16 csum_start;
  403. __u16 csum_offset;
  404. };
  405. };
  406. __u32 priority;
  407. kmemcheck_bitfield_begin(flags1);
  408. __u8 local_df:1,
  409. cloned:1,
  410. ip_summed:2,
  411. nohdr:1,
  412. nfctinfo:3;
  413. __u8 pkt_type:3,
  414. fclone:2,
  415. ipvs_property:1,
  416. peeked:1,
  417. nf_trace:1;
  418. kmemcheck_bitfield_end(flags1);
  419. __be16 protocol;
  420. void (*destructor)(struct sk_buff *skb);
  421. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  422. struct nf_conntrack *nfct;
  423. #endif
  424. #ifdef CONFIG_BRIDGE_NETFILTER
  425. struct nf_bridge_info *nf_bridge;
  426. #endif
  427. int skb_iif;
  428. __u32 rxhash;
  429. __be16 vlan_proto;
  430. __u16 vlan_tci;
  431. #ifdef CONFIG_NET_SCHED
  432. __u16 tc_index; /* traffic control index */
  433. #ifdef CONFIG_NET_CLS_ACT
  434. __u16 tc_verd; /* traffic control verdict */
  435. #endif
  436. #endif
  437. __u16 queue_mapping;
  438. kmemcheck_bitfield_begin(flags2);
  439. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  440. __u8 ndisc_nodetype:2;
  441. #endif
  442. __u8 pfmemalloc:1;
  443. __u8 ooo_okay:1;
  444. __u8 l4_rxhash:1;
  445. __u8 wifi_acked_valid:1;
  446. __u8 wifi_acked:1;
  447. __u8 no_fcs:1;
  448. __u8 head_frag:1;
  449. /* Encapsulation protocol and NIC drivers should use
  450. * this flag to indicate to each other if the skb contains
  451. * encapsulated packet or not and maybe use the inner packet
  452. * headers if needed
  453. */
  454. __u8 encapsulation:1;
  455. /* 6/8 bit hole (depending on ndisc_nodetype presence) */
  456. kmemcheck_bitfield_end(flags2);
  457. #if defined CONFIG_NET_DMA || defined CONFIG_NET_RX_BUSY_POLL
  458. union {
  459. unsigned int napi_id;
  460. dma_cookie_t dma_cookie;
  461. };
  462. #endif
  463. #ifdef CONFIG_NETWORK_SECMARK
  464. __u32 secmark;
  465. #endif
  466. union {
  467. __u32 mark;
  468. __u32 dropcount;
  469. __u32 reserved_tailroom;
  470. };
  471. __be16 inner_protocol;
  472. __u16 inner_transport_header;
  473. __u16 inner_network_header;
  474. __u16 inner_mac_header;
  475. __u16 transport_header;
  476. __u16 network_header;
  477. __u16 mac_header;
  478. /* These elements must be at the end, see alloc_skb() for details. */
  479. sk_buff_data_t tail;
  480. sk_buff_data_t end;
  481. unsigned char *head,
  482. *data;
  483. unsigned int truesize;
  484. atomic_t users;
  485. };
  486. #ifdef __KERNEL__
  487. /*
  488. * Handling routines are only of interest to the kernel
  489. */
  490. #include <linux/slab.h>
  491. #define SKB_ALLOC_FCLONE 0x01
  492. #define SKB_ALLOC_RX 0x02
  493. /* Returns true if the skb was allocated from PFMEMALLOC reserves */
  494. static inline bool skb_pfmemalloc(const struct sk_buff *skb)
  495. {
  496. return unlikely(skb->pfmemalloc);
  497. }
  498. /*
  499. * skb might have a dst pointer attached, refcounted or not.
  500. * _skb_refdst low order bit is set if refcount was _not_ taken
  501. */
  502. #define SKB_DST_NOREF 1UL
  503. #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
  504. /**
  505. * skb_dst - returns skb dst_entry
  506. * @skb: buffer
  507. *
  508. * Returns skb dst_entry, regardless of reference taken or not.
  509. */
  510. static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
  511. {
  512. /* If refdst was not refcounted, check we still are in a
  513. * rcu_read_lock section
  514. */
  515. WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
  516. !rcu_read_lock_held() &&
  517. !rcu_read_lock_bh_held());
  518. return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
  519. }
  520. /**
  521. * skb_dst_set - sets skb dst
  522. * @skb: buffer
  523. * @dst: dst entry
  524. *
  525. * Sets skb dst, assuming a reference was taken on dst and should
  526. * be released by skb_dst_drop()
  527. */
  528. static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
  529. {
  530. skb->_skb_refdst = (unsigned long)dst;
  531. }
  532. void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst,
  533. bool force);
  534. /**
  535. * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
  536. * @skb: buffer
  537. * @dst: dst entry
  538. *
  539. * Sets skb dst, assuming a reference was not taken on dst.
  540. * If dst entry is cached, we do not take reference and dst_release
  541. * will be avoided by refdst_drop. If dst entry is not cached, we take
  542. * reference, so that last dst_release can destroy the dst immediately.
  543. */
  544. static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
  545. {
  546. __skb_dst_set_noref(skb, dst, false);
  547. }
  548. /**
  549. * skb_dst_set_noref_force - sets skb dst, without taking reference
  550. * @skb: buffer
  551. * @dst: dst entry
  552. *
  553. * Sets skb dst, assuming a reference was not taken on dst.
  554. * No reference is taken and no dst_release will be called. While for
  555. * cached dsts deferred reclaim is a basic feature, for entries that are
  556. * not cached it is caller's job to guarantee that last dst_release for
  557. * provided dst happens when nobody uses it, eg. after a RCU grace period.
  558. */
  559. static inline void skb_dst_set_noref_force(struct sk_buff *skb,
  560. struct dst_entry *dst)
  561. {
  562. __skb_dst_set_noref(skb, dst, true);
  563. }
  564. /**
  565. * skb_dst_is_noref - Test if skb dst isn't refcounted
  566. * @skb: buffer
  567. */
  568. static inline bool skb_dst_is_noref(const struct sk_buff *skb)
  569. {
  570. return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
  571. }
  572. static inline struct rtable *skb_rtable(const struct sk_buff *skb)
  573. {
  574. return (struct rtable *)skb_dst(skb);
  575. }
  576. void kfree_skb(struct sk_buff *skb);
  577. void kfree_skb_list(struct sk_buff *segs);
  578. void skb_tx_error(struct sk_buff *skb);
  579. void consume_skb(struct sk_buff *skb);
  580. void __kfree_skb(struct sk_buff *skb);
  581. extern struct kmem_cache *skbuff_head_cache;
  582. void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
  583. bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
  584. bool *fragstolen, int *delta_truesize);
  585. struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
  586. int node);
  587. struct sk_buff *build_skb(void *data, unsigned int frag_size);
  588. static inline struct sk_buff *alloc_skb(unsigned int size,
  589. gfp_t priority)
  590. {
  591. return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
  592. }
  593. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  594. gfp_t priority)
  595. {
  596. return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
  597. }
  598. struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
  599. static inline struct sk_buff *alloc_skb_head(gfp_t priority)
  600. {
  601. return __alloc_skb_head(priority, -1);
  602. }
  603. struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  604. int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
  605. struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
  606. struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
  607. struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask);
  608. int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
  609. struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  610. unsigned int headroom);
  611. struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
  612. int newtailroom, gfp_t priority);
  613. int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
  614. int len);
  615. int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
  616. int skb_pad(struct sk_buff *skb, int pad);
  617. #define dev_kfree_skb(a) consume_skb(a)
  618. int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  619. int getfrag(void *from, char *to, int offset,
  620. int len, int odd, struct sk_buff *skb),
  621. void *from, int length);
  622. struct skb_seq_state {
  623. __u32 lower_offset;
  624. __u32 upper_offset;
  625. __u32 frag_idx;
  626. __u32 stepped_offset;
  627. struct sk_buff *root_skb;
  628. struct sk_buff *cur_skb;
  629. __u8 *frag_data;
  630. };
  631. void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
  632. unsigned int to, struct skb_seq_state *st);
  633. unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  634. struct skb_seq_state *st);
  635. void skb_abort_seq_read(struct skb_seq_state *st);
  636. unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  637. unsigned int to, struct ts_config *config,
  638. struct ts_state *state);
  639. /*
  640. * Packet hash types specify the type of hash in skb_set_hash.
  641. *
  642. * Hash types refer to the protocol layer addresses which are used to
  643. * construct a packet's hash. The hashes are used to differentiate or identify
  644. * flows of the protocol layer for the hash type. Hash types are either
  645. * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
  646. *
  647. * Properties of hashes:
  648. *
  649. * 1) Two packets in different flows have different hash values
  650. * 2) Two packets in the same flow should have the same hash value
  651. *
  652. * A hash at a higher layer is considered to be more specific. A driver should
  653. * set the most specific hash possible.
  654. *
  655. * A driver cannot indicate a more specific hash than the layer at which a hash
  656. * was computed. For instance an L3 hash cannot be set as an L4 hash.
  657. *
  658. * A driver may indicate a hash level which is less specific than the
  659. * actual layer the hash was computed on. For instance, a hash computed
  660. * at L4 may be considered an L3 hash. This should only be done if the
  661. * driver can't unambiguously determine that the HW computed the hash at
  662. * the higher layer. Note that the "should" in the second property above
  663. * permits this.
  664. */
  665. enum pkt_hash_types {
  666. PKT_HASH_TYPE_NONE, /* Undefined type */
  667. PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
  668. PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
  669. PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
  670. };
  671. static inline void
  672. skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
  673. {
  674. skb->l4_rxhash = (type == PKT_HASH_TYPE_L4);
  675. skb->rxhash = hash;
  676. }
  677. void __skb_get_hash(struct sk_buff *skb);
  678. static inline __u32 skb_get_hash(struct sk_buff *skb)
  679. {
  680. if (!skb->l4_rxhash)
  681. __skb_get_hash(skb);
  682. return skb->rxhash;
  683. }
  684. static inline void skb_clear_hash(struct sk_buff *skb)
  685. {
  686. skb->rxhash = 0;
  687. skb->l4_rxhash = 0;
  688. }
  689. static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
  690. {
  691. if (!skb->l4_rxhash)
  692. skb_clear_hash(skb);
  693. }
  694. static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
  695. {
  696. to->rxhash = from->rxhash;
  697. to->l4_rxhash = from->l4_rxhash;
  698. };
  699. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  700. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  701. {
  702. return skb->head + skb->end;
  703. }
  704. static inline unsigned int skb_end_offset(const struct sk_buff *skb)
  705. {
  706. return skb->end;
  707. }
  708. #else
  709. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  710. {
  711. return skb->end;
  712. }
  713. static inline unsigned int skb_end_offset(const struct sk_buff *skb)
  714. {
  715. return skb->end - skb->head;
  716. }
  717. #endif
  718. /* Internal */
  719. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  720. static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
  721. {
  722. return &skb_shinfo(skb)->hwtstamps;
  723. }
  724. /**
  725. * skb_queue_empty - check if a queue is empty
  726. * @list: queue head
  727. *
  728. * Returns true if the queue is empty, false otherwise.
  729. */
  730. static inline int skb_queue_empty(const struct sk_buff_head *list)
  731. {
  732. return list->next == (struct sk_buff *)list;
  733. }
  734. /**
  735. * skb_queue_is_last - check if skb is the last entry in the queue
  736. * @list: queue head
  737. * @skb: buffer
  738. *
  739. * Returns true if @skb is the last buffer on the list.
  740. */
  741. static inline bool skb_queue_is_last(const struct sk_buff_head *list,
  742. const struct sk_buff *skb)
  743. {
  744. return skb->next == (struct sk_buff *)list;
  745. }
  746. /**
  747. * skb_queue_is_first - check if skb is the first entry in the queue
  748. * @list: queue head
  749. * @skb: buffer
  750. *
  751. * Returns true if @skb is the first buffer on the list.
  752. */
  753. static inline bool skb_queue_is_first(const struct sk_buff_head *list,
  754. const struct sk_buff *skb)
  755. {
  756. return skb->prev == (struct sk_buff *)list;
  757. }
  758. /**
  759. * skb_queue_next - return the next packet in the queue
  760. * @list: queue head
  761. * @skb: current buffer
  762. *
  763. * Return the next packet in @list after @skb. It is only valid to
  764. * call this if skb_queue_is_last() evaluates to false.
  765. */
  766. static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
  767. const struct sk_buff *skb)
  768. {
  769. /* This BUG_ON may seem severe, but if we just return then we
  770. * are going to dereference garbage.
  771. */
  772. BUG_ON(skb_queue_is_last(list, skb));
  773. return skb->next;
  774. }
  775. /**
  776. * skb_queue_prev - return the prev packet in the queue
  777. * @list: queue head
  778. * @skb: current buffer
  779. *
  780. * Return the prev packet in @list before @skb. It is only valid to
  781. * call this if skb_queue_is_first() evaluates to false.
  782. */
  783. static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
  784. const struct sk_buff *skb)
  785. {
  786. /* This BUG_ON may seem severe, but if we just return then we
  787. * are going to dereference garbage.
  788. */
  789. BUG_ON(skb_queue_is_first(list, skb));
  790. return skb->prev;
  791. }
  792. /**
  793. * skb_get - reference buffer
  794. * @skb: buffer to reference
  795. *
  796. * Makes another reference to a socket buffer and returns a pointer
  797. * to the buffer.
  798. */
  799. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  800. {
  801. atomic_inc(&skb->users);
  802. return skb;
  803. }
  804. /*
  805. * If users == 1, we are the only owner and are can avoid redundant
  806. * atomic change.
  807. */
  808. /**
  809. * skb_cloned - is the buffer a clone
  810. * @skb: buffer to check
  811. *
  812. * Returns true if the buffer was generated with skb_clone() and is
  813. * one of multiple shared copies of the buffer. Cloned buffers are
  814. * shared data so must not be written to under normal circumstances.
  815. */
  816. static inline int skb_cloned(const struct sk_buff *skb)
  817. {
  818. return skb->cloned &&
  819. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  820. }
  821. static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
  822. {
  823. might_sleep_if(pri & __GFP_WAIT);
  824. if (skb_cloned(skb))
  825. return pskb_expand_head(skb, 0, 0, pri);
  826. return 0;
  827. }
  828. /**
  829. * skb_header_cloned - is the header a clone
  830. * @skb: buffer to check
  831. *
  832. * Returns true if modifying the header part of the buffer requires
  833. * the data to be copied.
  834. */
  835. static inline int skb_header_cloned(const struct sk_buff *skb)
  836. {
  837. int dataref;
  838. if (!skb->cloned)
  839. return 0;
  840. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  841. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  842. return dataref != 1;
  843. }
  844. /**
  845. * skb_header_release - release reference to header
  846. * @skb: buffer to operate on
  847. *
  848. * Drop a reference to the header part of the buffer. This is done
  849. * by acquiring a payload reference. You must not read from the header
  850. * part of skb->data after this.
  851. */
  852. static inline void skb_header_release(struct sk_buff *skb)
  853. {
  854. BUG_ON(skb->nohdr);
  855. skb->nohdr = 1;
  856. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  857. }
  858. /**
  859. * skb_shared - is the buffer shared
  860. * @skb: buffer to check
  861. *
  862. * Returns true if more than one person has a reference to this
  863. * buffer.
  864. */
  865. static inline int skb_shared(const struct sk_buff *skb)
  866. {
  867. return atomic_read(&skb->users) != 1;
  868. }
  869. /**
  870. * skb_share_check - check if buffer is shared and if so clone it
  871. * @skb: buffer to check
  872. * @pri: priority for memory allocation
  873. *
  874. * If the buffer is shared the buffer is cloned and the old copy
  875. * drops a reference. A new clone with a single reference is returned.
  876. * If the buffer is not shared the original buffer is returned. When
  877. * being called from interrupt status or with spinlocks held pri must
  878. * be GFP_ATOMIC.
  879. *
  880. * NULL is returned on a memory allocation failure.
  881. */
  882. static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
  883. {
  884. might_sleep_if(pri & __GFP_WAIT);
  885. if (skb_shared(skb)) {
  886. struct sk_buff *nskb = skb_clone(skb, pri);
  887. if (likely(nskb))
  888. consume_skb(skb);
  889. else
  890. kfree_skb(skb);
  891. skb = nskb;
  892. }
  893. return skb;
  894. }
  895. /*
  896. * Copy shared buffers into a new sk_buff. We effectively do COW on
  897. * packets to handle cases where we have a local reader and forward
  898. * and a couple of other messy ones. The normal one is tcpdumping
  899. * a packet thats being forwarded.
  900. */
  901. /**
  902. * skb_unshare - make a copy of a shared buffer
  903. * @skb: buffer to check
  904. * @pri: priority for memory allocation
  905. *
  906. * If the socket buffer is a clone then this function creates a new
  907. * copy of the data, drops a reference count on the old copy and returns
  908. * the new copy with the reference count at 1. If the buffer is not a clone
  909. * the original buffer is returned. When called with a spinlock held or
  910. * from interrupt state @pri must be %GFP_ATOMIC
  911. *
  912. * %NULL is returned on a memory allocation failure.
  913. */
  914. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  915. gfp_t pri)
  916. {
  917. might_sleep_if(pri & __GFP_WAIT);
  918. if (skb_cloned(skb)) {
  919. struct sk_buff *nskb = skb_copy(skb, pri);
  920. kfree_skb(skb); /* Free our shared copy */
  921. skb = nskb;
  922. }
  923. return skb;
  924. }
  925. /**
  926. * skb_peek - peek at the head of an &sk_buff_head
  927. * @list_: list to peek at
  928. *
  929. * Peek an &sk_buff. Unlike most other operations you _MUST_
  930. * be careful with this one. A peek leaves the buffer on the
  931. * list and someone else may run off with it. You must hold
  932. * the appropriate locks or have a private queue to do this.
  933. *
  934. * Returns %NULL for an empty list or a pointer to the head element.
  935. * The reference count is not incremented and the reference is therefore
  936. * volatile. Use with caution.
  937. */
  938. static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
  939. {
  940. struct sk_buff *skb = list_->next;
  941. if (skb == (struct sk_buff *)list_)
  942. skb = NULL;
  943. return skb;
  944. }
  945. /**
  946. * skb_peek_next - peek skb following the given one from a queue
  947. * @skb: skb to start from
  948. * @list_: list to peek at
  949. *
  950. * Returns %NULL when the end of the list is met or a pointer to the
  951. * next element. The reference count is not incremented and the
  952. * reference is therefore volatile. Use with caution.
  953. */
  954. static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
  955. const struct sk_buff_head *list_)
  956. {
  957. struct sk_buff *next = skb->next;
  958. if (next == (struct sk_buff *)list_)
  959. next = NULL;
  960. return next;
  961. }
  962. /**
  963. * skb_peek_tail - peek at the tail of an &sk_buff_head
  964. * @list_: list to peek at
  965. *
  966. * Peek an &sk_buff. Unlike most other operations you _MUST_
  967. * be careful with this one. A peek leaves the buffer on the
  968. * list and someone else may run off with it. You must hold
  969. * the appropriate locks or have a private queue to do this.
  970. *
  971. * Returns %NULL for an empty list or a pointer to the tail element.
  972. * The reference count is not incremented and the reference is therefore
  973. * volatile. Use with caution.
  974. */
  975. static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
  976. {
  977. struct sk_buff *skb = list_->prev;
  978. if (skb == (struct sk_buff *)list_)
  979. skb = NULL;
  980. return skb;
  981. }
  982. /**
  983. * skb_queue_len - get queue length
  984. * @list_: list to measure
  985. *
  986. * Return the length of an &sk_buff queue.
  987. */
  988. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  989. {
  990. return list_->qlen;
  991. }
  992. /**
  993. * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
  994. * @list: queue to initialize
  995. *
  996. * This initializes only the list and queue length aspects of
  997. * an sk_buff_head object. This allows to initialize the list
  998. * aspects of an sk_buff_head without reinitializing things like
  999. * the spinlock. It can also be used for on-stack sk_buff_head
  1000. * objects where the spinlock is known to not be used.
  1001. */
  1002. static inline void __skb_queue_head_init(struct sk_buff_head *list)
  1003. {
  1004. list->prev = list->next = (struct sk_buff *)list;
  1005. list->qlen = 0;
  1006. }
  1007. /*
  1008. * This function creates a split out lock class for each invocation;
  1009. * this is needed for now since a whole lot of users of the skb-queue
  1010. * infrastructure in drivers have different locking usage (in hardirq)
  1011. * than the networking core (in softirq only). In the long run either the
  1012. * network layer or drivers should need annotation to consolidate the
  1013. * main types of usage into 3 classes.
  1014. */
  1015. static inline void skb_queue_head_init(struct sk_buff_head *list)
  1016. {
  1017. spin_lock_init(&list->lock);
  1018. __skb_queue_head_init(list);
  1019. }
  1020. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  1021. struct lock_class_key *class)
  1022. {
  1023. skb_queue_head_init(list);
  1024. lockdep_set_class(&list->lock, class);
  1025. }
  1026. /*
  1027. * Insert an sk_buff on a list.
  1028. *
  1029. * The "__skb_xxxx()" functions are the non-atomic ones that
  1030. * can only be called with interrupts disabled.
  1031. */
  1032. void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
  1033. struct sk_buff_head *list);
  1034. static inline void __skb_insert(struct sk_buff *newsk,
  1035. struct sk_buff *prev, struct sk_buff *next,
  1036. struct sk_buff_head *list)
  1037. {
  1038. newsk->next = next;
  1039. newsk->prev = prev;
  1040. next->prev = prev->next = newsk;
  1041. list->qlen++;
  1042. }
  1043. static inline void __skb_queue_splice(const struct sk_buff_head *list,
  1044. struct sk_buff *prev,
  1045. struct sk_buff *next)
  1046. {
  1047. struct sk_buff *first = list->next;
  1048. struct sk_buff *last = list->prev;
  1049. first->prev = prev;
  1050. prev->next = first;
  1051. last->next = next;
  1052. next->prev = last;
  1053. }
  1054. /**
  1055. * skb_queue_splice - join two skb lists, this is designed for stacks
  1056. * @list: the new list to add
  1057. * @head: the place to add it in the first list
  1058. */
  1059. static inline void skb_queue_splice(const struct sk_buff_head *list,
  1060. struct sk_buff_head *head)
  1061. {
  1062. if (!skb_queue_empty(list)) {
  1063. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  1064. head->qlen += list->qlen;
  1065. }
  1066. }
  1067. /**
  1068. * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
  1069. * @list: the new list to add
  1070. * @head: the place to add it in the first list
  1071. *
  1072. * The list at @list is reinitialised
  1073. */
  1074. static inline void skb_queue_splice_init(struct sk_buff_head *list,
  1075. struct sk_buff_head *head)
  1076. {
  1077. if (!skb_queue_empty(list)) {
  1078. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  1079. head->qlen += list->qlen;
  1080. __skb_queue_head_init(list);
  1081. }
  1082. }
  1083. /**
  1084. * skb_queue_splice_tail - join two skb lists, each list being a queue
  1085. * @list: the new list to add
  1086. * @head: the place to add it in the first list
  1087. */
  1088. static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
  1089. struct sk_buff_head *head)
  1090. {
  1091. if (!skb_queue_empty(list)) {
  1092. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  1093. head->qlen += list->qlen;
  1094. }
  1095. }
  1096. /**
  1097. * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
  1098. * @list: the new list to add
  1099. * @head: the place to add it in the first list
  1100. *
  1101. * Each of the lists is a queue.
  1102. * The list at @list is reinitialised
  1103. */
  1104. static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
  1105. struct sk_buff_head *head)
  1106. {
  1107. if (!skb_queue_empty(list)) {
  1108. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  1109. head->qlen += list->qlen;
  1110. __skb_queue_head_init(list);
  1111. }
  1112. }
  1113. /**
  1114. * __skb_queue_after - queue a buffer at the list head
  1115. * @list: list to use
  1116. * @prev: place after this buffer
  1117. * @newsk: buffer to queue
  1118. *
  1119. * Queue a buffer int the middle of a list. This function takes no locks
  1120. * and you must therefore hold required locks before calling it.
  1121. *
  1122. * A buffer cannot be placed on two lists at the same time.
  1123. */
  1124. static inline void __skb_queue_after(struct sk_buff_head *list,
  1125. struct sk_buff *prev,
  1126. struct sk_buff *newsk)
  1127. {
  1128. __skb_insert(newsk, prev, prev->next, list);
  1129. }
  1130. void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  1131. struct sk_buff_head *list);
  1132. static inline void __skb_queue_before(struct sk_buff_head *list,
  1133. struct sk_buff *next,
  1134. struct sk_buff *newsk)
  1135. {
  1136. __skb_insert(newsk, next->prev, next, list);
  1137. }
  1138. /**
  1139. * __skb_queue_head - queue a buffer at the list head
  1140. * @list: list to use
  1141. * @newsk: buffer to queue
  1142. *
  1143. * Queue a buffer at the start of a list. This function takes no locks
  1144. * and you must therefore hold required locks before calling it.
  1145. *
  1146. * A buffer cannot be placed on two lists at the same time.
  1147. */
  1148. void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  1149. static inline void __skb_queue_head(struct sk_buff_head *list,
  1150. struct sk_buff *newsk)
  1151. {
  1152. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  1153. }
  1154. /**
  1155. * __skb_queue_tail - queue a buffer at the list tail
  1156. * @list: list to use
  1157. * @newsk: buffer to queue
  1158. *
  1159. * Queue a buffer at the end of a list. This function takes no locks
  1160. * and you must therefore hold required locks before calling it.
  1161. *
  1162. * A buffer cannot be placed on two lists at the same time.
  1163. */
  1164. void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  1165. static inline void __skb_queue_tail(struct sk_buff_head *list,
  1166. struct sk_buff *newsk)
  1167. {
  1168. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  1169. }
  1170. /*
  1171. * remove sk_buff from list. _Must_ be called atomically, and with
  1172. * the list known..
  1173. */
  1174. void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  1175. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  1176. {
  1177. struct sk_buff *next, *prev;
  1178. list->qlen--;
  1179. next = skb->next;
  1180. prev = skb->prev;
  1181. skb->next = skb->prev = NULL;
  1182. next->prev = prev;
  1183. prev->next = next;
  1184. }
  1185. /**
  1186. * __skb_dequeue - remove from the head of the queue
  1187. * @list: list to dequeue from
  1188. *
  1189. * Remove the head of the list. This function does not take any locks
  1190. * so must be used with appropriate locks held only. The head item is
  1191. * returned or %NULL if the list is empty.
  1192. */
  1193. struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  1194. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  1195. {
  1196. struct sk_buff *skb = skb_peek(list);
  1197. if (skb)
  1198. __skb_unlink(skb, list);
  1199. return skb;
  1200. }
  1201. /**
  1202. * __skb_dequeue_tail - remove from the tail of the queue
  1203. * @list: list to dequeue from
  1204. *
  1205. * Remove the tail of the list. This function does not take any locks
  1206. * so must be used with appropriate locks held only. The tail item is
  1207. * returned or %NULL if the list is empty.
  1208. */
  1209. struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  1210. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  1211. {
  1212. struct sk_buff *skb = skb_peek_tail(list);
  1213. if (skb)
  1214. __skb_unlink(skb, list);
  1215. return skb;
  1216. }
  1217. static inline bool skb_is_nonlinear(const struct sk_buff *skb)
  1218. {
  1219. return skb->data_len;
  1220. }
  1221. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  1222. {
  1223. return skb->len - skb->data_len;
  1224. }
  1225. static inline int skb_pagelen(const struct sk_buff *skb)
  1226. {
  1227. int i, len = 0;
  1228. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  1229. len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
  1230. return len + skb_headlen(skb);
  1231. }
  1232. /**
  1233. * __skb_fill_page_desc - initialise a paged fragment in an skb
  1234. * @skb: buffer containing fragment to be initialised
  1235. * @i: paged fragment index to initialise
  1236. * @page: the page to use for this fragment
  1237. * @off: the offset to the data with @page
  1238. * @size: the length of the data
  1239. *
  1240. * Initialises the @i'th fragment of @skb to point to &size bytes at
  1241. * offset @off within @page.
  1242. *
  1243. * Does not take any additional reference on the fragment.
  1244. */
  1245. static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
  1246. struct page *page, int off, int size)
  1247. {
  1248. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1249. /*
  1250. * Propagate page->pfmemalloc to the skb if we can. The problem is
  1251. * that not all callers have unique ownership of the page. If
  1252. * pfmemalloc is set, we check the mapping as a mapping implies
  1253. * page->index is set (index and pfmemalloc share space).
  1254. * If it's a valid mapping, we cannot use page->pfmemalloc but we
  1255. * do not lose pfmemalloc information as the pages would not be
  1256. * allocated using __GFP_MEMALLOC.
  1257. */
  1258. frag->page.p = page;
  1259. frag->page_offset = off;
  1260. skb_frag_size_set(frag, size);
  1261. page = compound_head(page);
  1262. if (page->pfmemalloc && !page->mapping)
  1263. skb->pfmemalloc = true;
  1264. }
  1265. /**
  1266. * skb_fill_page_desc - initialise a paged fragment in an skb
  1267. * @skb: buffer containing fragment to be initialised
  1268. * @i: paged fragment index to initialise
  1269. * @page: the page to use for this fragment
  1270. * @off: the offset to the data with @page
  1271. * @size: the length of the data
  1272. *
  1273. * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
  1274. * @skb to point to @size bytes at offset @off within @page. In
  1275. * addition updates @skb such that @i is the last fragment.
  1276. *
  1277. * Does not take any additional reference on the fragment.
  1278. */
  1279. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  1280. struct page *page, int off, int size)
  1281. {
  1282. __skb_fill_page_desc(skb, i, page, off, size);
  1283. skb_shinfo(skb)->nr_frags = i + 1;
  1284. }
  1285. void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
  1286. int size, unsigned int truesize);
  1287. void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
  1288. unsigned int truesize);
  1289. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  1290. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
  1291. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  1292. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1293. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1294. {
  1295. return skb->head + skb->tail;
  1296. }
  1297. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1298. {
  1299. skb->tail = skb->data - skb->head;
  1300. }
  1301. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1302. {
  1303. skb_reset_tail_pointer(skb);
  1304. skb->tail += offset;
  1305. }
  1306. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1307. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1308. {
  1309. return skb->tail;
  1310. }
  1311. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1312. {
  1313. skb->tail = skb->data;
  1314. }
  1315. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1316. {
  1317. skb->tail = skb->data + offset;
  1318. }
  1319. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1320. /*
  1321. * Add data to an sk_buff
  1322. */
  1323. unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
  1324. unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  1325. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  1326. {
  1327. unsigned char *tmp = skb_tail_pointer(skb);
  1328. SKB_LINEAR_ASSERT(skb);
  1329. skb->tail += len;
  1330. skb->len += len;
  1331. return tmp;
  1332. }
  1333. unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  1334. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  1335. {
  1336. skb->data -= len;
  1337. skb->len += len;
  1338. return skb->data;
  1339. }
  1340. unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  1341. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  1342. {
  1343. skb->len -= len;
  1344. BUG_ON(skb->len < skb->data_len);
  1345. return skb->data += len;
  1346. }
  1347. static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
  1348. {
  1349. return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
  1350. }
  1351. unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  1352. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  1353. {
  1354. if (len > skb_headlen(skb) &&
  1355. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  1356. return NULL;
  1357. skb->len -= len;
  1358. return skb->data += len;
  1359. }
  1360. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  1361. {
  1362. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  1363. }
  1364. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  1365. {
  1366. if (likely(len <= skb_headlen(skb)))
  1367. return 1;
  1368. if (unlikely(len > skb->len))
  1369. return 0;
  1370. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  1371. }
  1372. /**
  1373. * skb_headroom - bytes at buffer head
  1374. * @skb: buffer to check
  1375. *
  1376. * Return the number of bytes of free space at the head of an &sk_buff.
  1377. */
  1378. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  1379. {
  1380. return skb->data - skb->head;
  1381. }
  1382. /**
  1383. * skb_tailroom - bytes at buffer end
  1384. * @skb: buffer to check
  1385. *
  1386. * Return the number of bytes of free space at the tail of an sk_buff
  1387. */
  1388. static inline int skb_tailroom(const struct sk_buff *skb)
  1389. {
  1390. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  1391. }
  1392. /**
  1393. * skb_availroom - bytes at buffer end
  1394. * @skb: buffer to check
  1395. *
  1396. * Return the number of bytes of free space at the tail of an sk_buff
  1397. * allocated by sk_stream_alloc()
  1398. */
  1399. static inline int skb_availroom(const struct sk_buff *skb)
  1400. {
  1401. if (skb_is_nonlinear(skb))
  1402. return 0;
  1403. return skb->end - skb->tail - skb->reserved_tailroom;
  1404. }
  1405. /**
  1406. * skb_reserve - adjust headroom
  1407. * @skb: buffer to alter
  1408. * @len: bytes to move
  1409. *
  1410. * Increase the headroom of an empty &sk_buff by reducing the tail
  1411. * room. This is only allowed for an empty buffer.
  1412. */
  1413. static inline void skb_reserve(struct sk_buff *skb, int len)
  1414. {
  1415. skb->data += len;
  1416. skb->tail += len;
  1417. }
  1418. static inline void skb_reset_inner_headers(struct sk_buff *skb)
  1419. {
  1420. skb->inner_mac_header = skb->mac_header;
  1421. skb->inner_network_header = skb->network_header;
  1422. skb->inner_transport_header = skb->transport_header;
  1423. }
  1424. static inline void skb_reset_mac_len(struct sk_buff *skb)
  1425. {
  1426. skb->mac_len = skb->network_header - skb->mac_header;
  1427. }
  1428. static inline unsigned char *skb_inner_transport_header(const struct sk_buff
  1429. *skb)
  1430. {
  1431. return skb->head + skb->inner_transport_header;
  1432. }
  1433. static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
  1434. {
  1435. skb->inner_transport_header = skb->data - skb->head;
  1436. }
  1437. static inline void skb_set_inner_transport_header(struct sk_buff *skb,
  1438. const int offset)
  1439. {
  1440. skb_reset_inner_transport_header(skb);
  1441. skb->inner_transport_header += offset;
  1442. }
  1443. static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
  1444. {
  1445. return skb->head + skb->inner_network_header;
  1446. }
  1447. static inline void skb_reset_inner_network_header(struct sk_buff *skb)
  1448. {
  1449. skb->inner_network_header = skb->data - skb->head;
  1450. }
  1451. static inline void skb_set_inner_network_header(struct sk_buff *skb,
  1452. const int offset)
  1453. {
  1454. skb_reset_inner_network_header(skb);
  1455. skb->inner_network_header += offset;
  1456. }
  1457. static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
  1458. {
  1459. return skb->head + skb->inner_mac_header;
  1460. }
  1461. static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
  1462. {
  1463. skb->inner_mac_header = skb->data - skb->head;
  1464. }
  1465. static inline void skb_set_inner_mac_header(struct sk_buff *skb,
  1466. const int offset)
  1467. {
  1468. skb_reset_inner_mac_header(skb);
  1469. skb->inner_mac_header += offset;
  1470. }
  1471. static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
  1472. {
  1473. return skb->transport_header != (typeof(skb->transport_header))~0U;
  1474. }
  1475. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1476. {
  1477. return skb->head + skb->transport_header;
  1478. }
  1479. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1480. {
  1481. skb->transport_header = skb->data - skb->head;
  1482. }
  1483. static inline void skb_set_transport_header(struct sk_buff *skb,
  1484. const int offset)
  1485. {
  1486. skb_reset_transport_header(skb);
  1487. skb->transport_header += offset;
  1488. }
  1489. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1490. {
  1491. return skb->head + skb->network_header;
  1492. }
  1493. static inline void skb_reset_network_header(struct sk_buff *skb)
  1494. {
  1495. skb->network_header = skb->data - skb->head;
  1496. }
  1497. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1498. {
  1499. skb_reset_network_header(skb);
  1500. skb->network_header += offset;
  1501. }
  1502. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1503. {
  1504. return skb->head + skb->mac_header;
  1505. }
  1506. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1507. {
  1508. return skb->mac_header != (typeof(skb->mac_header))~0U;
  1509. }
  1510. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1511. {
  1512. skb->mac_header = skb->data - skb->head;
  1513. }
  1514. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1515. {
  1516. skb_reset_mac_header(skb);
  1517. skb->mac_header += offset;
  1518. }
  1519. static inline void skb_pop_mac_header(struct sk_buff *skb)
  1520. {
  1521. skb->mac_header = skb->network_header;
  1522. }
  1523. static inline void skb_probe_transport_header(struct sk_buff *skb,
  1524. const int offset_hint)
  1525. {
  1526. struct flow_keys keys;
  1527. if (skb_transport_header_was_set(skb))
  1528. return;
  1529. else if (skb_flow_dissect(skb, &keys))
  1530. skb_set_transport_header(skb, keys.thoff);
  1531. else
  1532. skb_set_transport_header(skb, offset_hint);
  1533. }
  1534. static inline void skb_mac_header_rebuild(struct sk_buff *skb)
  1535. {
  1536. if (skb_mac_header_was_set(skb)) {
  1537. const unsigned char *old_mac = skb_mac_header(skb);
  1538. skb_set_mac_header(skb, -skb->mac_len);
  1539. memmove(skb_mac_header(skb), old_mac, skb->mac_len);
  1540. }
  1541. }
  1542. static inline int skb_checksum_start_offset(const struct sk_buff *skb)
  1543. {
  1544. return skb->csum_start - skb_headroom(skb);
  1545. }
  1546. static inline int skb_transport_offset(const struct sk_buff *skb)
  1547. {
  1548. return skb_transport_header(skb) - skb->data;
  1549. }
  1550. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  1551. {
  1552. return skb->transport_header - skb->network_header;
  1553. }
  1554. static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
  1555. {
  1556. return skb->inner_transport_header - skb->inner_network_header;
  1557. }
  1558. static inline int skb_network_offset(const struct sk_buff *skb)
  1559. {
  1560. return skb_network_header(skb) - skb->data;
  1561. }
  1562. static inline int skb_inner_network_offset(const struct sk_buff *skb)
  1563. {
  1564. return skb_inner_network_header(skb) - skb->data;
  1565. }
  1566. static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
  1567. {
  1568. return pskb_may_pull(skb, skb_network_offset(skb) + len);
  1569. }
  1570. /*
  1571. * CPUs often take a performance hit when accessing unaligned memory
  1572. * locations. The actual performance hit varies, it can be small if the
  1573. * hardware handles it or large if we have to take an exception and fix it
  1574. * in software.
  1575. *
  1576. * Since an ethernet header is 14 bytes network drivers often end up with
  1577. * the IP header at an unaligned offset. The IP header can be aligned by
  1578. * shifting the start of the packet by 2 bytes. Drivers should do this
  1579. * with:
  1580. *
  1581. * skb_reserve(skb, NET_IP_ALIGN);
  1582. *
  1583. * The downside to this alignment of the IP header is that the DMA is now
  1584. * unaligned. On some architectures the cost of an unaligned DMA is high
  1585. * and this cost outweighs the gains made by aligning the IP header.
  1586. *
  1587. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  1588. * to be overridden.
  1589. */
  1590. #ifndef NET_IP_ALIGN
  1591. #define NET_IP_ALIGN 2
  1592. #endif
  1593. /*
  1594. * The networking layer reserves some headroom in skb data (via
  1595. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  1596. * the header has to grow. In the default case, if the header has to grow
  1597. * 32 bytes or less we avoid the reallocation.
  1598. *
  1599. * Unfortunately this headroom changes the DMA alignment of the resulting
  1600. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  1601. * on some architectures. An architecture can override this value,
  1602. * perhaps setting it to a cacheline in size (since that will maintain
  1603. * cacheline alignment of the DMA). It must be a power of 2.
  1604. *
  1605. * Various parts of the networking layer expect at least 32 bytes of
  1606. * headroom, you should not reduce this.
  1607. *
  1608. * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
  1609. * to reduce average number of cache lines per packet.
  1610. * get_rps_cpus() for example only access one 64 bytes aligned block :
  1611. * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
  1612. */
  1613. #ifndef NET_SKB_PAD
  1614. #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
  1615. #endif
  1616. int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  1617. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1618. {
  1619. if (unlikely(skb_is_nonlinear(skb))) {
  1620. WARN_ON(1);
  1621. return;
  1622. }
  1623. skb->len = len;
  1624. skb_set_tail_pointer(skb, len);
  1625. }
  1626. void skb_trim(struct sk_buff *skb, unsigned int len);
  1627. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1628. {
  1629. if (skb->data_len)
  1630. return ___pskb_trim(skb, len);
  1631. __skb_trim(skb, len);
  1632. return 0;
  1633. }
  1634. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1635. {
  1636. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1637. }
  1638. /**
  1639. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1640. * @skb: buffer to alter
  1641. * @len: new length
  1642. *
  1643. * This is identical to pskb_trim except that the caller knows that
  1644. * the skb is not cloned so we should never get an error due to out-
  1645. * of-memory.
  1646. */
  1647. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1648. {
  1649. int err = pskb_trim(skb, len);
  1650. BUG_ON(err);
  1651. }
  1652. /**
  1653. * skb_orphan - orphan a buffer
  1654. * @skb: buffer to orphan
  1655. *
  1656. * If a buffer currently has an owner then we call the owner's
  1657. * destructor function and make the @skb unowned. The buffer continues
  1658. * to exist but is no longer charged to its former owner.
  1659. */
  1660. static inline void skb_orphan(struct sk_buff *skb)
  1661. {
  1662. if (skb->destructor) {
  1663. skb->destructor(skb);
  1664. skb->destructor = NULL;
  1665. skb->sk = NULL;
  1666. } else {
  1667. BUG_ON(skb->sk);
  1668. }
  1669. }
  1670. /**
  1671. * skb_orphan_frags - orphan the frags contained in a buffer
  1672. * @skb: buffer to orphan frags from
  1673. * @gfp_mask: allocation mask for replacement pages
  1674. *
  1675. * For each frag in the SKB which needs a destructor (i.e. has an
  1676. * owner) create a copy of that frag and release the original
  1677. * page by calling the destructor.
  1678. */
  1679. static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
  1680. {
  1681. if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
  1682. return 0;
  1683. return skb_copy_ubufs(skb, gfp_mask);
  1684. }
  1685. /**
  1686. * __skb_queue_purge - empty a list
  1687. * @list: list to empty
  1688. *
  1689. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1690. * the list and one reference dropped. This function does not take the
  1691. * list lock and the caller must hold the relevant locks to use it.
  1692. */
  1693. void skb_queue_purge(struct sk_buff_head *list);
  1694. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1695. {
  1696. struct sk_buff *skb;
  1697. while ((skb = __skb_dequeue(list)) != NULL)
  1698. kfree_skb(skb);
  1699. }
  1700. #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
  1701. #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
  1702. #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
  1703. void *netdev_alloc_frag(unsigned int fragsz);
  1704. struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
  1705. gfp_t gfp_mask);
  1706. /**
  1707. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1708. * @dev: network device to receive on
  1709. * @length: length to allocate
  1710. *
  1711. * Allocate a new &sk_buff and assign it a usage count of one. The
  1712. * buffer has unspecified headroom built in. Users should allocate
  1713. * the headroom they think they need without accounting for the
  1714. * built in space. The built in space is used for optimisations.
  1715. *
  1716. * %NULL is returned if there is no free memory. Although this function
  1717. * allocates memory it can be called from an interrupt.
  1718. */
  1719. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1720. unsigned int length)
  1721. {
  1722. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1723. }
  1724. /* legacy helper around __netdev_alloc_skb() */
  1725. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1726. gfp_t gfp_mask)
  1727. {
  1728. return __netdev_alloc_skb(NULL, length, gfp_mask);
  1729. }
  1730. /* legacy helper around netdev_alloc_skb() */
  1731. static inline struct sk_buff *dev_alloc_skb(unsigned int length)
  1732. {
  1733. return netdev_alloc_skb(NULL, length);
  1734. }
  1735. static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
  1736. unsigned int length, gfp_t gfp)
  1737. {
  1738. struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
  1739. if (NET_IP_ALIGN && skb)
  1740. skb_reserve(skb, NET_IP_ALIGN);
  1741. return skb;
  1742. }
  1743. static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
  1744. unsigned int length)
  1745. {
  1746. return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
  1747. }
  1748. /**
  1749. * __skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data
  1750. * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
  1751. * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
  1752. * @order: size of the allocation
  1753. *
  1754. * Allocate a new page.
  1755. *
  1756. * %NULL is returned if there is no free memory.
  1757. */
  1758. static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
  1759. struct sk_buff *skb,
  1760. unsigned int order)
  1761. {
  1762. struct page *page;
  1763. gfp_mask |= __GFP_COLD;
  1764. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1765. gfp_mask |= __GFP_MEMALLOC;
  1766. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
  1767. if (skb && page && page->pfmemalloc)
  1768. skb->pfmemalloc = true;
  1769. return page;
  1770. }
  1771. /**
  1772. * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
  1773. * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
  1774. * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
  1775. *
  1776. * Allocate a new page.
  1777. *
  1778. * %NULL is returned if there is no free memory.
  1779. */
  1780. static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
  1781. struct sk_buff *skb)
  1782. {
  1783. return __skb_alloc_pages(gfp_mask, skb, 0);
  1784. }
  1785. /**
  1786. * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
  1787. * @page: The page that was allocated from skb_alloc_page
  1788. * @skb: The skb that may need pfmemalloc set
  1789. */
  1790. static inline void skb_propagate_pfmemalloc(struct page *page,
  1791. struct sk_buff *skb)
  1792. {
  1793. if (page && page->pfmemalloc)
  1794. skb->pfmemalloc = true;
  1795. }
  1796. /**
  1797. * skb_frag_page - retrieve the page refered to by a paged fragment
  1798. * @frag: the paged fragment
  1799. *
  1800. * Returns the &struct page associated with @frag.
  1801. */
  1802. static inline struct page *skb_frag_page(const skb_frag_t *frag)
  1803. {
  1804. return frag->page.p;
  1805. }
  1806. /**
  1807. * __skb_frag_ref - take an addition reference on a paged fragment.
  1808. * @frag: the paged fragment
  1809. *
  1810. * Takes an additional reference on the paged fragment @frag.
  1811. */
  1812. static inline void __skb_frag_ref(skb_frag_t *frag)
  1813. {
  1814. get_page(skb_frag_page(frag));
  1815. }
  1816. /**
  1817. * skb_frag_ref - take an addition reference on a paged fragment of an skb.
  1818. * @skb: the buffer
  1819. * @f: the fragment offset.
  1820. *
  1821. * Takes an additional reference on the @f'th paged fragment of @skb.
  1822. */
  1823. static inline void skb_frag_ref(struct sk_buff *skb, int f)
  1824. {
  1825. __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
  1826. }
  1827. /**
  1828. * __skb_frag_unref - release a reference on a paged fragment.
  1829. * @frag: the paged fragment
  1830. *
  1831. * Releases a reference on the paged fragment @frag.
  1832. */
  1833. static inline void __skb_frag_unref(skb_frag_t *frag)
  1834. {
  1835. put_page(skb_frag_page(frag));
  1836. }
  1837. /**
  1838. * skb_frag_unref - release a reference on a paged fragment of an skb.
  1839. * @skb: the buffer
  1840. * @f: the fragment offset
  1841. *
  1842. * Releases a reference on the @f'th paged fragment of @skb.
  1843. */
  1844. static inline void skb_frag_unref(struct sk_buff *skb, int f)
  1845. {
  1846. __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
  1847. }
  1848. /**
  1849. * skb_frag_address - gets the address of the data contained in a paged fragment
  1850. * @frag: the paged fragment buffer
  1851. *
  1852. * Returns the address of the data within @frag. The page must already
  1853. * be mapped.
  1854. */
  1855. static inline void *skb_frag_address(const skb_frag_t *frag)
  1856. {
  1857. return page_address(skb_frag_page(frag)) + frag->page_offset;
  1858. }
  1859. /**
  1860. * skb_frag_address_safe - gets the address of the data contained in a paged fragment
  1861. * @frag: the paged fragment buffer
  1862. *
  1863. * Returns the address of the data within @frag. Checks that the page
  1864. * is mapped and returns %NULL otherwise.
  1865. */
  1866. static inline void *skb_frag_address_safe(const skb_frag_t *frag)
  1867. {
  1868. void *ptr = page_address(skb_frag_page(frag));
  1869. if (unlikely(!ptr))
  1870. return NULL;
  1871. return ptr + frag->page_offset;
  1872. }
  1873. /**
  1874. * __skb_frag_set_page - sets the page contained in a paged fragment
  1875. * @frag: the paged fragment
  1876. * @page: the page to set
  1877. *
  1878. * Sets the fragment @frag to contain @page.
  1879. */
  1880. static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
  1881. {
  1882. frag->page.p = page;
  1883. }
  1884. /**
  1885. * skb_frag_set_page - sets the page contained in a paged fragment of an skb
  1886. * @skb: the buffer
  1887. * @f: the fragment offset
  1888. * @page: the page to set
  1889. *
  1890. * Sets the @f'th fragment of @skb to contain @page.
  1891. */
  1892. static inline void skb_frag_set_page(struct sk_buff *skb, int f,
  1893. struct page *page)
  1894. {
  1895. __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
  1896. }
  1897. bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
  1898. /**
  1899. * skb_frag_dma_map - maps a paged fragment via the DMA API
  1900. * @dev: the device to map the fragment to
  1901. * @frag: the paged fragment to map
  1902. * @offset: the offset within the fragment (starting at the
  1903. * fragment's own offset)
  1904. * @size: the number of bytes to map
  1905. * @dir: the direction of the mapping (%PCI_DMA_*)
  1906. *
  1907. * Maps the page associated with @frag to @device.
  1908. */
  1909. static inline dma_addr_t skb_frag_dma_map(struct device *dev,
  1910. const skb_frag_t *frag,
  1911. size_t offset, size_t size,
  1912. enum dma_data_direction dir)
  1913. {
  1914. return dma_map_page(dev, skb_frag_page(frag),
  1915. frag->page_offset + offset, size, dir);
  1916. }
  1917. static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
  1918. gfp_t gfp_mask)
  1919. {
  1920. return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
  1921. }
  1922. /**
  1923. * skb_clone_writable - is the header of a clone writable
  1924. * @skb: buffer to check
  1925. * @len: length up to which to write
  1926. *
  1927. * Returns true if modifying the header part of the cloned buffer
  1928. * does not requires the data to be copied.
  1929. */
  1930. static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
  1931. {
  1932. return !skb_header_cloned(skb) &&
  1933. skb_headroom(skb) + len <= skb->hdr_len;
  1934. }
  1935. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  1936. int cloned)
  1937. {
  1938. int delta = 0;
  1939. if (headroom > skb_headroom(skb))
  1940. delta = headroom - skb_headroom(skb);
  1941. if (delta || cloned)
  1942. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  1943. GFP_ATOMIC);
  1944. return 0;
  1945. }
  1946. /**
  1947. * skb_cow - copy header of skb when it is required
  1948. * @skb: buffer to cow
  1949. * @headroom: needed headroom
  1950. *
  1951. * If the skb passed lacks sufficient headroom or its data part
  1952. * is shared, data is reallocated. If reallocation fails, an error
  1953. * is returned and original skb is not changed.
  1954. *
  1955. * The result is skb with writable area skb->head...skb->tail
  1956. * and at least @headroom of space at head.
  1957. */
  1958. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1959. {
  1960. return __skb_cow(skb, headroom, skb_cloned(skb));
  1961. }
  1962. /**
  1963. * skb_cow_head - skb_cow but only making the head writable
  1964. * @skb: buffer to cow
  1965. * @headroom: needed headroom
  1966. *
  1967. * This function is identical to skb_cow except that we replace the
  1968. * skb_cloned check by skb_header_cloned. It should be used when
  1969. * you only need to push on some header and do not need to modify
  1970. * the data.
  1971. */
  1972. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  1973. {
  1974. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  1975. }
  1976. /**
  1977. * skb_padto - pad an skbuff up to a minimal size
  1978. * @skb: buffer to pad
  1979. * @len: minimal length
  1980. *
  1981. * Pads up a buffer to ensure the trailing bytes exist and are
  1982. * blanked. If the buffer already contains sufficient data it
  1983. * is untouched. Otherwise it is extended. Returns zero on
  1984. * success. The skb is freed on error.
  1985. */
  1986. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1987. {
  1988. unsigned int size = skb->len;
  1989. if (likely(size >= len))
  1990. return 0;
  1991. return skb_pad(skb, len - size);
  1992. }
  1993. static inline int skb_add_data(struct sk_buff *skb,
  1994. char __user *from, int copy)
  1995. {
  1996. const int off = skb->len;
  1997. if (skb->ip_summed == CHECKSUM_NONE) {
  1998. int err = 0;
  1999. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  2000. copy, 0, &err);
  2001. if (!err) {
  2002. skb->csum = csum_block_add(skb->csum, csum, off);
  2003. return 0;
  2004. }
  2005. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  2006. return 0;
  2007. __skb_trim(skb, off);
  2008. return -EFAULT;
  2009. }
  2010. static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
  2011. const struct page *page, int off)
  2012. {
  2013. if (i) {
  2014. const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  2015. return page == skb_frag_page(frag) &&
  2016. off == frag->page_offset + skb_frag_size(frag);
  2017. }
  2018. return false;
  2019. }
  2020. static inline int __skb_linearize(struct sk_buff *skb)
  2021. {
  2022. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  2023. }
  2024. /**
  2025. * skb_linearize - convert paged skb to linear one
  2026. * @skb: buffer to linarize
  2027. *
  2028. * If there is no free memory -ENOMEM is returned, otherwise zero
  2029. * is returned and the old skb data released.
  2030. */
  2031. static inline int skb_linearize(struct sk_buff *skb)
  2032. {
  2033. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  2034. }
  2035. /**
  2036. * skb_has_shared_frag - can any frag be overwritten
  2037. * @skb: buffer to test
  2038. *
  2039. * Return true if the skb has at least one frag that might be modified
  2040. * by an external entity (as in vmsplice()/sendfile())
  2041. */
  2042. static inline bool skb_has_shared_frag(const struct sk_buff *skb)
  2043. {
  2044. return skb_is_nonlinear(skb) &&
  2045. skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
  2046. }
  2047. /**
  2048. * skb_linearize_cow - make sure skb is linear and writable
  2049. * @skb: buffer to process
  2050. *
  2051. * If there is no free memory -ENOMEM is returned, otherwise zero
  2052. * is returned and the old skb data released.
  2053. */
  2054. static inline int skb_linearize_cow(struct sk_buff *skb)
  2055. {
  2056. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  2057. __skb_linearize(skb) : 0;
  2058. }
  2059. /**
  2060. * skb_postpull_rcsum - update checksum for received skb after pull
  2061. * @skb: buffer to update
  2062. * @start: start of data before pull
  2063. * @len: length of data pulled
  2064. *
  2065. * After doing a pull on a received packet, you need to call this to
  2066. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  2067. * CHECKSUM_NONE so that it can be recomputed from scratch.
  2068. */
  2069. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  2070. const void *start, unsigned int len)
  2071. {
  2072. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2073. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  2074. }
  2075. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  2076. /**
  2077. * pskb_trim_rcsum - trim received skb and update checksum
  2078. * @skb: buffer to trim
  2079. * @len: new length
  2080. *
  2081. * This is exactly the same as pskb_trim except that it ensures the
  2082. * checksum of received packets are still valid after the operation.
  2083. */
  2084. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  2085. {
  2086. if (likely(len >= skb->len))
  2087. return 0;
  2088. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2089. skb->ip_summed = CHECKSUM_NONE;
  2090. return __pskb_trim(skb, len);
  2091. }
  2092. #define skb_queue_walk(queue, skb) \
  2093. for (skb = (queue)->next; \
  2094. skb != (struct sk_buff *)(queue); \
  2095. skb = skb->next)
  2096. #define skb_queue_walk_safe(queue, skb, tmp) \
  2097. for (skb = (queue)->next, tmp = skb->next; \
  2098. skb != (struct sk_buff *)(queue); \
  2099. skb = tmp, tmp = skb->next)
  2100. #define skb_queue_walk_from(queue, skb) \
  2101. for (; skb != (struct sk_buff *)(queue); \
  2102. skb = skb->next)
  2103. #define skb_queue_walk_from_safe(queue, skb, tmp) \
  2104. for (tmp = skb->next; \
  2105. skb != (struct sk_buff *)(queue); \
  2106. skb = tmp, tmp = skb->next)
  2107. #define skb_queue_reverse_walk(queue, skb) \
  2108. for (skb = (queue)->prev; \
  2109. skb != (struct sk_buff *)(queue); \
  2110. skb = skb->prev)
  2111. #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
  2112. for (skb = (queue)->prev, tmp = skb->prev; \
  2113. skb != (struct sk_buff *)(queue); \
  2114. skb = tmp, tmp = skb->prev)
  2115. #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
  2116. for (tmp = skb->prev; \
  2117. skb != (struct sk_buff *)(queue); \
  2118. skb = tmp, tmp = skb->prev)
  2119. static inline bool skb_has_frag_list(const struct sk_buff *skb)
  2120. {
  2121. return skb_shinfo(skb)->frag_list != NULL;
  2122. }
  2123. static inline void skb_frag_list_init(struct sk_buff *skb)
  2124. {
  2125. skb_shinfo(skb)->frag_list = NULL;
  2126. }
  2127. static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
  2128. {
  2129. frag->next = skb_shinfo(skb)->frag_list;
  2130. skb_shinfo(skb)->frag_list = frag;
  2131. }
  2132. #define skb_walk_frags(skb, iter) \
  2133. for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
  2134. struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  2135. int *peeked, int *off, int *err);
  2136. struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
  2137. int *err);
  2138. unsigned int datagram_poll(struct file *file, struct socket *sock,
  2139. struct poll_table_struct *wait);
  2140. int skb_copy_datagram_iovec(const struct sk_buff *from, int offset,
  2141. struct iovec *to, int size);
  2142. int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen,
  2143. struct iovec *iov);
  2144. int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset,
  2145. const struct iovec *from, int from_offset,
  2146. int len);
  2147. int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm,
  2148. int offset, size_t count);
  2149. int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset,
  2150. const struct iovec *to, int to_offset,
  2151. int size);
  2152. void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  2153. void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
  2154. int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
  2155. int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
  2156. int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
  2157. __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
  2158. int len, __wsum csum);
  2159. int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
  2160. struct pipe_inode_info *pipe, unsigned int len,
  2161. unsigned int flags);
  2162. void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  2163. unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
  2164. void skb_zerocopy(struct sk_buff *to, const struct sk_buff *from,
  2165. int len, int hlen);
  2166. void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
  2167. int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
  2168. void skb_scrub_packet(struct sk_buff *skb, bool xnet);
  2169. struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
  2170. struct skb_checksum_ops {
  2171. __wsum (*update)(const void *mem, int len, __wsum wsum);
  2172. __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
  2173. };
  2174. __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
  2175. __wsum csum, const struct skb_checksum_ops *ops);
  2176. __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
  2177. __wsum csum);
  2178. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  2179. int len, void *buffer)
  2180. {
  2181. int hlen = skb_headlen(skb);
  2182. if (hlen - offset >= len)
  2183. return skb->data + offset;
  2184. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  2185. return NULL;
  2186. return buffer;
  2187. }
  2188. /**
  2189. * skb_needs_linearize - check if we need to linearize a given skb
  2190. * depending on the given device features.
  2191. * @skb: socket buffer to check
  2192. * @features: net device features
  2193. *
  2194. * Returns true if either:
  2195. * 1. skb has frag_list and the device doesn't support FRAGLIST, or
  2196. * 2. skb is fragmented and the device does not support SG.
  2197. */
  2198. static inline bool skb_needs_linearize(struct sk_buff *skb,
  2199. netdev_features_t features)
  2200. {
  2201. return skb_is_nonlinear(skb) &&
  2202. ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
  2203. (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
  2204. }
  2205. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  2206. void *to,
  2207. const unsigned int len)
  2208. {
  2209. memcpy(to, skb->data, len);
  2210. }
  2211. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  2212. const int offset, void *to,
  2213. const unsigned int len)
  2214. {
  2215. memcpy(to, skb->data + offset, len);
  2216. }
  2217. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  2218. const void *from,
  2219. const unsigned int len)
  2220. {
  2221. memcpy(skb->data, from, len);
  2222. }
  2223. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  2224. const int offset,
  2225. const void *from,
  2226. const unsigned int len)
  2227. {
  2228. memcpy(skb->data + offset, from, len);
  2229. }
  2230. void skb_init(void);
  2231. static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
  2232. {
  2233. return skb->tstamp;
  2234. }
  2235. /**
  2236. * skb_get_timestamp - get timestamp from a skb
  2237. * @skb: skb to get stamp from
  2238. * @stamp: pointer to struct timeval to store stamp in
  2239. *
  2240. * Timestamps are stored in the skb as offsets to a base timestamp.
  2241. * This function converts the offset back to a struct timeval and stores
  2242. * it in stamp.
  2243. */
  2244. static inline void skb_get_timestamp(const struct sk_buff *skb,
  2245. struct timeval *stamp)
  2246. {
  2247. *stamp = ktime_to_timeval(skb->tstamp);
  2248. }
  2249. static inline void skb_get_timestampns(const struct sk_buff *skb,
  2250. struct timespec *stamp)
  2251. {
  2252. *stamp = ktime_to_timespec(skb->tstamp);
  2253. }
  2254. static inline void __net_timestamp(struct sk_buff *skb)
  2255. {
  2256. skb->tstamp = ktime_get_real();
  2257. }
  2258. static inline ktime_t net_timedelta(ktime_t t)
  2259. {
  2260. return ktime_sub(ktime_get_real(), t);
  2261. }
  2262. static inline ktime_t net_invalid_timestamp(void)
  2263. {
  2264. return ktime_set(0, 0);
  2265. }
  2266. void skb_timestamping_init(void);
  2267. #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
  2268. void skb_clone_tx_timestamp(struct sk_buff *skb);
  2269. bool skb_defer_rx_timestamp(struct sk_buff *skb);
  2270. #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
  2271. static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
  2272. {
  2273. }
  2274. static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
  2275. {
  2276. return false;
  2277. }
  2278. #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
  2279. /**
  2280. * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
  2281. *
  2282. * PHY drivers may accept clones of transmitted packets for
  2283. * timestamping via their phy_driver.txtstamp method. These drivers
  2284. * must call this function to return the skb back to the stack, with
  2285. * or without a timestamp.
  2286. *
  2287. * @skb: clone of the the original outgoing packet
  2288. * @hwtstamps: hardware time stamps, may be NULL if not available
  2289. *
  2290. */
  2291. void skb_complete_tx_timestamp(struct sk_buff *skb,
  2292. struct skb_shared_hwtstamps *hwtstamps);
  2293. /**
  2294. * skb_tstamp_tx - queue clone of skb with send time stamps
  2295. * @orig_skb: the original outgoing packet
  2296. * @hwtstamps: hardware time stamps, may be NULL if not available
  2297. *
  2298. * If the skb has a socket associated, then this function clones the
  2299. * skb (thus sharing the actual data and optional structures), stores
  2300. * the optional hardware time stamping information (if non NULL) or
  2301. * generates a software time stamp (otherwise), then queues the clone
  2302. * to the error queue of the socket. Errors are silently ignored.
  2303. */
  2304. void skb_tstamp_tx(struct sk_buff *orig_skb,
  2305. struct skb_shared_hwtstamps *hwtstamps);
  2306. static inline void sw_tx_timestamp(struct sk_buff *skb)
  2307. {
  2308. if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
  2309. !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
  2310. skb_tstamp_tx(skb, NULL);
  2311. }
  2312. /**
  2313. * skb_tx_timestamp() - Driver hook for transmit timestamping
  2314. *
  2315. * Ethernet MAC Drivers should call this function in their hard_xmit()
  2316. * function immediately before giving the sk_buff to the MAC hardware.
  2317. *
  2318. * Specifically, one should make absolutely sure that this function is
  2319. * called before TX completion of this packet can trigger. Otherwise
  2320. * the packet could potentially already be freed.
  2321. *
  2322. * @skb: A socket buffer.
  2323. */
  2324. static inline void skb_tx_timestamp(struct sk_buff *skb)
  2325. {
  2326. skb_clone_tx_timestamp(skb);
  2327. sw_tx_timestamp(skb);
  2328. }
  2329. /**
  2330. * skb_complete_wifi_ack - deliver skb with wifi status
  2331. *
  2332. * @skb: the original outgoing packet
  2333. * @acked: ack status
  2334. *
  2335. */
  2336. void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
  2337. __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  2338. __sum16 __skb_checksum_complete(struct sk_buff *skb);
  2339. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  2340. {
  2341. return skb->ip_summed & CHECKSUM_UNNECESSARY;
  2342. }
  2343. /**
  2344. * skb_checksum_complete - Calculate checksum of an entire packet
  2345. * @skb: packet to process
  2346. *
  2347. * This function calculates the checksum over the entire packet plus
  2348. * the value of skb->csum. The latter can be used to supply the
  2349. * checksum of a pseudo header as used by TCP/UDP. It returns the
  2350. * checksum.
  2351. *
  2352. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  2353. * this function can be used to verify that checksum on received
  2354. * packets. In that case the function should return zero if the
  2355. * checksum is correct. In particular, this function will return zero
  2356. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  2357. * hardware has already verified the correctness of the checksum.
  2358. */
  2359. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  2360. {
  2361. return skb_csum_unnecessary(skb) ?
  2362. 0 : __skb_checksum_complete(skb);
  2363. }
  2364. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2365. void nf_conntrack_destroy(struct nf_conntrack *nfct);
  2366. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  2367. {
  2368. if (nfct && atomic_dec_and_test(&nfct->use))
  2369. nf_conntrack_destroy(nfct);
  2370. }
  2371. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  2372. {
  2373. if (nfct)
  2374. atomic_inc(&nfct->use);
  2375. }
  2376. #endif
  2377. #ifdef CONFIG_BRIDGE_NETFILTER
  2378. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  2379. {
  2380. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  2381. kfree(nf_bridge);
  2382. }
  2383. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  2384. {
  2385. if (nf_bridge)
  2386. atomic_inc(&nf_bridge->use);
  2387. }
  2388. #endif /* CONFIG_BRIDGE_NETFILTER */
  2389. static inline void nf_reset(struct sk_buff *skb)
  2390. {
  2391. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2392. nf_conntrack_put(skb->nfct);
  2393. skb->nfct = NULL;
  2394. #endif
  2395. #ifdef CONFIG_BRIDGE_NETFILTER
  2396. nf_bridge_put(skb->nf_bridge);
  2397. skb->nf_bridge = NULL;
  2398. #endif
  2399. }
  2400. static inline void nf_reset_trace(struct sk_buff *skb)
  2401. {
  2402. #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
  2403. skb->nf_trace = 0;
  2404. #endif
  2405. }
  2406. /* Note: This doesn't put any conntrack and bridge info in dst. */
  2407. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2408. {
  2409. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2410. dst->nfct = src->nfct;
  2411. nf_conntrack_get(src->nfct);
  2412. dst->nfctinfo = src->nfctinfo;
  2413. #endif
  2414. #ifdef CONFIG_BRIDGE_NETFILTER
  2415. dst->nf_bridge = src->nf_bridge;
  2416. nf_bridge_get(src->nf_bridge);
  2417. #endif
  2418. }
  2419. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2420. {
  2421. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2422. nf_conntrack_put(dst->nfct);
  2423. #endif
  2424. #ifdef CONFIG_BRIDGE_NETFILTER
  2425. nf_bridge_put(dst->nf_bridge);
  2426. #endif
  2427. __nf_copy(dst, src);
  2428. }
  2429. #ifdef CONFIG_NETWORK_SECMARK
  2430. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2431. {
  2432. to->secmark = from->secmark;
  2433. }
  2434. static inline void skb_init_secmark(struct sk_buff *skb)
  2435. {
  2436. skb->secmark = 0;
  2437. }
  2438. #else
  2439. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2440. { }
  2441. static inline void skb_init_secmark(struct sk_buff *skb)
  2442. { }
  2443. #endif
  2444. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  2445. {
  2446. skb->queue_mapping = queue_mapping;
  2447. }
  2448. static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
  2449. {
  2450. return skb->queue_mapping;
  2451. }
  2452. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  2453. {
  2454. to->queue_mapping = from->queue_mapping;
  2455. }
  2456. static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
  2457. {
  2458. skb->queue_mapping = rx_queue + 1;
  2459. }
  2460. static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
  2461. {
  2462. return skb->queue_mapping - 1;
  2463. }
  2464. static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
  2465. {
  2466. return skb->queue_mapping != 0;
  2467. }
  2468. u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
  2469. unsigned int num_tx_queues);
  2470. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2471. {
  2472. #ifdef CONFIG_XFRM
  2473. return skb->sp;
  2474. #else
  2475. return NULL;
  2476. #endif
  2477. }
  2478. /* Keeps track of mac header offset relative to skb->head.
  2479. * It is useful for TSO of Tunneling protocol. e.g. GRE.
  2480. * For non-tunnel skb it points to skb_mac_header() and for
  2481. * tunnel skb it points to outer mac header.
  2482. * Keeps track of level of encapsulation of network headers.
  2483. */
  2484. struct skb_gso_cb {
  2485. int mac_offset;
  2486. int encap_level;
  2487. };
  2488. #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
  2489. static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
  2490. {
  2491. return (skb_mac_header(inner_skb) - inner_skb->head) -
  2492. SKB_GSO_CB(inner_skb)->mac_offset;
  2493. }
  2494. static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
  2495. {
  2496. int new_headroom, headroom;
  2497. int ret;
  2498. headroom = skb_headroom(skb);
  2499. ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
  2500. if (ret)
  2501. return ret;
  2502. new_headroom = skb_headroom(skb);
  2503. SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
  2504. return 0;
  2505. }
  2506. static inline bool skb_is_gso(const struct sk_buff *skb)
  2507. {
  2508. return skb_shinfo(skb)->gso_size;
  2509. }
  2510. /* Note: Should be called only if skb_is_gso(skb) is true */
  2511. static inline bool skb_is_gso_v6(const struct sk_buff *skb)
  2512. {
  2513. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  2514. }
  2515. void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  2516. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  2517. {
  2518. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  2519. * wanted then gso_type will be set. */
  2520. const struct skb_shared_info *shinfo = skb_shinfo(skb);
  2521. if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
  2522. unlikely(shinfo->gso_type == 0)) {
  2523. __skb_warn_lro_forwarding(skb);
  2524. return true;
  2525. }
  2526. return false;
  2527. }
  2528. static inline void skb_forward_csum(struct sk_buff *skb)
  2529. {
  2530. /* Unfortunately we don't support this one. Any brave souls? */
  2531. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2532. skb->ip_summed = CHECKSUM_NONE;
  2533. }
  2534. /**
  2535. * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
  2536. * @skb: skb to check
  2537. *
  2538. * fresh skbs have their ip_summed set to CHECKSUM_NONE.
  2539. * Instead of forcing ip_summed to CHECKSUM_NONE, we can
  2540. * use this helper, to document places where we make this assertion.
  2541. */
  2542. static inline void skb_checksum_none_assert(const struct sk_buff *skb)
  2543. {
  2544. #ifdef DEBUG
  2545. BUG_ON(skb->ip_summed != CHECKSUM_NONE);
  2546. #endif
  2547. }
  2548. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  2549. u32 __skb_get_poff(const struct sk_buff *skb);
  2550. /**
  2551. * skb_head_is_locked - Determine if the skb->head is locked down
  2552. * @skb: skb to check
  2553. *
  2554. * The head on skbs build around a head frag can be removed if they are
  2555. * not cloned. This function returns true if the skb head is locked down
  2556. * due to either being allocated via kmalloc, or by being a clone with
  2557. * multiple references to the head.
  2558. */
  2559. static inline bool skb_head_is_locked(const struct sk_buff *skb)
  2560. {
  2561. return !skb->head_frag || skb_cloned(skb);
  2562. }
  2563. #endif /* __KERNEL__ */
  2564. #endif /* _LINUX_SKBUFF_H */