af_netlink.c 65 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775
  1. /*
  2. * NETLINK Kernel-user communication protocol.
  3. *
  4. * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
  5. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  6. * Patrick McHardy <kaber@trash.net>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. *
  13. * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
  14. * added netlink_proto_exit
  15. * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
  16. * use nlk_sk, as sk->protinfo is on a diet 8)
  17. * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
  18. * - inc module use count of module that owns
  19. * the kernel socket in case userspace opens
  20. * socket of same protocol
  21. * - remove all module support, since netlink is
  22. * mandatory if CONFIG_NET=y these days
  23. */
  24. #include <linux/module.h>
  25. #include <linux/capability.h>
  26. #include <linux/kernel.h>
  27. #include <linux/init.h>
  28. #include <linux/signal.h>
  29. #include <linux/sched.h>
  30. #include <linux/errno.h>
  31. #include <linux/string.h>
  32. #include <linux/stat.h>
  33. #include <linux/socket.h>
  34. #include <linux/un.h>
  35. #include <linux/fcntl.h>
  36. #include <linux/termios.h>
  37. #include <linux/sockios.h>
  38. #include <linux/net.h>
  39. #include <linux/fs.h>
  40. #include <linux/slab.h>
  41. #include <linux/uaccess.h>
  42. #include <linux/skbuff.h>
  43. #include <linux/netdevice.h>
  44. #include <linux/rtnetlink.h>
  45. #include <linux/proc_fs.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/notifier.h>
  48. #include <linux/security.h>
  49. #include <linux/jhash.h>
  50. #include <linux/jiffies.h>
  51. #include <linux/random.h>
  52. #include <linux/bitops.h>
  53. #include <linux/mm.h>
  54. #include <linux/types.h>
  55. #include <linux/audit.h>
  56. #include <linux/mutex.h>
  57. #include <linux/vmalloc.h>
  58. #include <linux/if_arp.h>
  59. #include <linux/rhashtable.h>
  60. #include <asm/cacheflush.h>
  61. #include <linux/hash.h>
  62. #include <linux/genetlink.h>
  63. #include <linux/net_namespace.h>
  64. #include <net/net_namespace.h>
  65. #include <net/netns/generic.h>
  66. #include <net/sock.h>
  67. #include <net/scm.h>
  68. #include <net/netlink.h>
  69. #include "af_netlink.h"
  70. struct listeners {
  71. struct rcu_head rcu;
  72. unsigned long masks[0];
  73. };
  74. /* state bits */
  75. #define NETLINK_S_CONGESTED 0x0
  76. static inline int netlink_is_kernel(struct sock *sk)
  77. {
  78. return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET;
  79. }
  80. struct netlink_table *nl_table __read_mostly;
  81. EXPORT_SYMBOL_GPL(nl_table);
  82. static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
  83. static struct lock_class_key nlk_cb_mutex_keys[MAX_LINKS];
  84. static const char *const nlk_cb_mutex_key_strings[MAX_LINKS + 1] = {
  85. "nlk_cb_mutex-ROUTE",
  86. "nlk_cb_mutex-1",
  87. "nlk_cb_mutex-USERSOCK",
  88. "nlk_cb_mutex-FIREWALL",
  89. "nlk_cb_mutex-SOCK_DIAG",
  90. "nlk_cb_mutex-NFLOG",
  91. "nlk_cb_mutex-XFRM",
  92. "nlk_cb_mutex-SELINUX",
  93. "nlk_cb_mutex-ISCSI",
  94. "nlk_cb_mutex-AUDIT",
  95. "nlk_cb_mutex-FIB_LOOKUP",
  96. "nlk_cb_mutex-CONNECTOR",
  97. "nlk_cb_mutex-NETFILTER",
  98. "nlk_cb_mutex-IP6_FW",
  99. "nlk_cb_mutex-DNRTMSG",
  100. "nlk_cb_mutex-KOBJECT_UEVENT",
  101. "nlk_cb_mutex-GENERIC",
  102. "nlk_cb_mutex-17",
  103. "nlk_cb_mutex-SCSITRANSPORT",
  104. "nlk_cb_mutex-ECRYPTFS",
  105. "nlk_cb_mutex-RDMA",
  106. "nlk_cb_mutex-CRYPTO",
  107. "nlk_cb_mutex-SMC",
  108. "nlk_cb_mutex-23",
  109. "nlk_cb_mutex-24",
  110. "nlk_cb_mutex-25",
  111. "nlk_cb_mutex-26",
  112. "nlk_cb_mutex-27",
  113. "nlk_cb_mutex-28",
  114. "nlk_cb_mutex-29",
  115. "nlk_cb_mutex-30",
  116. "nlk_cb_mutex-31",
  117. "nlk_cb_mutex-MAX_LINKS"
  118. };
  119. static int netlink_dump(struct sock *sk);
  120. /* nl_table locking explained:
  121. * Lookup and traversal are protected with an RCU read-side lock. Insertion
  122. * and removal are protected with per bucket lock while using RCU list
  123. * modification primitives and may run in parallel to RCU protected lookups.
  124. * Destruction of the Netlink socket may only occur *after* nl_table_lock has
  125. * been acquired * either during or after the socket has been removed from
  126. * the list and after an RCU grace period.
  127. */
  128. DEFINE_RWLOCK(nl_table_lock);
  129. EXPORT_SYMBOL_GPL(nl_table_lock);
  130. static atomic_t nl_table_users = ATOMIC_INIT(0);
  131. #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
  132. static BLOCKING_NOTIFIER_HEAD(netlink_chain);
  133. static const struct rhashtable_params netlink_rhashtable_params;
  134. static inline u32 netlink_group_mask(u32 group)
  135. {
  136. return group ? 1 << (group - 1) : 0;
  137. }
  138. static struct sk_buff *netlink_to_full_skb(const struct sk_buff *skb,
  139. gfp_t gfp_mask)
  140. {
  141. unsigned int len = skb_end_offset(skb);
  142. struct sk_buff *new;
  143. new = alloc_skb(len, gfp_mask);
  144. if (new == NULL)
  145. return NULL;
  146. NETLINK_CB(new).portid = NETLINK_CB(skb).portid;
  147. NETLINK_CB(new).dst_group = NETLINK_CB(skb).dst_group;
  148. NETLINK_CB(new).creds = NETLINK_CB(skb).creds;
  149. skb_put_data(new, skb->data, len);
  150. return new;
  151. }
  152. static unsigned int netlink_tap_net_id;
  153. struct netlink_tap_net {
  154. struct list_head netlink_tap_all;
  155. struct mutex netlink_tap_lock;
  156. };
  157. int netlink_add_tap(struct netlink_tap *nt)
  158. {
  159. struct net *net = dev_net(nt->dev);
  160. struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id);
  161. if (unlikely(nt->dev->type != ARPHRD_NETLINK))
  162. return -EINVAL;
  163. mutex_lock(&nn->netlink_tap_lock);
  164. list_add_rcu(&nt->list, &nn->netlink_tap_all);
  165. mutex_unlock(&nn->netlink_tap_lock);
  166. __module_get(nt->module);
  167. return 0;
  168. }
  169. EXPORT_SYMBOL_GPL(netlink_add_tap);
  170. static int __netlink_remove_tap(struct netlink_tap *nt)
  171. {
  172. struct net *net = dev_net(nt->dev);
  173. struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id);
  174. bool found = false;
  175. struct netlink_tap *tmp;
  176. mutex_lock(&nn->netlink_tap_lock);
  177. list_for_each_entry(tmp, &nn->netlink_tap_all, list) {
  178. if (nt == tmp) {
  179. list_del_rcu(&nt->list);
  180. found = true;
  181. goto out;
  182. }
  183. }
  184. pr_warn("__netlink_remove_tap: %p not found\n", nt);
  185. out:
  186. mutex_unlock(&nn->netlink_tap_lock);
  187. if (found)
  188. module_put(nt->module);
  189. return found ? 0 : -ENODEV;
  190. }
  191. int netlink_remove_tap(struct netlink_tap *nt)
  192. {
  193. int ret;
  194. ret = __netlink_remove_tap(nt);
  195. synchronize_net();
  196. return ret;
  197. }
  198. EXPORT_SYMBOL_GPL(netlink_remove_tap);
  199. static __net_init int netlink_tap_init_net(struct net *net)
  200. {
  201. struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id);
  202. INIT_LIST_HEAD(&nn->netlink_tap_all);
  203. mutex_init(&nn->netlink_tap_lock);
  204. return 0;
  205. }
  206. static void __net_exit netlink_tap_exit_net(struct net *net)
  207. {
  208. }
  209. static struct pernet_operations netlink_tap_net_ops = {
  210. .init = netlink_tap_init_net,
  211. .exit = netlink_tap_exit_net,
  212. .id = &netlink_tap_net_id,
  213. .size = sizeof(struct netlink_tap_net),
  214. };
  215. static bool netlink_filter_tap(const struct sk_buff *skb)
  216. {
  217. struct sock *sk = skb->sk;
  218. /* We take the more conservative approach and
  219. * whitelist socket protocols that may pass.
  220. */
  221. switch (sk->sk_protocol) {
  222. case NETLINK_ROUTE:
  223. case NETLINK_USERSOCK:
  224. case NETLINK_SOCK_DIAG:
  225. case NETLINK_NFLOG:
  226. case NETLINK_XFRM:
  227. case NETLINK_FIB_LOOKUP:
  228. case NETLINK_NETFILTER:
  229. case NETLINK_GENERIC:
  230. return true;
  231. }
  232. return false;
  233. }
  234. static int __netlink_deliver_tap_skb(struct sk_buff *skb,
  235. struct net_device *dev)
  236. {
  237. struct sk_buff *nskb;
  238. struct sock *sk = skb->sk;
  239. int ret = -ENOMEM;
  240. if (!net_eq(dev_net(dev), sock_net(sk)))
  241. return 0;
  242. dev_hold(dev);
  243. if (is_vmalloc_addr(skb->head))
  244. nskb = netlink_to_full_skb(skb, GFP_ATOMIC);
  245. else
  246. nskb = skb_clone(skb, GFP_ATOMIC);
  247. if (nskb) {
  248. nskb->dev = dev;
  249. nskb->protocol = htons((u16) sk->sk_protocol);
  250. nskb->pkt_type = netlink_is_kernel(sk) ?
  251. PACKET_KERNEL : PACKET_USER;
  252. skb_reset_network_header(nskb);
  253. ret = dev_queue_xmit(nskb);
  254. if (unlikely(ret > 0))
  255. ret = net_xmit_errno(ret);
  256. }
  257. dev_put(dev);
  258. return ret;
  259. }
  260. static void __netlink_deliver_tap(struct sk_buff *skb, struct netlink_tap_net *nn)
  261. {
  262. int ret;
  263. struct netlink_tap *tmp;
  264. if (!netlink_filter_tap(skb))
  265. return;
  266. list_for_each_entry_rcu(tmp, &nn->netlink_tap_all, list) {
  267. ret = __netlink_deliver_tap_skb(skb, tmp->dev);
  268. if (unlikely(ret))
  269. break;
  270. }
  271. }
  272. static void netlink_deliver_tap(struct net *net, struct sk_buff *skb)
  273. {
  274. struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id);
  275. rcu_read_lock();
  276. if (unlikely(!list_empty(&nn->netlink_tap_all)))
  277. __netlink_deliver_tap(skb, nn);
  278. rcu_read_unlock();
  279. }
  280. static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
  281. struct sk_buff *skb)
  282. {
  283. if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
  284. netlink_deliver_tap(sock_net(dst), skb);
  285. }
  286. static void netlink_overrun(struct sock *sk)
  287. {
  288. struct netlink_sock *nlk = nlk_sk(sk);
  289. if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) {
  290. if (!test_and_set_bit(NETLINK_S_CONGESTED,
  291. &nlk_sk(sk)->state)) {
  292. sk->sk_err = ENOBUFS;
  293. sk->sk_error_report(sk);
  294. }
  295. }
  296. atomic_inc(&sk->sk_drops);
  297. }
  298. static void netlink_rcv_wake(struct sock *sk)
  299. {
  300. struct netlink_sock *nlk = nlk_sk(sk);
  301. if (skb_queue_empty(&sk->sk_receive_queue))
  302. clear_bit(NETLINK_S_CONGESTED, &nlk->state);
  303. if (!test_bit(NETLINK_S_CONGESTED, &nlk->state))
  304. wake_up_interruptible(&nlk->wait);
  305. }
  306. static void netlink_skb_destructor(struct sk_buff *skb)
  307. {
  308. if (is_vmalloc_addr(skb->head)) {
  309. if (!skb->cloned ||
  310. !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
  311. vfree(skb->head);
  312. skb->head = NULL;
  313. }
  314. if (skb->sk != NULL)
  315. sock_rfree(skb);
  316. }
  317. static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
  318. {
  319. WARN_ON(skb->sk != NULL);
  320. skb->sk = sk;
  321. skb->destructor = netlink_skb_destructor;
  322. atomic_add(skb->truesize, &sk->sk_rmem_alloc);
  323. sk_mem_charge(sk, skb->truesize);
  324. }
  325. static void netlink_sock_destruct(struct sock *sk)
  326. {
  327. struct netlink_sock *nlk = nlk_sk(sk);
  328. if (nlk->cb_running) {
  329. if (nlk->cb.done)
  330. nlk->cb.done(&nlk->cb);
  331. module_put(nlk->cb.module);
  332. kfree_skb(nlk->cb.skb);
  333. }
  334. skb_queue_purge(&sk->sk_receive_queue);
  335. if (!sock_flag(sk, SOCK_DEAD)) {
  336. printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
  337. return;
  338. }
  339. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  340. WARN_ON(refcount_read(&sk->sk_wmem_alloc));
  341. WARN_ON(nlk_sk(sk)->groups);
  342. }
  343. static void netlink_sock_destruct_work(struct work_struct *work)
  344. {
  345. struct netlink_sock *nlk = container_of(work, struct netlink_sock,
  346. work);
  347. sk_free(&nlk->sk);
  348. }
  349. /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
  350. * SMP. Look, when several writers sleep and reader wakes them up, all but one
  351. * immediately hit write lock and grab all the cpus. Exclusive sleep solves
  352. * this, _but_ remember, it adds useless work on UP machines.
  353. */
  354. void netlink_table_grab(void)
  355. __acquires(nl_table_lock)
  356. {
  357. might_sleep();
  358. write_lock_irq(&nl_table_lock);
  359. if (atomic_read(&nl_table_users)) {
  360. DECLARE_WAITQUEUE(wait, current);
  361. add_wait_queue_exclusive(&nl_table_wait, &wait);
  362. for (;;) {
  363. set_current_state(TASK_UNINTERRUPTIBLE);
  364. if (atomic_read(&nl_table_users) == 0)
  365. break;
  366. write_unlock_irq(&nl_table_lock);
  367. schedule();
  368. write_lock_irq(&nl_table_lock);
  369. }
  370. __set_current_state(TASK_RUNNING);
  371. remove_wait_queue(&nl_table_wait, &wait);
  372. }
  373. }
  374. void netlink_table_ungrab(void)
  375. __releases(nl_table_lock)
  376. {
  377. write_unlock_irq(&nl_table_lock);
  378. wake_up(&nl_table_wait);
  379. }
  380. static inline void
  381. netlink_lock_table(void)
  382. {
  383. /* read_lock() synchronizes us to netlink_table_grab */
  384. read_lock(&nl_table_lock);
  385. atomic_inc(&nl_table_users);
  386. read_unlock(&nl_table_lock);
  387. }
  388. static inline void
  389. netlink_unlock_table(void)
  390. {
  391. if (atomic_dec_and_test(&nl_table_users))
  392. wake_up(&nl_table_wait);
  393. }
  394. struct netlink_compare_arg
  395. {
  396. possible_net_t pnet;
  397. u32 portid;
  398. };
  399. /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */
  400. #define netlink_compare_arg_len \
  401. (offsetof(struct netlink_compare_arg, portid) + sizeof(u32))
  402. static inline int netlink_compare(struct rhashtable_compare_arg *arg,
  403. const void *ptr)
  404. {
  405. const struct netlink_compare_arg *x = arg->key;
  406. const struct netlink_sock *nlk = ptr;
  407. return nlk->portid != x->portid ||
  408. !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet));
  409. }
  410. static void netlink_compare_arg_init(struct netlink_compare_arg *arg,
  411. struct net *net, u32 portid)
  412. {
  413. memset(arg, 0, sizeof(*arg));
  414. write_pnet(&arg->pnet, net);
  415. arg->portid = portid;
  416. }
  417. static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid,
  418. struct net *net)
  419. {
  420. struct netlink_compare_arg arg;
  421. netlink_compare_arg_init(&arg, net, portid);
  422. return rhashtable_lookup_fast(&table->hash, &arg,
  423. netlink_rhashtable_params);
  424. }
  425. static int __netlink_insert(struct netlink_table *table, struct sock *sk)
  426. {
  427. struct netlink_compare_arg arg;
  428. netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid);
  429. return rhashtable_lookup_insert_key(&table->hash, &arg,
  430. &nlk_sk(sk)->node,
  431. netlink_rhashtable_params);
  432. }
  433. static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
  434. {
  435. struct netlink_table *table = &nl_table[protocol];
  436. struct sock *sk;
  437. rcu_read_lock();
  438. sk = __netlink_lookup(table, portid, net);
  439. if (sk)
  440. sock_hold(sk);
  441. rcu_read_unlock();
  442. return sk;
  443. }
  444. static const struct proto_ops netlink_ops;
  445. static void
  446. netlink_update_listeners(struct sock *sk)
  447. {
  448. struct netlink_table *tbl = &nl_table[sk->sk_protocol];
  449. unsigned long mask;
  450. unsigned int i;
  451. struct listeners *listeners;
  452. listeners = nl_deref_protected(tbl->listeners);
  453. if (!listeners)
  454. return;
  455. for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
  456. mask = 0;
  457. sk_for_each_bound(sk, &tbl->mc_list) {
  458. if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
  459. mask |= nlk_sk(sk)->groups[i];
  460. }
  461. listeners->masks[i] = mask;
  462. }
  463. /* this function is only called with the netlink table "grabbed", which
  464. * makes sure updates are visible before bind or setsockopt return. */
  465. }
  466. static int netlink_insert(struct sock *sk, u32 portid)
  467. {
  468. struct netlink_table *table = &nl_table[sk->sk_protocol];
  469. int err;
  470. lock_sock(sk);
  471. err = nlk_sk(sk)->portid == portid ? 0 : -EBUSY;
  472. if (nlk_sk(sk)->bound)
  473. goto err;
  474. err = -ENOMEM;
  475. if (BITS_PER_LONG > 32 &&
  476. unlikely(atomic_read(&table->hash.nelems) >= UINT_MAX))
  477. goto err;
  478. nlk_sk(sk)->portid = portid;
  479. sock_hold(sk);
  480. err = __netlink_insert(table, sk);
  481. if (err) {
  482. /* In case the hashtable backend returns with -EBUSY
  483. * from here, it must not escape to the caller.
  484. */
  485. if (unlikely(err == -EBUSY))
  486. err = -EOVERFLOW;
  487. if (err == -EEXIST)
  488. err = -EADDRINUSE;
  489. sock_put(sk);
  490. goto err;
  491. }
  492. /* We need to ensure that the socket is hashed and visible. */
  493. smp_wmb();
  494. nlk_sk(sk)->bound = portid;
  495. err:
  496. release_sock(sk);
  497. return err;
  498. }
  499. static void netlink_remove(struct sock *sk)
  500. {
  501. struct netlink_table *table;
  502. table = &nl_table[sk->sk_protocol];
  503. if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node,
  504. netlink_rhashtable_params)) {
  505. WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
  506. __sock_put(sk);
  507. }
  508. netlink_table_grab();
  509. if (nlk_sk(sk)->subscriptions) {
  510. __sk_del_bind_node(sk);
  511. netlink_update_listeners(sk);
  512. }
  513. if (sk->sk_protocol == NETLINK_GENERIC)
  514. atomic_inc(&genl_sk_destructing_cnt);
  515. netlink_table_ungrab();
  516. }
  517. static struct proto netlink_proto = {
  518. .name = "NETLINK",
  519. .owner = THIS_MODULE,
  520. .obj_size = sizeof(struct netlink_sock),
  521. };
  522. static int __netlink_create(struct net *net, struct socket *sock,
  523. struct mutex *cb_mutex, int protocol,
  524. int kern)
  525. {
  526. struct sock *sk;
  527. struct netlink_sock *nlk;
  528. sock->ops = &netlink_ops;
  529. sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern);
  530. if (!sk)
  531. return -ENOMEM;
  532. sock_init_data(sock, sk);
  533. nlk = nlk_sk(sk);
  534. if (cb_mutex) {
  535. nlk->cb_mutex = cb_mutex;
  536. } else {
  537. nlk->cb_mutex = &nlk->cb_def_mutex;
  538. mutex_init(nlk->cb_mutex);
  539. lockdep_set_class_and_name(nlk->cb_mutex,
  540. nlk_cb_mutex_keys + protocol,
  541. nlk_cb_mutex_key_strings[protocol]);
  542. }
  543. init_waitqueue_head(&nlk->wait);
  544. sk->sk_destruct = netlink_sock_destruct;
  545. sk->sk_protocol = protocol;
  546. return 0;
  547. }
  548. static int netlink_create(struct net *net, struct socket *sock, int protocol,
  549. int kern)
  550. {
  551. struct module *module = NULL;
  552. struct mutex *cb_mutex;
  553. struct netlink_sock *nlk;
  554. int (*bind)(struct net *net, int group);
  555. void (*unbind)(struct net *net, int group);
  556. int err = 0;
  557. sock->state = SS_UNCONNECTED;
  558. if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
  559. return -ESOCKTNOSUPPORT;
  560. if (protocol < 0 || protocol >= MAX_LINKS)
  561. return -EPROTONOSUPPORT;
  562. netlink_lock_table();
  563. #ifdef CONFIG_MODULES
  564. if (!nl_table[protocol].registered) {
  565. netlink_unlock_table();
  566. request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
  567. netlink_lock_table();
  568. }
  569. #endif
  570. if (nl_table[protocol].registered &&
  571. try_module_get(nl_table[protocol].module))
  572. module = nl_table[protocol].module;
  573. else
  574. err = -EPROTONOSUPPORT;
  575. cb_mutex = nl_table[protocol].cb_mutex;
  576. bind = nl_table[protocol].bind;
  577. unbind = nl_table[protocol].unbind;
  578. netlink_unlock_table();
  579. if (err < 0)
  580. goto out;
  581. err = __netlink_create(net, sock, cb_mutex, protocol, kern);
  582. if (err < 0)
  583. goto out_module;
  584. local_bh_disable();
  585. sock_prot_inuse_add(net, &netlink_proto, 1);
  586. local_bh_enable();
  587. nlk = nlk_sk(sock->sk);
  588. nlk->module = module;
  589. nlk->netlink_bind = bind;
  590. nlk->netlink_unbind = unbind;
  591. out:
  592. return err;
  593. out_module:
  594. module_put(module);
  595. goto out;
  596. }
  597. static void deferred_put_nlk_sk(struct rcu_head *head)
  598. {
  599. struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu);
  600. struct sock *sk = &nlk->sk;
  601. kfree(nlk->groups);
  602. nlk->groups = NULL;
  603. if (!refcount_dec_and_test(&sk->sk_refcnt))
  604. return;
  605. if (nlk->cb_running && nlk->cb.done) {
  606. INIT_WORK(&nlk->work, netlink_sock_destruct_work);
  607. schedule_work(&nlk->work);
  608. return;
  609. }
  610. sk_free(sk);
  611. }
  612. static int netlink_release(struct socket *sock)
  613. {
  614. struct sock *sk = sock->sk;
  615. struct netlink_sock *nlk;
  616. if (!sk)
  617. return 0;
  618. netlink_remove(sk);
  619. sock_orphan(sk);
  620. nlk = nlk_sk(sk);
  621. /*
  622. * OK. Socket is unlinked, any packets that arrive now
  623. * will be purged.
  624. */
  625. /* must not acquire netlink_table_lock in any way again before unbind
  626. * and notifying genetlink is done as otherwise it might deadlock
  627. */
  628. if (nlk->netlink_unbind) {
  629. int i;
  630. for (i = 0; i < nlk->ngroups; i++)
  631. if (test_bit(i, nlk->groups))
  632. nlk->netlink_unbind(sock_net(sk), i + 1);
  633. }
  634. if (sk->sk_protocol == NETLINK_GENERIC &&
  635. atomic_dec_return(&genl_sk_destructing_cnt) == 0)
  636. wake_up(&genl_sk_destructing_waitq);
  637. sock->sk = NULL;
  638. wake_up_interruptible_all(&nlk->wait);
  639. skb_queue_purge(&sk->sk_write_queue);
  640. if (nlk->portid && nlk->bound) {
  641. struct netlink_notify n = {
  642. .net = sock_net(sk),
  643. .protocol = sk->sk_protocol,
  644. .portid = nlk->portid,
  645. };
  646. blocking_notifier_call_chain(&netlink_chain,
  647. NETLINK_URELEASE, &n);
  648. }
  649. module_put(nlk->module);
  650. if (netlink_is_kernel(sk)) {
  651. netlink_table_grab();
  652. BUG_ON(nl_table[sk->sk_protocol].registered == 0);
  653. if (--nl_table[sk->sk_protocol].registered == 0) {
  654. struct listeners *old;
  655. old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
  656. RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
  657. kfree_rcu(old, rcu);
  658. nl_table[sk->sk_protocol].module = NULL;
  659. nl_table[sk->sk_protocol].bind = NULL;
  660. nl_table[sk->sk_protocol].unbind = NULL;
  661. nl_table[sk->sk_protocol].flags = 0;
  662. nl_table[sk->sk_protocol].registered = 0;
  663. }
  664. netlink_table_ungrab();
  665. }
  666. local_bh_disable();
  667. sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
  668. local_bh_enable();
  669. call_rcu(&nlk->rcu, deferred_put_nlk_sk);
  670. return 0;
  671. }
  672. static int netlink_autobind(struct socket *sock)
  673. {
  674. struct sock *sk = sock->sk;
  675. struct net *net = sock_net(sk);
  676. struct netlink_table *table = &nl_table[sk->sk_protocol];
  677. s32 portid = task_tgid_vnr(current);
  678. int err;
  679. s32 rover = -4096;
  680. bool ok;
  681. retry:
  682. cond_resched();
  683. rcu_read_lock();
  684. ok = !__netlink_lookup(table, portid, net);
  685. rcu_read_unlock();
  686. if (!ok) {
  687. /* Bind collision, search negative portid values. */
  688. if (rover == -4096)
  689. /* rover will be in range [S32_MIN, -4097] */
  690. rover = S32_MIN + prandom_u32_max(-4096 - S32_MIN);
  691. else if (rover >= -4096)
  692. rover = -4097;
  693. portid = rover--;
  694. goto retry;
  695. }
  696. err = netlink_insert(sk, portid);
  697. if (err == -EADDRINUSE)
  698. goto retry;
  699. /* If 2 threads race to autobind, that is fine. */
  700. if (err == -EBUSY)
  701. err = 0;
  702. return err;
  703. }
  704. /**
  705. * __netlink_ns_capable - General netlink message capability test
  706. * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
  707. * @user_ns: The user namespace of the capability to use
  708. * @cap: The capability to use
  709. *
  710. * Test to see if the opener of the socket we received the message
  711. * from had when the netlink socket was created and the sender of the
  712. * message has has the capability @cap in the user namespace @user_ns.
  713. */
  714. bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
  715. struct user_namespace *user_ns, int cap)
  716. {
  717. return ((nsp->flags & NETLINK_SKB_DST) ||
  718. file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
  719. ns_capable(user_ns, cap);
  720. }
  721. EXPORT_SYMBOL(__netlink_ns_capable);
  722. /**
  723. * netlink_ns_capable - General netlink message capability test
  724. * @skb: socket buffer holding a netlink command from userspace
  725. * @user_ns: The user namespace of the capability to use
  726. * @cap: The capability to use
  727. *
  728. * Test to see if the opener of the socket we received the message
  729. * from had when the netlink socket was created and the sender of the
  730. * message has has the capability @cap in the user namespace @user_ns.
  731. */
  732. bool netlink_ns_capable(const struct sk_buff *skb,
  733. struct user_namespace *user_ns, int cap)
  734. {
  735. return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
  736. }
  737. EXPORT_SYMBOL(netlink_ns_capable);
  738. /**
  739. * netlink_capable - Netlink global message capability test
  740. * @skb: socket buffer holding a netlink command from userspace
  741. * @cap: The capability to use
  742. *
  743. * Test to see if the opener of the socket we received the message
  744. * from had when the netlink socket was created and the sender of the
  745. * message has has the capability @cap in all user namespaces.
  746. */
  747. bool netlink_capable(const struct sk_buff *skb, int cap)
  748. {
  749. return netlink_ns_capable(skb, &init_user_ns, cap);
  750. }
  751. EXPORT_SYMBOL(netlink_capable);
  752. /**
  753. * netlink_net_capable - Netlink network namespace message capability test
  754. * @skb: socket buffer holding a netlink command from userspace
  755. * @cap: The capability to use
  756. *
  757. * Test to see if the opener of the socket we received the message
  758. * from had when the netlink socket was created and the sender of the
  759. * message has has the capability @cap over the network namespace of
  760. * the socket we received the message from.
  761. */
  762. bool netlink_net_capable(const struct sk_buff *skb, int cap)
  763. {
  764. return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
  765. }
  766. EXPORT_SYMBOL(netlink_net_capable);
  767. static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
  768. {
  769. return (nl_table[sock->sk->sk_protocol].flags & flag) ||
  770. ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
  771. }
  772. static void
  773. netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
  774. {
  775. struct netlink_sock *nlk = nlk_sk(sk);
  776. if (nlk->subscriptions && !subscriptions)
  777. __sk_del_bind_node(sk);
  778. else if (!nlk->subscriptions && subscriptions)
  779. sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
  780. nlk->subscriptions = subscriptions;
  781. }
  782. static int netlink_realloc_groups(struct sock *sk)
  783. {
  784. struct netlink_sock *nlk = nlk_sk(sk);
  785. unsigned int groups;
  786. unsigned long *new_groups;
  787. int err = 0;
  788. netlink_table_grab();
  789. groups = nl_table[sk->sk_protocol].groups;
  790. if (!nl_table[sk->sk_protocol].registered) {
  791. err = -ENOENT;
  792. goto out_unlock;
  793. }
  794. if (nlk->ngroups >= groups)
  795. goto out_unlock;
  796. new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
  797. if (new_groups == NULL) {
  798. err = -ENOMEM;
  799. goto out_unlock;
  800. }
  801. memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
  802. NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
  803. nlk->groups = new_groups;
  804. nlk->ngroups = groups;
  805. out_unlock:
  806. netlink_table_ungrab();
  807. return err;
  808. }
  809. static void netlink_undo_bind(int group, long unsigned int groups,
  810. struct sock *sk)
  811. {
  812. struct netlink_sock *nlk = nlk_sk(sk);
  813. int undo;
  814. if (!nlk->netlink_unbind)
  815. return;
  816. for (undo = 0; undo < group; undo++)
  817. if (test_bit(undo, &groups))
  818. nlk->netlink_unbind(sock_net(sk), undo + 1);
  819. }
  820. static int netlink_bind(struct socket *sock, struct sockaddr *addr,
  821. int addr_len)
  822. {
  823. struct sock *sk = sock->sk;
  824. struct net *net = sock_net(sk);
  825. struct netlink_sock *nlk = nlk_sk(sk);
  826. struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
  827. int err = 0;
  828. long unsigned int groups = nladdr->nl_groups;
  829. bool bound;
  830. if (addr_len < sizeof(struct sockaddr_nl))
  831. return -EINVAL;
  832. if (nladdr->nl_family != AF_NETLINK)
  833. return -EINVAL;
  834. /* Only superuser is allowed to listen multicasts */
  835. if (groups) {
  836. if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
  837. return -EPERM;
  838. err = netlink_realloc_groups(sk);
  839. if (err)
  840. return err;
  841. }
  842. bound = nlk->bound;
  843. if (bound) {
  844. /* Ensure nlk->portid is up-to-date. */
  845. smp_rmb();
  846. if (nladdr->nl_pid != nlk->portid)
  847. return -EINVAL;
  848. }
  849. netlink_lock_table();
  850. if (nlk->netlink_bind && groups) {
  851. int group;
  852. for (group = 0; group < nlk->ngroups; group++) {
  853. if (!test_bit(group, &groups))
  854. continue;
  855. err = nlk->netlink_bind(net, group + 1);
  856. if (!err)
  857. continue;
  858. netlink_undo_bind(group, groups, sk);
  859. goto unlock;
  860. }
  861. }
  862. /* No need for barriers here as we return to user-space without
  863. * using any of the bound attributes.
  864. */
  865. if (!bound) {
  866. err = nladdr->nl_pid ?
  867. netlink_insert(sk, nladdr->nl_pid) :
  868. netlink_autobind(sock);
  869. if (err) {
  870. netlink_undo_bind(nlk->ngroups, groups, sk);
  871. goto unlock;
  872. }
  873. }
  874. if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
  875. goto unlock;
  876. netlink_unlock_table();
  877. netlink_table_grab();
  878. netlink_update_subscriptions(sk, nlk->subscriptions +
  879. hweight32(groups) -
  880. hweight32(nlk->groups[0]));
  881. nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
  882. netlink_update_listeners(sk);
  883. netlink_table_ungrab();
  884. return 0;
  885. unlock:
  886. netlink_unlock_table();
  887. return err;
  888. }
  889. static int netlink_connect(struct socket *sock, struct sockaddr *addr,
  890. int alen, int flags)
  891. {
  892. int err = 0;
  893. struct sock *sk = sock->sk;
  894. struct netlink_sock *nlk = nlk_sk(sk);
  895. struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
  896. if (alen < sizeof(addr->sa_family))
  897. return -EINVAL;
  898. if (addr->sa_family == AF_UNSPEC) {
  899. sk->sk_state = NETLINK_UNCONNECTED;
  900. nlk->dst_portid = 0;
  901. nlk->dst_group = 0;
  902. return 0;
  903. }
  904. if (addr->sa_family != AF_NETLINK)
  905. return -EINVAL;
  906. if (alen < sizeof(struct sockaddr_nl))
  907. return -EINVAL;
  908. if ((nladdr->nl_groups || nladdr->nl_pid) &&
  909. !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
  910. return -EPERM;
  911. /* No need for barriers here as we return to user-space without
  912. * using any of the bound attributes.
  913. */
  914. if (!nlk->bound)
  915. err = netlink_autobind(sock);
  916. if (err == 0) {
  917. sk->sk_state = NETLINK_CONNECTED;
  918. nlk->dst_portid = nladdr->nl_pid;
  919. nlk->dst_group = ffs(nladdr->nl_groups);
  920. }
  921. return err;
  922. }
  923. static int netlink_getname(struct socket *sock, struct sockaddr *addr,
  924. int peer)
  925. {
  926. struct sock *sk = sock->sk;
  927. struct netlink_sock *nlk = nlk_sk(sk);
  928. DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
  929. nladdr->nl_family = AF_NETLINK;
  930. nladdr->nl_pad = 0;
  931. if (peer) {
  932. nladdr->nl_pid = nlk->dst_portid;
  933. nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
  934. } else {
  935. nladdr->nl_pid = nlk->portid;
  936. netlink_lock_table();
  937. nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
  938. netlink_unlock_table();
  939. }
  940. return sizeof(*nladdr);
  941. }
  942. static int netlink_ioctl(struct socket *sock, unsigned int cmd,
  943. unsigned long arg)
  944. {
  945. /* try to hand this ioctl down to the NIC drivers.
  946. */
  947. return -ENOIOCTLCMD;
  948. }
  949. static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
  950. {
  951. struct sock *sock;
  952. struct netlink_sock *nlk;
  953. sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
  954. if (!sock)
  955. return ERR_PTR(-ECONNREFUSED);
  956. /* Don't bother queuing skb if kernel socket has no input function */
  957. nlk = nlk_sk(sock);
  958. if (sock->sk_state == NETLINK_CONNECTED &&
  959. nlk->dst_portid != nlk_sk(ssk)->portid) {
  960. sock_put(sock);
  961. return ERR_PTR(-ECONNREFUSED);
  962. }
  963. return sock;
  964. }
  965. struct sock *netlink_getsockbyfilp(struct file *filp)
  966. {
  967. struct inode *inode = file_inode(filp);
  968. struct sock *sock;
  969. if (!S_ISSOCK(inode->i_mode))
  970. return ERR_PTR(-ENOTSOCK);
  971. sock = SOCKET_I(inode)->sk;
  972. if (sock->sk_family != AF_NETLINK)
  973. return ERR_PTR(-EINVAL);
  974. sock_hold(sock);
  975. return sock;
  976. }
  977. static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
  978. int broadcast)
  979. {
  980. struct sk_buff *skb;
  981. void *data;
  982. if (size <= NLMSG_GOODSIZE || broadcast)
  983. return alloc_skb(size, GFP_KERNEL);
  984. size = SKB_DATA_ALIGN(size) +
  985. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  986. data = vmalloc(size);
  987. if (data == NULL)
  988. return NULL;
  989. skb = __build_skb(data, size);
  990. if (skb == NULL)
  991. vfree(data);
  992. else
  993. skb->destructor = netlink_skb_destructor;
  994. return skb;
  995. }
  996. /*
  997. * Attach a skb to a netlink socket.
  998. * The caller must hold a reference to the destination socket. On error, the
  999. * reference is dropped. The skb is not send to the destination, just all
  1000. * all error checks are performed and memory in the queue is reserved.
  1001. * Return values:
  1002. * < 0: error. skb freed, reference to sock dropped.
  1003. * 0: continue
  1004. * 1: repeat lookup - reference dropped while waiting for socket memory.
  1005. */
  1006. int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
  1007. long *timeo, struct sock *ssk)
  1008. {
  1009. struct netlink_sock *nlk;
  1010. nlk = nlk_sk(sk);
  1011. if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  1012. test_bit(NETLINK_S_CONGESTED, &nlk->state))) {
  1013. DECLARE_WAITQUEUE(wait, current);
  1014. if (!*timeo) {
  1015. if (!ssk || netlink_is_kernel(ssk))
  1016. netlink_overrun(sk);
  1017. sock_put(sk);
  1018. kfree_skb(skb);
  1019. return -EAGAIN;
  1020. }
  1021. __set_current_state(TASK_INTERRUPTIBLE);
  1022. add_wait_queue(&nlk->wait, &wait);
  1023. if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  1024. test_bit(NETLINK_S_CONGESTED, &nlk->state)) &&
  1025. !sock_flag(sk, SOCK_DEAD))
  1026. *timeo = schedule_timeout(*timeo);
  1027. __set_current_state(TASK_RUNNING);
  1028. remove_wait_queue(&nlk->wait, &wait);
  1029. sock_put(sk);
  1030. if (signal_pending(current)) {
  1031. kfree_skb(skb);
  1032. return sock_intr_errno(*timeo);
  1033. }
  1034. return 1;
  1035. }
  1036. netlink_skb_set_owner_r(skb, sk);
  1037. return 0;
  1038. }
  1039. static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
  1040. {
  1041. int len = skb->len;
  1042. netlink_deliver_tap(sock_net(sk), skb);
  1043. skb_queue_tail(&sk->sk_receive_queue, skb);
  1044. sk->sk_data_ready(sk);
  1045. return len;
  1046. }
  1047. int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
  1048. {
  1049. int len = __netlink_sendskb(sk, skb);
  1050. sock_put(sk);
  1051. return len;
  1052. }
  1053. void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
  1054. {
  1055. kfree_skb(skb);
  1056. sock_put(sk);
  1057. }
  1058. static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
  1059. {
  1060. int delta;
  1061. WARN_ON(skb->sk != NULL);
  1062. delta = skb->end - skb->tail;
  1063. if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
  1064. return skb;
  1065. if (skb_shared(skb)) {
  1066. struct sk_buff *nskb = skb_clone(skb, allocation);
  1067. if (!nskb)
  1068. return skb;
  1069. consume_skb(skb);
  1070. skb = nskb;
  1071. }
  1072. pskb_expand_head(skb, 0, -delta,
  1073. (allocation & ~__GFP_DIRECT_RECLAIM) |
  1074. __GFP_NOWARN | __GFP_NORETRY);
  1075. return skb;
  1076. }
  1077. static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
  1078. struct sock *ssk)
  1079. {
  1080. int ret;
  1081. struct netlink_sock *nlk = nlk_sk(sk);
  1082. ret = -ECONNREFUSED;
  1083. if (nlk->netlink_rcv != NULL) {
  1084. ret = skb->len;
  1085. netlink_skb_set_owner_r(skb, sk);
  1086. NETLINK_CB(skb).sk = ssk;
  1087. netlink_deliver_tap_kernel(sk, ssk, skb);
  1088. nlk->netlink_rcv(skb);
  1089. consume_skb(skb);
  1090. } else {
  1091. kfree_skb(skb);
  1092. }
  1093. sock_put(sk);
  1094. return ret;
  1095. }
  1096. int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
  1097. u32 portid, int nonblock)
  1098. {
  1099. struct sock *sk;
  1100. int err;
  1101. long timeo;
  1102. skb = netlink_trim(skb, gfp_any());
  1103. timeo = sock_sndtimeo(ssk, nonblock);
  1104. retry:
  1105. sk = netlink_getsockbyportid(ssk, portid);
  1106. if (IS_ERR(sk)) {
  1107. kfree_skb(skb);
  1108. return PTR_ERR(sk);
  1109. }
  1110. if (netlink_is_kernel(sk))
  1111. return netlink_unicast_kernel(sk, skb, ssk);
  1112. if (sk_filter(sk, skb)) {
  1113. err = skb->len;
  1114. kfree_skb(skb);
  1115. sock_put(sk);
  1116. return err;
  1117. }
  1118. err = netlink_attachskb(sk, skb, &timeo, ssk);
  1119. if (err == 1)
  1120. goto retry;
  1121. if (err)
  1122. return err;
  1123. return netlink_sendskb(sk, skb);
  1124. }
  1125. EXPORT_SYMBOL(netlink_unicast);
  1126. int netlink_has_listeners(struct sock *sk, unsigned int group)
  1127. {
  1128. int res = 0;
  1129. struct listeners *listeners;
  1130. BUG_ON(!netlink_is_kernel(sk));
  1131. rcu_read_lock();
  1132. listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
  1133. if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
  1134. res = test_bit(group - 1, listeners->masks);
  1135. rcu_read_unlock();
  1136. return res;
  1137. }
  1138. EXPORT_SYMBOL_GPL(netlink_has_listeners);
  1139. static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
  1140. {
  1141. struct netlink_sock *nlk = nlk_sk(sk);
  1142. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
  1143. !test_bit(NETLINK_S_CONGESTED, &nlk->state)) {
  1144. netlink_skb_set_owner_r(skb, sk);
  1145. __netlink_sendskb(sk, skb);
  1146. return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
  1147. }
  1148. return -1;
  1149. }
  1150. struct netlink_broadcast_data {
  1151. struct sock *exclude_sk;
  1152. struct net *net;
  1153. u32 portid;
  1154. u32 group;
  1155. int failure;
  1156. int delivery_failure;
  1157. int congested;
  1158. int delivered;
  1159. gfp_t allocation;
  1160. struct sk_buff *skb, *skb2;
  1161. int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
  1162. void *tx_data;
  1163. };
  1164. static void do_one_broadcast(struct sock *sk,
  1165. struct netlink_broadcast_data *p)
  1166. {
  1167. struct netlink_sock *nlk = nlk_sk(sk);
  1168. int val;
  1169. if (p->exclude_sk == sk)
  1170. return;
  1171. if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
  1172. !test_bit(p->group - 1, nlk->groups))
  1173. return;
  1174. if (!net_eq(sock_net(sk), p->net)) {
  1175. if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID))
  1176. return;
  1177. if (!peernet_has_id(sock_net(sk), p->net))
  1178. return;
  1179. if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns,
  1180. CAP_NET_BROADCAST))
  1181. return;
  1182. }
  1183. if (p->failure) {
  1184. netlink_overrun(sk);
  1185. return;
  1186. }
  1187. sock_hold(sk);
  1188. if (p->skb2 == NULL) {
  1189. if (skb_shared(p->skb)) {
  1190. p->skb2 = skb_clone(p->skb, p->allocation);
  1191. } else {
  1192. p->skb2 = skb_get(p->skb);
  1193. /*
  1194. * skb ownership may have been set when
  1195. * delivered to a previous socket.
  1196. */
  1197. skb_orphan(p->skb2);
  1198. }
  1199. }
  1200. if (p->skb2 == NULL) {
  1201. netlink_overrun(sk);
  1202. /* Clone failed. Notify ALL listeners. */
  1203. p->failure = 1;
  1204. if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
  1205. p->delivery_failure = 1;
  1206. goto out;
  1207. }
  1208. if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
  1209. kfree_skb(p->skb2);
  1210. p->skb2 = NULL;
  1211. goto out;
  1212. }
  1213. if (sk_filter(sk, p->skb2)) {
  1214. kfree_skb(p->skb2);
  1215. p->skb2 = NULL;
  1216. goto out;
  1217. }
  1218. NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net);
  1219. if (NETLINK_CB(p->skb2).nsid != NETNSA_NSID_NOT_ASSIGNED)
  1220. NETLINK_CB(p->skb2).nsid_is_set = true;
  1221. val = netlink_broadcast_deliver(sk, p->skb2);
  1222. if (val < 0) {
  1223. netlink_overrun(sk);
  1224. if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
  1225. p->delivery_failure = 1;
  1226. } else {
  1227. p->congested |= val;
  1228. p->delivered = 1;
  1229. p->skb2 = NULL;
  1230. }
  1231. out:
  1232. sock_put(sk);
  1233. }
  1234. int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
  1235. u32 group, gfp_t allocation,
  1236. int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
  1237. void *filter_data)
  1238. {
  1239. struct net *net = sock_net(ssk);
  1240. struct netlink_broadcast_data info;
  1241. struct sock *sk;
  1242. skb = netlink_trim(skb, allocation);
  1243. info.exclude_sk = ssk;
  1244. info.net = net;
  1245. info.portid = portid;
  1246. info.group = group;
  1247. info.failure = 0;
  1248. info.delivery_failure = 0;
  1249. info.congested = 0;
  1250. info.delivered = 0;
  1251. info.allocation = allocation;
  1252. info.skb = skb;
  1253. info.skb2 = NULL;
  1254. info.tx_filter = filter;
  1255. info.tx_data = filter_data;
  1256. /* While we sleep in clone, do not allow to change socket list */
  1257. netlink_lock_table();
  1258. sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
  1259. do_one_broadcast(sk, &info);
  1260. consume_skb(skb);
  1261. netlink_unlock_table();
  1262. if (info.delivery_failure) {
  1263. kfree_skb(info.skb2);
  1264. return -ENOBUFS;
  1265. }
  1266. consume_skb(info.skb2);
  1267. if (info.delivered) {
  1268. if (info.congested && gfpflags_allow_blocking(allocation))
  1269. yield();
  1270. return 0;
  1271. }
  1272. return -ESRCH;
  1273. }
  1274. EXPORT_SYMBOL(netlink_broadcast_filtered);
  1275. int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
  1276. u32 group, gfp_t allocation)
  1277. {
  1278. return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
  1279. NULL, NULL);
  1280. }
  1281. EXPORT_SYMBOL(netlink_broadcast);
  1282. struct netlink_set_err_data {
  1283. struct sock *exclude_sk;
  1284. u32 portid;
  1285. u32 group;
  1286. int code;
  1287. };
  1288. static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
  1289. {
  1290. struct netlink_sock *nlk = nlk_sk(sk);
  1291. int ret = 0;
  1292. if (sk == p->exclude_sk)
  1293. goto out;
  1294. if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
  1295. goto out;
  1296. if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
  1297. !test_bit(p->group - 1, nlk->groups))
  1298. goto out;
  1299. if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) {
  1300. ret = 1;
  1301. goto out;
  1302. }
  1303. sk->sk_err = p->code;
  1304. sk->sk_error_report(sk);
  1305. out:
  1306. return ret;
  1307. }
  1308. /**
  1309. * netlink_set_err - report error to broadcast listeners
  1310. * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
  1311. * @portid: the PORTID of a process that we want to skip (if any)
  1312. * @group: the broadcast group that will notice the error
  1313. * @code: error code, must be negative (as usual in kernelspace)
  1314. *
  1315. * This function returns the number of broadcast listeners that have set the
  1316. * NETLINK_NO_ENOBUFS socket option.
  1317. */
  1318. int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
  1319. {
  1320. struct netlink_set_err_data info;
  1321. struct sock *sk;
  1322. int ret = 0;
  1323. info.exclude_sk = ssk;
  1324. info.portid = portid;
  1325. info.group = group;
  1326. /* sk->sk_err wants a positive error value */
  1327. info.code = -code;
  1328. read_lock(&nl_table_lock);
  1329. sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
  1330. ret += do_one_set_err(sk, &info);
  1331. read_unlock(&nl_table_lock);
  1332. return ret;
  1333. }
  1334. EXPORT_SYMBOL(netlink_set_err);
  1335. /* must be called with netlink table grabbed */
  1336. static void netlink_update_socket_mc(struct netlink_sock *nlk,
  1337. unsigned int group,
  1338. int is_new)
  1339. {
  1340. int old, new = !!is_new, subscriptions;
  1341. old = test_bit(group - 1, nlk->groups);
  1342. subscriptions = nlk->subscriptions - old + new;
  1343. if (new)
  1344. __set_bit(group - 1, nlk->groups);
  1345. else
  1346. __clear_bit(group - 1, nlk->groups);
  1347. netlink_update_subscriptions(&nlk->sk, subscriptions);
  1348. netlink_update_listeners(&nlk->sk);
  1349. }
  1350. static int netlink_setsockopt(struct socket *sock, int level, int optname,
  1351. char __user *optval, unsigned int optlen)
  1352. {
  1353. struct sock *sk = sock->sk;
  1354. struct netlink_sock *nlk = nlk_sk(sk);
  1355. unsigned int val = 0;
  1356. int err;
  1357. if (level != SOL_NETLINK)
  1358. return -ENOPROTOOPT;
  1359. if (optlen >= sizeof(int) &&
  1360. get_user(val, (unsigned int __user *)optval))
  1361. return -EFAULT;
  1362. switch (optname) {
  1363. case NETLINK_PKTINFO:
  1364. if (val)
  1365. nlk->flags |= NETLINK_F_RECV_PKTINFO;
  1366. else
  1367. nlk->flags &= ~NETLINK_F_RECV_PKTINFO;
  1368. err = 0;
  1369. break;
  1370. case NETLINK_ADD_MEMBERSHIP:
  1371. case NETLINK_DROP_MEMBERSHIP: {
  1372. if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
  1373. return -EPERM;
  1374. err = netlink_realloc_groups(sk);
  1375. if (err)
  1376. return err;
  1377. if (!val || val - 1 >= nlk->ngroups)
  1378. return -EINVAL;
  1379. if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
  1380. err = nlk->netlink_bind(sock_net(sk), val);
  1381. if (err)
  1382. return err;
  1383. }
  1384. netlink_table_grab();
  1385. netlink_update_socket_mc(nlk, val,
  1386. optname == NETLINK_ADD_MEMBERSHIP);
  1387. netlink_table_ungrab();
  1388. if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
  1389. nlk->netlink_unbind(sock_net(sk), val);
  1390. err = 0;
  1391. break;
  1392. }
  1393. case NETLINK_BROADCAST_ERROR:
  1394. if (val)
  1395. nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR;
  1396. else
  1397. nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR;
  1398. err = 0;
  1399. break;
  1400. case NETLINK_NO_ENOBUFS:
  1401. if (val) {
  1402. nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS;
  1403. clear_bit(NETLINK_S_CONGESTED, &nlk->state);
  1404. wake_up_interruptible(&nlk->wait);
  1405. } else {
  1406. nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS;
  1407. }
  1408. err = 0;
  1409. break;
  1410. case NETLINK_LISTEN_ALL_NSID:
  1411. if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST))
  1412. return -EPERM;
  1413. if (val)
  1414. nlk->flags |= NETLINK_F_LISTEN_ALL_NSID;
  1415. else
  1416. nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID;
  1417. err = 0;
  1418. break;
  1419. case NETLINK_CAP_ACK:
  1420. if (val)
  1421. nlk->flags |= NETLINK_F_CAP_ACK;
  1422. else
  1423. nlk->flags &= ~NETLINK_F_CAP_ACK;
  1424. err = 0;
  1425. break;
  1426. case NETLINK_EXT_ACK:
  1427. if (val)
  1428. nlk->flags |= NETLINK_F_EXT_ACK;
  1429. else
  1430. nlk->flags &= ~NETLINK_F_EXT_ACK;
  1431. err = 0;
  1432. break;
  1433. default:
  1434. err = -ENOPROTOOPT;
  1435. }
  1436. return err;
  1437. }
  1438. static int netlink_getsockopt(struct socket *sock, int level, int optname,
  1439. char __user *optval, int __user *optlen)
  1440. {
  1441. struct sock *sk = sock->sk;
  1442. struct netlink_sock *nlk = nlk_sk(sk);
  1443. int len, val, err;
  1444. if (level != SOL_NETLINK)
  1445. return -ENOPROTOOPT;
  1446. if (get_user(len, optlen))
  1447. return -EFAULT;
  1448. if (len < 0)
  1449. return -EINVAL;
  1450. switch (optname) {
  1451. case NETLINK_PKTINFO:
  1452. if (len < sizeof(int))
  1453. return -EINVAL;
  1454. len = sizeof(int);
  1455. val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0;
  1456. if (put_user(len, optlen) ||
  1457. put_user(val, optval))
  1458. return -EFAULT;
  1459. err = 0;
  1460. break;
  1461. case NETLINK_BROADCAST_ERROR:
  1462. if (len < sizeof(int))
  1463. return -EINVAL;
  1464. len = sizeof(int);
  1465. val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0;
  1466. if (put_user(len, optlen) ||
  1467. put_user(val, optval))
  1468. return -EFAULT;
  1469. err = 0;
  1470. break;
  1471. case NETLINK_NO_ENOBUFS:
  1472. if (len < sizeof(int))
  1473. return -EINVAL;
  1474. len = sizeof(int);
  1475. val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0;
  1476. if (put_user(len, optlen) ||
  1477. put_user(val, optval))
  1478. return -EFAULT;
  1479. err = 0;
  1480. break;
  1481. case NETLINK_LIST_MEMBERSHIPS: {
  1482. int pos, idx, shift;
  1483. err = 0;
  1484. netlink_lock_table();
  1485. for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) {
  1486. if (len - pos < sizeof(u32))
  1487. break;
  1488. idx = pos / sizeof(unsigned long);
  1489. shift = (pos % sizeof(unsigned long)) * 8;
  1490. if (put_user((u32)(nlk->groups[idx] >> shift),
  1491. (u32 __user *)(optval + pos))) {
  1492. err = -EFAULT;
  1493. break;
  1494. }
  1495. }
  1496. if (put_user(ALIGN(nlk->ngroups / 8, sizeof(u32)), optlen))
  1497. err = -EFAULT;
  1498. netlink_unlock_table();
  1499. break;
  1500. }
  1501. case NETLINK_CAP_ACK:
  1502. if (len < sizeof(int))
  1503. return -EINVAL;
  1504. len = sizeof(int);
  1505. val = nlk->flags & NETLINK_F_CAP_ACK ? 1 : 0;
  1506. if (put_user(len, optlen) ||
  1507. put_user(val, optval))
  1508. return -EFAULT;
  1509. err = 0;
  1510. break;
  1511. case NETLINK_EXT_ACK:
  1512. if (len < sizeof(int))
  1513. return -EINVAL;
  1514. len = sizeof(int);
  1515. val = nlk->flags & NETLINK_F_EXT_ACK ? 1 : 0;
  1516. if (put_user(len, optlen) || put_user(val, optval))
  1517. return -EFAULT;
  1518. err = 0;
  1519. break;
  1520. default:
  1521. err = -ENOPROTOOPT;
  1522. }
  1523. return err;
  1524. }
  1525. static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
  1526. {
  1527. struct nl_pktinfo info;
  1528. info.group = NETLINK_CB(skb).dst_group;
  1529. put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
  1530. }
  1531. static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg,
  1532. struct sk_buff *skb)
  1533. {
  1534. if (!NETLINK_CB(skb).nsid_is_set)
  1535. return;
  1536. put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int),
  1537. &NETLINK_CB(skb).nsid);
  1538. }
  1539. static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
  1540. {
  1541. struct sock *sk = sock->sk;
  1542. struct netlink_sock *nlk = nlk_sk(sk);
  1543. DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
  1544. u32 dst_portid;
  1545. u32 dst_group;
  1546. struct sk_buff *skb;
  1547. int err;
  1548. struct scm_cookie scm;
  1549. u32 netlink_skb_flags = 0;
  1550. if (msg->msg_flags&MSG_OOB)
  1551. return -EOPNOTSUPP;
  1552. err = scm_send(sock, msg, &scm, true);
  1553. if (err < 0)
  1554. return err;
  1555. if (msg->msg_namelen) {
  1556. err = -EINVAL;
  1557. if (msg->msg_namelen < sizeof(struct sockaddr_nl))
  1558. goto out;
  1559. if (addr->nl_family != AF_NETLINK)
  1560. goto out;
  1561. dst_portid = addr->nl_pid;
  1562. dst_group = ffs(addr->nl_groups);
  1563. err = -EPERM;
  1564. if ((dst_group || dst_portid) &&
  1565. !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
  1566. goto out;
  1567. netlink_skb_flags |= NETLINK_SKB_DST;
  1568. } else {
  1569. dst_portid = nlk->dst_portid;
  1570. dst_group = nlk->dst_group;
  1571. }
  1572. if (!nlk->bound) {
  1573. err = netlink_autobind(sock);
  1574. if (err)
  1575. goto out;
  1576. } else {
  1577. /* Ensure nlk is hashed and visible. */
  1578. smp_rmb();
  1579. }
  1580. err = -EMSGSIZE;
  1581. if (len > sk->sk_sndbuf - 32)
  1582. goto out;
  1583. err = -ENOBUFS;
  1584. skb = netlink_alloc_large_skb(len, dst_group);
  1585. if (skb == NULL)
  1586. goto out;
  1587. NETLINK_CB(skb).portid = nlk->portid;
  1588. NETLINK_CB(skb).dst_group = dst_group;
  1589. NETLINK_CB(skb).creds = scm.creds;
  1590. NETLINK_CB(skb).flags = netlink_skb_flags;
  1591. err = -EFAULT;
  1592. if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
  1593. kfree_skb(skb);
  1594. goto out;
  1595. }
  1596. err = security_netlink_send(sk, skb);
  1597. if (err) {
  1598. kfree_skb(skb);
  1599. goto out;
  1600. }
  1601. if (dst_group) {
  1602. refcount_inc(&skb->users);
  1603. netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
  1604. }
  1605. err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
  1606. out:
  1607. scm_destroy(&scm);
  1608. return err;
  1609. }
  1610. static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
  1611. int flags)
  1612. {
  1613. struct scm_cookie scm;
  1614. struct sock *sk = sock->sk;
  1615. struct netlink_sock *nlk = nlk_sk(sk);
  1616. int noblock = flags&MSG_DONTWAIT;
  1617. size_t copied;
  1618. struct sk_buff *skb, *data_skb;
  1619. int err, ret;
  1620. if (flags&MSG_OOB)
  1621. return -EOPNOTSUPP;
  1622. copied = 0;
  1623. skb = skb_recv_datagram(sk, flags, noblock, &err);
  1624. if (skb == NULL)
  1625. goto out;
  1626. data_skb = skb;
  1627. #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
  1628. if (unlikely(skb_shinfo(skb)->frag_list)) {
  1629. /*
  1630. * If this skb has a frag_list, then here that means that we
  1631. * will have to use the frag_list skb's data for compat tasks
  1632. * and the regular skb's data for normal (non-compat) tasks.
  1633. *
  1634. * If we need to send the compat skb, assign it to the
  1635. * 'data_skb' variable so that it will be used below for data
  1636. * copying. We keep 'skb' for everything else, including
  1637. * freeing both later.
  1638. */
  1639. if (flags & MSG_CMSG_COMPAT)
  1640. data_skb = skb_shinfo(skb)->frag_list;
  1641. }
  1642. #endif
  1643. /* Record the max length of recvmsg() calls for future allocations */
  1644. nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
  1645. nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
  1646. SKB_WITH_OVERHEAD(32768));
  1647. copied = data_skb->len;
  1648. if (len < copied) {
  1649. msg->msg_flags |= MSG_TRUNC;
  1650. copied = len;
  1651. }
  1652. skb_reset_transport_header(data_skb);
  1653. err = skb_copy_datagram_msg(data_skb, 0, msg, copied);
  1654. if (msg->msg_name) {
  1655. DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
  1656. addr->nl_family = AF_NETLINK;
  1657. addr->nl_pad = 0;
  1658. addr->nl_pid = NETLINK_CB(skb).portid;
  1659. addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group);
  1660. msg->msg_namelen = sizeof(*addr);
  1661. }
  1662. if (nlk->flags & NETLINK_F_RECV_PKTINFO)
  1663. netlink_cmsg_recv_pktinfo(msg, skb);
  1664. if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID)
  1665. netlink_cmsg_listen_all_nsid(sk, msg, skb);
  1666. memset(&scm, 0, sizeof(scm));
  1667. scm.creds = *NETLINK_CREDS(skb);
  1668. if (flags & MSG_TRUNC)
  1669. copied = data_skb->len;
  1670. skb_free_datagram(sk, skb);
  1671. if (nlk->cb_running &&
  1672. atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
  1673. ret = netlink_dump(sk);
  1674. if (ret) {
  1675. sk->sk_err = -ret;
  1676. sk->sk_error_report(sk);
  1677. }
  1678. }
  1679. scm_recv(sock, msg, &scm, flags);
  1680. out:
  1681. netlink_rcv_wake(sk);
  1682. return err ? : copied;
  1683. }
  1684. static void netlink_data_ready(struct sock *sk)
  1685. {
  1686. BUG();
  1687. }
  1688. /*
  1689. * We export these functions to other modules. They provide a
  1690. * complete set of kernel non-blocking support for message
  1691. * queueing.
  1692. */
  1693. struct sock *
  1694. __netlink_kernel_create(struct net *net, int unit, struct module *module,
  1695. struct netlink_kernel_cfg *cfg)
  1696. {
  1697. struct socket *sock;
  1698. struct sock *sk;
  1699. struct netlink_sock *nlk;
  1700. struct listeners *listeners = NULL;
  1701. struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
  1702. unsigned int groups;
  1703. BUG_ON(!nl_table);
  1704. if (unit < 0 || unit >= MAX_LINKS)
  1705. return NULL;
  1706. if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
  1707. return NULL;
  1708. if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0)
  1709. goto out_sock_release_nosk;
  1710. sk = sock->sk;
  1711. if (!cfg || cfg->groups < 32)
  1712. groups = 32;
  1713. else
  1714. groups = cfg->groups;
  1715. listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
  1716. if (!listeners)
  1717. goto out_sock_release;
  1718. sk->sk_data_ready = netlink_data_ready;
  1719. if (cfg && cfg->input)
  1720. nlk_sk(sk)->netlink_rcv = cfg->input;
  1721. if (netlink_insert(sk, 0))
  1722. goto out_sock_release;
  1723. nlk = nlk_sk(sk);
  1724. nlk->flags |= NETLINK_F_KERNEL_SOCKET;
  1725. netlink_table_grab();
  1726. if (!nl_table[unit].registered) {
  1727. nl_table[unit].groups = groups;
  1728. rcu_assign_pointer(nl_table[unit].listeners, listeners);
  1729. nl_table[unit].cb_mutex = cb_mutex;
  1730. nl_table[unit].module = module;
  1731. if (cfg) {
  1732. nl_table[unit].bind = cfg->bind;
  1733. nl_table[unit].unbind = cfg->unbind;
  1734. nl_table[unit].flags = cfg->flags;
  1735. if (cfg->compare)
  1736. nl_table[unit].compare = cfg->compare;
  1737. }
  1738. nl_table[unit].registered = 1;
  1739. } else {
  1740. kfree(listeners);
  1741. nl_table[unit].registered++;
  1742. }
  1743. netlink_table_ungrab();
  1744. return sk;
  1745. out_sock_release:
  1746. kfree(listeners);
  1747. netlink_kernel_release(sk);
  1748. return NULL;
  1749. out_sock_release_nosk:
  1750. sock_release(sock);
  1751. return NULL;
  1752. }
  1753. EXPORT_SYMBOL(__netlink_kernel_create);
  1754. void
  1755. netlink_kernel_release(struct sock *sk)
  1756. {
  1757. if (sk == NULL || sk->sk_socket == NULL)
  1758. return;
  1759. sock_release(sk->sk_socket);
  1760. }
  1761. EXPORT_SYMBOL(netlink_kernel_release);
  1762. int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
  1763. {
  1764. struct listeners *new, *old;
  1765. struct netlink_table *tbl = &nl_table[sk->sk_protocol];
  1766. if (groups < 32)
  1767. groups = 32;
  1768. if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
  1769. new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
  1770. if (!new)
  1771. return -ENOMEM;
  1772. old = nl_deref_protected(tbl->listeners);
  1773. memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
  1774. rcu_assign_pointer(tbl->listeners, new);
  1775. kfree_rcu(old, rcu);
  1776. }
  1777. tbl->groups = groups;
  1778. return 0;
  1779. }
  1780. /**
  1781. * netlink_change_ngroups - change number of multicast groups
  1782. *
  1783. * This changes the number of multicast groups that are available
  1784. * on a certain netlink family. Note that it is not possible to
  1785. * change the number of groups to below 32. Also note that it does
  1786. * not implicitly call netlink_clear_multicast_users() when the
  1787. * number of groups is reduced.
  1788. *
  1789. * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
  1790. * @groups: The new number of groups.
  1791. */
  1792. int netlink_change_ngroups(struct sock *sk, unsigned int groups)
  1793. {
  1794. int err;
  1795. netlink_table_grab();
  1796. err = __netlink_change_ngroups(sk, groups);
  1797. netlink_table_ungrab();
  1798. return err;
  1799. }
  1800. void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
  1801. {
  1802. struct sock *sk;
  1803. struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
  1804. sk_for_each_bound(sk, &tbl->mc_list)
  1805. netlink_update_socket_mc(nlk_sk(sk), group, 0);
  1806. }
  1807. struct nlmsghdr *
  1808. __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
  1809. {
  1810. struct nlmsghdr *nlh;
  1811. int size = nlmsg_msg_size(len);
  1812. nlh = skb_put(skb, NLMSG_ALIGN(size));
  1813. nlh->nlmsg_type = type;
  1814. nlh->nlmsg_len = size;
  1815. nlh->nlmsg_flags = flags;
  1816. nlh->nlmsg_pid = portid;
  1817. nlh->nlmsg_seq = seq;
  1818. if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
  1819. memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
  1820. return nlh;
  1821. }
  1822. EXPORT_SYMBOL(__nlmsg_put);
  1823. /*
  1824. * It looks a bit ugly.
  1825. * It would be better to create kernel thread.
  1826. */
  1827. static int netlink_dump(struct sock *sk)
  1828. {
  1829. struct netlink_sock *nlk = nlk_sk(sk);
  1830. struct netlink_callback *cb;
  1831. struct sk_buff *skb = NULL;
  1832. struct nlmsghdr *nlh;
  1833. struct module *module;
  1834. int err = -ENOBUFS;
  1835. int alloc_min_size;
  1836. int alloc_size;
  1837. mutex_lock(nlk->cb_mutex);
  1838. if (!nlk->cb_running) {
  1839. err = -EINVAL;
  1840. goto errout_skb;
  1841. }
  1842. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  1843. goto errout_skb;
  1844. /* NLMSG_GOODSIZE is small to avoid high order allocations being
  1845. * required, but it makes sense to _attempt_ a 16K bytes allocation
  1846. * to reduce number of system calls on dump operations, if user
  1847. * ever provided a big enough buffer.
  1848. */
  1849. cb = &nlk->cb;
  1850. alloc_min_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
  1851. if (alloc_min_size < nlk->max_recvmsg_len) {
  1852. alloc_size = nlk->max_recvmsg_len;
  1853. skb = alloc_skb(alloc_size,
  1854. (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) |
  1855. __GFP_NOWARN | __GFP_NORETRY);
  1856. }
  1857. if (!skb) {
  1858. alloc_size = alloc_min_size;
  1859. skb = alloc_skb(alloc_size, GFP_KERNEL);
  1860. }
  1861. if (!skb)
  1862. goto errout_skb;
  1863. /* Trim skb to allocated size. User is expected to provide buffer as
  1864. * large as max(min_dump_alloc, 16KiB (mac_recvmsg_len capped at
  1865. * netlink_recvmsg())). dump will pack as many smaller messages as
  1866. * could fit within the allocated skb. skb is typically allocated
  1867. * with larger space than required (could be as much as near 2x the
  1868. * requested size with align to next power of 2 approach). Allowing
  1869. * dump to use the excess space makes it difficult for a user to have a
  1870. * reasonable static buffer based on the expected largest dump of a
  1871. * single netdev. The outcome is MSG_TRUNC error.
  1872. */
  1873. skb_reserve(skb, skb_tailroom(skb) - alloc_size);
  1874. netlink_skb_set_owner_r(skb, sk);
  1875. if (nlk->dump_done_errno > 0)
  1876. nlk->dump_done_errno = cb->dump(skb, cb);
  1877. if (nlk->dump_done_errno > 0 ||
  1878. skb_tailroom(skb) < nlmsg_total_size(sizeof(nlk->dump_done_errno))) {
  1879. mutex_unlock(nlk->cb_mutex);
  1880. if (sk_filter(sk, skb))
  1881. kfree_skb(skb);
  1882. else
  1883. __netlink_sendskb(sk, skb);
  1884. return 0;
  1885. }
  1886. nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE,
  1887. sizeof(nlk->dump_done_errno), NLM_F_MULTI);
  1888. if (WARN_ON(!nlh))
  1889. goto errout_skb;
  1890. nl_dump_check_consistent(cb, nlh);
  1891. memcpy(nlmsg_data(nlh), &nlk->dump_done_errno,
  1892. sizeof(nlk->dump_done_errno));
  1893. if (sk_filter(sk, skb))
  1894. kfree_skb(skb);
  1895. else
  1896. __netlink_sendskb(sk, skb);
  1897. if (cb->done)
  1898. cb->done(cb);
  1899. nlk->cb_running = false;
  1900. module = cb->module;
  1901. skb = cb->skb;
  1902. mutex_unlock(nlk->cb_mutex);
  1903. module_put(module);
  1904. consume_skb(skb);
  1905. return 0;
  1906. errout_skb:
  1907. mutex_unlock(nlk->cb_mutex);
  1908. kfree_skb(skb);
  1909. return err;
  1910. }
  1911. int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
  1912. const struct nlmsghdr *nlh,
  1913. struct netlink_dump_control *control)
  1914. {
  1915. struct netlink_callback *cb;
  1916. struct sock *sk;
  1917. struct netlink_sock *nlk;
  1918. int ret;
  1919. refcount_inc(&skb->users);
  1920. sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
  1921. if (sk == NULL) {
  1922. ret = -ECONNREFUSED;
  1923. goto error_free;
  1924. }
  1925. nlk = nlk_sk(sk);
  1926. mutex_lock(nlk->cb_mutex);
  1927. /* A dump is in progress... */
  1928. if (nlk->cb_running) {
  1929. ret = -EBUSY;
  1930. goto error_unlock;
  1931. }
  1932. /* add reference of module which cb->dump belongs to */
  1933. if (!try_module_get(control->module)) {
  1934. ret = -EPROTONOSUPPORT;
  1935. goto error_unlock;
  1936. }
  1937. cb = &nlk->cb;
  1938. memset(cb, 0, sizeof(*cb));
  1939. cb->start = control->start;
  1940. cb->dump = control->dump;
  1941. cb->done = control->done;
  1942. cb->nlh = nlh;
  1943. cb->data = control->data;
  1944. cb->module = control->module;
  1945. cb->min_dump_alloc = control->min_dump_alloc;
  1946. cb->skb = skb;
  1947. if (cb->start) {
  1948. ret = cb->start(cb);
  1949. if (ret)
  1950. goto error_put;
  1951. }
  1952. nlk->cb_running = true;
  1953. nlk->dump_done_errno = INT_MAX;
  1954. mutex_unlock(nlk->cb_mutex);
  1955. ret = netlink_dump(sk);
  1956. sock_put(sk);
  1957. if (ret)
  1958. return ret;
  1959. /* We successfully started a dump, by returning -EINTR we
  1960. * signal not to send ACK even if it was requested.
  1961. */
  1962. return -EINTR;
  1963. error_put:
  1964. module_put(control->module);
  1965. error_unlock:
  1966. sock_put(sk);
  1967. mutex_unlock(nlk->cb_mutex);
  1968. error_free:
  1969. kfree_skb(skb);
  1970. return ret;
  1971. }
  1972. EXPORT_SYMBOL(__netlink_dump_start);
  1973. void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err,
  1974. const struct netlink_ext_ack *extack)
  1975. {
  1976. struct sk_buff *skb;
  1977. struct nlmsghdr *rep;
  1978. struct nlmsgerr *errmsg;
  1979. size_t payload = sizeof(*errmsg);
  1980. size_t tlvlen = 0;
  1981. struct netlink_sock *nlk = nlk_sk(NETLINK_CB(in_skb).sk);
  1982. unsigned int flags = 0;
  1983. bool nlk_has_extack = nlk->flags & NETLINK_F_EXT_ACK;
  1984. /* Error messages get the original request appened, unless the user
  1985. * requests to cap the error message, and get extra error data if
  1986. * requested.
  1987. */
  1988. if (nlk_has_extack && extack && extack->_msg)
  1989. tlvlen += nla_total_size(strlen(extack->_msg) + 1);
  1990. if (err) {
  1991. if (!(nlk->flags & NETLINK_F_CAP_ACK))
  1992. payload += nlmsg_len(nlh);
  1993. else
  1994. flags |= NLM_F_CAPPED;
  1995. if (nlk_has_extack && extack && extack->bad_attr)
  1996. tlvlen += nla_total_size(sizeof(u32));
  1997. } else {
  1998. flags |= NLM_F_CAPPED;
  1999. if (nlk_has_extack && extack && extack->cookie_len)
  2000. tlvlen += nla_total_size(extack->cookie_len);
  2001. }
  2002. if (tlvlen)
  2003. flags |= NLM_F_ACK_TLVS;
  2004. skb = nlmsg_new(payload + tlvlen, GFP_KERNEL);
  2005. if (!skb) {
  2006. NETLINK_CB(in_skb).sk->sk_err = ENOBUFS;
  2007. NETLINK_CB(in_skb).sk->sk_error_report(NETLINK_CB(in_skb).sk);
  2008. return;
  2009. }
  2010. rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
  2011. NLMSG_ERROR, payload, flags);
  2012. errmsg = nlmsg_data(rep);
  2013. errmsg->error = err;
  2014. memcpy(&errmsg->msg, nlh, payload > sizeof(*errmsg) ? nlh->nlmsg_len : sizeof(*nlh));
  2015. if (nlk_has_extack && extack) {
  2016. if (extack->_msg) {
  2017. WARN_ON(nla_put_string(skb, NLMSGERR_ATTR_MSG,
  2018. extack->_msg));
  2019. }
  2020. if (err) {
  2021. if (extack->bad_attr &&
  2022. !WARN_ON((u8 *)extack->bad_attr < in_skb->data ||
  2023. (u8 *)extack->bad_attr >= in_skb->data +
  2024. in_skb->len))
  2025. WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_OFFS,
  2026. (u8 *)extack->bad_attr -
  2027. in_skb->data));
  2028. } else {
  2029. if (extack->cookie_len)
  2030. WARN_ON(nla_put(skb, NLMSGERR_ATTR_COOKIE,
  2031. extack->cookie_len,
  2032. extack->cookie));
  2033. }
  2034. }
  2035. nlmsg_end(skb, rep);
  2036. netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
  2037. }
  2038. EXPORT_SYMBOL(netlink_ack);
  2039. int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
  2040. struct nlmsghdr *,
  2041. struct netlink_ext_ack *))
  2042. {
  2043. struct netlink_ext_ack extack;
  2044. struct nlmsghdr *nlh;
  2045. int err;
  2046. while (skb->len >= nlmsg_total_size(0)) {
  2047. int msglen;
  2048. memset(&extack, 0, sizeof(extack));
  2049. nlh = nlmsg_hdr(skb);
  2050. err = 0;
  2051. if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
  2052. return 0;
  2053. /* Only requests are handled by the kernel */
  2054. if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
  2055. goto ack;
  2056. /* Skip control messages */
  2057. if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
  2058. goto ack;
  2059. err = cb(skb, nlh, &extack);
  2060. if (err == -EINTR)
  2061. goto skip;
  2062. ack:
  2063. if (nlh->nlmsg_flags & NLM_F_ACK || err)
  2064. netlink_ack(skb, nlh, err, &extack);
  2065. skip:
  2066. msglen = NLMSG_ALIGN(nlh->nlmsg_len);
  2067. if (msglen > skb->len)
  2068. msglen = skb->len;
  2069. skb_pull(skb, msglen);
  2070. }
  2071. return 0;
  2072. }
  2073. EXPORT_SYMBOL(netlink_rcv_skb);
  2074. /**
  2075. * nlmsg_notify - send a notification netlink message
  2076. * @sk: netlink socket to use
  2077. * @skb: notification message
  2078. * @portid: destination netlink portid for reports or 0
  2079. * @group: destination multicast group or 0
  2080. * @report: 1 to report back, 0 to disable
  2081. * @flags: allocation flags
  2082. */
  2083. int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
  2084. unsigned int group, int report, gfp_t flags)
  2085. {
  2086. int err = 0;
  2087. if (group) {
  2088. int exclude_portid = 0;
  2089. if (report) {
  2090. refcount_inc(&skb->users);
  2091. exclude_portid = portid;
  2092. }
  2093. /* errors reported via destination sk->sk_err, but propagate
  2094. * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
  2095. err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
  2096. }
  2097. if (report) {
  2098. int err2;
  2099. err2 = nlmsg_unicast(sk, skb, portid);
  2100. if (!err || err == -ESRCH)
  2101. err = err2;
  2102. }
  2103. return err;
  2104. }
  2105. EXPORT_SYMBOL(nlmsg_notify);
  2106. #ifdef CONFIG_PROC_FS
  2107. struct nl_seq_iter {
  2108. struct seq_net_private p;
  2109. struct rhashtable_iter hti;
  2110. int link;
  2111. };
  2112. static int netlink_walk_start(struct nl_seq_iter *iter)
  2113. {
  2114. int err;
  2115. err = rhashtable_walk_init(&nl_table[iter->link].hash, &iter->hti,
  2116. GFP_KERNEL);
  2117. if (err) {
  2118. iter->link = MAX_LINKS;
  2119. return err;
  2120. }
  2121. rhashtable_walk_start(&iter->hti);
  2122. return 0;
  2123. }
  2124. static void netlink_walk_stop(struct nl_seq_iter *iter)
  2125. {
  2126. rhashtable_walk_stop(&iter->hti);
  2127. rhashtable_walk_exit(&iter->hti);
  2128. }
  2129. static void *__netlink_seq_next(struct seq_file *seq)
  2130. {
  2131. struct nl_seq_iter *iter = seq->private;
  2132. struct netlink_sock *nlk;
  2133. do {
  2134. for (;;) {
  2135. int err;
  2136. nlk = rhashtable_walk_next(&iter->hti);
  2137. if (IS_ERR(nlk)) {
  2138. if (PTR_ERR(nlk) == -EAGAIN)
  2139. continue;
  2140. return nlk;
  2141. }
  2142. if (nlk)
  2143. break;
  2144. netlink_walk_stop(iter);
  2145. if (++iter->link >= MAX_LINKS)
  2146. return NULL;
  2147. err = netlink_walk_start(iter);
  2148. if (err)
  2149. return ERR_PTR(err);
  2150. }
  2151. } while (sock_net(&nlk->sk) != seq_file_net(seq));
  2152. return nlk;
  2153. }
  2154. static void *netlink_seq_start(struct seq_file *seq, loff_t *posp)
  2155. {
  2156. struct nl_seq_iter *iter = seq->private;
  2157. void *obj = SEQ_START_TOKEN;
  2158. loff_t pos;
  2159. int err;
  2160. iter->link = 0;
  2161. err = netlink_walk_start(iter);
  2162. if (err)
  2163. return ERR_PTR(err);
  2164. for (pos = *posp; pos && obj && !IS_ERR(obj); pos--)
  2165. obj = __netlink_seq_next(seq);
  2166. return obj;
  2167. }
  2168. static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2169. {
  2170. ++*pos;
  2171. return __netlink_seq_next(seq);
  2172. }
  2173. static void netlink_seq_stop(struct seq_file *seq, void *v)
  2174. {
  2175. struct nl_seq_iter *iter = seq->private;
  2176. if (iter->link >= MAX_LINKS)
  2177. return;
  2178. netlink_walk_stop(iter);
  2179. }
  2180. static int netlink_seq_show(struct seq_file *seq, void *v)
  2181. {
  2182. if (v == SEQ_START_TOKEN) {
  2183. seq_puts(seq,
  2184. "sk Eth Pid Groups "
  2185. "Rmem Wmem Dump Locks Drops Inode\n");
  2186. } else {
  2187. struct sock *s = v;
  2188. struct netlink_sock *nlk = nlk_sk(s);
  2189. seq_printf(seq, "%pK %-3d %-10u %08x %-8d %-8d %-5d %-8d %-8d %-8lu\n",
  2190. s,
  2191. s->sk_protocol,
  2192. nlk->portid,
  2193. nlk->groups ? (u32)nlk->groups[0] : 0,
  2194. sk_rmem_alloc_get(s),
  2195. sk_wmem_alloc_get(s),
  2196. nlk->cb_running,
  2197. refcount_read(&s->sk_refcnt),
  2198. atomic_read(&s->sk_drops),
  2199. sock_i_ino(s)
  2200. );
  2201. }
  2202. return 0;
  2203. }
  2204. static const struct seq_operations netlink_seq_ops = {
  2205. .start = netlink_seq_start,
  2206. .next = netlink_seq_next,
  2207. .stop = netlink_seq_stop,
  2208. .show = netlink_seq_show,
  2209. };
  2210. #endif
  2211. int netlink_register_notifier(struct notifier_block *nb)
  2212. {
  2213. return blocking_notifier_chain_register(&netlink_chain, nb);
  2214. }
  2215. EXPORT_SYMBOL(netlink_register_notifier);
  2216. int netlink_unregister_notifier(struct notifier_block *nb)
  2217. {
  2218. return blocking_notifier_chain_unregister(&netlink_chain, nb);
  2219. }
  2220. EXPORT_SYMBOL(netlink_unregister_notifier);
  2221. static const struct proto_ops netlink_ops = {
  2222. .family = PF_NETLINK,
  2223. .owner = THIS_MODULE,
  2224. .release = netlink_release,
  2225. .bind = netlink_bind,
  2226. .connect = netlink_connect,
  2227. .socketpair = sock_no_socketpair,
  2228. .accept = sock_no_accept,
  2229. .getname = netlink_getname,
  2230. .poll_mask = datagram_poll_mask,
  2231. .ioctl = netlink_ioctl,
  2232. .listen = sock_no_listen,
  2233. .shutdown = sock_no_shutdown,
  2234. .setsockopt = netlink_setsockopt,
  2235. .getsockopt = netlink_getsockopt,
  2236. .sendmsg = netlink_sendmsg,
  2237. .recvmsg = netlink_recvmsg,
  2238. .mmap = sock_no_mmap,
  2239. .sendpage = sock_no_sendpage,
  2240. };
  2241. static const struct net_proto_family netlink_family_ops = {
  2242. .family = PF_NETLINK,
  2243. .create = netlink_create,
  2244. .owner = THIS_MODULE, /* for consistency 8) */
  2245. };
  2246. static int __net_init netlink_net_init(struct net *net)
  2247. {
  2248. #ifdef CONFIG_PROC_FS
  2249. if (!proc_create_net("netlink", 0, net->proc_net, &netlink_seq_ops,
  2250. sizeof(struct nl_seq_iter)))
  2251. return -ENOMEM;
  2252. #endif
  2253. return 0;
  2254. }
  2255. static void __net_exit netlink_net_exit(struct net *net)
  2256. {
  2257. #ifdef CONFIG_PROC_FS
  2258. remove_proc_entry("netlink", net->proc_net);
  2259. #endif
  2260. }
  2261. static void __init netlink_add_usersock_entry(void)
  2262. {
  2263. struct listeners *listeners;
  2264. int groups = 32;
  2265. listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
  2266. if (!listeners)
  2267. panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
  2268. netlink_table_grab();
  2269. nl_table[NETLINK_USERSOCK].groups = groups;
  2270. rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
  2271. nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
  2272. nl_table[NETLINK_USERSOCK].registered = 1;
  2273. nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
  2274. netlink_table_ungrab();
  2275. }
  2276. static struct pernet_operations __net_initdata netlink_net_ops = {
  2277. .init = netlink_net_init,
  2278. .exit = netlink_net_exit,
  2279. };
  2280. static inline u32 netlink_hash(const void *data, u32 len, u32 seed)
  2281. {
  2282. const struct netlink_sock *nlk = data;
  2283. struct netlink_compare_arg arg;
  2284. netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid);
  2285. return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed);
  2286. }
  2287. static const struct rhashtable_params netlink_rhashtable_params = {
  2288. .head_offset = offsetof(struct netlink_sock, node),
  2289. .key_len = netlink_compare_arg_len,
  2290. .obj_hashfn = netlink_hash,
  2291. .obj_cmpfn = netlink_compare,
  2292. .automatic_shrinking = true,
  2293. };
  2294. static int __init netlink_proto_init(void)
  2295. {
  2296. int i;
  2297. int err = proto_register(&netlink_proto, 0);
  2298. if (err != 0)
  2299. goto out;
  2300. BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
  2301. nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
  2302. if (!nl_table)
  2303. goto panic;
  2304. for (i = 0; i < MAX_LINKS; i++) {
  2305. if (rhashtable_init(&nl_table[i].hash,
  2306. &netlink_rhashtable_params) < 0) {
  2307. while (--i > 0)
  2308. rhashtable_destroy(&nl_table[i].hash);
  2309. kfree(nl_table);
  2310. goto panic;
  2311. }
  2312. }
  2313. netlink_add_usersock_entry();
  2314. sock_register(&netlink_family_ops);
  2315. register_pernet_subsys(&netlink_net_ops);
  2316. register_pernet_subsys(&netlink_tap_net_ops);
  2317. /* The netlink device handler may be needed early. */
  2318. rtnetlink_init();
  2319. out:
  2320. return err;
  2321. panic:
  2322. panic("netlink_init: Cannot allocate nl_table\n");
  2323. }
  2324. core_initcall(netlink_proto_init);