af_iucv.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515
  1. /*
  2. * IUCV protocol stack for Linux on zSeries
  3. *
  4. * Copyright IBM Corp. 2006, 2009
  5. *
  6. * Author(s): Jennifer Hunt <jenhunt@us.ibm.com>
  7. * Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
  8. * PM functions:
  9. * Ursula Braun <ursula.braun@de.ibm.com>
  10. */
  11. #define KMSG_COMPONENT "af_iucv"
  12. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  13. #include <linux/module.h>
  14. #include <linux/types.h>
  15. #include <linux/list.h>
  16. #include <linux/errno.h>
  17. #include <linux/kernel.h>
  18. #include <linux/sched/signal.h>
  19. #include <linux/slab.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/init.h>
  22. #include <linux/poll.h>
  23. #include <linux/security.h>
  24. #include <net/sock.h>
  25. #include <asm/ebcdic.h>
  26. #include <asm/cpcmd.h>
  27. #include <linux/kmod.h>
  28. #include <net/iucv/af_iucv.h>
  29. #define VERSION "1.2"
  30. static char iucv_userid[80];
  31. static const struct proto_ops iucv_sock_ops;
  32. static struct proto iucv_proto = {
  33. .name = "AF_IUCV",
  34. .owner = THIS_MODULE,
  35. .obj_size = sizeof(struct iucv_sock),
  36. };
  37. static struct iucv_interface *pr_iucv;
  38. /* special AF_IUCV IPRM messages */
  39. static const u8 iprm_shutdown[8] =
  40. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
  41. #define TRGCLS_SIZE (sizeof(((struct iucv_message *)0)->class))
  42. #define __iucv_sock_wait(sk, condition, timeo, ret) \
  43. do { \
  44. DEFINE_WAIT(__wait); \
  45. long __timeo = timeo; \
  46. ret = 0; \
  47. prepare_to_wait(sk_sleep(sk), &__wait, TASK_INTERRUPTIBLE); \
  48. while (!(condition)) { \
  49. if (!__timeo) { \
  50. ret = -EAGAIN; \
  51. break; \
  52. } \
  53. if (signal_pending(current)) { \
  54. ret = sock_intr_errno(__timeo); \
  55. break; \
  56. } \
  57. release_sock(sk); \
  58. __timeo = schedule_timeout(__timeo); \
  59. lock_sock(sk); \
  60. ret = sock_error(sk); \
  61. if (ret) \
  62. break; \
  63. } \
  64. finish_wait(sk_sleep(sk), &__wait); \
  65. } while (0)
  66. #define iucv_sock_wait(sk, condition, timeo) \
  67. ({ \
  68. int __ret = 0; \
  69. if (!(condition)) \
  70. __iucv_sock_wait(sk, condition, timeo, __ret); \
  71. __ret; \
  72. })
  73. static void iucv_sock_kill(struct sock *sk);
  74. static void iucv_sock_close(struct sock *sk);
  75. static void iucv_sever_path(struct sock *, int);
  76. static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
  77. struct packet_type *pt, struct net_device *orig_dev);
  78. static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
  79. struct sk_buff *skb, u8 flags);
  80. static void afiucv_hs_callback_txnotify(struct sk_buff *, enum iucv_tx_notify);
  81. /* Call Back functions */
  82. static void iucv_callback_rx(struct iucv_path *, struct iucv_message *);
  83. static void iucv_callback_txdone(struct iucv_path *, struct iucv_message *);
  84. static void iucv_callback_connack(struct iucv_path *, u8 *);
  85. static int iucv_callback_connreq(struct iucv_path *, u8 *, u8 *);
  86. static void iucv_callback_connrej(struct iucv_path *, u8 *);
  87. static void iucv_callback_shutdown(struct iucv_path *, u8 *);
  88. static struct iucv_sock_list iucv_sk_list = {
  89. .lock = __RW_LOCK_UNLOCKED(iucv_sk_list.lock),
  90. .autobind_name = ATOMIC_INIT(0)
  91. };
  92. static struct iucv_handler af_iucv_handler = {
  93. .path_pending = iucv_callback_connreq,
  94. .path_complete = iucv_callback_connack,
  95. .path_severed = iucv_callback_connrej,
  96. .message_pending = iucv_callback_rx,
  97. .message_complete = iucv_callback_txdone,
  98. .path_quiesced = iucv_callback_shutdown,
  99. };
  100. static inline void high_nmcpy(unsigned char *dst, char *src)
  101. {
  102. memcpy(dst, src, 8);
  103. }
  104. static inline void low_nmcpy(unsigned char *dst, char *src)
  105. {
  106. memcpy(&dst[8], src, 8);
  107. }
  108. static int afiucv_pm_prepare(struct device *dev)
  109. {
  110. #ifdef CONFIG_PM_DEBUG
  111. printk(KERN_WARNING "afiucv_pm_prepare\n");
  112. #endif
  113. return 0;
  114. }
  115. static void afiucv_pm_complete(struct device *dev)
  116. {
  117. #ifdef CONFIG_PM_DEBUG
  118. printk(KERN_WARNING "afiucv_pm_complete\n");
  119. #endif
  120. }
  121. /**
  122. * afiucv_pm_freeze() - Freeze PM callback
  123. * @dev: AFIUCV dummy device
  124. *
  125. * Sever all established IUCV communication pathes
  126. */
  127. static int afiucv_pm_freeze(struct device *dev)
  128. {
  129. struct iucv_sock *iucv;
  130. struct sock *sk;
  131. int err = 0;
  132. #ifdef CONFIG_PM_DEBUG
  133. printk(KERN_WARNING "afiucv_pm_freeze\n");
  134. #endif
  135. read_lock(&iucv_sk_list.lock);
  136. sk_for_each(sk, &iucv_sk_list.head) {
  137. iucv = iucv_sk(sk);
  138. switch (sk->sk_state) {
  139. case IUCV_DISCONN:
  140. case IUCV_CLOSING:
  141. case IUCV_CONNECTED:
  142. iucv_sever_path(sk, 0);
  143. break;
  144. case IUCV_OPEN:
  145. case IUCV_BOUND:
  146. case IUCV_LISTEN:
  147. case IUCV_CLOSED:
  148. default:
  149. break;
  150. }
  151. skb_queue_purge(&iucv->send_skb_q);
  152. skb_queue_purge(&iucv->backlog_skb_q);
  153. }
  154. read_unlock(&iucv_sk_list.lock);
  155. return err;
  156. }
  157. /**
  158. * afiucv_pm_restore_thaw() - Thaw and restore PM callback
  159. * @dev: AFIUCV dummy device
  160. *
  161. * socket clean up after freeze
  162. */
  163. static int afiucv_pm_restore_thaw(struct device *dev)
  164. {
  165. struct sock *sk;
  166. #ifdef CONFIG_PM_DEBUG
  167. printk(KERN_WARNING "afiucv_pm_restore_thaw\n");
  168. #endif
  169. read_lock(&iucv_sk_list.lock);
  170. sk_for_each(sk, &iucv_sk_list.head) {
  171. switch (sk->sk_state) {
  172. case IUCV_CONNECTED:
  173. sk->sk_err = EPIPE;
  174. sk->sk_state = IUCV_DISCONN;
  175. sk->sk_state_change(sk);
  176. break;
  177. case IUCV_DISCONN:
  178. case IUCV_CLOSING:
  179. case IUCV_LISTEN:
  180. case IUCV_BOUND:
  181. case IUCV_OPEN:
  182. default:
  183. break;
  184. }
  185. }
  186. read_unlock(&iucv_sk_list.lock);
  187. return 0;
  188. }
  189. static const struct dev_pm_ops afiucv_pm_ops = {
  190. .prepare = afiucv_pm_prepare,
  191. .complete = afiucv_pm_complete,
  192. .freeze = afiucv_pm_freeze,
  193. .thaw = afiucv_pm_restore_thaw,
  194. .restore = afiucv_pm_restore_thaw,
  195. };
  196. static struct device_driver af_iucv_driver = {
  197. .owner = THIS_MODULE,
  198. .name = "afiucv",
  199. .bus = NULL,
  200. .pm = &afiucv_pm_ops,
  201. };
  202. /* dummy device used as trigger for PM functions */
  203. static struct device *af_iucv_dev;
  204. /**
  205. * iucv_msg_length() - Returns the length of an iucv message.
  206. * @msg: Pointer to struct iucv_message, MUST NOT be NULL
  207. *
  208. * The function returns the length of the specified iucv message @msg of data
  209. * stored in a buffer and of data stored in the parameter list (PRMDATA).
  210. *
  211. * For IUCV_IPRMDATA, AF_IUCV uses the following convention to transport socket
  212. * data:
  213. * PRMDATA[0..6] socket data (max 7 bytes);
  214. * PRMDATA[7] socket data length value (len is 0xff - PRMDATA[7])
  215. *
  216. * The socket data length is computed by subtracting the socket data length
  217. * value from 0xFF.
  218. * If the socket data len is greater 7, then PRMDATA can be used for special
  219. * notifications (see iucv_sock_shutdown); and further,
  220. * if the socket data len is > 7, the function returns 8.
  221. *
  222. * Use this function to allocate socket buffers to store iucv message data.
  223. */
  224. static inline size_t iucv_msg_length(struct iucv_message *msg)
  225. {
  226. size_t datalen;
  227. if (msg->flags & IUCV_IPRMDATA) {
  228. datalen = 0xff - msg->rmmsg[7];
  229. return (datalen < 8) ? datalen : 8;
  230. }
  231. return msg->length;
  232. }
  233. /**
  234. * iucv_sock_in_state() - check for specific states
  235. * @sk: sock structure
  236. * @state: first iucv sk state
  237. * @state: second iucv sk state
  238. *
  239. * Returns true if the socket in either in the first or second state.
  240. */
  241. static int iucv_sock_in_state(struct sock *sk, int state, int state2)
  242. {
  243. return (sk->sk_state == state || sk->sk_state == state2);
  244. }
  245. /**
  246. * iucv_below_msglim() - function to check if messages can be sent
  247. * @sk: sock structure
  248. *
  249. * Returns true if the send queue length is lower than the message limit.
  250. * Always returns true if the socket is not connected (no iucv path for
  251. * checking the message limit).
  252. */
  253. static inline int iucv_below_msglim(struct sock *sk)
  254. {
  255. struct iucv_sock *iucv = iucv_sk(sk);
  256. if (sk->sk_state != IUCV_CONNECTED)
  257. return 1;
  258. if (iucv->transport == AF_IUCV_TRANS_IUCV)
  259. return (skb_queue_len(&iucv->send_skb_q) < iucv->path->msglim);
  260. else
  261. return ((atomic_read(&iucv->msg_sent) < iucv->msglimit_peer) &&
  262. (atomic_read(&iucv->pendings) <= 0));
  263. }
  264. /**
  265. * iucv_sock_wake_msglim() - Wake up thread waiting on msg limit
  266. */
  267. static void iucv_sock_wake_msglim(struct sock *sk)
  268. {
  269. struct socket_wq *wq;
  270. rcu_read_lock();
  271. wq = rcu_dereference(sk->sk_wq);
  272. if (skwq_has_sleeper(wq))
  273. wake_up_interruptible_all(&wq->wait);
  274. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  275. rcu_read_unlock();
  276. }
  277. /**
  278. * afiucv_hs_send() - send a message through HiperSockets transport
  279. */
  280. static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
  281. struct sk_buff *skb, u8 flags)
  282. {
  283. struct iucv_sock *iucv = iucv_sk(sock);
  284. struct af_iucv_trans_hdr *phs_hdr;
  285. struct sk_buff *nskb;
  286. int err, confirm_recv = 0;
  287. memset(skb->head, 0, ETH_HLEN);
  288. phs_hdr = skb_push(skb, sizeof(struct af_iucv_trans_hdr));
  289. skb_reset_mac_header(skb);
  290. skb_reset_network_header(skb);
  291. skb_push(skb, ETH_HLEN);
  292. skb_reset_mac_header(skb);
  293. memset(phs_hdr, 0, sizeof(struct af_iucv_trans_hdr));
  294. phs_hdr->magic = ETH_P_AF_IUCV;
  295. phs_hdr->version = 1;
  296. phs_hdr->flags = flags;
  297. if (flags == AF_IUCV_FLAG_SYN)
  298. phs_hdr->window = iucv->msglimit;
  299. else if ((flags == AF_IUCV_FLAG_WIN) || !flags) {
  300. confirm_recv = atomic_read(&iucv->msg_recv);
  301. phs_hdr->window = confirm_recv;
  302. if (confirm_recv)
  303. phs_hdr->flags = phs_hdr->flags | AF_IUCV_FLAG_WIN;
  304. }
  305. memcpy(phs_hdr->destUserID, iucv->dst_user_id, 8);
  306. memcpy(phs_hdr->destAppName, iucv->dst_name, 8);
  307. memcpy(phs_hdr->srcUserID, iucv->src_user_id, 8);
  308. memcpy(phs_hdr->srcAppName, iucv->src_name, 8);
  309. ASCEBC(phs_hdr->destUserID, sizeof(phs_hdr->destUserID));
  310. ASCEBC(phs_hdr->destAppName, sizeof(phs_hdr->destAppName));
  311. ASCEBC(phs_hdr->srcUserID, sizeof(phs_hdr->srcUserID));
  312. ASCEBC(phs_hdr->srcAppName, sizeof(phs_hdr->srcAppName));
  313. if (imsg)
  314. memcpy(&phs_hdr->iucv_hdr, imsg, sizeof(struct iucv_message));
  315. skb->dev = iucv->hs_dev;
  316. if (!skb->dev)
  317. return -ENODEV;
  318. if (!(skb->dev->flags & IFF_UP) || !netif_carrier_ok(skb->dev))
  319. return -ENETDOWN;
  320. if (skb->len > skb->dev->mtu) {
  321. if (sock->sk_type == SOCK_SEQPACKET)
  322. return -EMSGSIZE;
  323. else
  324. skb_trim(skb, skb->dev->mtu);
  325. }
  326. skb->protocol = cpu_to_be16(ETH_P_AF_IUCV);
  327. nskb = skb_clone(skb, GFP_ATOMIC);
  328. if (!nskb)
  329. return -ENOMEM;
  330. skb_queue_tail(&iucv->send_skb_q, nskb);
  331. err = dev_queue_xmit(skb);
  332. if (net_xmit_eval(err)) {
  333. skb_unlink(nskb, &iucv->send_skb_q);
  334. kfree_skb(nskb);
  335. } else {
  336. atomic_sub(confirm_recv, &iucv->msg_recv);
  337. WARN_ON(atomic_read(&iucv->msg_recv) < 0);
  338. }
  339. return net_xmit_eval(err);
  340. }
  341. static struct sock *__iucv_get_sock_by_name(char *nm)
  342. {
  343. struct sock *sk;
  344. sk_for_each(sk, &iucv_sk_list.head)
  345. if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
  346. return sk;
  347. return NULL;
  348. }
  349. static void iucv_sock_destruct(struct sock *sk)
  350. {
  351. skb_queue_purge(&sk->sk_receive_queue);
  352. skb_queue_purge(&sk->sk_error_queue);
  353. sk_mem_reclaim(sk);
  354. if (!sock_flag(sk, SOCK_DEAD)) {
  355. pr_err("Attempt to release alive iucv socket %p\n", sk);
  356. return;
  357. }
  358. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  359. WARN_ON(refcount_read(&sk->sk_wmem_alloc));
  360. WARN_ON(sk->sk_wmem_queued);
  361. WARN_ON(sk->sk_forward_alloc);
  362. }
  363. /* Cleanup Listen */
  364. static void iucv_sock_cleanup_listen(struct sock *parent)
  365. {
  366. struct sock *sk;
  367. /* Close non-accepted connections */
  368. while ((sk = iucv_accept_dequeue(parent, NULL))) {
  369. iucv_sock_close(sk);
  370. iucv_sock_kill(sk);
  371. }
  372. parent->sk_state = IUCV_CLOSED;
  373. }
  374. /* Kill socket (only if zapped and orphaned) */
  375. static void iucv_sock_kill(struct sock *sk)
  376. {
  377. if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
  378. return;
  379. iucv_sock_unlink(&iucv_sk_list, sk);
  380. sock_set_flag(sk, SOCK_DEAD);
  381. sock_put(sk);
  382. }
  383. /* Terminate an IUCV path */
  384. static void iucv_sever_path(struct sock *sk, int with_user_data)
  385. {
  386. unsigned char user_data[16];
  387. struct iucv_sock *iucv = iucv_sk(sk);
  388. struct iucv_path *path = iucv->path;
  389. if (iucv->path) {
  390. iucv->path = NULL;
  391. if (with_user_data) {
  392. low_nmcpy(user_data, iucv->src_name);
  393. high_nmcpy(user_data, iucv->dst_name);
  394. ASCEBC(user_data, sizeof(user_data));
  395. pr_iucv->path_sever(path, user_data);
  396. } else
  397. pr_iucv->path_sever(path, NULL);
  398. iucv_path_free(path);
  399. }
  400. }
  401. /* Send controlling flags through an IUCV socket for HIPER transport */
  402. static int iucv_send_ctrl(struct sock *sk, u8 flags)
  403. {
  404. int err = 0;
  405. int blen;
  406. struct sk_buff *skb;
  407. u8 shutdown = 0;
  408. blen = sizeof(struct af_iucv_trans_hdr) + ETH_HLEN;
  409. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  410. /* controlling flags should be sent anyway */
  411. shutdown = sk->sk_shutdown;
  412. sk->sk_shutdown &= RCV_SHUTDOWN;
  413. }
  414. skb = sock_alloc_send_skb(sk, blen, 1, &err);
  415. if (skb) {
  416. skb_reserve(skb, blen);
  417. err = afiucv_hs_send(NULL, sk, skb, flags);
  418. }
  419. if (shutdown)
  420. sk->sk_shutdown = shutdown;
  421. return err;
  422. }
  423. /* Close an IUCV socket */
  424. static void iucv_sock_close(struct sock *sk)
  425. {
  426. struct iucv_sock *iucv = iucv_sk(sk);
  427. unsigned long timeo;
  428. int err = 0;
  429. lock_sock(sk);
  430. switch (sk->sk_state) {
  431. case IUCV_LISTEN:
  432. iucv_sock_cleanup_listen(sk);
  433. break;
  434. case IUCV_CONNECTED:
  435. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  436. err = iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN);
  437. sk->sk_state = IUCV_DISCONN;
  438. sk->sk_state_change(sk);
  439. }
  440. case IUCV_DISCONN: /* fall through */
  441. sk->sk_state = IUCV_CLOSING;
  442. sk->sk_state_change(sk);
  443. if (!err && !skb_queue_empty(&iucv->send_skb_q)) {
  444. if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
  445. timeo = sk->sk_lingertime;
  446. else
  447. timeo = IUCV_DISCONN_TIMEOUT;
  448. iucv_sock_wait(sk,
  449. iucv_sock_in_state(sk, IUCV_CLOSED, 0),
  450. timeo);
  451. }
  452. case IUCV_CLOSING: /* fall through */
  453. sk->sk_state = IUCV_CLOSED;
  454. sk->sk_state_change(sk);
  455. sk->sk_err = ECONNRESET;
  456. sk->sk_state_change(sk);
  457. skb_queue_purge(&iucv->send_skb_q);
  458. skb_queue_purge(&iucv->backlog_skb_q);
  459. default: /* fall through */
  460. iucv_sever_path(sk, 1);
  461. }
  462. if (iucv->hs_dev) {
  463. dev_put(iucv->hs_dev);
  464. iucv->hs_dev = NULL;
  465. sk->sk_bound_dev_if = 0;
  466. }
  467. /* mark socket for deletion by iucv_sock_kill() */
  468. sock_set_flag(sk, SOCK_ZAPPED);
  469. release_sock(sk);
  470. }
  471. static void iucv_sock_init(struct sock *sk, struct sock *parent)
  472. {
  473. if (parent) {
  474. sk->sk_type = parent->sk_type;
  475. security_sk_clone(parent, sk);
  476. }
  477. }
  478. static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio, int kern)
  479. {
  480. struct sock *sk;
  481. struct iucv_sock *iucv;
  482. sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto, kern);
  483. if (!sk)
  484. return NULL;
  485. iucv = iucv_sk(sk);
  486. sock_init_data(sock, sk);
  487. INIT_LIST_HEAD(&iucv->accept_q);
  488. spin_lock_init(&iucv->accept_q_lock);
  489. skb_queue_head_init(&iucv->send_skb_q);
  490. INIT_LIST_HEAD(&iucv->message_q.list);
  491. spin_lock_init(&iucv->message_q.lock);
  492. skb_queue_head_init(&iucv->backlog_skb_q);
  493. iucv->send_tag = 0;
  494. atomic_set(&iucv->pendings, 0);
  495. iucv->flags = 0;
  496. iucv->msglimit = 0;
  497. atomic_set(&iucv->msg_sent, 0);
  498. atomic_set(&iucv->msg_recv, 0);
  499. iucv->path = NULL;
  500. iucv->sk_txnotify = afiucv_hs_callback_txnotify;
  501. memset(&iucv->src_user_id , 0, 32);
  502. if (pr_iucv)
  503. iucv->transport = AF_IUCV_TRANS_IUCV;
  504. else
  505. iucv->transport = AF_IUCV_TRANS_HIPER;
  506. sk->sk_destruct = iucv_sock_destruct;
  507. sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
  508. sk->sk_allocation = GFP_DMA;
  509. sock_reset_flag(sk, SOCK_ZAPPED);
  510. sk->sk_protocol = proto;
  511. sk->sk_state = IUCV_OPEN;
  512. iucv_sock_link(&iucv_sk_list, sk);
  513. return sk;
  514. }
  515. /* Create an IUCV socket */
  516. static int iucv_sock_create(struct net *net, struct socket *sock, int protocol,
  517. int kern)
  518. {
  519. struct sock *sk;
  520. if (protocol && protocol != PF_IUCV)
  521. return -EPROTONOSUPPORT;
  522. sock->state = SS_UNCONNECTED;
  523. switch (sock->type) {
  524. case SOCK_STREAM:
  525. sock->ops = &iucv_sock_ops;
  526. break;
  527. case SOCK_SEQPACKET:
  528. /* currently, proto ops can handle both sk types */
  529. sock->ops = &iucv_sock_ops;
  530. break;
  531. default:
  532. return -ESOCKTNOSUPPORT;
  533. }
  534. sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL, kern);
  535. if (!sk)
  536. return -ENOMEM;
  537. iucv_sock_init(sk, NULL);
  538. return 0;
  539. }
  540. void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
  541. {
  542. write_lock_bh(&l->lock);
  543. sk_add_node(sk, &l->head);
  544. write_unlock_bh(&l->lock);
  545. }
  546. void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
  547. {
  548. write_lock_bh(&l->lock);
  549. sk_del_node_init(sk);
  550. write_unlock_bh(&l->lock);
  551. }
  552. void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
  553. {
  554. unsigned long flags;
  555. struct iucv_sock *par = iucv_sk(parent);
  556. sock_hold(sk);
  557. spin_lock_irqsave(&par->accept_q_lock, flags);
  558. list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q);
  559. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  560. iucv_sk(sk)->parent = parent;
  561. sk_acceptq_added(parent);
  562. }
  563. void iucv_accept_unlink(struct sock *sk)
  564. {
  565. unsigned long flags;
  566. struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent);
  567. spin_lock_irqsave(&par->accept_q_lock, flags);
  568. list_del_init(&iucv_sk(sk)->accept_q);
  569. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  570. sk_acceptq_removed(iucv_sk(sk)->parent);
  571. iucv_sk(sk)->parent = NULL;
  572. sock_put(sk);
  573. }
  574. struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock)
  575. {
  576. struct iucv_sock *isk, *n;
  577. struct sock *sk;
  578. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  579. sk = (struct sock *) isk;
  580. lock_sock(sk);
  581. if (sk->sk_state == IUCV_CLOSED) {
  582. iucv_accept_unlink(sk);
  583. release_sock(sk);
  584. continue;
  585. }
  586. if (sk->sk_state == IUCV_CONNECTED ||
  587. sk->sk_state == IUCV_DISCONN ||
  588. !newsock) {
  589. iucv_accept_unlink(sk);
  590. if (newsock)
  591. sock_graft(sk, newsock);
  592. release_sock(sk);
  593. return sk;
  594. }
  595. release_sock(sk);
  596. }
  597. return NULL;
  598. }
  599. static void __iucv_auto_name(struct iucv_sock *iucv)
  600. {
  601. char name[12];
  602. sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
  603. while (__iucv_get_sock_by_name(name)) {
  604. sprintf(name, "%08x",
  605. atomic_inc_return(&iucv_sk_list.autobind_name));
  606. }
  607. memcpy(iucv->src_name, name, 8);
  608. }
  609. /* Bind an unbound socket */
  610. static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
  611. int addr_len)
  612. {
  613. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  614. struct sock *sk = sock->sk;
  615. struct iucv_sock *iucv;
  616. int err = 0;
  617. struct net_device *dev;
  618. char uid[9];
  619. /* Verify the input sockaddr */
  620. if (addr_len < sizeof(struct sockaddr_iucv) ||
  621. addr->sa_family != AF_IUCV)
  622. return -EINVAL;
  623. lock_sock(sk);
  624. if (sk->sk_state != IUCV_OPEN) {
  625. err = -EBADFD;
  626. goto done;
  627. }
  628. write_lock_bh(&iucv_sk_list.lock);
  629. iucv = iucv_sk(sk);
  630. if (__iucv_get_sock_by_name(sa->siucv_name)) {
  631. err = -EADDRINUSE;
  632. goto done_unlock;
  633. }
  634. if (iucv->path)
  635. goto done_unlock;
  636. /* Bind the socket */
  637. if (pr_iucv)
  638. if (!memcmp(sa->siucv_user_id, iucv_userid, 8))
  639. goto vm_bind; /* VM IUCV transport */
  640. /* try hiper transport */
  641. memcpy(uid, sa->siucv_user_id, sizeof(uid));
  642. ASCEBC(uid, 8);
  643. rcu_read_lock();
  644. for_each_netdev_rcu(&init_net, dev) {
  645. if (!memcmp(dev->perm_addr, uid, 8)) {
  646. memcpy(iucv->src_user_id, sa->siucv_user_id, 8);
  647. /* Check for unitialized siucv_name */
  648. if (strncmp(sa->siucv_name, " ", 8) == 0)
  649. __iucv_auto_name(iucv);
  650. else
  651. memcpy(iucv->src_name, sa->siucv_name, 8);
  652. sk->sk_bound_dev_if = dev->ifindex;
  653. iucv->hs_dev = dev;
  654. dev_hold(dev);
  655. sk->sk_state = IUCV_BOUND;
  656. iucv->transport = AF_IUCV_TRANS_HIPER;
  657. if (!iucv->msglimit)
  658. iucv->msglimit = IUCV_HIPER_MSGLIM_DEFAULT;
  659. rcu_read_unlock();
  660. goto done_unlock;
  661. }
  662. }
  663. rcu_read_unlock();
  664. vm_bind:
  665. if (pr_iucv) {
  666. /* use local userid for backward compat */
  667. memcpy(iucv->src_name, sa->siucv_name, 8);
  668. memcpy(iucv->src_user_id, iucv_userid, 8);
  669. sk->sk_state = IUCV_BOUND;
  670. iucv->transport = AF_IUCV_TRANS_IUCV;
  671. if (!iucv->msglimit)
  672. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  673. goto done_unlock;
  674. }
  675. /* found no dev to bind */
  676. err = -ENODEV;
  677. done_unlock:
  678. /* Release the socket list lock */
  679. write_unlock_bh(&iucv_sk_list.lock);
  680. done:
  681. release_sock(sk);
  682. return err;
  683. }
  684. /* Automatically bind an unbound socket */
  685. static int iucv_sock_autobind(struct sock *sk)
  686. {
  687. struct iucv_sock *iucv = iucv_sk(sk);
  688. int err = 0;
  689. if (unlikely(!pr_iucv))
  690. return -EPROTO;
  691. memcpy(iucv->src_user_id, iucv_userid, 8);
  692. write_lock_bh(&iucv_sk_list.lock);
  693. __iucv_auto_name(iucv);
  694. write_unlock_bh(&iucv_sk_list.lock);
  695. if (!iucv->msglimit)
  696. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  697. return err;
  698. }
  699. static int afiucv_path_connect(struct socket *sock, struct sockaddr *addr)
  700. {
  701. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  702. struct sock *sk = sock->sk;
  703. struct iucv_sock *iucv = iucv_sk(sk);
  704. unsigned char user_data[16];
  705. int err;
  706. high_nmcpy(user_data, sa->siucv_name);
  707. low_nmcpy(user_data, iucv->src_name);
  708. ASCEBC(user_data, sizeof(user_data));
  709. /* Create path. */
  710. iucv->path = iucv_path_alloc(iucv->msglimit,
  711. IUCV_IPRMDATA, GFP_KERNEL);
  712. if (!iucv->path) {
  713. err = -ENOMEM;
  714. goto done;
  715. }
  716. err = pr_iucv->path_connect(iucv->path, &af_iucv_handler,
  717. sa->siucv_user_id, NULL, user_data,
  718. sk);
  719. if (err) {
  720. iucv_path_free(iucv->path);
  721. iucv->path = NULL;
  722. switch (err) {
  723. case 0x0b: /* Target communicator is not logged on */
  724. err = -ENETUNREACH;
  725. break;
  726. case 0x0d: /* Max connections for this guest exceeded */
  727. case 0x0e: /* Max connections for target guest exceeded */
  728. err = -EAGAIN;
  729. break;
  730. case 0x0f: /* Missing IUCV authorization */
  731. err = -EACCES;
  732. break;
  733. default:
  734. err = -ECONNREFUSED;
  735. break;
  736. }
  737. }
  738. done:
  739. return err;
  740. }
  741. /* Connect an unconnected socket */
  742. static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
  743. int alen, int flags)
  744. {
  745. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  746. struct sock *sk = sock->sk;
  747. struct iucv_sock *iucv = iucv_sk(sk);
  748. int err;
  749. if (alen < sizeof(struct sockaddr_iucv) || addr->sa_family != AF_IUCV)
  750. return -EINVAL;
  751. if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
  752. return -EBADFD;
  753. if (sk->sk_state == IUCV_OPEN &&
  754. iucv->transport == AF_IUCV_TRANS_HIPER)
  755. return -EBADFD; /* explicit bind required */
  756. if (sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_SEQPACKET)
  757. return -EINVAL;
  758. if (sk->sk_state == IUCV_OPEN) {
  759. err = iucv_sock_autobind(sk);
  760. if (unlikely(err))
  761. return err;
  762. }
  763. lock_sock(sk);
  764. /* Set the destination information */
  765. memcpy(iucv->dst_user_id, sa->siucv_user_id, 8);
  766. memcpy(iucv->dst_name, sa->siucv_name, 8);
  767. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  768. err = iucv_send_ctrl(sock->sk, AF_IUCV_FLAG_SYN);
  769. else
  770. err = afiucv_path_connect(sock, addr);
  771. if (err)
  772. goto done;
  773. if (sk->sk_state != IUCV_CONNECTED)
  774. err = iucv_sock_wait(sk, iucv_sock_in_state(sk, IUCV_CONNECTED,
  775. IUCV_DISCONN),
  776. sock_sndtimeo(sk, flags & O_NONBLOCK));
  777. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_CLOSED)
  778. err = -ECONNREFUSED;
  779. if (err && iucv->transport == AF_IUCV_TRANS_IUCV)
  780. iucv_sever_path(sk, 0);
  781. done:
  782. release_sock(sk);
  783. return err;
  784. }
  785. /* Move a socket into listening state. */
  786. static int iucv_sock_listen(struct socket *sock, int backlog)
  787. {
  788. struct sock *sk = sock->sk;
  789. int err;
  790. lock_sock(sk);
  791. err = -EINVAL;
  792. if (sk->sk_state != IUCV_BOUND)
  793. goto done;
  794. if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
  795. goto done;
  796. sk->sk_max_ack_backlog = backlog;
  797. sk->sk_ack_backlog = 0;
  798. sk->sk_state = IUCV_LISTEN;
  799. err = 0;
  800. done:
  801. release_sock(sk);
  802. return err;
  803. }
  804. /* Accept a pending connection */
  805. static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
  806. int flags, bool kern)
  807. {
  808. DECLARE_WAITQUEUE(wait, current);
  809. struct sock *sk = sock->sk, *nsk;
  810. long timeo;
  811. int err = 0;
  812. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  813. if (sk->sk_state != IUCV_LISTEN) {
  814. err = -EBADFD;
  815. goto done;
  816. }
  817. timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
  818. /* Wait for an incoming connection */
  819. add_wait_queue_exclusive(sk_sleep(sk), &wait);
  820. while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
  821. set_current_state(TASK_INTERRUPTIBLE);
  822. if (!timeo) {
  823. err = -EAGAIN;
  824. break;
  825. }
  826. release_sock(sk);
  827. timeo = schedule_timeout(timeo);
  828. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  829. if (sk->sk_state != IUCV_LISTEN) {
  830. err = -EBADFD;
  831. break;
  832. }
  833. if (signal_pending(current)) {
  834. err = sock_intr_errno(timeo);
  835. break;
  836. }
  837. }
  838. set_current_state(TASK_RUNNING);
  839. remove_wait_queue(sk_sleep(sk), &wait);
  840. if (err)
  841. goto done;
  842. newsock->state = SS_CONNECTED;
  843. done:
  844. release_sock(sk);
  845. return err;
  846. }
  847. static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
  848. int peer)
  849. {
  850. struct sockaddr_iucv *siucv = (struct sockaddr_iucv *) addr;
  851. struct sock *sk = sock->sk;
  852. struct iucv_sock *iucv = iucv_sk(sk);
  853. addr->sa_family = AF_IUCV;
  854. if (peer) {
  855. memcpy(siucv->siucv_user_id, iucv->dst_user_id, 8);
  856. memcpy(siucv->siucv_name, iucv->dst_name, 8);
  857. } else {
  858. memcpy(siucv->siucv_user_id, iucv->src_user_id, 8);
  859. memcpy(siucv->siucv_name, iucv->src_name, 8);
  860. }
  861. memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
  862. memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
  863. memset(&siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
  864. return sizeof(struct sockaddr_iucv);
  865. }
  866. /**
  867. * iucv_send_iprm() - Send socket data in parameter list of an iucv message.
  868. * @path: IUCV path
  869. * @msg: Pointer to a struct iucv_message
  870. * @skb: The socket data to send, skb->len MUST BE <= 7
  871. *
  872. * Send the socket data in the parameter list in the iucv message
  873. * (IUCV_IPRMDATA). The socket data is stored at index 0 to 6 in the parameter
  874. * list and the socket data len at index 7 (last byte).
  875. * See also iucv_msg_length().
  876. *
  877. * Returns the error code from the iucv_message_send() call.
  878. */
  879. static int iucv_send_iprm(struct iucv_path *path, struct iucv_message *msg,
  880. struct sk_buff *skb)
  881. {
  882. u8 prmdata[8];
  883. memcpy(prmdata, (void *) skb->data, skb->len);
  884. prmdata[7] = 0xff - (u8) skb->len;
  885. return pr_iucv->message_send(path, msg, IUCV_IPRMDATA, 0,
  886. (void *) prmdata, 8);
  887. }
  888. static int iucv_sock_sendmsg(struct socket *sock, struct msghdr *msg,
  889. size_t len)
  890. {
  891. struct sock *sk = sock->sk;
  892. struct iucv_sock *iucv = iucv_sk(sk);
  893. size_t headroom = 0;
  894. size_t linear;
  895. struct sk_buff *skb;
  896. struct iucv_message txmsg = {0};
  897. struct cmsghdr *cmsg;
  898. int cmsg_done;
  899. long timeo;
  900. char user_id[9];
  901. char appl_id[9];
  902. int err;
  903. int noblock = msg->msg_flags & MSG_DONTWAIT;
  904. err = sock_error(sk);
  905. if (err)
  906. return err;
  907. if (msg->msg_flags & MSG_OOB)
  908. return -EOPNOTSUPP;
  909. /* SOCK_SEQPACKET: we do not support segmented records */
  910. if (sk->sk_type == SOCK_SEQPACKET && !(msg->msg_flags & MSG_EOR))
  911. return -EOPNOTSUPP;
  912. lock_sock(sk);
  913. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  914. err = -EPIPE;
  915. goto out;
  916. }
  917. /* Return if the socket is not in connected state */
  918. if (sk->sk_state != IUCV_CONNECTED) {
  919. err = -ENOTCONN;
  920. goto out;
  921. }
  922. /* initialize defaults */
  923. cmsg_done = 0; /* check for duplicate headers */
  924. txmsg.class = 0;
  925. /* iterate over control messages */
  926. for_each_cmsghdr(cmsg, msg) {
  927. if (!CMSG_OK(msg, cmsg)) {
  928. err = -EINVAL;
  929. goto out;
  930. }
  931. if (cmsg->cmsg_level != SOL_IUCV)
  932. continue;
  933. if (cmsg->cmsg_type & cmsg_done) {
  934. err = -EINVAL;
  935. goto out;
  936. }
  937. cmsg_done |= cmsg->cmsg_type;
  938. switch (cmsg->cmsg_type) {
  939. case SCM_IUCV_TRGCLS:
  940. if (cmsg->cmsg_len != CMSG_LEN(TRGCLS_SIZE)) {
  941. err = -EINVAL;
  942. goto out;
  943. }
  944. /* set iucv message target class */
  945. memcpy(&txmsg.class,
  946. (void *) CMSG_DATA(cmsg), TRGCLS_SIZE);
  947. break;
  948. default:
  949. err = -EINVAL;
  950. goto out;
  951. }
  952. }
  953. /* allocate one skb for each iucv message:
  954. * this is fine for SOCK_SEQPACKET (unless we want to support
  955. * segmented records using the MSG_EOR flag), but
  956. * for SOCK_STREAM we might want to improve it in future */
  957. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  958. headroom = sizeof(struct af_iucv_trans_hdr) + ETH_HLEN;
  959. linear = len;
  960. } else {
  961. if (len < PAGE_SIZE) {
  962. linear = len;
  963. } else {
  964. /* In nonlinear "classic" iucv skb,
  965. * reserve space for iucv_array
  966. */
  967. headroom = sizeof(struct iucv_array) *
  968. (MAX_SKB_FRAGS + 1);
  969. linear = PAGE_SIZE - headroom;
  970. }
  971. }
  972. skb = sock_alloc_send_pskb(sk, headroom + linear, len - linear,
  973. noblock, &err, 0);
  974. if (!skb)
  975. goto out;
  976. if (headroom)
  977. skb_reserve(skb, headroom);
  978. skb_put(skb, linear);
  979. skb->len = len;
  980. skb->data_len = len - linear;
  981. err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, len);
  982. if (err)
  983. goto fail;
  984. /* wait if outstanding messages for iucv path has reached */
  985. timeo = sock_sndtimeo(sk, noblock);
  986. err = iucv_sock_wait(sk, iucv_below_msglim(sk), timeo);
  987. if (err)
  988. goto fail;
  989. /* return -ECONNRESET if the socket is no longer connected */
  990. if (sk->sk_state != IUCV_CONNECTED) {
  991. err = -ECONNRESET;
  992. goto fail;
  993. }
  994. /* increment and save iucv message tag for msg_completion cbk */
  995. txmsg.tag = iucv->send_tag++;
  996. IUCV_SKB_CB(skb)->tag = txmsg.tag;
  997. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  998. atomic_inc(&iucv->msg_sent);
  999. err = afiucv_hs_send(&txmsg, sk, skb, 0);
  1000. if (err) {
  1001. atomic_dec(&iucv->msg_sent);
  1002. goto fail;
  1003. }
  1004. } else { /* Classic VM IUCV transport */
  1005. skb_queue_tail(&iucv->send_skb_q, skb);
  1006. if (((iucv->path->flags & IUCV_IPRMDATA) & iucv->flags) &&
  1007. skb->len <= 7) {
  1008. err = iucv_send_iprm(iucv->path, &txmsg, skb);
  1009. /* on success: there is no message_complete callback */
  1010. /* for an IPRMDATA msg; remove skb from send queue */
  1011. if (err == 0) {
  1012. skb_unlink(skb, &iucv->send_skb_q);
  1013. kfree_skb(skb);
  1014. }
  1015. /* this error should never happen since the */
  1016. /* IUCV_IPRMDATA path flag is set... sever path */
  1017. if (err == 0x15) {
  1018. pr_iucv->path_sever(iucv->path, NULL);
  1019. skb_unlink(skb, &iucv->send_skb_q);
  1020. err = -EPIPE;
  1021. goto fail;
  1022. }
  1023. } else if (skb_is_nonlinear(skb)) {
  1024. struct iucv_array *iba = (struct iucv_array *)skb->head;
  1025. int i;
  1026. /* skip iucv_array lying in the headroom */
  1027. iba[0].address = (u32)(addr_t)skb->data;
  1028. iba[0].length = (u32)skb_headlen(skb);
  1029. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1030. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1031. iba[i + 1].address =
  1032. (u32)(addr_t)skb_frag_address(frag);
  1033. iba[i + 1].length = (u32)skb_frag_size(frag);
  1034. }
  1035. err = pr_iucv->message_send(iucv->path, &txmsg,
  1036. IUCV_IPBUFLST, 0,
  1037. (void *)iba, skb->len);
  1038. } else { /* non-IPRM Linear skb */
  1039. err = pr_iucv->message_send(iucv->path, &txmsg,
  1040. 0, 0, (void *)skb->data, skb->len);
  1041. }
  1042. if (err) {
  1043. if (err == 3) {
  1044. user_id[8] = 0;
  1045. memcpy(user_id, iucv->dst_user_id, 8);
  1046. appl_id[8] = 0;
  1047. memcpy(appl_id, iucv->dst_name, 8);
  1048. pr_err(
  1049. "Application %s on z/VM guest %s exceeds message limit\n",
  1050. appl_id, user_id);
  1051. err = -EAGAIN;
  1052. } else {
  1053. err = -EPIPE;
  1054. }
  1055. skb_unlink(skb, &iucv->send_skb_q);
  1056. goto fail;
  1057. }
  1058. }
  1059. release_sock(sk);
  1060. return len;
  1061. fail:
  1062. kfree_skb(skb);
  1063. out:
  1064. release_sock(sk);
  1065. return err;
  1066. }
  1067. static struct sk_buff *alloc_iucv_recv_skb(unsigned long len)
  1068. {
  1069. size_t headroom, linear;
  1070. struct sk_buff *skb;
  1071. int err;
  1072. if (len < PAGE_SIZE) {
  1073. headroom = 0;
  1074. linear = len;
  1075. } else {
  1076. headroom = sizeof(struct iucv_array) * (MAX_SKB_FRAGS + 1);
  1077. linear = PAGE_SIZE - headroom;
  1078. }
  1079. skb = alloc_skb_with_frags(headroom + linear, len - linear,
  1080. 0, &err, GFP_ATOMIC | GFP_DMA);
  1081. WARN_ONCE(!skb,
  1082. "alloc of recv iucv skb len=%lu failed with errcode=%d\n",
  1083. len, err);
  1084. if (skb) {
  1085. if (headroom)
  1086. skb_reserve(skb, headroom);
  1087. skb_put(skb, linear);
  1088. skb->len = len;
  1089. skb->data_len = len - linear;
  1090. }
  1091. return skb;
  1092. }
  1093. /* iucv_process_message() - Receive a single outstanding IUCV message
  1094. *
  1095. * Locking: must be called with message_q.lock held
  1096. */
  1097. static void iucv_process_message(struct sock *sk, struct sk_buff *skb,
  1098. struct iucv_path *path,
  1099. struct iucv_message *msg)
  1100. {
  1101. int rc;
  1102. unsigned int len;
  1103. len = iucv_msg_length(msg);
  1104. /* store msg target class in the second 4 bytes of skb ctrl buffer */
  1105. /* Note: the first 4 bytes are reserved for msg tag */
  1106. IUCV_SKB_CB(skb)->class = msg->class;
  1107. /* check for special IPRM messages (e.g. iucv_sock_shutdown) */
  1108. if ((msg->flags & IUCV_IPRMDATA) && len > 7) {
  1109. if (memcmp(msg->rmmsg, iprm_shutdown, 8) == 0) {
  1110. skb->data = NULL;
  1111. skb->len = 0;
  1112. }
  1113. } else {
  1114. if (skb_is_nonlinear(skb)) {
  1115. struct iucv_array *iba = (struct iucv_array *)skb->head;
  1116. int i;
  1117. iba[0].address = (u32)(addr_t)skb->data;
  1118. iba[0].length = (u32)skb_headlen(skb);
  1119. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1120. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1121. iba[i + 1].address =
  1122. (u32)(addr_t)skb_frag_address(frag);
  1123. iba[i + 1].length = (u32)skb_frag_size(frag);
  1124. }
  1125. rc = pr_iucv->message_receive(path, msg,
  1126. IUCV_IPBUFLST,
  1127. (void *)iba, len, NULL);
  1128. } else {
  1129. rc = pr_iucv->message_receive(path, msg,
  1130. msg->flags & IUCV_IPRMDATA,
  1131. skb->data, len, NULL);
  1132. }
  1133. if (rc) {
  1134. kfree_skb(skb);
  1135. return;
  1136. }
  1137. WARN_ON_ONCE(skb->len != len);
  1138. }
  1139. IUCV_SKB_CB(skb)->offset = 0;
  1140. if (sk_filter(sk, skb)) {
  1141. atomic_inc(&sk->sk_drops); /* skb rejected by filter */
  1142. kfree_skb(skb);
  1143. return;
  1144. }
  1145. if (__sock_queue_rcv_skb(sk, skb)) /* handle rcv queue full */
  1146. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
  1147. }
  1148. /* iucv_process_message_q() - Process outstanding IUCV messages
  1149. *
  1150. * Locking: must be called with message_q.lock held
  1151. */
  1152. static void iucv_process_message_q(struct sock *sk)
  1153. {
  1154. struct iucv_sock *iucv = iucv_sk(sk);
  1155. struct sk_buff *skb;
  1156. struct sock_msg_q *p, *n;
  1157. list_for_each_entry_safe(p, n, &iucv->message_q.list, list) {
  1158. skb = alloc_iucv_recv_skb(iucv_msg_length(&p->msg));
  1159. if (!skb)
  1160. break;
  1161. iucv_process_message(sk, skb, p->path, &p->msg);
  1162. list_del(&p->list);
  1163. kfree(p);
  1164. if (!skb_queue_empty(&iucv->backlog_skb_q))
  1165. break;
  1166. }
  1167. }
  1168. static int iucv_sock_recvmsg(struct socket *sock, struct msghdr *msg,
  1169. size_t len, int flags)
  1170. {
  1171. int noblock = flags & MSG_DONTWAIT;
  1172. struct sock *sk = sock->sk;
  1173. struct iucv_sock *iucv = iucv_sk(sk);
  1174. unsigned int copied, rlen;
  1175. struct sk_buff *skb, *rskb, *cskb;
  1176. int err = 0;
  1177. u32 offset;
  1178. if ((sk->sk_state == IUCV_DISCONN) &&
  1179. skb_queue_empty(&iucv->backlog_skb_q) &&
  1180. skb_queue_empty(&sk->sk_receive_queue) &&
  1181. list_empty(&iucv->message_q.list))
  1182. return 0;
  1183. if (flags & (MSG_OOB))
  1184. return -EOPNOTSUPP;
  1185. /* receive/dequeue next skb:
  1186. * the function understands MSG_PEEK and, thus, does not dequeue skb */
  1187. skb = skb_recv_datagram(sk, flags, noblock, &err);
  1188. if (!skb) {
  1189. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1190. return 0;
  1191. return err;
  1192. }
  1193. offset = IUCV_SKB_CB(skb)->offset;
  1194. rlen = skb->len - offset; /* real length of skb */
  1195. copied = min_t(unsigned int, rlen, len);
  1196. if (!rlen)
  1197. sk->sk_shutdown = sk->sk_shutdown | RCV_SHUTDOWN;
  1198. cskb = skb;
  1199. if (skb_copy_datagram_msg(cskb, offset, msg, copied)) {
  1200. if (!(flags & MSG_PEEK))
  1201. skb_queue_head(&sk->sk_receive_queue, skb);
  1202. return -EFAULT;
  1203. }
  1204. /* SOCK_SEQPACKET: set MSG_TRUNC if recv buf size is too small */
  1205. if (sk->sk_type == SOCK_SEQPACKET) {
  1206. if (copied < rlen)
  1207. msg->msg_flags |= MSG_TRUNC;
  1208. /* each iucv message contains a complete record */
  1209. msg->msg_flags |= MSG_EOR;
  1210. }
  1211. /* create control message to store iucv msg target class:
  1212. * get the trgcls from the control buffer of the skb due to
  1213. * fragmentation of original iucv message. */
  1214. err = put_cmsg(msg, SOL_IUCV, SCM_IUCV_TRGCLS,
  1215. sizeof(IUCV_SKB_CB(skb)->class),
  1216. (void *)&IUCV_SKB_CB(skb)->class);
  1217. if (err) {
  1218. if (!(flags & MSG_PEEK))
  1219. skb_queue_head(&sk->sk_receive_queue, skb);
  1220. return err;
  1221. }
  1222. /* Mark read part of skb as used */
  1223. if (!(flags & MSG_PEEK)) {
  1224. /* SOCK_STREAM: re-queue skb if it contains unreceived data */
  1225. if (sk->sk_type == SOCK_STREAM) {
  1226. if (copied < rlen) {
  1227. IUCV_SKB_CB(skb)->offset = offset + copied;
  1228. skb_queue_head(&sk->sk_receive_queue, skb);
  1229. goto done;
  1230. }
  1231. }
  1232. kfree_skb(skb);
  1233. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  1234. atomic_inc(&iucv->msg_recv);
  1235. if (atomic_read(&iucv->msg_recv) > iucv->msglimit) {
  1236. WARN_ON(1);
  1237. iucv_sock_close(sk);
  1238. return -EFAULT;
  1239. }
  1240. }
  1241. /* Queue backlog skbs */
  1242. spin_lock_bh(&iucv->message_q.lock);
  1243. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1244. while (rskb) {
  1245. IUCV_SKB_CB(rskb)->offset = 0;
  1246. if (__sock_queue_rcv_skb(sk, rskb)) {
  1247. /* handle rcv queue full */
  1248. skb_queue_head(&iucv->backlog_skb_q,
  1249. rskb);
  1250. break;
  1251. }
  1252. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1253. }
  1254. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1255. if (!list_empty(&iucv->message_q.list))
  1256. iucv_process_message_q(sk);
  1257. if (atomic_read(&iucv->msg_recv) >=
  1258. iucv->msglimit / 2) {
  1259. err = iucv_send_ctrl(sk, AF_IUCV_FLAG_WIN);
  1260. if (err) {
  1261. sk->sk_state = IUCV_DISCONN;
  1262. sk->sk_state_change(sk);
  1263. }
  1264. }
  1265. }
  1266. spin_unlock_bh(&iucv->message_q.lock);
  1267. }
  1268. done:
  1269. /* SOCK_SEQPACKET: return real length if MSG_TRUNC is set */
  1270. if (sk->sk_type == SOCK_SEQPACKET && (flags & MSG_TRUNC))
  1271. copied = rlen;
  1272. return copied;
  1273. }
  1274. static inline __poll_t iucv_accept_poll(struct sock *parent)
  1275. {
  1276. struct iucv_sock *isk, *n;
  1277. struct sock *sk;
  1278. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  1279. sk = (struct sock *) isk;
  1280. if (sk->sk_state == IUCV_CONNECTED)
  1281. return EPOLLIN | EPOLLRDNORM;
  1282. }
  1283. return 0;
  1284. }
  1285. static __poll_t iucv_sock_poll_mask(struct socket *sock, __poll_t events)
  1286. {
  1287. struct sock *sk = sock->sk;
  1288. __poll_t mask = 0;
  1289. if (sk->sk_state == IUCV_LISTEN)
  1290. return iucv_accept_poll(sk);
  1291. if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
  1292. mask |= EPOLLERR |
  1293. (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
  1294. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1295. mask |= EPOLLRDHUP;
  1296. if (sk->sk_shutdown == SHUTDOWN_MASK)
  1297. mask |= EPOLLHUP;
  1298. if (!skb_queue_empty(&sk->sk_receive_queue) ||
  1299. (sk->sk_shutdown & RCV_SHUTDOWN))
  1300. mask |= EPOLLIN | EPOLLRDNORM;
  1301. if (sk->sk_state == IUCV_CLOSED)
  1302. mask |= EPOLLHUP;
  1303. if (sk->sk_state == IUCV_DISCONN)
  1304. mask |= EPOLLIN;
  1305. if (sock_writeable(sk) && iucv_below_msglim(sk))
  1306. mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
  1307. else
  1308. sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
  1309. return mask;
  1310. }
  1311. static int iucv_sock_shutdown(struct socket *sock, int how)
  1312. {
  1313. struct sock *sk = sock->sk;
  1314. struct iucv_sock *iucv = iucv_sk(sk);
  1315. struct iucv_message txmsg;
  1316. int err = 0;
  1317. how++;
  1318. if ((how & ~SHUTDOWN_MASK) || !how)
  1319. return -EINVAL;
  1320. lock_sock(sk);
  1321. switch (sk->sk_state) {
  1322. case IUCV_LISTEN:
  1323. case IUCV_DISCONN:
  1324. case IUCV_CLOSING:
  1325. case IUCV_CLOSED:
  1326. err = -ENOTCONN;
  1327. goto fail;
  1328. default:
  1329. break;
  1330. }
  1331. if (how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) {
  1332. if (iucv->transport == AF_IUCV_TRANS_IUCV) {
  1333. txmsg.class = 0;
  1334. txmsg.tag = 0;
  1335. err = pr_iucv->message_send(iucv->path, &txmsg,
  1336. IUCV_IPRMDATA, 0, (void *) iprm_shutdown, 8);
  1337. if (err) {
  1338. switch (err) {
  1339. case 1:
  1340. err = -ENOTCONN;
  1341. break;
  1342. case 2:
  1343. err = -ECONNRESET;
  1344. break;
  1345. default:
  1346. err = -ENOTCONN;
  1347. break;
  1348. }
  1349. }
  1350. } else
  1351. iucv_send_ctrl(sk, AF_IUCV_FLAG_SHT);
  1352. }
  1353. sk->sk_shutdown |= how;
  1354. if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
  1355. if ((iucv->transport == AF_IUCV_TRANS_IUCV) &&
  1356. iucv->path) {
  1357. err = pr_iucv->path_quiesce(iucv->path, NULL);
  1358. if (err)
  1359. err = -ENOTCONN;
  1360. /* skb_queue_purge(&sk->sk_receive_queue); */
  1361. }
  1362. skb_queue_purge(&sk->sk_receive_queue);
  1363. }
  1364. /* Wake up anyone sleeping in poll */
  1365. sk->sk_state_change(sk);
  1366. fail:
  1367. release_sock(sk);
  1368. return err;
  1369. }
  1370. static int iucv_sock_release(struct socket *sock)
  1371. {
  1372. struct sock *sk = sock->sk;
  1373. int err = 0;
  1374. if (!sk)
  1375. return 0;
  1376. iucv_sock_close(sk);
  1377. sock_orphan(sk);
  1378. iucv_sock_kill(sk);
  1379. return err;
  1380. }
  1381. /* getsockopt and setsockopt */
  1382. static int iucv_sock_setsockopt(struct socket *sock, int level, int optname,
  1383. char __user *optval, unsigned int optlen)
  1384. {
  1385. struct sock *sk = sock->sk;
  1386. struct iucv_sock *iucv = iucv_sk(sk);
  1387. int val;
  1388. int rc;
  1389. if (level != SOL_IUCV)
  1390. return -ENOPROTOOPT;
  1391. if (optlen < sizeof(int))
  1392. return -EINVAL;
  1393. if (get_user(val, (int __user *) optval))
  1394. return -EFAULT;
  1395. rc = 0;
  1396. lock_sock(sk);
  1397. switch (optname) {
  1398. case SO_IPRMDATA_MSG:
  1399. if (val)
  1400. iucv->flags |= IUCV_IPRMDATA;
  1401. else
  1402. iucv->flags &= ~IUCV_IPRMDATA;
  1403. break;
  1404. case SO_MSGLIMIT:
  1405. switch (sk->sk_state) {
  1406. case IUCV_OPEN:
  1407. case IUCV_BOUND:
  1408. if (val < 1 || val > (u16)(~0))
  1409. rc = -EINVAL;
  1410. else
  1411. iucv->msglimit = val;
  1412. break;
  1413. default:
  1414. rc = -EINVAL;
  1415. break;
  1416. }
  1417. break;
  1418. default:
  1419. rc = -ENOPROTOOPT;
  1420. break;
  1421. }
  1422. release_sock(sk);
  1423. return rc;
  1424. }
  1425. static int iucv_sock_getsockopt(struct socket *sock, int level, int optname,
  1426. char __user *optval, int __user *optlen)
  1427. {
  1428. struct sock *sk = sock->sk;
  1429. struct iucv_sock *iucv = iucv_sk(sk);
  1430. unsigned int val;
  1431. int len;
  1432. if (level != SOL_IUCV)
  1433. return -ENOPROTOOPT;
  1434. if (get_user(len, optlen))
  1435. return -EFAULT;
  1436. if (len < 0)
  1437. return -EINVAL;
  1438. len = min_t(unsigned int, len, sizeof(int));
  1439. switch (optname) {
  1440. case SO_IPRMDATA_MSG:
  1441. val = (iucv->flags & IUCV_IPRMDATA) ? 1 : 0;
  1442. break;
  1443. case SO_MSGLIMIT:
  1444. lock_sock(sk);
  1445. val = (iucv->path != NULL) ? iucv->path->msglim /* connected */
  1446. : iucv->msglimit; /* default */
  1447. release_sock(sk);
  1448. break;
  1449. case SO_MSGSIZE:
  1450. if (sk->sk_state == IUCV_OPEN)
  1451. return -EBADFD;
  1452. val = (iucv->hs_dev) ? iucv->hs_dev->mtu -
  1453. sizeof(struct af_iucv_trans_hdr) - ETH_HLEN :
  1454. 0x7fffffff;
  1455. break;
  1456. default:
  1457. return -ENOPROTOOPT;
  1458. }
  1459. if (put_user(len, optlen))
  1460. return -EFAULT;
  1461. if (copy_to_user(optval, &val, len))
  1462. return -EFAULT;
  1463. return 0;
  1464. }
  1465. /* Callback wrappers - called from iucv base support */
  1466. static int iucv_callback_connreq(struct iucv_path *path,
  1467. u8 ipvmid[8], u8 ipuser[16])
  1468. {
  1469. unsigned char user_data[16];
  1470. unsigned char nuser_data[16];
  1471. unsigned char src_name[8];
  1472. struct sock *sk, *nsk;
  1473. struct iucv_sock *iucv, *niucv;
  1474. int err;
  1475. memcpy(src_name, ipuser, 8);
  1476. EBCASC(src_name, 8);
  1477. /* Find out if this path belongs to af_iucv. */
  1478. read_lock(&iucv_sk_list.lock);
  1479. iucv = NULL;
  1480. sk = NULL;
  1481. sk_for_each(sk, &iucv_sk_list.head)
  1482. if (sk->sk_state == IUCV_LISTEN &&
  1483. !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
  1484. /*
  1485. * Found a listening socket with
  1486. * src_name == ipuser[0-7].
  1487. */
  1488. iucv = iucv_sk(sk);
  1489. break;
  1490. }
  1491. read_unlock(&iucv_sk_list.lock);
  1492. if (!iucv)
  1493. /* No socket found, not one of our paths. */
  1494. return -EINVAL;
  1495. bh_lock_sock(sk);
  1496. /* Check if parent socket is listening */
  1497. low_nmcpy(user_data, iucv->src_name);
  1498. high_nmcpy(user_data, iucv->dst_name);
  1499. ASCEBC(user_data, sizeof(user_data));
  1500. if (sk->sk_state != IUCV_LISTEN) {
  1501. err = pr_iucv->path_sever(path, user_data);
  1502. iucv_path_free(path);
  1503. goto fail;
  1504. }
  1505. /* Check for backlog size */
  1506. if (sk_acceptq_is_full(sk)) {
  1507. err = pr_iucv->path_sever(path, user_data);
  1508. iucv_path_free(path);
  1509. goto fail;
  1510. }
  1511. /* Create the new socket */
  1512. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC, 0);
  1513. if (!nsk) {
  1514. err = pr_iucv->path_sever(path, user_data);
  1515. iucv_path_free(path);
  1516. goto fail;
  1517. }
  1518. niucv = iucv_sk(nsk);
  1519. iucv_sock_init(nsk, sk);
  1520. /* Set the new iucv_sock */
  1521. memcpy(niucv->dst_name, ipuser + 8, 8);
  1522. EBCASC(niucv->dst_name, 8);
  1523. memcpy(niucv->dst_user_id, ipvmid, 8);
  1524. memcpy(niucv->src_name, iucv->src_name, 8);
  1525. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1526. niucv->path = path;
  1527. /* Call iucv_accept */
  1528. high_nmcpy(nuser_data, ipuser + 8);
  1529. memcpy(nuser_data + 8, niucv->src_name, 8);
  1530. ASCEBC(nuser_data + 8, 8);
  1531. /* set message limit for path based on msglimit of accepting socket */
  1532. niucv->msglimit = iucv->msglimit;
  1533. path->msglim = iucv->msglimit;
  1534. err = pr_iucv->path_accept(path, &af_iucv_handler, nuser_data, nsk);
  1535. if (err) {
  1536. iucv_sever_path(nsk, 1);
  1537. iucv_sock_kill(nsk);
  1538. goto fail;
  1539. }
  1540. iucv_accept_enqueue(sk, nsk);
  1541. /* Wake up accept */
  1542. nsk->sk_state = IUCV_CONNECTED;
  1543. sk->sk_data_ready(sk);
  1544. err = 0;
  1545. fail:
  1546. bh_unlock_sock(sk);
  1547. return 0;
  1548. }
  1549. static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
  1550. {
  1551. struct sock *sk = path->private;
  1552. sk->sk_state = IUCV_CONNECTED;
  1553. sk->sk_state_change(sk);
  1554. }
  1555. static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
  1556. {
  1557. struct sock *sk = path->private;
  1558. struct iucv_sock *iucv = iucv_sk(sk);
  1559. struct sk_buff *skb;
  1560. struct sock_msg_q *save_msg;
  1561. int len;
  1562. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1563. pr_iucv->message_reject(path, msg);
  1564. return;
  1565. }
  1566. spin_lock(&iucv->message_q.lock);
  1567. if (!list_empty(&iucv->message_q.list) ||
  1568. !skb_queue_empty(&iucv->backlog_skb_q))
  1569. goto save_message;
  1570. len = atomic_read(&sk->sk_rmem_alloc);
  1571. len += SKB_TRUESIZE(iucv_msg_length(msg));
  1572. if (len > sk->sk_rcvbuf)
  1573. goto save_message;
  1574. skb = alloc_iucv_recv_skb(iucv_msg_length(msg));
  1575. if (!skb)
  1576. goto save_message;
  1577. iucv_process_message(sk, skb, path, msg);
  1578. goto out_unlock;
  1579. save_message:
  1580. save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA);
  1581. if (!save_msg)
  1582. goto out_unlock;
  1583. save_msg->path = path;
  1584. save_msg->msg = *msg;
  1585. list_add_tail(&save_msg->list, &iucv->message_q.list);
  1586. out_unlock:
  1587. spin_unlock(&iucv->message_q.lock);
  1588. }
  1589. static void iucv_callback_txdone(struct iucv_path *path,
  1590. struct iucv_message *msg)
  1591. {
  1592. struct sock *sk = path->private;
  1593. struct sk_buff *this = NULL;
  1594. struct sk_buff_head *list = &iucv_sk(sk)->send_skb_q;
  1595. struct sk_buff *list_skb = list->next;
  1596. unsigned long flags;
  1597. bh_lock_sock(sk);
  1598. if (!skb_queue_empty(list)) {
  1599. spin_lock_irqsave(&list->lock, flags);
  1600. while (list_skb != (struct sk_buff *)list) {
  1601. if (msg->tag == IUCV_SKB_CB(list_skb)->tag) {
  1602. this = list_skb;
  1603. break;
  1604. }
  1605. list_skb = list_skb->next;
  1606. }
  1607. if (this)
  1608. __skb_unlink(this, list);
  1609. spin_unlock_irqrestore(&list->lock, flags);
  1610. if (this) {
  1611. kfree_skb(this);
  1612. /* wake up any process waiting for sending */
  1613. iucv_sock_wake_msglim(sk);
  1614. }
  1615. }
  1616. if (sk->sk_state == IUCV_CLOSING) {
  1617. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1618. sk->sk_state = IUCV_CLOSED;
  1619. sk->sk_state_change(sk);
  1620. }
  1621. }
  1622. bh_unlock_sock(sk);
  1623. }
  1624. static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
  1625. {
  1626. struct sock *sk = path->private;
  1627. if (sk->sk_state == IUCV_CLOSED)
  1628. return;
  1629. bh_lock_sock(sk);
  1630. iucv_sever_path(sk, 1);
  1631. sk->sk_state = IUCV_DISCONN;
  1632. sk->sk_state_change(sk);
  1633. bh_unlock_sock(sk);
  1634. }
  1635. /* called if the other communication side shuts down its RECV direction;
  1636. * in turn, the callback sets SEND_SHUTDOWN to disable sending of data.
  1637. */
  1638. static void iucv_callback_shutdown(struct iucv_path *path, u8 ipuser[16])
  1639. {
  1640. struct sock *sk = path->private;
  1641. bh_lock_sock(sk);
  1642. if (sk->sk_state != IUCV_CLOSED) {
  1643. sk->sk_shutdown |= SEND_SHUTDOWN;
  1644. sk->sk_state_change(sk);
  1645. }
  1646. bh_unlock_sock(sk);
  1647. }
  1648. /***************** HiperSockets transport callbacks ********************/
  1649. static void afiucv_swap_src_dest(struct sk_buff *skb)
  1650. {
  1651. struct af_iucv_trans_hdr *trans_hdr =
  1652. (struct af_iucv_trans_hdr *)skb->data;
  1653. char tmpID[8];
  1654. char tmpName[8];
  1655. ASCEBC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1656. ASCEBC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1657. ASCEBC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1658. ASCEBC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1659. memcpy(tmpID, trans_hdr->srcUserID, 8);
  1660. memcpy(tmpName, trans_hdr->srcAppName, 8);
  1661. memcpy(trans_hdr->srcUserID, trans_hdr->destUserID, 8);
  1662. memcpy(trans_hdr->srcAppName, trans_hdr->destAppName, 8);
  1663. memcpy(trans_hdr->destUserID, tmpID, 8);
  1664. memcpy(trans_hdr->destAppName, tmpName, 8);
  1665. skb_push(skb, ETH_HLEN);
  1666. memset(skb->data, 0, ETH_HLEN);
  1667. }
  1668. /**
  1669. * afiucv_hs_callback_syn - react on received SYN
  1670. **/
  1671. static int afiucv_hs_callback_syn(struct sock *sk, struct sk_buff *skb)
  1672. {
  1673. struct sock *nsk;
  1674. struct iucv_sock *iucv, *niucv;
  1675. struct af_iucv_trans_hdr *trans_hdr;
  1676. int err;
  1677. iucv = iucv_sk(sk);
  1678. trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
  1679. if (!iucv) {
  1680. /* no sock - connection refused */
  1681. afiucv_swap_src_dest(skb);
  1682. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1683. err = dev_queue_xmit(skb);
  1684. goto out;
  1685. }
  1686. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC, 0);
  1687. bh_lock_sock(sk);
  1688. if ((sk->sk_state != IUCV_LISTEN) ||
  1689. sk_acceptq_is_full(sk) ||
  1690. !nsk) {
  1691. /* error on server socket - connection refused */
  1692. afiucv_swap_src_dest(skb);
  1693. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1694. err = dev_queue_xmit(skb);
  1695. iucv_sock_kill(nsk);
  1696. bh_unlock_sock(sk);
  1697. goto out;
  1698. }
  1699. niucv = iucv_sk(nsk);
  1700. iucv_sock_init(nsk, sk);
  1701. niucv->transport = AF_IUCV_TRANS_HIPER;
  1702. niucv->msglimit = iucv->msglimit;
  1703. if (!trans_hdr->window)
  1704. niucv->msglimit_peer = IUCV_HIPER_MSGLIM_DEFAULT;
  1705. else
  1706. niucv->msglimit_peer = trans_hdr->window;
  1707. memcpy(niucv->dst_name, trans_hdr->srcAppName, 8);
  1708. memcpy(niucv->dst_user_id, trans_hdr->srcUserID, 8);
  1709. memcpy(niucv->src_name, iucv->src_name, 8);
  1710. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1711. nsk->sk_bound_dev_if = sk->sk_bound_dev_if;
  1712. niucv->hs_dev = iucv->hs_dev;
  1713. dev_hold(niucv->hs_dev);
  1714. afiucv_swap_src_dest(skb);
  1715. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK;
  1716. trans_hdr->window = niucv->msglimit;
  1717. /* if receiver acks the xmit connection is established */
  1718. err = dev_queue_xmit(skb);
  1719. if (!err) {
  1720. iucv_accept_enqueue(sk, nsk);
  1721. nsk->sk_state = IUCV_CONNECTED;
  1722. sk->sk_data_ready(sk);
  1723. } else
  1724. iucv_sock_kill(nsk);
  1725. bh_unlock_sock(sk);
  1726. out:
  1727. return NET_RX_SUCCESS;
  1728. }
  1729. /**
  1730. * afiucv_hs_callback_synack() - react on received SYN-ACK
  1731. **/
  1732. static int afiucv_hs_callback_synack(struct sock *sk, struct sk_buff *skb)
  1733. {
  1734. struct iucv_sock *iucv = iucv_sk(sk);
  1735. struct af_iucv_trans_hdr *trans_hdr =
  1736. (struct af_iucv_trans_hdr *)skb->data;
  1737. if (!iucv)
  1738. goto out;
  1739. if (sk->sk_state != IUCV_BOUND)
  1740. goto out;
  1741. bh_lock_sock(sk);
  1742. iucv->msglimit_peer = trans_hdr->window;
  1743. sk->sk_state = IUCV_CONNECTED;
  1744. sk->sk_state_change(sk);
  1745. bh_unlock_sock(sk);
  1746. out:
  1747. kfree_skb(skb);
  1748. return NET_RX_SUCCESS;
  1749. }
  1750. /**
  1751. * afiucv_hs_callback_synfin() - react on received SYN_FIN
  1752. **/
  1753. static int afiucv_hs_callback_synfin(struct sock *sk, struct sk_buff *skb)
  1754. {
  1755. struct iucv_sock *iucv = iucv_sk(sk);
  1756. if (!iucv)
  1757. goto out;
  1758. if (sk->sk_state != IUCV_BOUND)
  1759. goto out;
  1760. bh_lock_sock(sk);
  1761. sk->sk_state = IUCV_DISCONN;
  1762. sk->sk_state_change(sk);
  1763. bh_unlock_sock(sk);
  1764. out:
  1765. kfree_skb(skb);
  1766. return NET_RX_SUCCESS;
  1767. }
  1768. /**
  1769. * afiucv_hs_callback_fin() - react on received FIN
  1770. **/
  1771. static int afiucv_hs_callback_fin(struct sock *sk, struct sk_buff *skb)
  1772. {
  1773. struct iucv_sock *iucv = iucv_sk(sk);
  1774. /* other end of connection closed */
  1775. if (!iucv)
  1776. goto out;
  1777. bh_lock_sock(sk);
  1778. if (sk->sk_state == IUCV_CONNECTED) {
  1779. sk->sk_state = IUCV_DISCONN;
  1780. sk->sk_state_change(sk);
  1781. }
  1782. bh_unlock_sock(sk);
  1783. out:
  1784. kfree_skb(skb);
  1785. return NET_RX_SUCCESS;
  1786. }
  1787. /**
  1788. * afiucv_hs_callback_win() - react on received WIN
  1789. **/
  1790. static int afiucv_hs_callback_win(struct sock *sk, struct sk_buff *skb)
  1791. {
  1792. struct iucv_sock *iucv = iucv_sk(sk);
  1793. struct af_iucv_trans_hdr *trans_hdr =
  1794. (struct af_iucv_trans_hdr *)skb->data;
  1795. if (!iucv)
  1796. return NET_RX_SUCCESS;
  1797. if (sk->sk_state != IUCV_CONNECTED)
  1798. return NET_RX_SUCCESS;
  1799. atomic_sub(trans_hdr->window, &iucv->msg_sent);
  1800. iucv_sock_wake_msglim(sk);
  1801. return NET_RX_SUCCESS;
  1802. }
  1803. /**
  1804. * afiucv_hs_callback_rx() - react on received data
  1805. **/
  1806. static int afiucv_hs_callback_rx(struct sock *sk, struct sk_buff *skb)
  1807. {
  1808. struct iucv_sock *iucv = iucv_sk(sk);
  1809. if (!iucv) {
  1810. kfree_skb(skb);
  1811. return NET_RX_SUCCESS;
  1812. }
  1813. if (sk->sk_state != IUCV_CONNECTED) {
  1814. kfree_skb(skb);
  1815. return NET_RX_SUCCESS;
  1816. }
  1817. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1818. kfree_skb(skb);
  1819. return NET_RX_SUCCESS;
  1820. }
  1821. /* write stuff from iucv_msg to skb cb */
  1822. skb_pull(skb, sizeof(struct af_iucv_trans_hdr));
  1823. skb_reset_transport_header(skb);
  1824. skb_reset_network_header(skb);
  1825. IUCV_SKB_CB(skb)->offset = 0;
  1826. if (sk_filter(sk, skb)) {
  1827. atomic_inc(&sk->sk_drops); /* skb rejected by filter */
  1828. kfree_skb(skb);
  1829. return NET_RX_SUCCESS;
  1830. }
  1831. spin_lock(&iucv->message_q.lock);
  1832. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1833. if (__sock_queue_rcv_skb(sk, skb))
  1834. /* handle rcv queue full */
  1835. skb_queue_tail(&iucv->backlog_skb_q, skb);
  1836. } else
  1837. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
  1838. spin_unlock(&iucv->message_q.lock);
  1839. return NET_RX_SUCCESS;
  1840. }
  1841. /**
  1842. * afiucv_hs_rcv() - base function for arriving data through HiperSockets
  1843. * transport
  1844. * called from netif RX softirq
  1845. **/
  1846. static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
  1847. struct packet_type *pt, struct net_device *orig_dev)
  1848. {
  1849. struct sock *sk;
  1850. struct iucv_sock *iucv;
  1851. struct af_iucv_trans_hdr *trans_hdr;
  1852. char nullstring[8];
  1853. int err = 0;
  1854. if (skb->len < (ETH_HLEN + sizeof(struct af_iucv_trans_hdr))) {
  1855. WARN_ONCE(1, "AF_IUCV too short skb, len=%d, min=%d",
  1856. (int)skb->len,
  1857. (int)(ETH_HLEN + sizeof(struct af_iucv_trans_hdr)));
  1858. kfree_skb(skb);
  1859. return NET_RX_SUCCESS;
  1860. }
  1861. if (skb_headlen(skb) < (ETH_HLEN + sizeof(struct af_iucv_trans_hdr)))
  1862. if (skb_linearize(skb)) {
  1863. WARN_ONCE(1, "AF_IUCV skb_linearize failed, len=%d",
  1864. (int)skb->len);
  1865. kfree_skb(skb);
  1866. return NET_RX_SUCCESS;
  1867. }
  1868. skb_pull(skb, ETH_HLEN);
  1869. trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
  1870. EBCASC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1871. EBCASC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1872. EBCASC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1873. EBCASC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1874. memset(nullstring, 0, sizeof(nullstring));
  1875. iucv = NULL;
  1876. sk = NULL;
  1877. read_lock(&iucv_sk_list.lock);
  1878. sk_for_each(sk, &iucv_sk_list.head) {
  1879. if (trans_hdr->flags == AF_IUCV_FLAG_SYN) {
  1880. if ((!memcmp(&iucv_sk(sk)->src_name,
  1881. trans_hdr->destAppName, 8)) &&
  1882. (!memcmp(&iucv_sk(sk)->src_user_id,
  1883. trans_hdr->destUserID, 8)) &&
  1884. (!memcmp(&iucv_sk(sk)->dst_name, nullstring, 8)) &&
  1885. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1886. nullstring, 8))) {
  1887. iucv = iucv_sk(sk);
  1888. break;
  1889. }
  1890. } else {
  1891. if ((!memcmp(&iucv_sk(sk)->src_name,
  1892. trans_hdr->destAppName, 8)) &&
  1893. (!memcmp(&iucv_sk(sk)->src_user_id,
  1894. trans_hdr->destUserID, 8)) &&
  1895. (!memcmp(&iucv_sk(sk)->dst_name,
  1896. trans_hdr->srcAppName, 8)) &&
  1897. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1898. trans_hdr->srcUserID, 8))) {
  1899. iucv = iucv_sk(sk);
  1900. break;
  1901. }
  1902. }
  1903. }
  1904. read_unlock(&iucv_sk_list.lock);
  1905. if (!iucv)
  1906. sk = NULL;
  1907. /* no sock
  1908. how should we send with no sock
  1909. 1) send without sock no send rc checking?
  1910. 2) introduce default sock to handle this cases
  1911. SYN -> send SYN|ACK in good case, send SYN|FIN in bad case
  1912. data -> send FIN
  1913. SYN|ACK, SYN|FIN, FIN -> no action? */
  1914. switch (trans_hdr->flags) {
  1915. case AF_IUCV_FLAG_SYN:
  1916. /* connect request */
  1917. err = afiucv_hs_callback_syn(sk, skb);
  1918. break;
  1919. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK):
  1920. /* connect request confirmed */
  1921. err = afiucv_hs_callback_synack(sk, skb);
  1922. break;
  1923. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN):
  1924. /* connect request refused */
  1925. err = afiucv_hs_callback_synfin(sk, skb);
  1926. break;
  1927. case (AF_IUCV_FLAG_FIN):
  1928. /* close request */
  1929. err = afiucv_hs_callback_fin(sk, skb);
  1930. break;
  1931. case (AF_IUCV_FLAG_WIN):
  1932. err = afiucv_hs_callback_win(sk, skb);
  1933. if (skb->len == sizeof(struct af_iucv_trans_hdr)) {
  1934. kfree_skb(skb);
  1935. break;
  1936. }
  1937. /* fall through and receive non-zero length data */
  1938. case (AF_IUCV_FLAG_SHT):
  1939. /* shutdown request */
  1940. /* fall through and receive zero length data */
  1941. case 0:
  1942. /* plain data frame */
  1943. IUCV_SKB_CB(skb)->class = trans_hdr->iucv_hdr.class;
  1944. err = afiucv_hs_callback_rx(sk, skb);
  1945. break;
  1946. default:
  1947. ;
  1948. }
  1949. return err;
  1950. }
  1951. /**
  1952. * afiucv_hs_callback_txnotify() - handle send notifcations from HiperSockets
  1953. * transport
  1954. **/
  1955. static void afiucv_hs_callback_txnotify(struct sk_buff *skb,
  1956. enum iucv_tx_notify n)
  1957. {
  1958. struct sock *isk = skb->sk;
  1959. struct sock *sk = NULL;
  1960. struct iucv_sock *iucv = NULL;
  1961. struct sk_buff_head *list;
  1962. struct sk_buff *list_skb;
  1963. struct sk_buff *nskb;
  1964. unsigned long flags;
  1965. read_lock_irqsave(&iucv_sk_list.lock, flags);
  1966. sk_for_each(sk, &iucv_sk_list.head)
  1967. if (sk == isk) {
  1968. iucv = iucv_sk(sk);
  1969. break;
  1970. }
  1971. read_unlock_irqrestore(&iucv_sk_list.lock, flags);
  1972. if (!iucv || sock_flag(sk, SOCK_ZAPPED))
  1973. return;
  1974. list = &iucv->send_skb_q;
  1975. spin_lock_irqsave(&list->lock, flags);
  1976. if (skb_queue_empty(list))
  1977. goto out_unlock;
  1978. list_skb = list->next;
  1979. nskb = list_skb->next;
  1980. while (list_skb != (struct sk_buff *)list) {
  1981. if (skb_shinfo(list_skb) == skb_shinfo(skb)) {
  1982. switch (n) {
  1983. case TX_NOTIFY_OK:
  1984. __skb_unlink(list_skb, list);
  1985. kfree_skb(list_skb);
  1986. iucv_sock_wake_msglim(sk);
  1987. break;
  1988. case TX_NOTIFY_PENDING:
  1989. atomic_inc(&iucv->pendings);
  1990. break;
  1991. case TX_NOTIFY_DELAYED_OK:
  1992. __skb_unlink(list_skb, list);
  1993. atomic_dec(&iucv->pendings);
  1994. if (atomic_read(&iucv->pendings) <= 0)
  1995. iucv_sock_wake_msglim(sk);
  1996. kfree_skb(list_skb);
  1997. break;
  1998. case TX_NOTIFY_UNREACHABLE:
  1999. case TX_NOTIFY_DELAYED_UNREACHABLE:
  2000. case TX_NOTIFY_TPQFULL: /* not yet used */
  2001. case TX_NOTIFY_GENERALERROR:
  2002. case TX_NOTIFY_DELAYED_GENERALERROR:
  2003. __skb_unlink(list_skb, list);
  2004. kfree_skb(list_skb);
  2005. if (sk->sk_state == IUCV_CONNECTED) {
  2006. sk->sk_state = IUCV_DISCONN;
  2007. sk->sk_state_change(sk);
  2008. }
  2009. break;
  2010. }
  2011. break;
  2012. }
  2013. list_skb = nskb;
  2014. nskb = nskb->next;
  2015. }
  2016. out_unlock:
  2017. spin_unlock_irqrestore(&list->lock, flags);
  2018. if (sk->sk_state == IUCV_CLOSING) {
  2019. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  2020. sk->sk_state = IUCV_CLOSED;
  2021. sk->sk_state_change(sk);
  2022. }
  2023. }
  2024. }
  2025. /*
  2026. * afiucv_netdev_event: handle netdev notifier chain events
  2027. */
  2028. static int afiucv_netdev_event(struct notifier_block *this,
  2029. unsigned long event, void *ptr)
  2030. {
  2031. struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
  2032. struct sock *sk;
  2033. struct iucv_sock *iucv;
  2034. switch (event) {
  2035. case NETDEV_REBOOT:
  2036. case NETDEV_GOING_DOWN:
  2037. sk_for_each(sk, &iucv_sk_list.head) {
  2038. iucv = iucv_sk(sk);
  2039. if ((iucv->hs_dev == event_dev) &&
  2040. (sk->sk_state == IUCV_CONNECTED)) {
  2041. if (event == NETDEV_GOING_DOWN)
  2042. iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN);
  2043. sk->sk_state = IUCV_DISCONN;
  2044. sk->sk_state_change(sk);
  2045. }
  2046. }
  2047. break;
  2048. case NETDEV_DOWN:
  2049. case NETDEV_UNREGISTER:
  2050. default:
  2051. break;
  2052. }
  2053. return NOTIFY_DONE;
  2054. }
  2055. static struct notifier_block afiucv_netdev_notifier = {
  2056. .notifier_call = afiucv_netdev_event,
  2057. };
  2058. static const struct proto_ops iucv_sock_ops = {
  2059. .family = PF_IUCV,
  2060. .owner = THIS_MODULE,
  2061. .release = iucv_sock_release,
  2062. .bind = iucv_sock_bind,
  2063. .connect = iucv_sock_connect,
  2064. .listen = iucv_sock_listen,
  2065. .accept = iucv_sock_accept,
  2066. .getname = iucv_sock_getname,
  2067. .sendmsg = iucv_sock_sendmsg,
  2068. .recvmsg = iucv_sock_recvmsg,
  2069. .poll_mask = iucv_sock_poll_mask,
  2070. .ioctl = sock_no_ioctl,
  2071. .mmap = sock_no_mmap,
  2072. .socketpair = sock_no_socketpair,
  2073. .shutdown = iucv_sock_shutdown,
  2074. .setsockopt = iucv_sock_setsockopt,
  2075. .getsockopt = iucv_sock_getsockopt,
  2076. };
  2077. static const struct net_proto_family iucv_sock_family_ops = {
  2078. .family = AF_IUCV,
  2079. .owner = THIS_MODULE,
  2080. .create = iucv_sock_create,
  2081. };
  2082. static struct packet_type iucv_packet_type = {
  2083. .type = cpu_to_be16(ETH_P_AF_IUCV),
  2084. .func = afiucv_hs_rcv,
  2085. };
  2086. static int afiucv_iucv_init(void)
  2087. {
  2088. int err;
  2089. err = pr_iucv->iucv_register(&af_iucv_handler, 0);
  2090. if (err)
  2091. goto out;
  2092. /* establish dummy device */
  2093. af_iucv_driver.bus = pr_iucv->bus;
  2094. err = driver_register(&af_iucv_driver);
  2095. if (err)
  2096. goto out_iucv;
  2097. af_iucv_dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  2098. if (!af_iucv_dev) {
  2099. err = -ENOMEM;
  2100. goto out_driver;
  2101. }
  2102. dev_set_name(af_iucv_dev, "af_iucv");
  2103. af_iucv_dev->bus = pr_iucv->bus;
  2104. af_iucv_dev->parent = pr_iucv->root;
  2105. af_iucv_dev->release = (void (*)(struct device *))kfree;
  2106. af_iucv_dev->driver = &af_iucv_driver;
  2107. err = device_register(af_iucv_dev);
  2108. if (err)
  2109. goto out_iucv_dev;
  2110. return 0;
  2111. out_iucv_dev:
  2112. put_device(af_iucv_dev);
  2113. out_driver:
  2114. driver_unregister(&af_iucv_driver);
  2115. out_iucv:
  2116. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  2117. out:
  2118. return err;
  2119. }
  2120. static int __init afiucv_init(void)
  2121. {
  2122. int err;
  2123. if (MACHINE_IS_VM) {
  2124. cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
  2125. if (unlikely(err)) {
  2126. WARN_ON(err);
  2127. err = -EPROTONOSUPPORT;
  2128. goto out;
  2129. }
  2130. pr_iucv = try_then_request_module(symbol_get(iucv_if), "iucv");
  2131. if (!pr_iucv) {
  2132. printk(KERN_WARNING "iucv_if lookup failed\n");
  2133. memset(&iucv_userid, 0, sizeof(iucv_userid));
  2134. }
  2135. } else {
  2136. memset(&iucv_userid, 0, sizeof(iucv_userid));
  2137. pr_iucv = NULL;
  2138. }
  2139. err = proto_register(&iucv_proto, 0);
  2140. if (err)
  2141. goto out;
  2142. err = sock_register(&iucv_sock_family_ops);
  2143. if (err)
  2144. goto out_proto;
  2145. if (pr_iucv) {
  2146. err = afiucv_iucv_init();
  2147. if (err)
  2148. goto out_sock;
  2149. } else
  2150. register_netdevice_notifier(&afiucv_netdev_notifier);
  2151. dev_add_pack(&iucv_packet_type);
  2152. return 0;
  2153. out_sock:
  2154. sock_unregister(PF_IUCV);
  2155. out_proto:
  2156. proto_unregister(&iucv_proto);
  2157. out:
  2158. if (pr_iucv)
  2159. symbol_put(iucv_if);
  2160. return err;
  2161. }
  2162. static void __exit afiucv_exit(void)
  2163. {
  2164. if (pr_iucv) {
  2165. device_unregister(af_iucv_dev);
  2166. driver_unregister(&af_iucv_driver);
  2167. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  2168. symbol_put(iucv_if);
  2169. } else
  2170. unregister_netdevice_notifier(&afiucv_netdev_notifier);
  2171. dev_remove_pack(&iucv_packet_type);
  2172. sock_unregister(PF_IUCV);
  2173. proto_unregister(&iucv_proto);
  2174. }
  2175. module_init(afiucv_init);
  2176. module_exit(afiucv_exit);
  2177. MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>");
  2178. MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
  2179. MODULE_VERSION(VERSION);
  2180. MODULE_LICENSE("GPL");
  2181. MODULE_ALIAS_NETPROTO(PF_IUCV);