af_key.c 101 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <linux/slab.h>
  29. #include <net/net_namespace.h>
  30. #include <net/netns/generic.h>
  31. #include <net/xfrm.h>
  32. #include <net/sock.h>
  33. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  34. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  35. static unsigned int pfkey_net_id __read_mostly;
  36. struct netns_pfkey {
  37. /* List of all pfkey sockets. */
  38. struct hlist_head table;
  39. atomic_t socks_nr;
  40. };
  41. static DEFINE_MUTEX(pfkey_mutex);
  42. #define DUMMY_MARK 0
  43. static const struct xfrm_mark dummy_mark = {0, 0};
  44. struct pfkey_sock {
  45. /* struct sock must be the first member of struct pfkey_sock */
  46. struct sock sk;
  47. int registered;
  48. int promisc;
  49. struct {
  50. uint8_t msg_version;
  51. uint32_t msg_portid;
  52. int (*dump)(struct pfkey_sock *sk);
  53. void (*done)(struct pfkey_sock *sk);
  54. union {
  55. struct xfrm_policy_walk policy;
  56. struct xfrm_state_walk state;
  57. } u;
  58. struct sk_buff *skb;
  59. } dump;
  60. struct mutex dump_lock;
  61. };
  62. static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len,
  63. xfrm_address_t *saddr, xfrm_address_t *daddr,
  64. u16 *family);
  65. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  66. {
  67. return (struct pfkey_sock *)sk;
  68. }
  69. static int pfkey_can_dump(const struct sock *sk)
  70. {
  71. if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
  72. return 1;
  73. return 0;
  74. }
  75. static void pfkey_terminate_dump(struct pfkey_sock *pfk)
  76. {
  77. if (pfk->dump.dump) {
  78. if (pfk->dump.skb) {
  79. kfree_skb(pfk->dump.skb);
  80. pfk->dump.skb = NULL;
  81. }
  82. pfk->dump.done(pfk);
  83. pfk->dump.dump = NULL;
  84. pfk->dump.done = NULL;
  85. }
  86. }
  87. static void pfkey_sock_destruct(struct sock *sk)
  88. {
  89. struct net *net = sock_net(sk);
  90. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  91. pfkey_terminate_dump(pfkey_sk(sk));
  92. skb_queue_purge(&sk->sk_receive_queue);
  93. if (!sock_flag(sk, SOCK_DEAD)) {
  94. pr_err("Attempt to release alive pfkey socket: %p\n", sk);
  95. return;
  96. }
  97. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  98. WARN_ON(refcount_read(&sk->sk_wmem_alloc));
  99. atomic_dec(&net_pfkey->socks_nr);
  100. }
  101. static const struct proto_ops pfkey_ops;
  102. static void pfkey_insert(struct sock *sk)
  103. {
  104. struct net *net = sock_net(sk);
  105. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  106. mutex_lock(&pfkey_mutex);
  107. sk_add_node_rcu(sk, &net_pfkey->table);
  108. mutex_unlock(&pfkey_mutex);
  109. }
  110. static void pfkey_remove(struct sock *sk)
  111. {
  112. mutex_lock(&pfkey_mutex);
  113. sk_del_node_init_rcu(sk);
  114. mutex_unlock(&pfkey_mutex);
  115. }
  116. static struct proto key_proto = {
  117. .name = "KEY",
  118. .owner = THIS_MODULE,
  119. .obj_size = sizeof(struct pfkey_sock),
  120. };
  121. static int pfkey_create(struct net *net, struct socket *sock, int protocol,
  122. int kern)
  123. {
  124. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  125. struct sock *sk;
  126. struct pfkey_sock *pfk;
  127. int err;
  128. if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
  129. return -EPERM;
  130. if (sock->type != SOCK_RAW)
  131. return -ESOCKTNOSUPPORT;
  132. if (protocol != PF_KEY_V2)
  133. return -EPROTONOSUPPORT;
  134. err = -ENOMEM;
  135. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto, kern);
  136. if (sk == NULL)
  137. goto out;
  138. pfk = pfkey_sk(sk);
  139. mutex_init(&pfk->dump_lock);
  140. sock->ops = &pfkey_ops;
  141. sock_init_data(sock, sk);
  142. sk->sk_family = PF_KEY;
  143. sk->sk_destruct = pfkey_sock_destruct;
  144. atomic_inc(&net_pfkey->socks_nr);
  145. pfkey_insert(sk);
  146. return 0;
  147. out:
  148. return err;
  149. }
  150. static int pfkey_release(struct socket *sock)
  151. {
  152. struct sock *sk = sock->sk;
  153. if (!sk)
  154. return 0;
  155. pfkey_remove(sk);
  156. sock_orphan(sk);
  157. sock->sk = NULL;
  158. skb_queue_purge(&sk->sk_write_queue);
  159. synchronize_rcu();
  160. sock_put(sk);
  161. return 0;
  162. }
  163. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  164. gfp_t allocation, struct sock *sk)
  165. {
  166. int err = -ENOBUFS;
  167. sock_hold(sk);
  168. if (*skb2 == NULL) {
  169. if (refcount_read(&skb->users) != 1) {
  170. *skb2 = skb_clone(skb, allocation);
  171. } else {
  172. *skb2 = skb;
  173. refcount_inc(&skb->users);
  174. }
  175. }
  176. if (*skb2 != NULL) {
  177. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  178. skb_set_owner_r(*skb2, sk);
  179. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  180. sk->sk_data_ready(sk);
  181. *skb2 = NULL;
  182. err = 0;
  183. }
  184. }
  185. sock_put(sk);
  186. return err;
  187. }
  188. /* Send SKB to all pfkey sockets matching selected criteria. */
  189. #define BROADCAST_ALL 0
  190. #define BROADCAST_ONE 1
  191. #define BROADCAST_REGISTERED 2
  192. #define BROADCAST_PROMISC_ONLY 4
  193. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  194. int broadcast_flags, struct sock *one_sk,
  195. struct net *net)
  196. {
  197. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  198. struct sock *sk;
  199. struct sk_buff *skb2 = NULL;
  200. int err = -ESRCH;
  201. /* XXX Do we need something like netlink_overrun? I think
  202. * XXX PF_KEY socket apps will not mind current behavior.
  203. */
  204. if (!skb)
  205. return -ENOMEM;
  206. rcu_read_lock();
  207. sk_for_each_rcu(sk, &net_pfkey->table) {
  208. struct pfkey_sock *pfk = pfkey_sk(sk);
  209. int err2;
  210. /* Yes, it means that if you are meant to receive this
  211. * pfkey message you receive it twice as promiscuous
  212. * socket.
  213. */
  214. if (pfk->promisc)
  215. pfkey_broadcast_one(skb, &skb2, GFP_ATOMIC, sk);
  216. /* the exact target will be processed later */
  217. if (sk == one_sk)
  218. continue;
  219. if (broadcast_flags != BROADCAST_ALL) {
  220. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  221. continue;
  222. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  223. !pfk->registered)
  224. continue;
  225. if (broadcast_flags & BROADCAST_ONE)
  226. continue;
  227. }
  228. err2 = pfkey_broadcast_one(skb, &skb2, GFP_ATOMIC, sk);
  229. /* Error is cleared after successful sending to at least one
  230. * registered KM */
  231. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  232. err = err2;
  233. }
  234. rcu_read_unlock();
  235. if (one_sk != NULL)
  236. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  237. kfree_skb(skb2);
  238. kfree_skb(skb);
  239. return err;
  240. }
  241. static int pfkey_do_dump(struct pfkey_sock *pfk)
  242. {
  243. struct sadb_msg *hdr;
  244. int rc;
  245. mutex_lock(&pfk->dump_lock);
  246. if (!pfk->dump.dump) {
  247. rc = 0;
  248. goto out;
  249. }
  250. rc = pfk->dump.dump(pfk);
  251. if (rc == -ENOBUFS) {
  252. rc = 0;
  253. goto out;
  254. }
  255. if (pfk->dump.skb) {
  256. if (!pfkey_can_dump(&pfk->sk)) {
  257. rc = 0;
  258. goto out;
  259. }
  260. hdr = (struct sadb_msg *) pfk->dump.skb->data;
  261. hdr->sadb_msg_seq = 0;
  262. hdr->sadb_msg_errno = rc;
  263. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  264. &pfk->sk, sock_net(&pfk->sk));
  265. pfk->dump.skb = NULL;
  266. }
  267. pfkey_terminate_dump(pfk);
  268. out:
  269. mutex_unlock(&pfk->dump_lock);
  270. return rc;
  271. }
  272. static inline void pfkey_hdr_dup(struct sadb_msg *new,
  273. const struct sadb_msg *orig)
  274. {
  275. *new = *orig;
  276. }
  277. static int pfkey_error(const struct sadb_msg *orig, int err, struct sock *sk)
  278. {
  279. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  280. struct sadb_msg *hdr;
  281. if (!skb)
  282. return -ENOBUFS;
  283. /* Woe be to the platform trying to support PFKEY yet
  284. * having normal errnos outside the 1-255 range, inclusive.
  285. */
  286. err = -err;
  287. if (err == ERESTARTSYS ||
  288. err == ERESTARTNOHAND ||
  289. err == ERESTARTNOINTR)
  290. err = EINTR;
  291. if (err >= 512)
  292. err = EINVAL;
  293. BUG_ON(err <= 0 || err >= 256);
  294. hdr = skb_put(skb, sizeof(struct sadb_msg));
  295. pfkey_hdr_dup(hdr, orig);
  296. hdr->sadb_msg_errno = (uint8_t) err;
  297. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  298. sizeof(uint64_t));
  299. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk, sock_net(sk));
  300. return 0;
  301. }
  302. static const u8 sadb_ext_min_len[] = {
  303. [SADB_EXT_RESERVED] = (u8) 0,
  304. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  305. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  306. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  307. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  308. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  309. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  310. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  311. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  312. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  313. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  314. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  315. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  316. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  317. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  318. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  319. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  320. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  321. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  322. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  323. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  324. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  325. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  326. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  327. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  328. [SADB_X_EXT_KMADDRESS] = (u8) sizeof(struct sadb_x_kmaddress),
  329. [SADB_X_EXT_FILTER] = (u8) sizeof(struct sadb_x_filter),
  330. };
  331. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  332. static int verify_address_len(const void *p)
  333. {
  334. const struct sadb_address *sp = p;
  335. const struct sockaddr *addr = (const struct sockaddr *)(sp + 1);
  336. const struct sockaddr_in *sin;
  337. #if IS_ENABLED(CONFIG_IPV6)
  338. const struct sockaddr_in6 *sin6;
  339. #endif
  340. int len;
  341. if (sp->sadb_address_len <
  342. DIV_ROUND_UP(sizeof(*sp) + offsetofend(typeof(*addr), sa_family),
  343. sizeof(uint64_t)))
  344. return -EINVAL;
  345. switch (addr->sa_family) {
  346. case AF_INET:
  347. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  348. if (sp->sadb_address_len != len ||
  349. sp->sadb_address_prefixlen > 32)
  350. return -EINVAL;
  351. break;
  352. #if IS_ENABLED(CONFIG_IPV6)
  353. case AF_INET6:
  354. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  355. if (sp->sadb_address_len != len ||
  356. sp->sadb_address_prefixlen > 128)
  357. return -EINVAL;
  358. break;
  359. #endif
  360. default:
  361. /* It is user using kernel to keep track of security
  362. * associations for another protocol, such as
  363. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  364. * lengths.
  365. *
  366. * XXX Actually, association/policy database is not yet
  367. * XXX able to cope with arbitrary sockaddr families.
  368. * XXX When it can, remove this -EINVAL. -DaveM
  369. */
  370. return -EINVAL;
  371. }
  372. return 0;
  373. }
  374. static inline int sadb_key_len(const struct sadb_key *key)
  375. {
  376. int key_bytes = DIV_ROUND_UP(key->sadb_key_bits, 8);
  377. return DIV_ROUND_UP(sizeof(struct sadb_key) + key_bytes,
  378. sizeof(uint64_t));
  379. }
  380. static int verify_key_len(const void *p)
  381. {
  382. const struct sadb_key *key = p;
  383. if (sadb_key_len(key) > key->sadb_key_len)
  384. return -EINVAL;
  385. return 0;
  386. }
  387. static inline int pfkey_sec_ctx_len(const struct sadb_x_sec_ctx *sec_ctx)
  388. {
  389. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  390. sec_ctx->sadb_x_ctx_len,
  391. sizeof(uint64_t));
  392. }
  393. static inline int verify_sec_ctx_len(const void *p)
  394. {
  395. const struct sadb_x_sec_ctx *sec_ctx = p;
  396. int len = sec_ctx->sadb_x_ctx_len;
  397. if (len > PAGE_SIZE)
  398. return -EINVAL;
  399. len = pfkey_sec_ctx_len(sec_ctx);
  400. if (sec_ctx->sadb_x_sec_len != len)
  401. return -EINVAL;
  402. return 0;
  403. }
  404. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(const struct sadb_x_sec_ctx *sec_ctx,
  405. gfp_t gfp)
  406. {
  407. struct xfrm_user_sec_ctx *uctx = NULL;
  408. int ctx_size = sec_ctx->sadb_x_ctx_len;
  409. uctx = kmalloc((sizeof(*uctx)+ctx_size), gfp);
  410. if (!uctx)
  411. return NULL;
  412. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  413. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  414. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  415. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  416. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  417. memcpy(uctx + 1, sec_ctx + 1,
  418. uctx->ctx_len);
  419. return uctx;
  420. }
  421. static int present_and_same_family(const struct sadb_address *src,
  422. const struct sadb_address *dst)
  423. {
  424. const struct sockaddr *s_addr, *d_addr;
  425. if (!src || !dst)
  426. return 0;
  427. s_addr = (const struct sockaddr *)(src + 1);
  428. d_addr = (const struct sockaddr *)(dst + 1);
  429. if (s_addr->sa_family != d_addr->sa_family)
  430. return 0;
  431. if (s_addr->sa_family != AF_INET
  432. #if IS_ENABLED(CONFIG_IPV6)
  433. && s_addr->sa_family != AF_INET6
  434. #endif
  435. )
  436. return 0;
  437. return 1;
  438. }
  439. static int parse_exthdrs(struct sk_buff *skb, const struct sadb_msg *hdr, void **ext_hdrs)
  440. {
  441. const char *p = (char *) hdr;
  442. int len = skb->len;
  443. len -= sizeof(*hdr);
  444. p += sizeof(*hdr);
  445. while (len > 0) {
  446. const struct sadb_ext *ehdr = (const struct sadb_ext *) p;
  447. uint16_t ext_type;
  448. int ext_len;
  449. if (len < sizeof(*ehdr))
  450. return -EINVAL;
  451. ext_len = ehdr->sadb_ext_len;
  452. ext_len *= sizeof(uint64_t);
  453. ext_type = ehdr->sadb_ext_type;
  454. if (ext_len < sizeof(uint64_t) ||
  455. ext_len > len ||
  456. ext_type == SADB_EXT_RESERVED)
  457. return -EINVAL;
  458. if (ext_type <= SADB_EXT_MAX) {
  459. int min = (int) sadb_ext_min_len[ext_type];
  460. if (ext_len < min)
  461. return -EINVAL;
  462. if (ext_hdrs[ext_type-1] != NULL)
  463. return -EINVAL;
  464. switch (ext_type) {
  465. case SADB_EXT_ADDRESS_SRC:
  466. case SADB_EXT_ADDRESS_DST:
  467. case SADB_EXT_ADDRESS_PROXY:
  468. case SADB_X_EXT_NAT_T_OA:
  469. if (verify_address_len(p))
  470. return -EINVAL;
  471. break;
  472. case SADB_X_EXT_SEC_CTX:
  473. if (verify_sec_ctx_len(p))
  474. return -EINVAL;
  475. break;
  476. case SADB_EXT_KEY_AUTH:
  477. case SADB_EXT_KEY_ENCRYPT:
  478. if (verify_key_len(p))
  479. return -EINVAL;
  480. break;
  481. default:
  482. break;
  483. }
  484. ext_hdrs[ext_type-1] = (void *) p;
  485. }
  486. p += ext_len;
  487. len -= ext_len;
  488. }
  489. return 0;
  490. }
  491. static uint16_t
  492. pfkey_satype2proto(uint8_t satype)
  493. {
  494. switch (satype) {
  495. case SADB_SATYPE_UNSPEC:
  496. return IPSEC_PROTO_ANY;
  497. case SADB_SATYPE_AH:
  498. return IPPROTO_AH;
  499. case SADB_SATYPE_ESP:
  500. return IPPROTO_ESP;
  501. case SADB_X_SATYPE_IPCOMP:
  502. return IPPROTO_COMP;
  503. default:
  504. return 0;
  505. }
  506. /* NOTREACHED */
  507. }
  508. static uint8_t
  509. pfkey_proto2satype(uint16_t proto)
  510. {
  511. switch (proto) {
  512. case IPPROTO_AH:
  513. return SADB_SATYPE_AH;
  514. case IPPROTO_ESP:
  515. return SADB_SATYPE_ESP;
  516. case IPPROTO_COMP:
  517. return SADB_X_SATYPE_IPCOMP;
  518. default:
  519. return 0;
  520. }
  521. /* NOTREACHED */
  522. }
  523. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  524. * say specifically 'just raw sockets' as we encode them as 255.
  525. */
  526. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  527. {
  528. return proto == IPSEC_PROTO_ANY ? 0 : proto;
  529. }
  530. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  531. {
  532. return proto ? proto : IPSEC_PROTO_ANY;
  533. }
  534. static inline int pfkey_sockaddr_len(sa_family_t family)
  535. {
  536. switch (family) {
  537. case AF_INET:
  538. return sizeof(struct sockaddr_in);
  539. #if IS_ENABLED(CONFIG_IPV6)
  540. case AF_INET6:
  541. return sizeof(struct sockaddr_in6);
  542. #endif
  543. }
  544. return 0;
  545. }
  546. static
  547. int pfkey_sockaddr_extract(const struct sockaddr *sa, xfrm_address_t *xaddr)
  548. {
  549. switch (sa->sa_family) {
  550. case AF_INET:
  551. xaddr->a4 =
  552. ((struct sockaddr_in *)sa)->sin_addr.s_addr;
  553. return AF_INET;
  554. #if IS_ENABLED(CONFIG_IPV6)
  555. case AF_INET6:
  556. memcpy(xaddr->a6,
  557. &((struct sockaddr_in6 *)sa)->sin6_addr,
  558. sizeof(struct in6_addr));
  559. return AF_INET6;
  560. #endif
  561. }
  562. return 0;
  563. }
  564. static
  565. int pfkey_sadb_addr2xfrm_addr(const struct sadb_address *addr, xfrm_address_t *xaddr)
  566. {
  567. return pfkey_sockaddr_extract((struct sockaddr *)(addr + 1),
  568. xaddr);
  569. }
  570. static struct xfrm_state *pfkey_xfrm_state_lookup(struct net *net, const struct sadb_msg *hdr, void * const *ext_hdrs)
  571. {
  572. const struct sadb_sa *sa;
  573. const struct sadb_address *addr;
  574. uint16_t proto;
  575. unsigned short family;
  576. xfrm_address_t *xaddr;
  577. sa = ext_hdrs[SADB_EXT_SA - 1];
  578. if (sa == NULL)
  579. return NULL;
  580. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  581. if (proto == 0)
  582. return NULL;
  583. /* sadb_address_len should be checked by caller */
  584. addr = ext_hdrs[SADB_EXT_ADDRESS_DST - 1];
  585. if (addr == NULL)
  586. return NULL;
  587. family = ((const struct sockaddr *)(addr + 1))->sa_family;
  588. switch (family) {
  589. case AF_INET:
  590. xaddr = (xfrm_address_t *)&((const struct sockaddr_in *)(addr + 1))->sin_addr;
  591. break;
  592. #if IS_ENABLED(CONFIG_IPV6)
  593. case AF_INET6:
  594. xaddr = (xfrm_address_t *)&((const struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  595. break;
  596. #endif
  597. default:
  598. xaddr = NULL;
  599. }
  600. if (!xaddr)
  601. return NULL;
  602. return xfrm_state_lookup(net, DUMMY_MARK, xaddr, sa->sadb_sa_spi, proto, family);
  603. }
  604. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  605. static int
  606. pfkey_sockaddr_size(sa_family_t family)
  607. {
  608. return PFKEY_ALIGN8(pfkey_sockaddr_len(family));
  609. }
  610. static inline int pfkey_mode_from_xfrm(int mode)
  611. {
  612. switch(mode) {
  613. case XFRM_MODE_TRANSPORT:
  614. return IPSEC_MODE_TRANSPORT;
  615. case XFRM_MODE_TUNNEL:
  616. return IPSEC_MODE_TUNNEL;
  617. case XFRM_MODE_BEET:
  618. return IPSEC_MODE_BEET;
  619. default:
  620. return -1;
  621. }
  622. }
  623. static inline int pfkey_mode_to_xfrm(int mode)
  624. {
  625. switch(mode) {
  626. case IPSEC_MODE_ANY: /*XXX*/
  627. case IPSEC_MODE_TRANSPORT:
  628. return XFRM_MODE_TRANSPORT;
  629. case IPSEC_MODE_TUNNEL:
  630. return XFRM_MODE_TUNNEL;
  631. case IPSEC_MODE_BEET:
  632. return XFRM_MODE_BEET;
  633. default:
  634. return -1;
  635. }
  636. }
  637. static unsigned int pfkey_sockaddr_fill(const xfrm_address_t *xaddr, __be16 port,
  638. struct sockaddr *sa,
  639. unsigned short family)
  640. {
  641. switch (family) {
  642. case AF_INET:
  643. {
  644. struct sockaddr_in *sin = (struct sockaddr_in *)sa;
  645. sin->sin_family = AF_INET;
  646. sin->sin_port = port;
  647. sin->sin_addr.s_addr = xaddr->a4;
  648. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  649. return 32;
  650. }
  651. #if IS_ENABLED(CONFIG_IPV6)
  652. case AF_INET6:
  653. {
  654. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
  655. sin6->sin6_family = AF_INET6;
  656. sin6->sin6_port = port;
  657. sin6->sin6_flowinfo = 0;
  658. sin6->sin6_addr = xaddr->in6;
  659. sin6->sin6_scope_id = 0;
  660. return 128;
  661. }
  662. #endif
  663. }
  664. return 0;
  665. }
  666. static struct sk_buff *__pfkey_xfrm_state2msg(const struct xfrm_state *x,
  667. int add_keys, int hsc)
  668. {
  669. struct sk_buff *skb;
  670. struct sadb_msg *hdr;
  671. struct sadb_sa *sa;
  672. struct sadb_lifetime *lifetime;
  673. struct sadb_address *addr;
  674. struct sadb_key *key;
  675. struct sadb_x_sa2 *sa2;
  676. struct sadb_x_sec_ctx *sec_ctx;
  677. struct xfrm_sec_ctx *xfrm_ctx;
  678. int ctx_size = 0;
  679. int size;
  680. int auth_key_size = 0;
  681. int encrypt_key_size = 0;
  682. int sockaddr_size;
  683. struct xfrm_encap_tmpl *natt = NULL;
  684. int mode;
  685. /* address family check */
  686. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  687. if (!sockaddr_size)
  688. return ERR_PTR(-EINVAL);
  689. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  690. key(AE), (identity(SD),) (sensitivity)> */
  691. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  692. sizeof(struct sadb_lifetime) +
  693. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  694. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  695. sizeof(struct sadb_address)*2 +
  696. sockaddr_size*2 +
  697. sizeof(struct sadb_x_sa2);
  698. if ((xfrm_ctx = x->security)) {
  699. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  700. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  701. }
  702. /* identity & sensitivity */
  703. if (!xfrm_addr_equal(&x->sel.saddr, &x->props.saddr, x->props.family))
  704. size += sizeof(struct sadb_address) + sockaddr_size;
  705. if (add_keys) {
  706. if (x->aalg && x->aalg->alg_key_len) {
  707. auth_key_size =
  708. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  709. size += sizeof(struct sadb_key) + auth_key_size;
  710. }
  711. if (x->ealg && x->ealg->alg_key_len) {
  712. encrypt_key_size =
  713. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  714. size += sizeof(struct sadb_key) + encrypt_key_size;
  715. }
  716. }
  717. if (x->encap)
  718. natt = x->encap;
  719. if (natt && natt->encap_type) {
  720. size += sizeof(struct sadb_x_nat_t_type);
  721. size += sizeof(struct sadb_x_nat_t_port);
  722. size += sizeof(struct sadb_x_nat_t_port);
  723. }
  724. skb = alloc_skb(size + 16, GFP_ATOMIC);
  725. if (skb == NULL)
  726. return ERR_PTR(-ENOBUFS);
  727. /* call should fill header later */
  728. hdr = skb_put(skb, sizeof(struct sadb_msg));
  729. memset(hdr, 0, size); /* XXX do we need this ? */
  730. hdr->sadb_msg_len = size / sizeof(uint64_t);
  731. /* sa */
  732. sa = skb_put(skb, sizeof(struct sadb_sa));
  733. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  734. sa->sadb_sa_exttype = SADB_EXT_SA;
  735. sa->sadb_sa_spi = x->id.spi;
  736. sa->sadb_sa_replay = x->props.replay_window;
  737. switch (x->km.state) {
  738. case XFRM_STATE_VALID:
  739. sa->sadb_sa_state = x->km.dying ?
  740. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  741. break;
  742. case XFRM_STATE_ACQ:
  743. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  744. break;
  745. default:
  746. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  747. break;
  748. }
  749. sa->sadb_sa_auth = 0;
  750. if (x->aalg) {
  751. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  752. sa->sadb_sa_auth = (a && a->pfkey_supported) ?
  753. a->desc.sadb_alg_id : 0;
  754. }
  755. sa->sadb_sa_encrypt = 0;
  756. BUG_ON(x->ealg && x->calg);
  757. if (x->ealg) {
  758. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  759. sa->sadb_sa_encrypt = (a && a->pfkey_supported) ?
  760. a->desc.sadb_alg_id : 0;
  761. }
  762. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  763. if (x->calg) {
  764. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  765. sa->sadb_sa_encrypt = (a && a->pfkey_supported) ?
  766. a->desc.sadb_alg_id : 0;
  767. }
  768. sa->sadb_sa_flags = 0;
  769. if (x->props.flags & XFRM_STATE_NOECN)
  770. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  771. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  772. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  773. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  774. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  775. /* hard time */
  776. if (hsc & 2) {
  777. lifetime = skb_put(skb, sizeof(struct sadb_lifetime));
  778. lifetime->sadb_lifetime_len =
  779. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  780. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  781. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  782. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  783. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  784. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  785. }
  786. /* soft time */
  787. if (hsc & 1) {
  788. lifetime = skb_put(skb, sizeof(struct sadb_lifetime));
  789. lifetime->sadb_lifetime_len =
  790. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  791. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  792. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  793. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  794. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  795. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  796. }
  797. /* current time */
  798. lifetime = skb_put(skb, sizeof(struct sadb_lifetime));
  799. lifetime->sadb_lifetime_len =
  800. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  801. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  802. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  803. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  804. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  805. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  806. /* src address */
  807. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  808. addr->sadb_address_len =
  809. (sizeof(struct sadb_address)+sockaddr_size)/
  810. sizeof(uint64_t);
  811. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  812. /* "if the ports are non-zero, then the sadb_address_proto field,
  813. normally zero, MUST be filled in with the transport
  814. protocol's number." - RFC2367 */
  815. addr->sadb_address_proto = 0;
  816. addr->sadb_address_reserved = 0;
  817. addr->sadb_address_prefixlen =
  818. pfkey_sockaddr_fill(&x->props.saddr, 0,
  819. (struct sockaddr *) (addr + 1),
  820. x->props.family);
  821. if (!addr->sadb_address_prefixlen)
  822. BUG();
  823. /* dst address */
  824. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  825. addr->sadb_address_len =
  826. (sizeof(struct sadb_address)+sockaddr_size)/
  827. sizeof(uint64_t);
  828. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  829. addr->sadb_address_proto = 0;
  830. addr->sadb_address_reserved = 0;
  831. addr->sadb_address_prefixlen =
  832. pfkey_sockaddr_fill(&x->id.daddr, 0,
  833. (struct sockaddr *) (addr + 1),
  834. x->props.family);
  835. if (!addr->sadb_address_prefixlen)
  836. BUG();
  837. if (!xfrm_addr_equal(&x->sel.saddr, &x->props.saddr,
  838. x->props.family)) {
  839. addr = skb_put(skb,
  840. sizeof(struct sadb_address) + sockaddr_size);
  841. addr->sadb_address_len =
  842. (sizeof(struct sadb_address)+sockaddr_size)/
  843. sizeof(uint64_t);
  844. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  845. addr->sadb_address_proto =
  846. pfkey_proto_from_xfrm(x->sel.proto);
  847. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  848. addr->sadb_address_reserved = 0;
  849. pfkey_sockaddr_fill(&x->sel.saddr, x->sel.sport,
  850. (struct sockaddr *) (addr + 1),
  851. x->props.family);
  852. }
  853. /* auth key */
  854. if (add_keys && auth_key_size) {
  855. key = skb_put(skb, sizeof(struct sadb_key) + auth_key_size);
  856. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  857. sizeof(uint64_t);
  858. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  859. key->sadb_key_bits = x->aalg->alg_key_len;
  860. key->sadb_key_reserved = 0;
  861. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  862. }
  863. /* encrypt key */
  864. if (add_keys && encrypt_key_size) {
  865. key = skb_put(skb, sizeof(struct sadb_key) + encrypt_key_size);
  866. key->sadb_key_len = (sizeof(struct sadb_key) +
  867. encrypt_key_size) / sizeof(uint64_t);
  868. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  869. key->sadb_key_bits = x->ealg->alg_key_len;
  870. key->sadb_key_reserved = 0;
  871. memcpy(key + 1, x->ealg->alg_key,
  872. (x->ealg->alg_key_len+7)/8);
  873. }
  874. /* sa */
  875. sa2 = skb_put(skb, sizeof(struct sadb_x_sa2));
  876. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  877. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  878. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  879. kfree_skb(skb);
  880. return ERR_PTR(-EINVAL);
  881. }
  882. sa2->sadb_x_sa2_mode = mode;
  883. sa2->sadb_x_sa2_reserved1 = 0;
  884. sa2->sadb_x_sa2_reserved2 = 0;
  885. sa2->sadb_x_sa2_sequence = 0;
  886. sa2->sadb_x_sa2_reqid = x->props.reqid;
  887. if (natt && natt->encap_type) {
  888. struct sadb_x_nat_t_type *n_type;
  889. struct sadb_x_nat_t_port *n_port;
  890. /* type */
  891. n_type = skb_put(skb, sizeof(*n_type));
  892. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  893. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  894. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  895. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  896. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  897. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  898. /* source port */
  899. n_port = skb_put(skb, sizeof(*n_port));
  900. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  901. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  902. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  903. n_port->sadb_x_nat_t_port_reserved = 0;
  904. /* dest port */
  905. n_port = skb_put(skb, sizeof(*n_port));
  906. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  907. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  908. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  909. n_port->sadb_x_nat_t_port_reserved = 0;
  910. }
  911. /* security context */
  912. if (xfrm_ctx) {
  913. sec_ctx = skb_put(skb,
  914. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  915. sec_ctx->sadb_x_sec_len =
  916. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  917. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  918. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  919. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  920. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  921. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  922. xfrm_ctx->ctx_len);
  923. }
  924. return skb;
  925. }
  926. static inline struct sk_buff *pfkey_xfrm_state2msg(const struct xfrm_state *x)
  927. {
  928. struct sk_buff *skb;
  929. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  930. return skb;
  931. }
  932. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(const struct xfrm_state *x,
  933. int hsc)
  934. {
  935. return __pfkey_xfrm_state2msg(x, 0, hsc);
  936. }
  937. static struct xfrm_state * pfkey_msg2xfrm_state(struct net *net,
  938. const struct sadb_msg *hdr,
  939. void * const *ext_hdrs)
  940. {
  941. struct xfrm_state *x;
  942. const struct sadb_lifetime *lifetime;
  943. const struct sadb_sa *sa;
  944. const struct sadb_key *key;
  945. const struct sadb_x_sec_ctx *sec_ctx;
  946. uint16_t proto;
  947. int err;
  948. sa = ext_hdrs[SADB_EXT_SA - 1];
  949. if (!sa ||
  950. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  951. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  952. return ERR_PTR(-EINVAL);
  953. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  954. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  955. return ERR_PTR(-EINVAL);
  956. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  957. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  958. return ERR_PTR(-EINVAL);
  959. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  960. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  961. return ERR_PTR(-EINVAL);
  962. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  963. if (proto == 0)
  964. return ERR_PTR(-EINVAL);
  965. /* default error is no buffer space */
  966. err = -ENOBUFS;
  967. /* RFC2367:
  968. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  969. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  970. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  971. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  972. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  973. not true.
  974. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  975. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  976. */
  977. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  978. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  979. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  980. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  981. return ERR_PTR(-EINVAL);
  982. key = ext_hdrs[SADB_EXT_KEY_AUTH - 1];
  983. if (key != NULL &&
  984. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  985. key->sadb_key_bits == 0)
  986. return ERR_PTR(-EINVAL);
  987. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  988. if (key != NULL &&
  989. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  990. key->sadb_key_bits == 0)
  991. return ERR_PTR(-EINVAL);
  992. x = xfrm_state_alloc(net);
  993. if (x == NULL)
  994. return ERR_PTR(-ENOBUFS);
  995. x->id.proto = proto;
  996. x->id.spi = sa->sadb_sa_spi;
  997. x->props.replay_window = min_t(unsigned int, sa->sadb_sa_replay,
  998. (sizeof(x->replay.bitmap) * 8));
  999. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  1000. x->props.flags |= XFRM_STATE_NOECN;
  1001. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  1002. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  1003. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  1004. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  1005. lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD - 1];
  1006. if (lifetime != NULL) {
  1007. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1008. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1009. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1010. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1011. }
  1012. lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT - 1];
  1013. if (lifetime != NULL) {
  1014. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1015. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1016. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1017. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1018. }
  1019. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  1020. if (sec_ctx != NULL) {
  1021. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_KERNEL);
  1022. if (!uctx)
  1023. goto out;
  1024. err = security_xfrm_state_alloc(x, uctx);
  1025. kfree(uctx);
  1026. if (err)
  1027. goto out;
  1028. }
  1029. err = -ENOBUFS;
  1030. key = ext_hdrs[SADB_EXT_KEY_AUTH - 1];
  1031. if (sa->sadb_sa_auth) {
  1032. int keysize = 0;
  1033. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  1034. if (!a || !a->pfkey_supported) {
  1035. err = -ENOSYS;
  1036. goto out;
  1037. }
  1038. if (key)
  1039. keysize = (key->sadb_key_bits + 7) / 8;
  1040. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1041. if (!x->aalg) {
  1042. err = -ENOMEM;
  1043. goto out;
  1044. }
  1045. strcpy(x->aalg->alg_name, a->name);
  1046. x->aalg->alg_key_len = 0;
  1047. if (key) {
  1048. x->aalg->alg_key_len = key->sadb_key_bits;
  1049. memcpy(x->aalg->alg_key, key+1, keysize);
  1050. }
  1051. x->aalg->alg_trunc_len = a->uinfo.auth.icv_truncbits;
  1052. x->props.aalgo = sa->sadb_sa_auth;
  1053. /* x->algo.flags = sa->sadb_sa_flags; */
  1054. }
  1055. if (sa->sadb_sa_encrypt) {
  1056. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1057. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1058. if (!a || !a->pfkey_supported) {
  1059. err = -ENOSYS;
  1060. goto out;
  1061. }
  1062. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1063. if (!x->calg) {
  1064. err = -ENOMEM;
  1065. goto out;
  1066. }
  1067. strcpy(x->calg->alg_name, a->name);
  1068. x->props.calgo = sa->sadb_sa_encrypt;
  1069. } else {
  1070. int keysize = 0;
  1071. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1072. if (!a || !a->pfkey_supported) {
  1073. err = -ENOSYS;
  1074. goto out;
  1075. }
  1076. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1077. if (key)
  1078. keysize = (key->sadb_key_bits + 7) / 8;
  1079. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1080. if (!x->ealg) {
  1081. err = -ENOMEM;
  1082. goto out;
  1083. }
  1084. strcpy(x->ealg->alg_name, a->name);
  1085. x->ealg->alg_key_len = 0;
  1086. if (key) {
  1087. x->ealg->alg_key_len = key->sadb_key_bits;
  1088. memcpy(x->ealg->alg_key, key+1, keysize);
  1089. }
  1090. x->props.ealgo = sa->sadb_sa_encrypt;
  1091. x->geniv = a->uinfo.encr.geniv;
  1092. }
  1093. }
  1094. /* x->algo.flags = sa->sadb_sa_flags; */
  1095. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1096. &x->props.saddr);
  1097. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1098. &x->id.daddr);
  1099. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1100. const struct sadb_x_sa2 *sa2 = ext_hdrs[SADB_X_EXT_SA2-1];
  1101. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1102. if (mode < 0) {
  1103. err = -EINVAL;
  1104. goto out;
  1105. }
  1106. x->props.mode = mode;
  1107. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1108. }
  1109. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1110. const struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1111. /* Nobody uses this, but we try. */
  1112. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1113. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1114. }
  1115. if (!x->sel.family)
  1116. x->sel.family = x->props.family;
  1117. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1118. const struct sadb_x_nat_t_type* n_type;
  1119. struct xfrm_encap_tmpl *natt;
  1120. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1121. if (!x->encap) {
  1122. err = -ENOMEM;
  1123. goto out;
  1124. }
  1125. natt = x->encap;
  1126. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1127. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1128. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1129. const struct sadb_x_nat_t_port *n_port =
  1130. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1131. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1132. }
  1133. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1134. const struct sadb_x_nat_t_port *n_port =
  1135. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1136. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1137. }
  1138. memset(&natt->encap_oa, 0, sizeof(natt->encap_oa));
  1139. }
  1140. err = xfrm_init_state(x);
  1141. if (err)
  1142. goto out;
  1143. x->km.seq = hdr->sadb_msg_seq;
  1144. return x;
  1145. out:
  1146. x->km.state = XFRM_STATE_DEAD;
  1147. xfrm_state_put(x);
  1148. return ERR_PTR(err);
  1149. }
  1150. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1151. {
  1152. return -EOPNOTSUPP;
  1153. }
  1154. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1155. {
  1156. struct net *net = sock_net(sk);
  1157. struct sk_buff *resp_skb;
  1158. struct sadb_x_sa2 *sa2;
  1159. struct sadb_address *saddr, *daddr;
  1160. struct sadb_msg *out_hdr;
  1161. struct sadb_spirange *range;
  1162. struct xfrm_state *x = NULL;
  1163. int mode;
  1164. int err;
  1165. u32 min_spi, max_spi;
  1166. u32 reqid;
  1167. u8 proto;
  1168. unsigned short family;
  1169. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1170. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1171. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1172. return -EINVAL;
  1173. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1174. if (proto == 0)
  1175. return -EINVAL;
  1176. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1177. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1178. if (mode < 0)
  1179. return -EINVAL;
  1180. reqid = sa2->sadb_x_sa2_reqid;
  1181. } else {
  1182. mode = 0;
  1183. reqid = 0;
  1184. }
  1185. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1186. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1187. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1188. switch (family) {
  1189. case AF_INET:
  1190. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1191. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1192. break;
  1193. #if IS_ENABLED(CONFIG_IPV6)
  1194. case AF_INET6:
  1195. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1196. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1197. break;
  1198. #endif
  1199. }
  1200. if (hdr->sadb_msg_seq) {
  1201. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1202. if (x && !xfrm_addr_equal(&x->id.daddr, xdaddr, family)) {
  1203. xfrm_state_put(x);
  1204. x = NULL;
  1205. }
  1206. }
  1207. if (!x)
  1208. x = xfrm_find_acq(net, &dummy_mark, mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1209. if (x == NULL)
  1210. return -ENOENT;
  1211. min_spi = 0x100;
  1212. max_spi = 0x0fffffff;
  1213. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1214. if (range) {
  1215. min_spi = range->sadb_spirange_min;
  1216. max_spi = range->sadb_spirange_max;
  1217. }
  1218. err = verify_spi_info(x->id.proto, min_spi, max_spi);
  1219. if (err) {
  1220. xfrm_state_put(x);
  1221. return err;
  1222. }
  1223. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1224. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1225. if (IS_ERR(resp_skb)) {
  1226. xfrm_state_put(x);
  1227. return PTR_ERR(resp_skb);
  1228. }
  1229. out_hdr = (struct sadb_msg *) resp_skb->data;
  1230. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1231. out_hdr->sadb_msg_type = SADB_GETSPI;
  1232. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1233. out_hdr->sadb_msg_errno = 0;
  1234. out_hdr->sadb_msg_reserved = 0;
  1235. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1236. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1237. xfrm_state_put(x);
  1238. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk, net);
  1239. return 0;
  1240. }
  1241. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1242. {
  1243. struct net *net = sock_net(sk);
  1244. struct xfrm_state *x;
  1245. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1246. return -EOPNOTSUPP;
  1247. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1248. return 0;
  1249. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1250. if (x == NULL)
  1251. return 0;
  1252. spin_lock_bh(&x->lock);
  1253. if (x->km.state == XFRM_STATE_ACQ)
  1254. x->km.state = XFRM_STATE_ERROR;
  1255. spin_unlock_bh(&x->lock);
  1256. xfrm_state_put(x);
  1257. return 0;
  1258. }
  1259. static inline int event2poltype(int event)
  1260. {
  1261. switch (event) {
  1262. case XFRM_MSG_DELPOLICY:
  1263. return SADB_X_SPDDELETE;
  1264. case XFRM_MSG_NEWPOLICY:
  1265. return SADB_X_SPDADD;
  1266. case XFRM_MSG_UPDPOLICY:
  1267. return SADB_X_SPDUPDATE;
  1268. case XFRM_MSG_POLEXPIRE:
  1269. // return SADB_X_SPDEXPIRE;
  1270. default:
  1271. pr_err("pfkey: Unknown policy event %d\n", event);
  1272. break;
  1273. }
  1274. return 0;
  1275. }
  1276. static inline int event2keytype(int event)
  1277. {
  1278. switch (event) {
  1279. case XFRM_MSG_DELSA:
  1280. return SADB_DELETE;
  1281. case XFRM_MSG_NEWSA:
  1282. return SADB_ADD;
  1283. case XFRM_MSG_UPDSA:
  1284. return SADB_UPDATE;
  1285. case XFRM_MSG_EXPIRE:
  1286. return SADB_EXPIRE;
  1287. default:
  1288. pr_err("pfkey: Unknown SA event %d\n", event);
  1289. break;
  1290. }
  1291. return 0;
  1292. }
  1293. /* ADD/UPD/DEL */
  1294. static int key_notify_sa(struct xfrm_state *x, const struct km_event *c)
  1295. {
  1296. struct sk_buff *skb;
  1297. struct sadb_msg *hdr;
  1298. skb = pfkey_xfrm_state2msg(x);
  1299. if (IS_ERR(skb))
  1300. return PTR_ERR(skb);
  1301. hdr = (struct sadb_msg *) skb->data;
  1302. hdr->sadb_msg_version = PF_KEY_V2;
  1303. hdr->sadb_msg_type = event2keytype(c->event);
  1304. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1305. hdr->sadb_msg_errno = 0;
  1306. hdr->sadb_msg_reserved = 0;
  1307. hdr->sadb_msg_seq = c->seq;
  1308. hdr->sadb_msg_pid = c->portid;
  1309. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xs_net(x));
  1310. return 0;
  1311. }
  1312. static int pfkey_add(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1313. {
  1314. struct net *net = sock_net(sk);
  1315. struct xfrm_state *x;
  1316. int err;
  1317. struct km_event c;
  1318. x = pfkey_msg2xfrm_state(net, hdr, ext_hdrs);
  1319. if (IS_ERR(x))
  1320. return PTR_ERR(x);
  1321. xfrm_state_hold(x);
  1322. if (hdr->sadb_msg_type == SADB_ADD)
  1323. err = xfrm_state_add(x);
  1324. else
  1325. err = xfrm_state_update(x);
  1326. xfrm_audit_state_add(x, err ? 0 : 1, true);
  1327. if (err < 0) {
  1328. x->km.state = XFRM_STATE_DEAD;
  1329. __xfrm_state_put(x);
  1330. goto out;
  1331. }
  1332. if (hdr->sadb_msg_type == SADB_ADD)
  1333. c.event = XFRM_MSG_NEWSA;
  1334. else
  1335. c.event = XFRM_MSG_UPDSA;
  1336. c.seq = hdr->sadb_msg_seq;
  1337. c.portid = hdr->sadb_msg_pid;
  1338. km_state_notify(x, &c);
  1339. out:
  1340. xfrm_state_put(x);
  1341. return err;
  1342. }
  1343. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1344. {
  1345. struct net *net = sock_net(sk);
  1346. struct xfrm_state *x;
  1347. struct km_event c;
  1348. int err;
  1349. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1350. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1351. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1352. return -EINVAL;
  1353. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1354. if (x == NULL)
  1355. return -ESRCH;
  1356. if ((err = security_xfrm_state_delete(x)))
  1357. goto out;
  1358. if (xfrm_state_kern(x)) {
  1359. err = -EPERM;
  1360. goto out;
  1361. }
  1362. err = xfrm_state_delete(x);
  1363. if (err < 0)
  1364. goto out;
  1365. c.seq = hdr->sadb_msg_seq;
  1366. c.portid = hdr->sadb_msg_pid;
  1367. c.event = XFRM_MSG_DELSA;
  1368. km_state_notify(x, &c);
  1369. out:
  1370. xfrm_audit_state_delete(x, err ? 0 : 1, true);
  1371. xfrm_state_put(x);
  1372. return err;
  1373. }
  1374. static int pfkey_get(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1375. {
  1376. struct net *net = sock_net(sk);
  1377. __u8 proto;
  1378. struct sk_buff *out_skb;
  1379. struct sadb_msg *out_hdr;
  1380. struct xfrm_state *x;
  1381. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1382. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1383. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1384. return -EINVAL;
  1385. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1386. if (x == NULL)
  1387. return -ESRCH;
  1388. out_skb = pfkey_xfrm_state2msg(x);
  1389. proto = x->id.proto;
  1390. xfrm_state_put(x);
  1391. if (IS_ERR(out_skb))
  1392. return PTR_ERR(out_skb);
  1393. out_hdr = (struct sadb_msg *) out_skb->data;
  1394. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1395. out_hdr->sadb_msg_type = SADB_GET;
  1396. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1397. out_hdr->sadb_msg_errno = 0;
  1398. out_hdr->sadb_msg_reserved = 0;
  1399. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1400. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1401. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
  1402. return 0;
  1403. }
  1404. static struct sk_buff *compose_sadb_supported(const struct sadb_msg *orig,
  1405. gfp_t allocation)
  1406. {
  1407. struct sk_buff *skb;
  1408. struct sadb_msg *hdr;
  1409. int len, auth_len, enc_len, i;
  1410. auth_len = xfrm_count_pfkey_auth_supported();
  1411. if (auth_len) {
  1412. auth_len *= sizeof(struct sadb_alg);
  1413. auth_len += sizeof(struct sadb_supported);
  1414. }
  1415. enc_len = xfrm_count_pfkey_enc_supported();
  1416. if (enc_len) {
  1417. enc_len *= sizeof(struct sadb_alg);
  1418. enc_len += sizeof(struct sadb_supported);
  1419. }
  1420. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1421. skb = alloc_skb(len + 16, allocation);
  1422. if (!skb)
  1423. goto out_put_algs;
  1424. hdr = skb_put(skb, sizeof(*hdr));
  1425. pfkey_hdr_dup(hdr, orig);
  1426. hdr->sadb_msg_errno = 0;
  1427. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1428. if (auth_len) {
  1429. struct sadb_supported *sp;
  1430. struct sadb_alg *ap;
  1431. sp = skb_put(skb, auth_len);
  1432. ap = (struct sadb_alg *) (sp + 1);
  1433. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1434. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1435. for (i = 0; ; i++) {
  1436. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1437. if (!aalg)
  1438. break;
  1439. if (!aalg->pfkey_supported)
  1440. continue;
  1441. if (aalg->available)
  1442. *ap++ = aalg->desc;
  1443. }
  1444. }
  1445. if (enc_len) {
  1446. struct sadb_supported *sp;
  1447. struct sadb_alg *ap;
  1448. sp = skb_put(skb, enc_len);
  1449. ap = (struct sadb_alg *) (sp + 1);
  1450. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1451. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1452. for (i = 0; ; i++) {
  1453. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1454. if (!ealg)
  1455. break;
  1456. if (!ealg->pfkey_supported)
  1457. continue;
  1458. if (ealg->available)
  1459. *ap++ = ealg->desc;
  1460. }
  1461. }
  1462. out_put_algs:
  1463. return skb;
  1464. }
  1465. static int pfkey_register(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1466. {
  1467. struct pfkey_sock *pfk = pfkey_sk(sk);
  1468. struct sk_buff *supp_skb;
  1469. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1470. return -EINVAL;
  1471. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1472. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1473. return -EEXIST;
  1474. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1475. }
  1476. xfrm_probe_algs();
  1477. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1478. if (!supp_skb) {
  1479. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1480. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1481. return -ENOBUFS;
  1482. }
  1483. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk,
  1484. sock_net(sk));
  1485. return 0;
  1486. }
  1487. static int unicast_flush_resp(struct sock *sk, const struct sadb_msg *ihdr)
  1488. {
  1489. struct sk_buff *skb;
  1490. struct sadb_msg *hdr;
  1491. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1492. if (!skb)
  1493. return -ENOBUFS;
  1494. hdr = skb_put_data(skb, ihdr, sizeof(struct sadb_msg));
  1495. hdr->sadb_msg_errno = (uint8_t) 0;
  1496. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1497. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ONE, sk,
  1498. sock_net(sk));
  1499. }
  1500. static int key_notify_sa_flush(const struct km_event *c)
  1501. {
  1502. struct sk_buff *skb;
  1503. struct sadb_msg *hdr;
  1504. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1505. if (!skb)
  1506. return -ENOBUFS;
  1507. hdr = skb_put(skb, sizeof(struct sadb_msg));
  1508. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1509. hdr->sadb_msg_type = SADB_FLUSH;
  1510. hdr->sadb_msg_seq = c->seq;
  1511. hdr->sadb_msg_pid = c->portid;
  1512. hdr->sadb_msg_version = PF_KEY_V2;
  1513. hdr->sadb_msg_errno = (uint8_t) 0;
  1514. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1515. hdr->sadb_msg_reserved = 0;
  1516. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  1517. return 0;
  1518. }
  1519. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1520. {
  1521. struct net *net = sock_net(sk);
  1522. unsigned int proto;
  1523. struct km_event c;
  1524. int err, err2;
  1525. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1526. if (proto == 0)
  1527. return -EINVAL;
  1528. err = xfrm_state_flush(net, proto, true);
  1529. err2 = unicast_flush_resp(sk, hdr);
  1530. if (err || err2) {
  1531. if (err == -ESRCH) /* empty table - go quietly */
  1532. err = 0;
  1533. return err ? err : err2;
  1534. }
  1535. c.data.proto = proto;
  1536. c.seq = hdr->sadb_msg_seq;
  1537. c.portid = hdr->sadb_msg_pid;
  1538. c.event = XFRM_MSG_FLUSHSA;
  1539. c.net = net;
  1540. km_state_notify(NULL, &c);
  1541. return 0;
  1542. }
  1543. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1544. {
  1545. struct pfkey_sock *pfk = ptr;
  1546. struct sk_buff *out_skb;
  1547. struct sadb_msg *out_hdr;
  1548. if (!pfkey_can_dump(&pfk->sk))
  1549. return -ENOBUFS;
  1550. out_skb = pfkey_xfrm_state2msg(x);
  1551. if (IS_ERR(out_skb))
  1552. return PTR_ERR(out_skb);
  1553. out_hdr = (struct sadb_msg *) out_skb->data;
  1554. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  1555. out_hdr->sadb_msg_type = SADB_DUMP;
  1556. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1557. out_hdr->sadb_msg_errno = 0;
  1558. out_hdr->sadb_msg_reserved = 0;
  1559. out_hdr->sadb_msg_seq = count + 1;
  1560. out_hdr->sadb_msg_pid = pfk->dump.msg_portid;
  1561. if (pfk->dump.skb)
  1562. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  1563. &pfk->sk, sock_net(&pfk->sk));
  1564. pfk->dump.skb = out_skb;
  1565. return 0;
  1566. }
  1567. static int pfkey_dump_sa(struct pfkey_sock *pfk)
  1568. {
  1569. struct net *net = sock_net(&pfk->sk);
  1570. return xfrm_state_walk(net, &pfk->dump.u.state, dump_sa, (void *) pfk);
  1571. }
  1572. static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
  1573. {
  1574. struct net *net = sock_net(&pfk->sk);
  1575. xfrm_state_walk_done(&pfk->dump.u.state, net);
  1576. }
  1577. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1578. {
  1579. u8 proto;
  1580. struct xfrm_address_filter *filter = NULL;
  1581. struct pfkey_sock *pfk = pfkey_sk(sk);
  1582. mutex_lock(&pfk->dump_lock);
  1583. if (pfk->dump.dump != NULL) {
  1584. mutex_unlock(&pfk->dump_lock);
  1585. return -EBUSY;
  1586. }
  1587. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1588. if (proto == 0) {
  1589. mutex_unlock(&pfk->dump_lock);
  1590. return -EINVAL;
  1591. }
  1592. if (ext_hdrs[SADB_X_EXT_FILTER - 1]) {
  1593. struct sadb_x_filter *xfilter = ext_hdrs[SADB_X_EXT_FILTER - 1];
  1594. filter = kmalloc(sizeof(*filter), GFP_KERNEL);
  1595. if (filter == NULL) {
  1596. mutex_unlock(&pfk->dump_lock);
  1597. return -ENOMEM;
  1598. }
  1599. memcpy(&filter->saddr, &xfilter->sadb_x_filter_saddr,
  1600. sizeof(xfrm_address_t));
  1601. memcpy(&filter->daddr, &xfilter->sadb_x_filter_daddr,
  1602. sizeof(xfrm_address_t));
  1603. filter->family = xfilter->sadb_x_filter_family;
  1604. filter->splen = xfilter->sadb_x_filter_splen;
  1605. filter->dplen = xfilter->sadb_x_filter_dplen;
  1606. }
  1607. pfk->dump.msg_version = hdr->sadb_msg_version;
  1608. pfk->dump.msg_portid = hdr->sadb_msg_pid;
  1609. pfk->dump.dump = pfkey_dump_sa;
  1610. pfk->dump.done = pfkey_dump_sa_done;
  1611. xfrm_state_walk_init(&pfk->dump.u.state, proto, filter);
  1612. mutex_unlock(&pfk->dump_lock);
  1613. return pfkey_do_dump(pfk);
  1614. }
  1615. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1616. {
  1617. struct pfkey_sock *pfk = pfkey_sk(sk);
  1618. int satype = hdr->sadb_msg_satype;
  1619. bool reset_errno = false;
  1620. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1621. reset_errno = true;
  1622. if (satype != 0 && satype != 1)
  1623. return -EINVAL;
  1624. pfk->promisc = satype;
  1625. }
  1626. if (reset_errno && skb_cloned(skb))
  1627. skb = skb_copy(skb, GFP_KERNEL);
  1628. else
  1629. skb = skb_clone(skb, GFP_KERNEL);
  1630. if (reset_errno && skb) {
  1631. struct sadb_msg *new_hdr = (struct sadb_msg *) skb->data;
  1632. new_hdr->sadb_msg_errno = 0;
  1633. }
  1634. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ALL, NULL, sock_net(sk));
  1635. return 0;
  1636. }
  1637. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1638. {
  1639. int i;
  1640. u32 reqid = *(u32*)ptr;
  1641. for (i=0; i<xp->xfrm_nr; i++) {
  1642. if (xp->xfrm_vec[i].reqid == reqid)
  1643. return -EEXIST;
  1644. }
  1645. return 0;
  1646. }
  1647. static u32 gen_reqid(struct net *net)
  1648. {
  1649. struct xfrm_policy_walk walk;
  1650. u32 start;
  1651. int rc;
  1652. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1653. start = reqid;
  1654. do {
  1655. ++reqid;
  1656. if (reqid == 0)
  1657. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1658. xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
  1659. rc = xfrm_policy_walk(net, &walk, check_reqid, (void*)&reqid);
  1660. xfrm_policy_walk_done(&walk, net);
  1661. if (rc != -EEXIST)
  1662. return reqid;
  1663. } while (reqid != start);
  1664. return 0;
  1665. }
  1666. static int
  1667. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1668. {
  1669. struct net *net = xp_net(xp);
  1670. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1671. int mode;
  1672. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1673. return -ELOOP;
  1674. if (rq->sadb_x_ipsecrequest_mode == 0)
  1675. return -EINVAL;
  1676. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1677. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1678. return -EINVAL;
  1679. t->mode = mode;
  1680. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1681. t->optional = 1;
  1682. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1683. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1684. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1685. t->reqid = 0;
  1686. if (!t->reqid && !(t->reqid = gen_reqid(net)))
  1687. return -ENOBUFS;
  1688. }
  1689. /* addresses present only in tunnel mode */
  1690. if (t->mode == XFRM_MODE_TUNNEL) {
  1691. int err;
  1692. err = parse_sockaddr_pair(
  1693. (struct sockaddr *)(rq + 1),
  1694. rq->sadb_x_ipsecrequest_len - sizeof(*rq),
  1695. &t->saddr, &t->id.daddr, &t->encap_family);
  1696. if (err)
  1697. return err;
  1698. } else
  1699. t->encap_family = xp->family;
  1700. /* No way to set this via kame pfkey */
  1701. t->allalgs = 1;
  1702. xp->xfrm_nr++;
  1703. return 0;
  1704. }
  1705. static int
  1706. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1707. {
  1708. int err;
  1709. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1710. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1711. if (pol->sadb_x_policy_len * 8 < sizeof(struct sadb_x_policy))
  1712. return -EINVAL;
  1713. while (len >= sizeof(*rq)) {
  1714. if (len < rq->sadb_x_ipsecrequest_len ||
  1715. rq->sadb_x_ipsecrequest_len < sizeof(*rq))
  1716. return -EINVAL;
  1717. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1718. return err;
  1719. len -= rq->sadb_x_ipsecrequest_len;
  1720. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1721. }
  1722. return 0;
  1723. }
  1724. static inline int pfkey_xfrm_policy2sec_ctx_size(const struct xfrm_policy *xp)
  1725. {
  1726. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1727. if (xfrm_ctx) {
  1728. int len = sizeof(struct sadb_x_sec_ctx);
  1729. len += xfrm_ctx->ctx_len;
  1730. return PFKEY_ALIGN8(len);
  1731. }
  1732. return 0;
  1733. }
  1734. static int pfkey_xfrm_policy2msg_size(const struct xfrm_policy *xp)
  1735. {
  1736. const struct xfrm_tmpl *t;
  1737. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1738. int socklen = 0;
  1739. int i;
  1740. for (i=0; i<xp->xfrm_nr; i++) {
  1741. t = xp->xfrm_vec + i;
  1742. socklen += pfkey_sockaddr_len(t->encap_family);
  1743. }
  1744. return sizeof(struct sadb_msg) +
  1745. (sizeof(struct sadb_lifetime) * 3) +
  1746. (sizeof(struct sadb_address) * 2) +
  1747. (sockaddr_size * 2) +
  1748. sizeof(struct sadb_x_policy) +
  1749. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1750. (socklen * 2) +
  1751. pfkey_xfrm_policy2sec_ctx_size(xp);
  1752. }
  1753. static struct sk_buff * pfkey_xfrm_policy2msg_prep(const struct xfrm_policy *xp)
  1754. {
  1755. struct sk_buff *skb;
  1756. int size;
  1757. size = pfkey_xfrm_policy2msg_size(xp);
  1758. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1759. if (skb == NULL)
  1760. return ERR_PTR(-ENOBUFS);
  1761. return skb;
  1762. }
  1763. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, const struct xfrm_policy *xp, int dir)
  1764. {
  1765. struct sadb_msg *hdr;
  1766. struct sadb_address *addr;
  1767. struct sadb_lifetime *lifetime;
  1768. struct sadb_x_policy *pol;
  1769. struct sadb_x_sec_ctx *sec_ctx;
  1770. struct xfrm_sec_ctx *xfrm_ctx;
  1771. int i;
  1772. int size;
  1773. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1774. int socklen = pfkey_sockaddr_len(xp->family);
  1775. size = pfkey_xfrm_policy2msg_size(xp);
  1776. /* call should fill header later */
  1777. hdr = skb_put(skb, sizeof(struct sadb_msg));
  1778. memset(hdr, 0, size); /* XXX do we need this ? */
  1779. /* src address */
  1780. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  1781. addr->sadb_address_len =
  1782. (sizeof(struct sadb_address)+sockaddr_size)/
  1783. sizeof(uint64_t);
  1784. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1785. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1786. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1787. addr->sadb_address_reserved = 0;
  1788. if (!pfkey_sockaddr_fill(&xp->selector.saddr,
  1789. xp->selector.sport,
  1790. (struct sockaddr *) (addr + 1),
  1791. xp->family))
  1792. BUG();
  1793. /* dst address */
  1794. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  1795. addr->sadb_address_len =
  1796. (sizeof(struct sadb_address)+sockaddr_size)/
  1797. sizeof(uint64_t);
  1798. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1799. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1800. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1801. addr->sadb_address_reserved = 0;
  1802. pfkey_sockaddr_fill(&xp->selector.daddr, xp->selector.dport,
  1803. (struct sockaddr *) (addr + 1),
  1804. xp->family);
  1805. /* hard time */
  1806. lifetime = skb_put(skb, sizeof(struct sadb_lifetime));
  1807. lifetime->sadb_lifetime_len =
  1808. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1809. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1810. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1811. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1812. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1813. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1814. /* soft time */
  1815. lifetime = skb_put(skb, sizeof(struct sadb_lifetime));
  1816. lifetime->sadb_lifetime_len =
  1817. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1818. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1819. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1820. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1821. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1822. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1823. /* current time */
  1824. lifetime = skb_put(skb, sizeof(struct sadb_lifetime));
  1825. lifetime->sadb_lifetime_len =
  1826. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1827. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1828. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1829. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1830. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1831. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1832. pol = skb_put(skb, sizeof(struct sadb_x_policy));
  1833. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1834. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1835. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1836. if (xp->action == XFRM_POLICY_ALLOW) {
  1837. if (xp->xfrm_nr)
  1838. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1839. else
  1840. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1841. }
  1842. pol->sadb_x_policy_dir = dir+1;
  1843. pol->sadb_x_policy_reserved = 0;
  1844. pol->sadb_x_policy_id = xp->index;
  1845. pol->sadb_x_policy_priority = xp->priority;
  1846. for (i=0; i<xp->xfrm_nr; i++) {
  1847. const struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1848. struct sadb_x_ipsecrequest *rq;
  1849. int req_size;
  1850. int mode;
  1851. req_size = sizeof(struct sadb_x_ipsecrequest);
  1852. if (t->mode == XFRM_MODE_TUNNEL) {
  1853. socklen = pfkey_sockaddr_len(t->encap_family);
  1854. req_size += socklen * 2;
  1855. } else {
  1856. size -= 2*socklen;
  1857. }
  1858. rq = skb_put(skb, req_size);
  1859. pol->sadb_x_policy_len += req_size/8;
  1860. memset(rq, 0, sizeof(*rq));
  1861. rq->sadb_x_ipsecrequest_len = req_size;
  1862. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1863. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1864. return -EINVAL;
  1865. rq->sadb_x_ipsecrequest_mode = mode;
  1866. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1867. if (t->reqid)
  1868. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1869. if (t->optional)
  1870. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1871. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1872. if (t->mode == XFRM_MODE_TUNNEL) {
  1873. u8 *sa = (void *)(rq + 1);
  1874. pfkey_sockaddr_fill(&t->saddr, 0,
  1875. (struct sockaddr *)sa,
  1876. t->encap_family);
  1877. pfkey_sockaddr_fill(&t->id.daddr, 0,
  1878. (struct sockaddr *) (sa + socklen),
  1879. t->encap_family);
  1880. }
  1881. }
  1882. /* security context */
  1883. if ((xfrm_ctx = xp->security)) {
  1884. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1885. sec_ctx = skb_put(skb, ctx_size);
  1886. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1887. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1888. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1889. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1890. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1891. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1892. xfrm_ctx->ctx_len);
  1893. }
  1894. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1895. hdr->sadb_msg_reserved = refcount_read(&xp->refcnt);
  1896. return 0;
  1897. }
  1898. static int key_notify_policy(struct xfrm_policy *xp, int dir, const struct km_event *c)
  1899. {
  1900. struct sk_buff *out_skb;
  1901. struct sadb_msg *out_hdr;
  1902. int err;
  1903. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1904. if (IS_ERR(out_skb))
  1905. return PTR_ERR(out_skb);
  1906. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1907. if (err < 0) {
  1908. kfree_skb(out_skb);
  1909. return err;
  1910. }
  1911. out_hdr = (struct sadb_msg *) out_skb->data;
  1912. out_hdr->sadb_msg_version = PF_KEY_V2;
  1913. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1914. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1915. else
  1916. out_hdr->sadb_msg_type = event2poltype(c->event);
  1917. out_hdr->sadb_msg_errno = 0;
  1918. out_hdr->sadb_msg_seq = c->seq;
  1919. out_hdr->sadb_msg_pid = c->portid;
  1920. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xp_net(xp));
  1921. return 0;
  1922. }
  1923. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1924. {
  1925. struct net *net = sock_net(sk);
  1926. int err = 0;
  1927. struct sadb_lifetime *lifetime;
  1928. struct sadb_address *sa;
  1929. struct sadb_x_policy *pol;
  1930. struct xfrm_policy *xp;
  1931. struct km_event c;
  1932. struct sadb_x_sec_ctx *sec_ctx;
  1933. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1934. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1935. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1936. return -EINVAL;
  1937. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1938. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1939. return -EINVAL;
  1940. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1941. return -EINVAL;
  1942. xp = xfrm_policy_alloc(net, GFP_KERNEL);
  1943. if (xp == NULL)
  1944. return -ENOBUFS;
  1945. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1946. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1947. xp->priority = pol->sadb_x_policy_priority;
  1948. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1949. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1950. xp->selector.family = xp->family;
  1951. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1952. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1953. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1954. if (xp->selector.sport)
  1955. xp->selector.sport_mask = htons(0xffff);
  1956. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1957. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1958. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1959. /* Amusing, we set this twice. KAME apps appear to set same value
  1960. * in both addresses.
  1961. */
  1962. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1963. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1964. if (xp->selector.dport)
  1965. xp->selector.dport_mask = htons(0xffff);
  1966. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  1967. if (sec_ctx != NULL) {
  1968. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_KERNEL);
  1969. if (!uctx) {
  1970. err = -ENOBUFS;
  1971. goto out;
  1972. }
  1973. err = security_xfrm_policy_alloc(&xp->security, uctx, GFP_KERNEL);
  1974. kfree(uctx);
  1975. if (err)
  1976. goto out;
  1977. }
  1978. xp->lft.soft_byte_limit = XFRM_INF;
  1979. xp->lft.hard_byte_limit = XFRM_INF;
  1980. xp->lft.soft_packet_limit = XFRM_INF;
  1981. xp->lft.hard_packet_limit = XFRM_INF;
  1982. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1983. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1984. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1985. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1986. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1987. }
  1988. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1989. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1990. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1991. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1992. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1993. }
  1994. xp->xfrm_nr = 0;
  1995. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1996. (err = parse_ipsecrequests(xp, pol)) < 0)
  1997. goto out;
  1998. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1999. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  2000. xfrm_audit_policy_add(xp, err ? 0 : 1, true);
  2001. if (err)
  2002. goto out;
  2003. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  2004. c.event = XFRM_MSG_UPDPOLICY;
  2005. else
  2006. c.event = XFRM_MSG_NEWPOLICY;
  2007. c.seq = hdr->sadb_msg_seq;
  2008. c.portid = hdr->sadb_msg_pid;
  2009. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2010. xfrm_pol_put(xp);
  2011. return 0;
  2012. out:
  2013. xp->walk.dead = 1;
  2014. xfrm_policy_destroy(xp);
  2015. return err;
  2016. }
  2017. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2018. {
  2019. struct net *net = sock_net(sk);
  2020. int err;
  2021. struct sadb_address *sa;
  2022. struct sadb_x_policy *pol;
  2023. struct xfrm_policy *xp;
  2024. struct xfrm_selector sel;
  2025. struct km_event c;
  2026. struct sadb_x_sec_ctx *sec_ctx;
  2027. struct xfrm_sec_ctx *pol_ctx = NULL;
  2028. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  2029. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  2030. !ext_hdrs[SADB_X_EXT_POLICY-1])
  2031. return -EINVAL;
  2032. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  2033. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  2034. return -EINVAL;
  2035. memset(&sel, 0, sizeof(sel));
  2036. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  2037. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2038. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2039. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2040. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2041. if (sel.sport)
  2042. sel.sport_mask = htons(0xffff);
  2043. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  2044. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2045. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2046. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2047. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2048. if (sel.dport)
  2049. sel.dport_mask = htons(0xffff);
  2050. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  2051. if (sec_ctx != NULL) {
  2052. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_KERNEL);
  2053. if (!uctx)
  2054. return -ENOMEM;
  2055. err = security_xfrm_policy_alloc(&pol_ctx, uctx, GFP_KERNEL);
  2056. kfree(uctx);
  2057. if (err)
  2058. return err;
  2059. }
  2060. xp = xfrm_policy_bysel_ctx(net, DUMMY_MARK, XFRM_POLICY_TYPE_MAIN,
  2061. pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
  2062. 1, &err);
  2063. security_xfrm_policy_free(pol_ctx);
  2064. if (xp == NULL)
  2065. return -ENOENT;
  2066. xfrm_audit_policy_delete(xp, err ? 0 : 1, true);
  2067. if (err)
  2068. goto out;
  2069. c.seq = hdr->sadb_msg_seq;
  2070. c.portid = hdr->sadb_msg_pid;
  2071. c.data.byid = 0;
  2072. c.event = XFRM_MSG_DELPOLICY;
  2073. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2074. out:
  2075. xfrm_pol_put(xp);
  2076. return err;
  2077. }
  2078. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, const struct sadb_msg *hdr, int dir)
  2079. {
  2080. int err;
  2081. struct sk_buff *out_skb;
  2082. struct sadb_msg *out_hdr;
  2083. err = 0;
  2084. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2085. if (IS_ERR(out_skb)) {
  2086. err = PTR_ERR(out_skb);
  2087. goto out;
  2088. }
  2089. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2090. if (err < 0)
  2091. goto out;
  2092. out_hdr = (struct sadb_msg *) out_skb->data;
  2093. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2094. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2095. out_hdr->sadb_msg_satype = 0;
  2096. out_hdr->sadb_msg_errno = 0;
  2097. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2098. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2099. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, xp_net(xp));
  2100. err = 0;
  2101. out:
  2102. return err;
  2103. }
  2104. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2105. {
  2106. return PFKEY_ALIGN8(pfkey_sockaddr_len(family) * 2);
  2107. }
  2108. static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len,
  2109. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2110. u16 *family)
  2111. {
  2112. int af, socklen;
  2113. if (ext_len < 2 || ext_len < pfkey_sockaddr_pair_size(sa->sa_family))
  2114. return -EINVAL;
  2115. af = pfkey_sockaddr_extract(sa, saddr);
  2116. if (!af)
  2117. return -EINVAL;
  2118. socklen = pfkey_sockaddr_len(af);
  2119. if (pfkey_sockaddr_extract((struct sockaddr *) (((u8 *)sa) + socklen),
  2120. daddr) != af)
  2121. return -EINVAL;
  2122. *family = af;
  2123. return 0;
  2124. }
  2125. #ifdef CONFIG_NET_KEY_MIGRATE
  2126. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2127. struct xfrm_migrate *m)
  2128. {
  2129. int err;
  2130. struct sadb_x_ipsecrequest *rq2;
  2131. int mode;
  2132. if (len < sizeof(*rq1) ||
  2133. len < rq1->sadb_x_ipsecrequest_len ||
  2134. rq1->sadb_x_ipsecrequest_len < sizeof(*rq1))
  2135. return -EINVAL;
  2136. /* old endoints */
  2137. err = parse_sockaddr_pair((struct sockaddr *)(rq1 + 1),
  2138. rq1->sadb_x_ipsecrequest_len - sizeof(*rq1),
  2139. &m->old_saddr, &m->old_daddr,
  2140. &m->old_family);
  2141. if (err)
  2142. return err;
  2143. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2144. len -= rq1->sadb_x_ipsecrequest_len;
  2145. if (len <= sizeof(*rq2) ||
  2146. len < rq2->sadb_x_ipsecrequest_len ||
  2147. rq2->sadb_x_ipsecrequest_len < sizeof(*rq2))
  2148. return -EINVAL;
  2149. /* new endpoints */
  2150. err = parse_sockaddr_pair((struct sockaddr *)(rq2 + 1),
  2151. rq2->sadb_x_ipsecrequest_len - sizeof(*rq2),
  2152. &m->new_saddr, &m->new_daddr,
  2153. &m->new_family);
  2154. if (err)
  2155. return err;
  2156. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2157. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2158. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2159. return -EINVAL;
  2160. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2161. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2162. return -EINVAL;
  2163. m->mode = mode;
  2164. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2165. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2166. rq2->sadb_x_ipsecrequest_len));
  2167. }
  2168. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2169. const struct sadb_msg *hdr, void * const *ext_hdrs)
  2170. {
  2171. int i, len, ret, err = -EINVAL;
  2172. u8 dir;
  2173. struct sadb_address *sa;
  2174. struct sadb_x_kmaddress *kma;
  2175. struct sadb_x_policy *pol;
  2176. struct sadb_x_ipsecrequest *rq;
  2177. struct xfrm_selector sel;
  2178. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2179. struct xfrm_kmaddress k;
  2180. struct net *net = sock_net(sk);
  2181. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2182. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2183. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2184. err = -EINVAL;
  2185. goto out;
  2186. }
  2187. kma = ext_hdrs[SADB_X_EXT_KMADDRESS - 1];
  2188. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2189. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2190. err = -EINVAL;
  2191. goto out;
  2192. }
  2193. if (kma) {
  2194. /* convert sadb_x_kmaddress to xfrm_kmaddress */
  2195. k.reserved = kma->sadb_x_kmaddress_reserved;
  2196. ret = parse_sockaddr_pair((struct sockaddr *)(kma + 1),
  2197. 8*(kma->sadb_x_kmaddress_len) - sizeof(*kma),
  2198. &k.local, &k.remote, &k.family);
  2199. if (ret < 0) {
  2200. err = ret;
  2201. goto out;
  2202. }
  2203. }
  2204. dir = pol->sadb_x_policy_dir - 1;
  2205. memset(&sel, 0, sizeof(sel));
  2206. /* set source address info of selector */
  2207. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2208. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2209. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2210. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2211. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2212. if (sel.sport)
  2213. sel.sport_mask = htons(0xffff);
  2214. /* set destination address info of selector */
  2215. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1];
  2216. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2217. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2218. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2219. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2220. if (sel.dport)
  2221. sel.dport_mask = htons(0xffff);
  2222. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2223. /* extract ipsecrequests */
  2224. i = 0;
  2225. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2226. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2227. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2228. if (ret < 0) {
  2229. err = ret;
  2230. goto out;
  2231. } else {
  2232. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2233. len -= ret;
  2234. i++;
  2235. }
  2236. }
  2237. if (!i || len > 0) {
  2238. err = -EINVAL;
  2239. goto out;
  2240. }
  2241. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i,
  2242. kma ? &k : NULL, net, NULL);
  2243. out:
  2244. return err;
  2245. }
  2246. #else
  2247. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2248. const struct sadb_msg *hdr, void * const *ext_hdrs)
  2249. {
  2250. return -ENOPROTOOPT;
  2251. }
  2252. #endif
  2253. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2254. {
  2255. struct net *net = sock_net(sk);
  2256. unsigned int dir;
  2257. int err = 0, delete;
  2258. struct sadb_x_policy *pol;
  2259. struct xfrm_policy *xp;
  2260. struct km_event c;
  2261. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2262. return -EINVAL;
  2263. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2264. if (dir >= XFRM_POLICY_MAX)
  2265. return -EINVAL;
  2266. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2267. xp = xfrm_policy_byid(net, DUMMY_MARK, XFRM_POLICY_TYPE_MAIN,
  2268. dir, pol->sadb_x_policy_id, delete, &err);
  2269. if (xp == NULL)
  2270. return -ENOENT;
  2271. if (delete) {
  2272. xfrm_audit_policy_delete(xp, err ? 0 : 1, true);
  2273. if (err)
  2274. goto out;
  2275. c.seq = hdr->sadb_msg_seq;
  2276. c.portid = hdr->sadb_msg_pid;
  2277. c.data.byid = 1;
  2278. c.event = XFRM_MSG_DELPOLICY;
  2279. km_policy_notify(xp, dir, &c);
  2280. } else {
  2281. err = key_pol_get_resp(sk, xp, hdr, dir);
  2282. }
  2283. out:
  2284. xfrm_pol_put(xp);
  2285. return err;
  2286. }
  2287. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2288. {
  2289. struct pfkey_sock *pfk = ptr;
  2290. struct sk_buff *out_skb;
  2291. struct sadb_msg *out_hdr;
  2292. int err;
  2293. if (!pfkey_can_dump(&pfk->sk))
  2294. return -ENOBUFS;
  2295. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2296. if (IS_ERR(out_skb))
  2297. return PTR_ERR(out_skb);
  2298. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2299. if (err < 0)
  2300. return err;
  2301. out_hdr = (struct sadb_msg *) out_skb->data;
  2302. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  2303. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2304. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2305. out_hdr->sadb_msg_errno = 0;
  2306. out_hdr->sadb_msg_seq = count + 1;
  2307. out_hdr->sadb_msg_pid = pfk->dump.msg_portid;
  2308. if (pfk->dump.skb)
  2309. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  2310. &pfk->sk, sock_net(&pfk->sk));
  2311. pfk->dump.skb = out_skb;
  2312. return 0;
  2313. }
  2314. static int pfkey_dump_sp(struct pfkey_sock *pfk)
  2315. {
  2316. struct net *net = sock_net(&pfk->sk);
  2317. return xfrm_policy_walk(net, &pfk->dump.u.policy, dump_sp, (void *) pfk);
  2318. }
  2319. static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
  2320. {
  2321. struct net *net = sock_net((struct sock *)pfk);
  2322. xfrm_policy_walk_done(&pfk->dump.u.policy, net);
  2323. }
  2324. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2325. {
  2326. struct pfkey_sock *pfk = pfkey_sk(sk);
  2327. mutex_lock(&pfk->dump_lock);
  2328. if (pfk->dump.dump != NULL) {
  2329. mutex_unlock(&pfk->dump_lock);
  2330. return -EBUSY;
  2331. }
  2332. pfk->dump.msg_version = hdr->sadb_msg_version;
  2333. pfk->dump.msg_portid = hdr->sadb_msg_pid;
  2334. pfk->dump.dump = pfkey_dump_sp;
  2335. pfk->dump.done = pfkey_dump_sp_done;
  2336. xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
  2337. mutex_unlock(&pfk->dump_lock);
  2338. return pfkey_do_dump(pfk);
  2339. }
  2340. static int key_notify_policy_flush(const struct km_event *c)
  2341. {
  2342. struct sk_buff *skb_out;
  2343. struct sadb_msg *hdr;
  2344. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2345. if (!skb_out)
  2346. return -ENOBUFS;
  2347. hdr = skb_put(skb_out, sizeof(struct sadb_msg));
  2348. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2349. hdr->sadb_msg_seq = c->seq;
  2350. hdr->sadb_msg_pid = c->portid;
  2351. hdr->sadb_msg_version = PF_KEY_V2;
  2352. hdr->sadb_msg_errno = (uint8_t) 0;
  2353. hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2354. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2355. hdr->sadb_msg_reserved = 0;
  2356. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  2357. return 0;
  2358. }
  2359. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2360. {
  2361. struct net *net = sock_net(sk);
  2362. struct km_event c;
  2363. int err, err2;
  2364. err = xfrm_policy_flush(net, XFRM_POLICY_TYPE_MAIN, true);
  2365. err2 = unicast_flush_resp(sk, hdr);
  2366. if (err || err2) {
  2367. if (err == -ESRCH) /* empty table - old silent behavior */
  2368. return 0;
  2369. return err;
  2370. }
  2371. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2372. c.event = XFRM_MSG_FLUSHPOLICY;
  2373. c.portid = hdr->sadb_msg_pid;
  2374. c.seq = hdr->sadb_msg_seq;
  2375. c.net = net;
  2376. km_policy_notify(NULL, 0, &c);
  2377. return 0;
  2378. }
  2379. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2380. const struct sadb_msg *hdr, void * const *ext_hdrs);
  2381. static const pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2382. [SADB_RESERVED] = pfkey_reserved,
  2383. [SADB_GETSPI] = pfkey_getspi,
  2384. [SADB_UPDATE] = pfkey_add,
  2385. [SADB_ADD] = pfkey_add,
  2386. [SADB_DELETE] = pfkey_delete,
  2387. [SADB_GET] = pfkey_get,
  2388. [SADB_ACQUIRE] = pfkey_acquire,
  2389. [SADB_REGISTER] = pfkey_register,
  2390. [SADB_EXPIRE] = NULL,
  2391. [SADB_FLUSH] = pfkey_flush,
  2392. [SADB_DUMP] = pfkey_dump,
  2393. [SADB_X_PROMISC] = pfkey_promisc,
  2394. [SADB_X_PCHANGE] = NULL,
  2395. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2396. [SADB_X_SPDADD] = pfkey_spdadd,
  2397. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2398. [SADB_X_SPDGET] = pfkey_spdget,
  2399. [SADB_X_SPDACQUIRE] = NULL,
  2400. [SADB_X_SPDDUMP] = pfkey_spddump,
  2401. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2402. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2403. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2404. [SADB_X_MIGRATE] = pfkey_migrate,
  2405. };
  2406. static int pfkey_process(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr)
  2407. {
  2408. void *ext_hdrs[SADB_EXT_MAX];
  2409. int err;
  2410. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2411. BROADCAST_PROMISC_ONLY, NULL, sock_net(sk));
  2412. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2413. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2414. if (!err) {
  2415. err = -EOPNOTSUPP;
  2416. if (pfkey_funcs[hdr->sadb_msg_type])
  2417. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2418. }
  2419. return err;
  2420. }
  2421. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2422. {
  2423. struct sadb_msg *hdr = NULL;
  2424. if (skb->len < sizeof(*hdr)) {
  2425. *errp = -EMSGSIZE;
  2426. } else {
  2427. hdr = (struct sadb_msg *) skb->data;
  2428. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2429. hdr->sadb_msg_reserved != 0 ||
  2430. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2431. hdr->sadb_msg_type > SADB_MAX)) {
  2432. hdr = NULL;
  2433. *errp = -EINVAL;
  2434. } else if (hdr->sadb_msg_len != (skb->len /
  2435. sizeof(uint64_t)) ||
  2436. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2437. sizeof(uint64_t))) {
  2438. hdr = NULL;
  2439. *errp = -EMSGSIZE;
  2440. } else {
  2441. *errp = 0;
  2442. }
  2443. }
  2444. return hdr;
  2445. }
  2446. static inline int aalg_tmpl_set(const struct xfrm_tmpl *t,
  2447. const struct xfrm_algo_desc *d)
  2448. {
  2449. unsigned int id = d->desc.sadb_alg_id;
  2450. if (id >= sizeof(t->aalgos) * 8)
  2451. return 0;
  2452. return (t->aalgos >> id) & 1;
  2453. }
  2454. static inline int ealg_tmpl_set(const struct xfrm_tmpl *t,
  2455. const struct xfrm_algo_desc *d)
  2456. {
  2457. unsigned int id = d->desc.sadb_alg_id;
  2458. if (id >= sizeof(t->ealgos) * 8)
  2459. return 0;
  2460. return (t->ealgos >> id) & 1;
  2461. }
  2462. static int count_ah_combs(const struct xfrm_tmpl *t)
  2463. {
  2464. int i, sz = 0;
  2465. for (i = 0; ; i++) {
  2466. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2467. if (!aalg)
  2468. break;
  2469. if (!aalg->pfkey_supported)
  2470. continue;
  2471. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2472. sz += sizeof(struct sadb_comb);
  2473. }
  2474. return sz + sizeof(struct sadb_prop);
  2475. }
  2476. static int count_esp_combs(const struct xfrm_tmpl *t)
  2477. {
  2478. int i, k, sz = 0;
  2479. for (i = 0; ; i++) {
  2480. const struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2481. if (!ealg)
  2482. break;
  2483. if (!ealg->pfkey_supported)
  2484. continue;
  2485. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2486. continue;
  2487. for (k = 1; ; k++) {
  2488. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2489. if (!aalg)
  2490. break;
  2491. if (!aalg->pfkey_supported)
  2492. continue;
  2493. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2494. sz += sizeof(struct sadb_comb);
  2495. }
  2496. }
  2497. return sz + sizeof(struct sadb_prop);
  2498. }
  2499. static void dump_ah_combs(struct sk_buff *skb, const struct xfrm_tmpl *t)
  2500. {
  2501. struct sadb_prop *p;
  2502. int i;
  2503. p = skb_put(skb, sizeof(struct sadb_prop));
  2504. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2505. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2506. p->sadb_prop_replay = 32;
  2507. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2508. for (i = 0; ; i++) {
  2509. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2510. if (!aalg)
  2511. break;
  2512. if (!aalg->pfkey_supported)
  2513. continue;
  2514. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2515. struct sadb_comb *c;
  2516. c = skb_put_zero(skb, sizeof(struct sadb_comb));
  2517. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2518. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2519. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2520. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2521. c->sadb_comb_hard_addtime = 24*60*60;
  2522. c->sadb_comb_soft_addtime = 20*60*60;
  2523. c->sadb_comb_hard_usetime = 8*60*60;
  2524. c->sadb_comb_soft_usetime = 7*60*60;
  2525. }
  2526. }
  2527. }
  2528. static void dump_esp_combs(struct sk_buff *skb, const struct xfrm_tmpl *t)
  2529. {
  2530. struct sadb_prop *p;
  2531. int i, k;
  2532. p = skb_put(skb, sizeof(struct sadb_prop));
  2533. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2534. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2535. p->sadb_prop_replay = 32;
  2536. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2537. for (i=0; ; i++) {
  2538. const struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2539. if (!ealg)
  2540. break;
  2541. if (!ealg->pfkey_supported)
  2542. continue;
  2543. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2544. continue;
  2545. for (k = 1; ; k++) {
  2546. struct sadb_comb *c;
  2547. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2548. if (!aalg)
  2549. break;
  2550. if (!aalg->pfkey_supported)
  2551. continue;
  2552. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2553. continue;
  2554. c = skb_put(skb, sizeof(struct sadb_comb));
  2555. memset(c, 0, sizeof(*c));
  2556. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2557. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2558. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2559. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2560. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2561. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2562. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2563. c->sadb_comb_hard_addtime = 24*60*60;
  2564. c->sadb_comb_soft_addtime = 20*60*60;
  2565. c->sadb_comb_hard_usetime = 8*60*60;
  2566. c->sadb_comb_soft_usetime = 7*60*60;
  2567. }
  2568. }
  2569. }
  2570. static int key_notify_policy_expire(struct xfrm_policy *xp, const struct km_event *c)
  2571. {
  2572. return 0;
  2573. }
  2574. static int key_notify_sa_expire(struct xfrm_state *x, const struct km_event *c)
  2575. {
  2576. struct sk_buff *out_skb;
  2577. struct sadb_msg *out_hdr;
  2578. int hard;
  2579. int hsc;
  2580. hard = c->data.hard;
  2581. if (hard)
  2582. hsc = 2;
  2583. else
  2584. hsc = 1;
  2585. out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
  2586. if (IS_ERR(out_skb))
  2587. return PTR_ERR(out_skb);
  2588. out_hdr = (struct sadb_msg *) out_skb->data;
  2589. out_hdr->sadb_msg_version = PF_KEY_V2;
  2590. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2591. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2592. out_hdr->sadb_msg_errno = 0;
  2593. out_hdr->sadb_msg_reserved = 0;
  2594. out_hdr->sadb_msg_seq = 0;
  2595. out_hdr->sadb_msg_pid = 0;
  2596. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL,
  2597. xs_net(x));
  2598. return 0;
  2599. }
  2600. static int pfkey_send_notify(struct xfrm_state *x, const struct km_event *c)
  2601. {
  2602. struct net *net = x ? xs_net(x) : c->net;
  2603. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  2604. if (atomic_read(&net_pfkey->socks_nr) == 0)
  2605. return 0;
  2606. switch (c->event) {
  2607. case XFRM_MSG_EXPIRE:
  2608. return key_notify_sa_expire(x, c);
  2609. case XFRM_MSG_DELSA:
  2610. case XFRM_MSG_NEWSA:
  2611. case XFRM_MSG_UPDSA:
  2612. return key_notify_sa(x, c);
  2613. case XFRM_MSG_FLUSHSA:
  2614. return key_notify_sa_flush(c);
  2615. case XFRM_MSG_NEWAE: /* not yet supported */
  2616. break;
  2617. default:
  2618. pr_err("pfkey: Unknown SA event %d\n", c->event);
  2619. break;
  2620. }
  2621. return 0;
  2622. }
  2623. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c)
  2624. {
  2625. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2626. return 0;
  2627. switch (c->event) {
  2628. case XFRM_MSG_POLEXPIRE:
  2629. return key_notify_policy_expire(xp, c);
  2630. case XFRM_MSG_DELPOLICY:
  2631. case XFRM_MSG_NEWPOLICY:
  2632. case XFRM_MSG_UPDPOLICY:
  2633. return key_notify_policy(xp, dir, c);
  2634. case XFRM_MSG_FLUSHPOLICY:
  2635. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2636. break;
  2637. return key_notify_policy_flush(c);
  2638. default:
  2639. pr_err("pfkey: Unknown policy event %d\n", c->event);
  2640. break;
  2641. }
  2642. return 0;
  2643. }
  2644. static u32 get_acqseq(void)
  2645. {
  2646. u32 res;
  2647. static atomic_t acqseq;
  2648. do {
  2649. res = atomic_inc_return(&acqseq);
  2650. } while (!res);
  2651. return res;
  2652. }
  2653. static bool pfkey_is_alive(const struct km_event *c)
  2654. {
  2655. struct netns_pfkey *net_pfkey = net_generic(c->net, pfkey_net_id);
  2656. struct sock *sk;
  2657. bool is_alive = false;
  2658. rcu_read_lock();
  2659. sk_for_each_rcu(sk, &net_pfkey->table) {
  2660. if (pfkey_sk(sk)->registered) {
  2661. is_alive = true;
  2662. break;
  2663. }
  2664. }
  2665. rcu_read_unlock();
  2666. return is_alive;
  2667. }
  2668. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp)
  2669. {
  2670. struct sk_buff *skb;
  2671. struct sadb_msg *hdr;
  2672. struct sadb_address *addr;
  2673. struct sadb_x_policy *pol;
  2674. int sockaddr_size;
  2675. int size;
  2676. struct sadb_x_sec_ctx *sec_ctx;
  2677. struct xfrm_sec_ctx *xfrm_ctx;
  2678. int ctx_size = 0;
  2679. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2680. if (!sockaddr_size)
  2681. return -EINVAL;
  2682. size = sizeof(struct sadb_msg) +
  2683. (sizeof(struct sadb_address) * 2) +
  2684. (sockaddr_size * 2) +
  2685. sizeof(struct sadb_x_policy);
  2686. if (x->id.proto == IPPROTO_AH)
  2687. size += count_ah_combs(t);
  2688. else if (x->id.proto == IPPROTO_ESP)
  2689. size += count_esp_combs(t);
  2690. if ((xfrm_ctx = x->security)) {
  2691. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2692. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2693. }
  2694. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2695. if (skb == NULL)
  2696. return -ENOMEM;
  2697. hdr = skb_put(skb, sizeof(struct sadb_msg));
  2698. hdr->sadb_msg_version = PF_KEY_V2;
  2699. hdr->sadb_msg_type = SADB_ACQUIRE;
  2700. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2701. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2702. hdr->sadb_msg_errno = 0;
  2703. hdr->sadb_msg_reserved = 0;
  2704. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2705. hdr->sadb_msg_pid = 0;
  2706. /* src address */
  2707. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  2708. addr->sadb_address_len =
  2709. (sizeof(struct sadb_address)+sockaddr_size)/
  2710. sizeof(uint64_t);
  2711. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2712. addr->sadb_address_proto = 0;
  2713. addr->sadb_address_reserved = 0;
  2714. addr->sadb_address_prefixlen =
  2715. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2716. (struct sockaddr *) (addr + 1),
  2717. x->props.family);
  2718. if (!addr->sadb_address_prefixlen)
  2719. BUG();
  2720. /* dst address */
  2721. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  2722. addr->sadb_address_len =
  2723. (sizeof(struct sadb_address)+sockaddr_size)/
  2724. sizeof(uint64_t);
  2725. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2726. addr->sadb_address_proto = 0;
  2727. addr->sadb_address_reserved = 0;
  2728. addr->sadb_address_prefixlen =
  2729. pfkey_sockaddr_fill(&x->id.daddr, 0,
  2730. (struct sockaddr *) (addr + 1),
  2731. x->props.family);
  2732. if (!addr->sadb_address_prefixlen)
  2733. BUG();
  2734. pol = skb_put(skb, sizeof(struct sadb_x_policy));
  2735. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2736. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2737. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2738. pol->sadb_x_policy_dir = XFRM_POLICY_OUT + 1;
  2739. pol->sadb_x_policy_reserved = 0;
  2740. pol->sadb_x_policy_id = xp->index;
  2741. pol->sadb_x_policy_priority = xp->priority;
  2742. /* Set sadb_comb's. */
  2743. if (x->id.proto == IPPROTO_AH)
  2744. dump_ah_combs(skb, t);
  2745. else if (x->id.proto == IPPROTO_ESP)
  2746. dump_esp_combs(skb, t);
  2747. /* security context */
  2748. if (xfrm_ctx) {
  2749. sec_ctx = skb_put(skb,
  2750. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2751. sec_ctx->sadb_x_sec_len =
  2752. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2753. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2754. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2755. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2756. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2757. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2758. xfrm_ctx->ctx_len);
  2759. }
  2760. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL,
  2761. xs_net(x));
  2762. }
  2763. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2764. u8 *data, int len, int *dir)
  2765. {
  2766. struct net *net = sock_net(sk);
  2767. struct xfrm_policy *xp;
  2768. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2769. struct sadb_x_sec_ctx *sec_ctx;
  2770. switch (sk->sk_family) {
  2771. case AF_INET:
  2772. if (opt != IP_IPSEC_POLICY) {
  2773. *dir = -EOPNOTSUPP;
  2774. return NULL;
  2775. }
  2776. break;
  2777. #if IS_ENABLED(CONFIG_IPV6)
  2778. case AF_INET6:
  2779. if (opt != IPV6_IPSEC_POLICY) {
  2780. *dir = -EOPNOTSUPP;
  2781. return NULL;
  2782. }
  2783. break;
  2784. #endif
  2785. default:
  2786. *dir = -EINVAL;
  2787. return NULL;
  2788. }
  2789. *dir = -EINVAL;
  2790. if (len < sizeof(struct sadb_x_policy) ||
  2791. pol->sadb_x_policy_len*8 > len ||
  2792. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2793. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2794. return NULL;
  2795. xp = xfrm_policy_alloc(net, GFP_ATOMIC);
  2796. if (xp == NULL) {
  2797. *dir = -ENOBUFS;
  2798. return NULL;
  2799. }
  2800. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2801. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2802. xp->lft.soft_byte_limit = XFRM_INF;
  2803. xp->lft.hard_byte_limit = XFRM_INF;
  2804. xp->lft.soft_packet_limit = XFRM_INF;
  2805. xp->lft.hard_packet_limit = XFRM_INF;
  2806. xp->family = sk->sk_family;
  2807. xp->xfrm_nr = 0;
  2808. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2809. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2810. goto out;
  2811. /* security context too */
  2812. if (len >= (pol->sadb_x_policy_len*8 +
  2813. sizeof(struct sadb_x_sec_ctx))) {
  2814. char *p = (char *)pol;
  2815. struct xfrm_user_sec_ctx *uctx;
  2816. p += pol->sadb_x_policy_len*8;
  2817. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2818. if (len < pol->sadb_x_policy_len*8 +
  2819. sec_ctx->sadb_x_sec_len*8) {
  2820. *dir = -EINVAL;
  2821. goto out;
  2822. }
  2823. if ((*dir = verify_sec_ctx_len(p)))
  2824. goto out;
  2825. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_ATOMIC);
  2826. *dir = security_xfrm_policy_alloc(&xp->security, uctx, GFP_ATOMIC);
  2827. kfree(uctx);
  2828. if (*dir)
  2829. goto out;
  2830. }
  2831. *dir = pol->sadb_x_policy_dir-1;
  2832. return xp;
  2833. out:
  2834. xp->walk.dead = 1;
  2835. xfrm_policy_destroy(xp);
  2836. return NULL;
  2837. }
  2838. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2839. {
  2840. struct sk_buff *skb;
  2841. struct sadb_msg *hdr;
  2842. struct sadb_sa *sa;
  2843. struct sadb_address *addr;
  2844. struct sadb_x_nat_t_port *n_port;
  2845. int sockaddr_size;
  2846. int size;
  2847. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2848. struct xfrm_encap_tmpl *natt = NULL;
  2849. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2850. if (!sockaddr_size)
  2851. return -EINVAL;
  2852. if (!satype)
  2853. return -EINVAL;
  2854. if (!x->encap)
  2855. return -EINVAL;
  2856. natt = x->encap;
  2857. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2858. *
  2859. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2860. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2861. */
  2862. size = sizeof(struct sadb_msg) +
  2863. sizeof(struct sadb_sa) +
  2864. (sizeof(struct sadb_address) * 2) +
  2865. (sockaddr_size * 2) +
  2866. (sizeof(struct sadb_x_nat_t_port) * 2);
  2867. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2868. if (skb == NULL)
  2869. return -ENOMEM;
  2870. hdr = skb_put(skb, sizeof(struct sadb_msg));
  2871. hdr->sadb_msg_version = PF_KEY_V2;
  2872. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2873. hdr->sadb_msg_satype = satype;
  2874. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2875. hdr->sadb_msg_errno = 0;
  2876. hdr->sadb_msg_reserved = 0;
  2877. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2878. hdr->sadb_msg_pid = 0;
  2879. /* SA */
  2880. sa = skb_put(skb, sizeof(struct sadb_sa));
  2881. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2882. sa->sadb_sa_exttype = SADB_EXT_SA;
  2883. sa->sadb_sa_spi = x->id.spi;
  2884. sa->sadb_sa_replay = 0;
  2885. sa->sadb_sa_state = 0;
  2886. sa->sadb_sa_auth = 0;
  2887. sa->sadb_sa_encrypt = 0;
  2888. sa->sadb_sa_flags = 0;
  2889. /* ADDRESS_SRC (old addr) */
  2890. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  2891. addr->sadb_address_len =
  2892. (sizeof(struct sadb_address)+sockaddr_size)/
  2893. sizeof(uint64_t);
  2894. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2895. addr->sadb_address_proto = 0;
  2896. addr->sadb_address_reserved = 0;
  2897. addr->sadb_address_prefixlen =
  2898. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2899. (struct sockaddr *) (addr + 1),
  2900. x->props.family);
  2901. if (!addr->sadb_address_prefixlen)
  2902. BUG();
  2903. /* NAT_T_SPORT (old port) */
  2904. n_port = skb_put(skb, sizeof(*n_port));
  2905. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2906. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2907. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2908. n_port->sadb_x_nat_t_port_reserved = 0;
  2909. /* ADDRESS_DST (new addr) */
  2910. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  2911. addr->sadb_address_len =
  2912. (sizeof(struct sadb_address)+sockaddr_size)/
  2913. sizeof(uint64_t);
  2914. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2915. addr->sadb_address_proto = 0;
  2916. addr->sadb_address_reserved = 0;
  2917. addr->sadb_address_prefixlen =
  2918. pfkey_sockaddr_fill(ipaddr, 0,
  2919. (struct sockaddr *) (addr + 1),
  2920. x->props.family);
  2921. if (!addr->sadb_address_prefixlen)
  2922. BUG();
  2923. /* NAT_T_DPORT (new port) */
  2924. n_port = skb_put(skb, sizeof(*n_port));
  2925. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2926. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2927. n_port->sadb_x_nat_t_port_port = sport;
  2928. n_port->sadb_x_nat_t_port_reserved = 0;
  2929. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL,
  2930. xs_net(x));
  2931. }
  2932. #ifdef CONFIG_NET_KEY_MIGRATE
  2933. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2934. const struct xfrm_selector *sel)
  2935. {
  2936. struct sadb_address *addr;
  2937. addr = skb_put(skb, sizeof(struct sadb_address) + sasize);
  2938. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2939. addr->sadb_address_exttype = type;
  2940. addr->sadb_address_proto = sel->proto;
  2941. addr->sadb_address_reserved = 0;
  2942. switch (type) {
  2943. case SADB_EXT_ADDRESS_SRC:
  2944. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2945. pfkey_sockaddr_fill(&sel->saddr, 0,
  2946. (struct sockaddr *)(addr + 1),
  2947. sel->family);
  2948. break;
  2949. case SADB_EXT_ADDRESS_DST:
  2950. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2951. pfkey_sockaddr_fill(&sel->daddr, 0,
  2952. (struct sockaddr *)(addr + 1),
  2953. sel->family);
  2954. break;
  2955. default:
  2956. return -EINVAL;
  2957. }
  2958. return 0;
  2959. }
  2960. static int set_sadb_kmaddress(struct sk_buff *skb, const struct xfrm_kmaddress *k)
  2961. {
  2962. struct sadb_x_kmaddress *kma;
  2963. u8 *sa;
  2964. int family = k->family;
  2965. int socklen = pfkey_sockaddr_len(family);
  2966. int size_req;
  2967. size_req = (sizeof(struct sadb_x_kmaddress) +
  2968. pfkey_sockaddr_pair_size(family));
  2969. kma = skb_put_zero(skb, size_req);
  2970. kma->sadb_x_kmaddress_len = size_req / 8;
  2971. kma->sadb_x_kmaddress_exttype = SADB_X_EXT_KMADDRESS;
  2972. kma->sadb_x_kmaddress_reserved = k->reserved;
  2973. sa = (u8 *)(kma + 1);
  2974. if (!pfkey_sockaddr_fill(&k->local, 0, (struct sockaddr *)sa, family) ||
  2975. !pfkey_sockaddr_fill(&k->remote, 0, (struct sockaddr *)(sa+socklen), family))
  2976. return -EINVAL;
  2977. return 0;
  2978. }
  2979. static int set_ipsecrequest(struct sk_buff *skb,
  2980. uint8_t proto, uint8_t mode, int level,
  2981. uint32_t reqid, uint8_t family,
  2982. const xfrm_address_t *src, const xfrm_address_t *dst)
  2983. {
  2984. struct sadb_x_ipsecrequest *rq;
  2985. u8 *sa;
  2986. int socklen = pfkey_sockaddr_len(family);
  2987. int size_req;
  2988. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2989. pfkey_sockaddr_pair_size(family);
  2990. rq = skb_put_zero(skb, size_req);
  2991. rq->sadb_x_ipsecrequest_len = size_req;
  2992. rq->sadb_x_ipsecrequest_proto = proto;
  2993. rq->sadb_x_ipsecrequest_mode = mode;
  2994. rq->sadb_x_ipsecrequest_level = level;
  2995. rq->sadb_x_ipsecrequest_reqid = reqid;
  2996. sa = (u8 *) (rq + 1);
  2997. if (!pfkey_sockaddr_fill(src, 0, (struct sockaddr *)sa, family) ||
  2998. !pfkey_sockaddr_fill(dst, 0, (struct sockaddr *)(sa + socklen), family))
  2999. return -EINVAL;
  3000. return 0;
  3001. }
  3002. #endif
  3003. #ifdef CONFIG_NET_KEY_MIGRATE
  3004. static int pfkey_send_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
  3005. const struct xfrm_migrate *m, int num_bundles,
  3006. const struct xfrm_kmaddress *k,
  3007. const struct xfrm_encap_tmpl *encap)
  3008. {
  3009. int i;
  3010. int sasize_sel;
  3011. int size = 0;
  3012. int size_pol = 0;
  3013. struct sk_buff *skb;
  3014. struct sadb_msg *hdr;
  3015. struct sadb_x_policy *pol;
  3016. const struct xfrm_migrate *mp;
  3017. if (type != XFRM_POLICY_TYPE_MAIN)
  3018. return 0;
  3019. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  3020. return -EINVAL;
  3021. if (k != NULL) {
  3022. /* addresses for KM */
  3023. size += PFKEY_ALIGN8(sizeof(struct sadb_x_kmaddress) +
  3024. pfkey_sockaddr_pair_size(k->family));
  3025. }
  3026. /* selector */
  3027. sasize_sel = pfkey_sockaddr_size(sel->family);
  3028. if (!sasize_sel)
  3029. return -EINVAL;
  3030. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  3031. /* policy info */
  3032. size_pol += sizeof(struct sadb_x_policy);
  3033. /* ipsecrequests */
  3034. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3035. /* old locator pair */
  3036. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3037. pfkey_sockaddr_pair_size(mp->old_family);
  3038. /* new locator pair */
  3039. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3040. pfkey_sockaddr_pair_size(mp->new_family);
  3041. }
  3042. size += sizeof(struct sadb_msg) + size_pol;
  3043. /* alloc buffer */
  3044. skb = alloc_skb(size, GFP_ATOMIC);
  3045. if (skb == NULL)
  3046. return -ENOMEM;
  3047. hdr = skb_put(skb, sizeof(struct sadb_msg));
  3048. hdr->sadb_msg_version = PF_KEY_V2;
  3049. hdr->sadb_msg_type = SADB_X_MIGRATE;
  3050. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  3051. hdr->sadb_msg_len = size / 8;
  3052. hdr->sadb_msg_errno = 0;
  3053. hdr->sadb_msg_reserved = 0;
  3054. hdr->sadb_msg_seq = 0;
  3055. hdr->sadb_msg_pid = 0;
  3056. /* Addresses to be used by KM for negotiation, if ext is available */
  3057. if (k != NULL && (set_sadb_kmaddress(skb, k) < 0))
  3058. goto err;
  3059. /* selector src */
  3060. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  3061. /* selector dst */
  3062. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  3063. /* policy information */
  3064. pol = skb_put(skb, sizeof(struct sadb_x_policy));
  3065. pol->sadb_x_policy_len = size_pol / 8;
  3066. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  3067. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  3068. pol->sadb_x_policy_dir = dir + 1;
  3069. pol->sadb_x_policy_reserved = 0;
  3070. pol->sadb_x_policy_id = 0;
  3071. pol->sadb_x_policy_priority = 0;
  3072. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3073. /* old ipsecrequest */
  3074. int mode = pfkey_mode_from_xfrm(mp->mode);
  3075. if (mode < 0)
  3076. goto err;
  3077. if (set_ipsecrequest(skb, mp->proto, mode,
  3078. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3079. mp->reqid, mp->old_family,
  3080. &mp->old_saddr, &mp->old_daddr) < 0)
  3081. goto err;
  3082. /* new ipsecrequest */
  3083. if (set_ipsecrequest(skb, mp->proto, mode,
  3084. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3085. mp->reqid, mp->new_family,
  3086. &mp->new_saddr, &mp->new_daddr) < 0)
  3087. goto err;
  3088. }
  3089. /* broadcast migrate message to sockets */
  3090. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, &init_net);
  3091. return 0;
  3092. err:
  3093. kfree_skb(skb);
  3094. return -EINVAL;
  3095. }
  3096. #else
  3097. static int pfkey_send_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
  3098. const struct xfrm_migrate *m, int num_bundles,
  3099. const struct xfrm_kmaddress *k,
  3100. const struct xfrm_encap_tmpl *encap)
  3101. {
  3102. return -ENOPROTOOPT;
  3103. }
  3104. #endif
  3105. static int pfkey_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
  3106. {
  3107. struct sock *sk = sock->sk;
  3108. struct sk_buff *skb = NULL;
  3109. struct sadb_msg *hdr = NULL;
  3110. int err;
  3111. struct net *net = sock_net(sk);
  3112. err = -EOPNOTSUPP;
  3113. if (msg->msg_flags & MSG_OOB)
  3114. goto out;
  3115. err = -EMSGSIZE;
  3116. if ((unsigned int)len > sk->sk_sndbuf - 32)
  3117. goto out;
  3118. err = -ENOBUFS;
  3119. skb = alloc_skb(len, GFP_KERNEL);
  3120. if (skb == NULL)
  3121. goto out;
  3122. err = -EFAULT;
  3123. if (memcpy_from_msg(skb_put(skb,len), msg, len))
  3124. goto out;
  3125. hdr = pfkey_get_base_msg(skb, &err);
  3126. if (!hdr)
  3127. goto out;
  3128. mutex_lock(&net->xfrm.xfrm_cfg_mutex);
  3129. err = pfkey_process(sk, skb, hdr);
  3130. mutex_unlock(&net->xfrm.xfrm_cfg_mutex);
  3131. out:
  3132. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3133. err = 0;
  3134. kfree_skb(skb);
  3135. return err ? : len;
  3136. }
  3137. static int pfkey_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
  3138. int flags)
  3139. {
  3140. struct sock *sk = sock->sk;
  3141. struct pfkey_sock *pfk = pfkey_sk(sk);
  3142. struct sk_buff *skb;
  3143. int copied, err;
  3144. err = -EINVAL;
  3145. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3146. goto out;
  3147. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3148. if (skb == NULL)
  3149. goto out;
  3150. copied = skb->len;
  3151. if (copied > len) {
  3152. msg->msg_flags |= MSG_TRUNC;
  3153. copied = len;
  3154. }
  3155. skb_reset_transport_header(skb);
  3156. err = skb_copy_datagram_msg(skb, 0, msg, copied);
  3157. if (err)
  3158. goto out_free;
  3159. sock_recv_ts_and_drops(msg, sk, skb);
  3160. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3161. if (pfk->dump.dump != NULL &&
  3162. 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3163. pfkey_do_dump(pfk);
  3164. out_free:
  3165. skb_free_datagram(sk, skb);
  3166. out:
  3167. return err;
  3168. }
  3169. static const struct proto_ops pfkey_ops = {
  3170. .family = PF_KEY,
  3171. .owner = THIS_MODULE,
  3172. /* Operations that make no sense on pfkey sockets. */
  3173. .bind = sock_no_bind,
  3174. .connect = sock_no_connect,
  3175. .socketpair = sock_no_socketpair,
  3176. .accept = sock_no_accept,
  3177. .getname = sock_no_getname,
  3178. .ioctl = sock_no_ioctl,
  3179. .listen = sock_no_listen,
  3180. .shutdown = sock_no_shutdown,
  3181. .setsockopt = sock_no_setsockopt,
  3182. .getsockopt = sock_no_getsockopt,
  3183. .mmap = sock_no_mmap,
  3184. .sendpage = sock_no_sendpage,
  3185. /* Now the operations that really occur. */
  3186. .release = pfkey_release,
  3187. .poll_mask = datagram_poll_mask,
  3188. .sendmsg = pfkey_sendmsg,
  3189. .recvmsg = pfkey_recvmsg,
  3190. };
  3191. static const struct net_proto_family pfkey_family_ops = {
  3192. .family = PF_KEY,
  3193. .create = pfkey_create,
  3194. .owner = THIS_MODULE,
  3195. };
  3196. #ifdef CONFIG_PROC_FS
  3197. static int pfkey_seq_show(struct seq_file *f, void *v)
  3198. {
  3199. struct sock *s = sk_entry(v);
  3200. if (v == SEQ_START_TOKEN)
  3201. seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n");
  3202. else
  3203. seq_printf(f, "%pK %-6d %-6u %-6u %-6u %-6lu\n",
  3204. s,
  3205. refcount_read(&s->sk_refcnt),
  3206. sk_rmem_alloc_get(s),
  3207. sk_wmem_alloc_get(s),
  3208. from_kuid_munged(seq_user_ns(f), sock_i_uid(s)),
  3209. sock_i_ino(s)
  3210. );
  3211. return 0;
  3212. }
  3213. static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
  3214. __acquires(rcu)
  3215. {
  3216. struct net *net = seq_file_net(f);
  3217. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3218. rcu_read_lock();
  3219. return seq_hlist_start_head_rcu(&net_pfkey->table, *ppos);
  3220. }
  3221. static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
  3222. {
  3223. struct net *net = seq_file_net(f);
  3224. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3225. return seq_hlist_next_rcu(v, &net_pfkey->table, ppos);
  3226. }
  3227. static void pfkey_seq_stop(struct seq_file *f, void *v)
  3228. __releases(rcu)
  3229. {
  3230. rcu_read_unlock();
  3231. }
  3232. static const struct seq_operations pfkey_seq_ops = {
  3233. .start = pfkey_seq_start,
  3234. .next = pfkey_seq_next,
  3235. .stop = pfkey_seq_stop,
  3236. .show = pfkey_seq_show,
  3237. };
  3238. static int __net_init pfkey_init_proc(struct net *net)
  3239. {
  3240. struct proc_dir_entry *e;
  3241. e = proc_create_net("pfkey", 0, net->proc_net, &pfkey_seq_ops,
  3242. sizeof(struct seq_net_private));
  3243. if (e == NULL)
  3244. return -ENOMEM;
  3245. return 0;
  3246. }
  3247. static void __net_exit pfkey_exit_proc(struct net *net)
  3248. {
  3249. remove_proc_entry("pfkey", net->proc_net);
  3250. }
  3251. #else
  3252. static inline int pfkey_init_proc(struct net *net)
  3253. {
  3254. return 0;
  3255. }
  3256. static inline void pfkey_exit_proc(struct net *net)
  3257. {
  3258. }
  3259. #endif
  3260. static struct xfrm_mgr pfkeyv2_mgr =
  3261. {
  3262. .notify = pfkey_send_notify,
  3263. .acquire = pfkey_send_acquire,
  3264. .compile_policy = pfkey_compile_policy,
  3265. .new_mapping = pfkey_send_new_mapping,
  3266. .notify_policy = pfkey_send_policy_notify,
  3267. .migrate = pfkey_send_migrate,
  3268. .is_alive = pfkey_is_alive,
  3269. };
  3270. static int __net_init pfkey_net_init(struct net *net)
  3271. {
  3272. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3273. int rv;
  3274. INIT_HLIST_HEAD(&net_pfkey->table);
  3275. atomic_set(&net_pfkey->socks_nr, 0);
  3276. rv = pfkey_init_proc(net);
  3277. return rv;
  3278. }
  3279. static void __net_exit pfkey_net_exit(struct net *net)
  3280. {
  3281. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3282. pfkey_exit_proc(net);
  3283. WARN_ON(!hlist_empty(&net_pfkey->table));
  3284. }
  3285. static struct pernet_operations pfkey_net_ops = {
  3286. .init = pfkey_net_init,
  3287. .exit = pfkey_net_exit,
  3288. .id = &pfkey_net_id,
  3289. .size = sizeof(struct netns_pfkey),
  3290. };
  3291. static void __exit ipsec_pfkey_exit(void)
  3292. {
  3293. xfrm_unregister_km(&pfkeyv2_mgr);
  3294. sock_unregister(PF_KEY);
  3295. unregister_pernet_subsys(&pfkey_net_ops);
  3296. proto_unregister(&key_proto);
  3297. }
  3298. static int __init ipsec_pfkey_init(void)
  3299. {
  3300. int err = proto_register(&key_proto, 0);
  3301. if (err != 0)
  3302. goto out;
  3303. err = register_pernet_subsys(&pfkey_net_ops);
  3304. if (err != 0)
  3305. goto out_unregister_key_proto;
  3306. err = sock_register(&pfkey_family_ops);
  3307. if (err != 0)
  3308. goto out_unregister_pernet;
  3309. err = xfrm_register_km(&pfkeyv2_mgr);
  3310. if (err != 0)
  3311. goto out_sock_unregister;
  3312. out:
  3313. return err;
  3314. out_sock_unregister:
  3315. sock_unregister(PF_KEY);
  3316. out_unregister_pernet:
  3317. unregister_pernet_subsys(&pfkey_net_ops);
  3318. out_unregister_key_proto:
  3319. proto_unregister(&key_proto);
  3320. goto out;
  3321. }
  3322. module_init(ipsec_pfkey_init);
  3323. module_exit(ipsec_pfkey_exit);
  3324. MODULE_LICENSE("GPL");
  3325. MODULE_ALIAS_NETPROTO(PF_KEY);