smc_ib.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Shared Memory Communications over RDMA (SMC-R) and RoCE
  4. *
  5. * IB infrastructure:
  6. * Establish SMC-R as an Infiniband Client to be notified about added and
  7. * removed IB devices of type RDMA.
  8. * Determine device and port characteristics for these IB devices.
  9. *
  10. * Copyright IBM Corp. 2016
  11. *
  12. * Author(s): Ursula Braun <ubraun@linux.vnet.ibm.com>
  13. */
  14. #include <linux/random.h>
  15. #include <linux/workqueue.h>
  16. #include <linux/scatterlist.h>
  17. #include <rdma/ib_verbs.h>
  18. #include "smc_pnet.h"
  19. #include "smc_ib.h"
  20. #include "smc_core.h"
  21. #include "smc_wr.h"
  22. #include "smc.h"
  23. #define SMC_MAX_CQE 32766 /* max. # of completion queue elements */
  24. #define SMC_QP_MIN_RNR_TIMER 5
  25. #define SMC_QP_TIMEOUT 15 /* 4096 * 2 ** timeout usec */
  26. #define SMC_QP_RETRY_CNT 7 /* 7: infinite */
  27. #define SMC_QP_RNR_RETRY 7 /* 7: infinite */
  28. struct smc_ib_devices smc_ib_devices = { /* smc-registered ib devices */
  29. .lock = __SPIN_LOCK_UNLOCKED(smc_ib_devices.lock),
  30. .list = LIST_HEAD_INIT(smc_ib_devices.list),
  31. };
  32. #define SMC_LOCAL_SYSTEMID_RESET "%%%%%%%"
  33. u8 local_systemid[SMC_SYSTEMID_LEN] = SMC_LOCAL_SYSTEMID_RESET; /* unique system
  34. * identifier
  35. */
  36. static int smc_ib_modify_qp_init(struct smc_link *lnk)
  37. {
  38. struct ib_qp_attr qp_attr;
  39. memset(&qp_attr, 0, sizeof(qp_attr));
  40. qp_attr.qp_state = IB_QPS_INIT;
  41. qp_attr.pkey_index = 0;
  42. qp_attr.port_num = lnk->ibport;
  43. qp_attr.qp_access_flags = IB_ACCESS_LOCAL_WRITE
  44. | IB_ACCESS_REMOTE_WRITE;
  45. return ib_modify_qp(lnk->roce_qp, &qp_attr,
  46. IB_QP_STATE | IB_QP_PKEY_INDEX |
  47. IB_QP_ACCESS_FLAGS | IB_QP_PORT);
  48. }
  49. static int smc_ib_modify_qp_rtr(struct smc_link *lnk)
  50. {
  51. enum ib_qp_attr_mask qp_attr_mask =
  52. IB_QP_STATE | IB_QP_AV | IB_QP_PATH_MTU | IB_QP_DEST_QPN |
  53. IB_QP_RQ_PSN | IB_QP_MAX_DEST_RD_ATOMIC | IB_QP_MIN_RNR_TIMER;
  54. struct ib_qp_attr qp_attr;
  55. memset(&qp_attr, 0, sizeof(qp_attr));
  56. qp_attr.qp_state = IB_QPS_RTR;
  57. qp_attr.path_mtu = min(lnk->path_mtu, lnk->peer_mtu);
  58. qp_attr.ah_attr.type = RDMA_AH_ATTR_TYPE_ROCE;
  59. rdma_ah_set_port_num(&qp_attr.ah_attr, lnk->ibport);
  60. rdma_ah_set_grh(&qp_attr.ah_attr, NULL, 0, 0, 1, 0);
  61. rdma_ah_set_dgid_raw(&qp_attr.ah_attr, lnk->peer_gid);
  62. memcpy(&qp_attr.ah_attr.roce.dmac, lnk->peer_mac,
  63. sizeof(lnk->peer_mac));
  64. qp_attr.dest_qp_num = lnk->peer_qpn;
  65. qp_attr.rq_psn = lnk->peer_psn; /* starting receive packet seq # */
  66. qp_attr.max_dest_rd_atomic = 1; /* max # of resources for incoming
  67. * requests
  68. */
  69. qp_attr.min_rnr_timer = SMC_QP_MIN_RNR_TIMER;
  70. return ib_modify_qp(lnk->roce_qp, &qp_attr, qp_attr_mask);
  71. }
  72. int smc_ib_modify_qp_rts(struct smc_link *lnk)
  73. {
  74. struct ib_qp_attr qp_attr;
  75. memset(&qp_attr, 0, sizeof(qp_attr));
  76. qp_attr.qp_state = IB_QPS_RTS;
  77. qp_attr.timeout = SMC_QP_TIMEOUT; /* local ack timeout */
  78. qp_attr.retry_cnt = SMC_QP_RETRY_CNT; /* retry count */
  79. qp_attr.rnr_retry = SMC_QP_RNR_RETRY; /* RNR retries, 7=infinite */
  80. qp_attr.sq_psn = lnk->psn_initial; /* starting send packet seq # */
  81. qp_attr.max_rd_atomic = 1; /* # of outstanding RDMA reads and
  82. * atomic ops allowed
  83. */
  84. return ib_modify_qp(lnk->roce_qp, &qp_attr,
  85. IB_QP_STATE | IB_QP_TIMEOUT | IB_QP_RETRY_CNT |
  86. IB_QP_SQ_PSN | IB_QP_RNR_RETRY |
  87. IB_QP_MAX_QP_RD_ATOMIC);
  88. }
  89. int smc_ib_modify_qp_reset(struct smc_link *lnk)
  90. {
  91. struct ib_qp_attr qp_attr;
  92. memset(&qp_attr, 0, sizeof(qp_attr));
  93. qp_attr.qp_state = IB_QPS_RESET;
  94. return ib_modify_qp(lnk->roce_qp, &qp_attr, IB_QP_STATE);
  95. }
  96. int smc_ib_ready_link(struct smc_link *lnk)
  97. {
  98. struct smc_link_group *lgr =
  99. container_of(lnk, struct smc_link_group, lnk[0]);
  100. int rc = 0;
  101. rc = smc_ib_modify_qp_init(lnk);
  102. if (rc)
  103. goto out;
  104. rc = smc_ib_modify_qp_rtr(lnk);
  105. if (rc)
  106. goto out;
  107. smc_wr_remember_qp_attr(lnk);
  108. rc = ib_req_notify_cq(lnk->smcibdev->roce_cq_recv,
  109. IB_CQ_SOLICITED_MASK);
  110. if (rc)
  111. goto out;
  112. rc = smc_wr_rx_post_init(lnk);
  113. if (rc)
  114. goto out;
  115. smc_wr_remember_qp_attr(lnk);
  116. if (lgr->role == SMC_SERV) {
  117. rc = smc_ib_modify_qp_rts(lnk);
  118. if (rc)
  119. goto out;
  120. smc_wr_remember_qp_attr(lnk);
  121. }
  122. out:
  123. return rc;
  124. }
  125. /* process context wrapper for might_sleep smc_ib_remember_port_attr */
  126. static void smc_ib_port_event_work(struct work_struct *work)
  127. {
  128. struct smc_ib_device *smcibdev = container_of(
  129. work, struct smc_ib_device, port_event_work);
  130. u8 port_idx;
  131. for_each_set_bit(port_idx, &smcibdev->port_event_mask, SMC_MAX_PORTS) {
  132. smc_ib_remember_port_attr(smcibdev, port_idx + 1);
  133. clear_bit(port_idx, &smcibdev->port_event_mask);
  134. if (!smc_ib_port_active(smcibdev, port_idx + 1))
  135. smc_port_terminate(smcibdev, port_idx + 1);
  136. }
  137. }
  138. /* can be called in IRQ context */
  139. static void smc_ib_global_event_handler(struct ib_event_handler *handler,
  140. struct ib_event *ibevent)
  141. {
  142. struct smc_ib_device *smcibdev;
  143. u8 port_idx;
  144. smcibdev = container_of(handler, struct smc_ib_device, event_handler);
  145. switch (ibevent->event) {
  146. case IB_EVENT_PORT_ERR:
  147. case IB_EVENT_DEVICE_FATAL:
  148. case IB_EVENT_PORT_ACTIVE:
  149. port_idx = ibevent->element.port_num - 1;
  150. set_bit(port_idx, &smcibdev->port_event_mask);
  151. schedule_work(&smcibdev->port_event_work);
  152. break;
  153. default:
  154. break;
  155. }
  156. }
  157. void smc_ib_dealloc_protection_domain(struct smc_link *lnk)
  158. {
  159. if (lnk->roce_pd)
  160. ib_dealloc_pd(lnk->roce_pd);
  161. lnk->roce_pd = NULL;
  162. }
  163. int smc_ib_create_protection_domain(struct smc_link *lnk)
  164. {
  165. int rc;
  166. lnk->roce_pd = ib_alloc_pd(lnk->smcibdev->ibdev, 0);
  167. rc = PTR_ERR_OR_ZERO(lnk->roce_pd);
  168. if (IS_ERR(lnk->roce_pd))
  169. lnk->roce_pd = NULL;
  170. return rc;
  171. }
  172. static void smc_ib_qp_event_handler(struct ib_event *ibevent, void *priv)
  173. {
  174. struct smc_ib_device *smcibdev =
  175. (struct smc_ib_device *)ibevent->device;
  176. u8 port_idx;
  177. switch (ibevent->event) {
  178. case IB_EVENT_DEVICE_FATAL:
  179. case IB_EVENT_GID_CHANGE:
  180. case IB_EVENT_PORT_ERR:
  181. case IB_EVENT_QP_ACCESS_ERR:
  182. port_idx = ibevent->element.port_num - 1;
  183. set_bit(port_idx, &smcibdev->port_event_mask);
  184. schedule_work(&smcibdev->port_event_work);
  185. break;
  186. default:
  187. break;
  188. }
  189. }
  190. void smc_ib_destroy_queue_pair(struct smc_link *lnk)
  191. {
  192. if (lnk->roce_qp)
  193. ib_destroy_qp(lnk->roce_qp);
  194. lnk->roce_qp = NULL;
  195. }
  196. /* create a queue pair within the protection domain for a link */
  197. int smc_ib_create_queue_pair(struct smc_link *lnk)
  198. {
  199. struct ib_qp_init_attr qp_attr = {
  200. .event_handler = smc_ib_qp_event_handler,
  201. .qp_context = lnk,
  202. .send_cq = lnk->smcibdev->roce_cq_send,
  203. .recv_cq = lnk->smcibdev->roce_cq_recv,
  204. .srq = NULL,
  205. .cap = {
  206. /* include unsolicited rdma_writes as well,
  207. * there are max. 2 RDMA_WRITE per 1 WR_SEND
  208. */
  209. .max_send_wr = SMC_WR_BUF_CNT * 3,
  210. .max_recv_wr = SMC_WR_BUF_CNT * 3,
  211. .max_send_sge = SMC_IB_MAX_SEND_SGE,
  212. .max_recv_sge = 1,
  213. },
  214. .sq_sig_type = IB_SIGNAL_REQ_WR,
  215. .qp_type = IB_QPT_RC,
  216. };
  217. int rc;
  218. lnk->roce_qp = ib_create_qp(lnk->roce_pd, &qp_attr);
  219. rc = PTR_ERR_OR_ZERO(lnk->roce_qp);
  220. if (IS_ERR(lnk->roce_qp))
  221. lnk->roce_qp = NULL;
  222. else
  223. smc_wr_remember_qp_attr(lnk);
  224. return rc;
  225. }
  226. void smc_ib_put_memory_region(struct ib_mr *mr)
  227. {
  228. ib_dereg_mr(mr);
  229. }
  230. static int smc_ib_map_mr_sg(struct smc_buf_desc *buf_slot)
  231. {
  232. unsigned int offset = 0;
  233. int sg_num;
  234. /* map the largest prefix of a dma mapped SG list */
  235. sg_num = ib_map_mr_sg(buf_slot->mr_rx[SMC_SINGLE_LINK],
  236. buf_slot->sgt[SMC_SINGLE_LINK].sgl,
  237. buf_slot->sgt[SMC_SINGLE_LINK].orig_nents,
  238. &offset, PAGE_SIZE);
  239. return sg_num;
  240. }
  241. /* Allocate a memory region and map the dma mapped SG list of buf_slot */
  242. int smc_ib_get_memory_region(struct ib_pd *pd, int access_flags,
  243. struct smc_buf_desc *buf_slot)
  244. {
  245. if (buf_slot->mr_rx[SMC_SINGLE_LINK])
  246. return 0; /* already done */
  247. buf_slot->mr_rx[SMC_SINGLE_LINK] =
  248. ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG, 1 << buf_slot->order);
  249. if (IS_ERR(buf_slot->mr_rx[SMC_SINGLE_LINK])) {
  250. int rc;
  251. rc = PTR_ERR(buf_slot->mr_rx[SMC_SINGLE_LINK]);
  252. buf_slot->mr_rx[SMC_SINGLE_LINK] = NULL;
  253. return rc;
  254. }
  255. if (smc_ib_map_mr_sg(buf_slot) != 1)
  256. return -EINVAL;
  257. return 0;
  258. }
  259. /* synchronize buffer usage for cpu access */
  260. void smc_ib_sync_sg_for_cpu(struct smc_ib_device *smcibdev,
  261. struct smc_buf_desc *buf_slot,
  262. enum dma_data_direction data_direction)
  263. {
  264. struct scatterlist *sg;
  265. unsigned int i;
  266. /* for now there is just one DMA address */
  267. for_each_sg(buf_slot->sgt[SMC_SINGLE_LINK].sgl, sg,
  268. buf_slot->sgt[SMC_SINGLE_LINK].nents, i) {
  269. if (!sg_dma_len(sg))
  270. break;
  271. ib_dma_sync_single_for_cpu(smcibdev->ibdev,
  272. sg_dma_address(sg),
  273. sg_dma_len(sg),
  274. data_direction);
  275. }
  276. }
  277. /* synchronize buffer usage for device access */
  278. void smc_ib_sync_sg_for_device(struct smc_ib_device *smcibdev,
  279. struct smc_buf_desc *buf_slot,
  280. enum dma_data_direction data_direction)
  281. {
  282. struct scatterlist *sg;
  283. unsigned int i;
  284. /* for now there is just one DMA address */
  285. for_each_sg(buf_slot->sgt[SMC_SINGLE_LINK].sgl, sg,
  286. buf_slot->sgt[SMC_SINGLE_LINK].nents, i) {
  287. if (!sg_dma_len(sg))
  288. break;
  289. ib_dma_sync_single_for_device(smcibdev->ibdev,
  290. sg_dma_address(sg),
  291. sg_dma_len(sg),
  292. data_direction);
  293. }
  294. }
  295. /* Map a new TX or RX buffer SG-table to DMA */
  296. int smc_ib_buf_map_sg(struct smc_ib_device *smcibdev,
  297. struct smc_buf_desc *buf_slot,
  298. enum dma_data_direction data_direction)
  299. {
  300. int mapped_nents;
  301. mapped_nents = ib_dma_map_sg(smcibdev->ibdev,
  302. buf_slot->sgt[SMC_SINGLE_LINK].sgl,
  303. buf_slot->sgt[SMC_SINGLE_LINK].orig_nents,
  304. data_direction);
  305. if (!mapped_nents)
  306. return -ENOMEM;
  307. return mapped_nents;
  308. }
  309. void smc_ib_buf_unmap_sg(struct smc_ib_device *smcibdev,
  310. struct smc_buf_desc *buf_slot,
  311. enum dma_data_direction data_direction)
  312. {
  313. if (!buf_slot->sgt[SMC_SINGLE_LINK].sgl->dma_address)
  314. return; /* already unmapped */
  315. ib_dma_unmap_sg(smcibdev->ibdev,
  316. buf_slot->sgt[SMC_SINGLE_LINK].sgl,
  317. buf_slot->sgt[SMC_SINGLE_LINK].orig_nents,
  318. data_direction);
  319. buf_slot->sgt[SMC_SINGLE_LINK].sgl->dma_address = 0;
  320. }
  321. static int smc_ib_fill_gid_and_mac(struct smc_ib_device *smcibdev, u8 ibport)
  322. {
  323. struct ib_gid_attr gattr;
  324. int rc;
  325. rc = ib_query_gid(smcibdev->ibdev, ibport, 0,
  326. &smcibdev->gid[ibport - 1], &gattr);
  327. if (rc || !gattr.ndev)
  328. return -ENODEV;
  329. memcpy(smcibdev->mac[ibport - 1], gattr.ndev->dev_addr, ETH_ALEN);
  330. dev_put(gattr.ndev);
  331. return 0;
  332. }
  333. /* Create an identifier unique for this instance of SMC-R.
  334. * The MAC-address of the first active registered IB device
  335. * plus a random 2-byte number is used to create this identifier.
  336. * This name is delivered to the peer during connection initialization.
  337. */
  338. static inline void smc_ib_define_local_systemid(struct smc_ib_device *smcibdev,
  339. u8 ibport)
  340. {
  341. memcpy(&local_systemid[2], &smcibdev->mac[ibport - 1],
  342. sizeof(smcibdev->mac[ibport - 1]));
  343. get_random_bytes(&local_systemid[0], 2);
  344. }
  345. bool smc_ib_port_active(struct smc_ib_device *smcibdev, u8 ibport)
  346. {
  347. return smcibdev->pattr[ibport - 1].state == IB_PORT_ACTIVE;
  348. }
  349. int smc_ib_remember_port_attr(struct smc_ib_device *smcibdev, u8 ibport)
  350. {
  351. int rc;
  352. memset(&smcibdev->pattr[ibport - 1], 0,
  353. sizeof(smcibdev->pattr[ibport - 1]));
  354. rc = ib_query_port(smcibdev->ibdev, ibport,
  355. &smcibdev->pattr[ibport - 1]);
  356. if (rc)
  357. goto out;
  358. /* the SMC protocol requires specification of the RoCE MAC address */
  359. rc = smc_ib_fill_gid_and_mac(smcibdev, ibport);
  360. if (rc)
  361. goto out;
  362. if (!strncmp(local_systemid, SMC_LOCAL_SYSTEMID_RESET,
  363. sizeof(local_systemid)) &&
  364. smc_ib_port_active(smcibdev, ibport))
  365. /* create unique system identifier */
  366. smc_ib_define_local_systemid(smcibdev, ibport);
  367. out:
  368. return rc;
  369. }
  370. long smc_ib_setup_per_ibdev(struct smc_ib_device *smcibdev)
  371. {
  372. struct ib_cq_init_attr cqattr = {
  373. .cqe = SMC_MAX_CQE, .comp_vector = 0 };
  374. int cqe_size_order, smc_order;
  375. long rc;
  376. /* the calculated number of cq entries fits to mlx5 cq allocation */
  377. cqe_size_order = cache_line_size() == 128 ? 7 : 6;
  378. smc_order = MAX_ORDER - cqe_size_order - 1;
  379. if (SMC_MAX_CQE + 2 > (0x00000001 << smc_order) * PAGE_SIZE)
  380. cqattr.cqe = (0x00000001 << smc_order) * PAGE_SIZE - 2;
  381. smcibdev->roce_cq_send = ib_create_cq(smcibdev->ibdev,
  382. smc_wr_tx_cq_handler, NULL,
  383. smcibdev, &cqattr);
  384. rc = PTR_ERR_OR_ZERO(smcibdev->roce_cq_send);
  385. if (IS_ERR(smcibdev->roce_cq_send)) {
  386. smcibdev->roce_cq_send = NULL;
  387. return rc;
  388. }
  389. smcibdev->roce_cq_recv = ib_create_cq(smcibdev->ibdev,
  390. smc_wr_rx_cq_handler, NULL,
  391. smcibdev, &cqattr);
  392. rc = PTR_ERR_OR_ZERO(smcibdev->roce_cq_recv);
  393. if (IS_ERR(smcibdev->roce_cq_recv)) {
  394. smcibdev->roce_cq_recv = NULL;
  395. goto err;
  396. }
  397. INIT_IB_EVENT_HANDLER(&smcibdev->event_handler, smcibdev->ibdev,
  398. smc_ib_global_event_handler);
  399. ib_register_event_handler(&smcibdev->event_handler);
  400. smc_wr_add_dev(smcibdev);
  401. smcibdev->initialized = 1;
  402. return rc;
  403. err:
  404. ib_destroy_cq(smcibdev->roce_cq_send);
  405. return rc;
  406. }
  407. static void smc_ib_cleanup_per_ibdev(struct smc_ib_device *smcibdev)
  408. {
  409. if (!smcibdev->initialized)
  410. return;
  411. smcibdev->initialized = 0;
  412. smc_wr_remove_dev(smcibdev);
  413. ib_unregister_event_handler(&smcibdev->event_handler);
  414. ib_destroy_cq(smcibdev->roce_cq_recv);
  415. ib_destroy_cq(smcibdev->roce_cq_send);
  416. }
  417. static struct ib_client smc_ib_client;
  418. /* callback function for ib_register_client() */
  419. static void smc_ib_add_dev(struct ib_device *ibdev)
  420. {
  421. struct smc_ib_device *smcibdev;
  422. if (ibdev->node_type != RDMA_NODE_IB_CA)
  423. return;
  424. smcibdev = kzalloc(sizeof(*smcibdev), GFP_KERNEL);
  425. if (!smcibdev)
  426. return;
  427. smcibdev->ibdev = ibdev;
  428. INIT_WORK(&smcibdev->port_event_work, smc_ib_port_event_work);
  429. spin_lock(&smc_ib_devices.lock);
  430. list_add_tail(&smcibdev->list, &smc_ib_devices.list);
  431. spin_unlock(&smc_ib_devices.lock);
  432. ib_set_client_data(ibdev, &smc_ib_client, smcibdev);
  433. }
  434. /* callback function for ib_register_client() */
  435. static void smc_ib_remove_dev(struct ib_device *ibdev, void *client_data)
  436. {
  437. struct smc_ib_device *smcibdev;
  438. smcibdev = ib_get_client_data(ibdev, &smc_ib_client);
  439. ib_set_client_data(ibdev, &smc_ib_client, NULL);
  440. spin_lock(&smc_ib_devices.lock);
  441. list_del_init(&smcibdev->list); /* remove from smc_ib_devices */
  442. spin_unlock(&smc_ib_devices.lock);
  443. smc_pnet_remove_by_ibdev(smcibdev);
  444. smc_ib_cleanup_per_ibdev(smcibdev);
  445. kfree(smcibdev);
  446. }
  447. static struct ib_client smc_ib_client = {
  448. .name = "smc_ib",
  449. .add = smc_ib_add_dev,
  450. .remove = smc_ib_remove_dev,
  451. };
  452. int __init smc_ib_register_client(void)
  453. {
  454. return ib_register_client(&smc_ib_client);
  455. }
  456. void smc_ib_unregister_client(void)
  457. {
  458. ib_unregister_client(&smc_ib_client);
  459. }