time.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959
  1. /*
  2. * linux/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. *
  6. * This file contains the interface functions for the various
  7. * time related system calls: time, stime, gettimeofday, settimeofday,
  8. * adjtime
  9. */
  10. /*
  11. * Modification history kernel/time.c
  12. *
  13. * 1993-09-02 Philip Gladstone
  14. * Created file with time related functions from sched/core.c and adjtimex()
  15. * 1993-10-08 Torsten Duwe
  16. * adjtime interface update and CMOS clock write code
  17. * 1995-08-13 Torsten Duwe
  18. * kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19. * 1999-01-16 Ulrich Windl
  20. * Introduced error checking for many cases in adjtimex().
  21. * Updated NTP code according to technical memorandum Jan '96
  22. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  23. * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24. * (Even though the technical memorandum forbids it)
  25. * 2004-07-14 Christoph Lameter
  26. * Added getnstimeofday to allow the posix timer functions to return
  27. * with nanosecond accuracy
  28. */
  29. #include <linux/export.h>
  30. #include <linux/timex.h>
  31. #include <linux/capability.h>
  32. #include <linux/timekeeper_internal.h>
  33. #include <linux/errno.h>
  34. #include <linux/syscalls.h>
  35. #include <linux/security.h>
  36. #include <linux/fs.h>
  37. #include <linux/math64.h>
  38. #include <linux/ptrace.h>
  39. #include <linux/uaccess.h>
  40. #include <linux/compat.h>
  41. #include <asm/unistd.h>
  42. #include <generated/timeconst.h>
  43. #include "timekeeping.h"
  44. /*
  45. * The timezone where the local system is located. Used as a default by some
  46. * programs who obtain this value by using gettimeofday.
  47. */
  48. struct timezone sys_tz;
  49. EXPORT_SYMBOL(sys_tz);
  50. #ifdef __ARCH_WANT_SYS_TIME
  51. /*
  52. * sys_time() can be implemented in user-level using
  53. * sys_gettimeofday(). Is this for backwards compatibility? If so,
  54. * why not move it into the appropriate arch directory (for those
  55. * architectures that need it).
  56. */
  57. SYSCALL_DEFINE1(time, time_t __user *, tloc)
  58. {
  59. time_t i = get_seconds();
  60. if (tloc) {
  61. if (put_user(i,tloc))
  62. return -EFAULT;
  63. }
  64. force_successful_syscall_return();
  65. return i;
  66. }
  67. /*
  68. * sys_stime() can be implemented in user-level using
  69. * sys_settimeofday(). Is this for backwards compatibility? If so,
  70. * why not move it into the appropriate arch directory (for those
  71. * architectures that need it).
  72. */
  73. SYSCALL_DEFINE1(stime, time_t __user *, tptr)
  74. {
  75. struct timespec64 tv;
  76. int err;
  77. if (get_user(tv.tv_sec, tptr))
  78. return -EFAULT;
  79. tv.tv_nsec = 0;
  80. err = security_settime64(&tv, NULL);
  81. if (err)
  82. return err;
  83. do_settimeofday64(&tv);
  84. return 0;
  85. }
  86. #endif /* __ARCH_WANT_SYS_TIME */
  87. #ifdef CONFIG_COMPAT
  88. #ifdef __ARCH_WANT_COMPAT_SYS_TIME
  89. /* compat_time_t is a 32 bit "long" and needs to get converted. */
  90. COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc)
  91. {
  92. struct timeval tv;
  93. compat_time_t i;
  94. do_gettimeofday(&tv);
  95. i = tv.tv_sec;
  96. if (tloc) {
  97. if (put_user(i,tloc))
  98. return -EFAULT;
  99. }
  100. force_successful_syscall_return();
  101. return i;
  102. }
  103. COMPAT_SYSCALL_DEFINE1(stime, compat_time_t __user *, tptr)
  104. {
  105. struct timespec64 tv;
  106. int err;
  107. if (get_user(tv.tv_sec, tptr))
  108. return -EFAULT;
  109. tv.tv_nsec = 0;
  110. err = security_settime64(&tv, NULL);
  111. if (err)
  112. return err;
  113. do_settimeofday64(&tv);
  114. return 0;
  115. }
  116. #endif /* __ARCH_WANT_COMPAT_SYS_TIME */
  117. #endif
  118. SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
  119. struct timezone __user *, tz)
  120. {
  121. if (likely(tv != NULL)) {
  122. struct timeval ktv;
  123. do_gettimeofday(&ktv);
  124. if (copy_to_user(tv, &ktv, sizeof(ktv)))
  125. return -EFAULT;
  126. }
  127. if (unlikely(tz != NULL)) {
  128. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  129. return -EFAULT;
  130. }
  131. return 0;
  132. }
  133. /*
  134. * In case for some reason the CMOS clock has not already been running
  135. * in UTC, but in some local time: The first time we set the timezone,
  136. * we will warp the clock so that it is ticking UTC time instead of
  137. * local time. Presumably, if someone is setting the timezone then we
  138. * are running in an environment where the programs understand about
  139. * timezones. This should be done at boot time in the /etc/rc script,
  140. * as soon as possible, so that the clock can be set right. Otherwise,
  141. * various programs will get confused when the clock gets warped.
  142. */
  143. int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
  144. {
  145. static int firsttime = 1;
  146. int error = 0;
  147. if (tv && !timespec64_valid(tv))
  148. return -EINVAL;
  149. error = security_settime64(tv, tz);
  150. if (error)
  151. return error;
  152. if (tz) {
  153. /* Verify we're witin the +-15 hrs range */
  154. if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
  155. return -EINVAL;
  156. sys_tz = *tz;
  157. update_vsyscall_tz();
  158. if (firsttime) {
  159. firsttime = 0;
  160. if (!tv)
  161. timekeeping_warp_clock();
  162. }
  163. }
  164. if (tv)
  165. return do_settimeofday64(tv);
  166. return 0;
  167. }
  168. SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
  169. struct timezone __user *, tz)
  170. {
  171. struct timespec64 new_ts;
  172. struct timeval user_tv;
  173. struct timezone new_tz;
  174. if (tv) {
  175. if (copy_from_user(&user_tv, tv, sizeof(*tv)))
  176. return -EFAULT;
  177. if (!timeval_valid(&user_tv))
  178. return -EINVAL;
  179. new_ts.tv_sec = user_tv.tv_sec;
  180. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  181. }
  182. if (tz) {
  183. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  184. return -EFAULT;
  185. }
  186. return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  187. }
  188. #ifdef CONFIG_COMPAT
  189. COMPAT_SYSCALL_DEFINE2(gettimeofday, struct compat_timeval __user *, tv,
  190. struct timezone __user *, tz)
  191. {
  192. if (tv) {
  193. struct timeval ktv;
  194. do_gettimeofday(&ktv);
  195. if (compat_put_timeval(&ktv, tv))
  196. return -EFAULT;
  197. }
  198. if (tz) {
  199. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  200. return -EFAULT;
  201. }
  202. return 0;
  203. }
  204. COMPAT_SYSCALL_DEFINE2(settimeofday, struct compat_timeval __user *, tv,
  205. struct timezone __user *, tz)
  206. {
  207. struct timespec64 new_ts;
  208. struct timeval user_tv;
  209. struct timezone new_tz;
  210. if (tv) {
  211. if (compat_get_timeval(&user_tv, tv))
  212. return -EFAULT;
  213. new_ts.tv_sec = user_tv.tv_sec;
  214. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  215. }
  216. if (tz) {
  217. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  218. return -EFAULT;
  219. }
  220. return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  221. }
  222. #endif
  223. SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
  224. {
  225. struct timex txc; /* Local copy of parameter */
  226. int ret;
  227. /* Copy the user data space into the kernel copy
  228. * structure. But bear in mind that the structures
  229. * may change
  230. */
  231. if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
  232. return -EFAULT;
  233. ret = do_adjtimex(&txc);
  234. return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
  235. }
  236. #ifdef CONFIG_COMPAT
  237. COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
  238. {
  239. struct timex txc;
  240. int err, ret;
  241. err = compat_get_timex(&txc, utp);
  242. if (err)
  243. return err;
  244. ret = do_adjtimex(&txc);
  245. err = compat_put_timex(utp, &txc);
  246. if (err)
  247. return err;
  248. return ret;
  249. }
  250. #endif
  251. /*
  252. * Convert jiffies to milliseconds and back.
  253. *
  254. * Avoid unnecessary multiplications/divisions in the
  255. * two most common HZ cases:
  256. */
  257. unsigned int jiffies_to_msecs(const unsigned long j)
  258. {
  259. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  260. return (MSEC_PER_SEC / HZ) * j;
  261. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  262. return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
  263. #else
  264. # if BITS_PER_LONG == 32
  265. return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
  266. # else
  267. return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
  268. # endif
  269. #endif
  270. }
  271. EXPORT_SYMBOL(jiffies_to_msecs);
  272. unsigned int jiffies_to_usecs(const unsigned long j)
  273. {
  274. /*
  275. * Hz usually doesn't go much further MSEC_PER_SEC.
  276. * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
  277. */
  278. BUILD_BUG_ON(HZ > USEC_PER_SEC);
  279. #if !(USEC_PER_SEC % HZ)
  280. return (USEC_PER_SEC / HZ) * j;
  281. #else
  282. # if BITS_PER_LONG == 32
  283. return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
  284. # else
  285. return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
  286. # endif
  287. #endif
  288. }
  289. EXPORT_SYMBOL(jiffies_to_usecs);
  290. /**
  291. * timespec_trunc - Truncate timespec to a granularity
  292. * @t: Timespec
  293. * @gran: Granularity in ns.
  294. *
  295. * Truncate a timespec to a granularity. Always rounds down. gran must
  296. * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
  297. */
  298. struct timespec timespec_trunc(struct timespec t, unsigned gran)
  299. {
  300. /* Avoid division in the common cases 1 ns and 1 s. */
  301. if (gran == 1) {
  302. /* nothing */
  303. } else if (gran == NSEC_PER_SEC) {
  304. t.tv_nsec = 0;
  305. } else if (gran > 1 && gran < NSEC_PER_SEC) {
  306. t.tv_nsec -= t.tv_nsec % gran;
  307. } else {
  308. WARN(1, "illegal file time granularity: %u", gran);
  309. }
  310. return t;
  311. }
  312. EXPORT_SYMBOL(timespec_trunc);
  313. /*
  314. * mktime64 - Converts date to seconds.
  315. * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
  316. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
  317. * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
  318. *
  319. * [For the Julian calendar (which was used in Russia before 1917,
  320. * Britain & colonies before 1752, anywhere else before 1582,
  321. * and is still in use by some communities) leave out the
  322. * -year/100+year/400 terms, and add 10.]
  323. *
  324. * This algorithm was first published by Gauss (I think).
  325. *
  326. * A leap second can be indicated by calling this function with sec as
  327. * 60 (allowable under ISO 8601). The leap second is treated the same
  328. * as the following second since they don't exist in UNIX time.
  329. *
  330. * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
  331. * tomorrow - (allowable under ISO 8601) is supported.
  332. */
  333. time64_t mktime64(const unsigned int year0, const unsigned int mon0,
  334. const unsigned int day, const unsigned int hour,
  335. const unsigned int min, const unsigned int sec)
  336. {
  337. unsigned int mon = mon0, year = year0;
  338. /* 1..12 -> 11,12,1..10 */
  339. if (0 >= (int) (mon -= 2)) {
  340. mon += 12; /* Puts Feb last since it has leap day */
  341. year -= 1;
  342. }
  343. return ((((time64_t)
  344. (year/4 - year/100 + year/400 + 367*mon/12 + day) +
  345. year*365 - 719499
  346. )*24 + hour /* now have hours - midnight tomorrow handled here */
  347. )*60 + min /* now have minutes */
  348. )*60 + sec; /* finally seconds */
  349. }
  350. EXPORT_SYMBOL(mktime64);
  351. /**
  352. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  353. *
  354. * @ts: pointer to timespec variable to be set
  355. * @sec: seconds to set
  356. * @nsec: nanoseconds to set
  357. *
  358. * Set seconds and nanoseconds field of a timespec variable and
  359. * normalize to the timespec storage format
  360. *
  361. * Note: The tv_nsec part is always in the range of
  362. * 0 <= tv_nsec < NSEC_PER_SEC
  363. * For negative values only the tv_sec field is negative !
  364. */
  365. void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
  366. {
  367. while (nsec >= NSEC_PER_SEC) {
  368. /*
  369. * The following asm() prevents the compiler from
  370. * optimising this loop into a modulo operation. See
  371. * also __iter_div_u64_rem() in include/linux/time.h
  372. */
  373. asm("" : "+rm"(nsec));
  374. nsec -= NSEC_PER_SEC;
  375. ++sec;
  376. }
  377. while (nsec < 0) {
  378. asm("" : "+rm"(nsec));
  379. nsec += NSEC_PER_SEC;
  380. --sec;
  381. }
  382. ts->tv_sec = sec;
  383. ts->tv_nsec = nsec;
  384. }
  385. EXPORT_SYMBOL(set_normalized_timespec);
  386. /**
  387. * ns_to_timespec - Convert nanoseconds to timespec
  388. * @nsec: the nanoseconds value to be converted
  389. *
  390. * Returns the timespec representation of the nsec parameter.
  391. */
  392. struct timespec ns_to_timespec(const s64 nsec)
  393. {
  394. struct timespec ts;
  395. s32 rem;
  396. if (!nsec)
  397. return (struct timespec) {0, 0};
  398. ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
  399. if (unlikely(rem < 0)) {
  400. ts.tv_sec--;
  401. rem += NSEC_PER_SEC;
  402. }
  403. ts.tv_nsec = rem;
  404. return ts;
  405. }
  406. EXPORT_SYMBOL(ns_to_timespec);
  407. /**
  408. * ns_to_timeval - Convert nanoseconds to timeval
  409. * @nsec: the nanoseconds value to be converted
  410. *
  411. * Returns the timeval representation of the nsec parameter.
  412. */
  413. struct timeval ns_to_timeval(const s64 nsec)
  414. {
  415. struct timespec ts = ns_to_timespec(nsec);
  416. struct timeval tv;
  417. tv.tv_sec = ts.tv_sec;
  418. tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
  419. return tv;
  420. }
  421. EXPORT_SYMBOL(ns_to_timeval);
  422. struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
  423. {
  424. struct timespec64 ts = ns_to_timespec64(nsec);
  425. struct __kernel_old_timeval tv;
  426. tv.tv_sec = ts.tv_sec;
  427. tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
  428. return tv;
  429. }
  430. EXPORT_SYMBOL(ns_to_kernel_old_timeval);
  431. /**
  432. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  433. *
  434. * @ts: pointer to timespec variable to be set
  435. * @sec: seconds to set
  436. * @nsec: nanoseconds to set
  437. *
  438. * Set seconds and nanoseconds field of a timespec variable and
  439. * normalize to the timespec storage format
  440. *
  441. * Note: The tv_nsec part is always in the range of
  442. * 0 <= tv_nsec < NSEC_PER_SEC
  443. * For negative values only the tv_sec field is negative !
  444. */
  445. void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
  446. {
  447. while (nsec >= NSEC_PER_SEC) {
  448. /*
  449. * The following asm() prevents the compiler from
  450. * optimising this loop into a modulo operation. See
  451. * also __iter_div_u64_rem() in include/linux/time.h
  452. */
  453. asm("" : "+rm"(nsec));
  454. nsec -= NSEC_PER_SEC;
  455. ++sec;
  456. }
  457. while (nsec < 0) {
  458. asm("" : "+rm"(nsec));
  459. nsec += NSEC_PER_SEC;
  460. --sec;
  461. }
  462. ts->tv_sec = sec;
  463. ts->tv_nsec = nsec;
  464. }
  465. EXPORT_SYMBOL(set_normalized_timespec64);
  466. /**
  467. * ns_to_timespec64 - Convert nanoseconds to timespec64
  468. * @nsec: the nanoseconds value to be converted
  469. *
  470. * Returns the timespec64 representation of the nsec parameter.
  471. */
  472. struct timespec64 ns_to_timespec64(const s64 nsec)
  473. {
  474. struct timespec64 ts;
  475. s32 rem;
  476. if (!nsec)
  477. return (struct timespec64) {0, 0};
  478. ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
  479. if (unlikely(rem < 0)) {
  480. ts.tv_sec--;
  481. rem += NSEC_PER_SEC;
  482. }
  483. ts.tv_nsec = rem;
  484. return ts;
  485. }
  486. EXPORT_SYMBOL(ns_to_timespec64);
  487. /**
  488. * msecs_to_jiffies: - convert milliseconds to jiffies
  489. * @m: time in milliseconds
  490. *
  491. * conversion is done as follows:
  492. *
  493. * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
  494. *
  495. * - 'too large' values [that would result in larger than
  496. * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  497. *
  498. * - all other values are converted to jiffies by either multiplying
  499. * the input value by a factor or dividing it with a factor and
  500. * handling any 32-bit overflows.
  501. * for the details see __msecs_to_jiffies()
  502. *
  503. * msecs_to_jiffies() checks for the passed in value being a constant
  504. * via __builtin_constant_p() allowing gcc to eliminate most of the
  505. * code, __msecs_to_jiffies() is called if the value passed does not
  506. * allow constant folding and the actual conversion must be done at
  507. * runtime.
  508. * the _msecs_to_jiffies helpers are the HZ dependent conversion
  509. * routines found in include/linux/jiffies.h
  510. */
  511. unsigned long __msecs_to_jiffies(const unsigned int m)
  512. {
  513. /*
  514. * Negative value, means infinite timeout:
  515. */
  516. if ((int)m < 0)
  517. return MAX_JIFFY_OFFSET;
  518. return _msecs_to_jiffies(m);
  519. }
  520. EXPORT_SYMBOL(__msecs_to_jiffies);
  521. unsigned long __usecs_to_jiffies(const unsigned int u)
  522. {
  523. if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
  524. return MAX_JIFFY_OFFSET;
  525. return _usecs_to_jiffies(u);
  526. }
  527. EXPORT_SYMBOL(__usecs_to_jiffies);
  528. /*
  529. * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
  530. * that a remainder subtract here would not do the right thing as the
  531. * resolution values don't fall on second boundries. I.e. the line:
  532. * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
  533. * Note that due to the small error in the multiplier here, this
  534. * rounding is incorrect for sufficiently large values of tv_nsec, but
  535. * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
  536. * OK.
  537. *
  538. * Rather, we just shift the bits off the right.
  539. *
  540. * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
  541. * value to a scaled second value.
  542. */
  543. static unsigned long
  544. __timespec64_to_jiffies(u64 sec, long nsec)
  545. {
  546. nsec = nsec + TICK_NSEC - 1;
  547. if (sec >= MAX_SEC_IN_JIFFIES){
  548. sec = MAX_SEC_IN_JIFFIES;
  549. nsec = 0;
  550. }
  551. return ((sec * SEC_CONVERSION) +
  552. (((u64)nsec * NSEC_CONVERSION) >>
  553. (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  554. }
  555. static unsigned long
  556. __timespec_to_jiffies(unsigned long sec, long nsec)
  557. {
  558. return __timespec64_to_jiffies((u64)sec, nsec);
  559. }
  560. unsigned long
  561. timespec64_to_jiffies(const struct timespec64 *value)
  562. {
  563. return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
  564. }
  565. EXPORT_SYMBOL(timespec64_to_jiffies);
  566. void
  567. jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
  568. {
  569. /*
  570. * Convert jiffies to nanoseconds and separate with
  571. * one divide.
  572. */
  573. u32 rem;
  574. value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  575. NSEC_PER_SEC, &rem);
  576. value->tv_nsec = rem;
  577. }
  578. EXPORT_SYMBOL(jiffies_to_timespec64);
  579. /*
  580. * We could use a similar algorithm to timespec_to_jiffies (with a
  581. * different multiplier for usec instead of nsec). But this has a
  582. * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
  583. * usec value, since it's not necessarily integral.
  584. *
  585. * We could instead round in the intermediate scaled representation
  586. * (i.e. in units of 1/2^(large scale) jiffies) but that's also
  587. * perilous: the scaling introduces a small positive error, which
  588. * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
  589. * units to the intermediate before shifting) leads to accidental
  590. * overflow and overestimates.
  591. *
  592. * At the cost of one additional multiplication by a constant, just
  593. * use the timespec implementation.
  594. */
  595. unsigned long
  596. timeval_to_jiffies(const struct timeval *value)
  597. {
  598. return __timespec_to_jiffies(value->tv_sec,
  599. value->tv_usec * NSEC_PER_USEC);
  600. }
  601. EXPORT_SYMBOL(timeval_to_jiffies);
  602. void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
  603. {
  604. /*
  605. * Convert jiffies to nanoseconds and separate with
  606. * one divide.
  607. */
  608. u32 rem;
  609. value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  610. NSEC_PER_SEC, &rem);
  611. value->tv_usec = rem / NSEC_PER_USEC;
  612. }
  613. EXPORT_SYMBOL(jiffies_to_timeval);
  614. /*
  615. * Convert jiffies/jiffies_64 to clock_t and back.
  616. */
  617. clock_t jiffies_to_clock_t(unsigned long x)
  618. {
  619. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  620. # if HZ < USER_HZ
  621. return x * (USER_HZ / HZ);
  622. # else
  623. return x / (HZ / USER_HZ);
  624. # endif
  625. #else
  626. return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
  627. #endif
  628. }
  629. EXPORT_SYMBOL(jiffies_to_clock_t);
  630. unsigned long clock_t_to_jiffies(unsigned long x)
  631. {
  632. #if (HZ % USER_HZ)==0
  633. if (x >= ~0UL / (HZ / USER_HZ))
  634. return ~0UL;
  635. return x * (HZ / USER_HZ);
  636. #else
  637. /* Don't worry about loss of precision here .. */
  638. if (x >= ~0UL / HZ * USER_HZ)
  639. return ~0UL;
  640. /* .. but do try to contain it here */
  641. return div_u64((u64)x * HZ, USER_HZ);
  642. #endif
  643. }
  644. EXPORT_SYMBOL(clock_t_to_jiffies);
  645. u64 jiffies_64_to_clock_t(u64 x)
  646. {
  647. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  648. # if HZ < USER_HZ
  649. x = div_u64(x * USER_HZ, HZ);
  650. # elif HZ > USER_HZ
  651. x = div_u64(x, HZ / USER_HZ);
  652. # else
  653. /* Nothing to do */
  654. # endif
  655. #else
  656. /*
  657. * There are better ways that don't overflow early,
  658. * but even this doesn't overflow in hundreds of years
  659. * in 64 bits, so..
  660. */
  661. x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
  662. #endif
  663. return x;
  664. }
  665. EXPORT_SYMBOL(jiffies_64_to_clock_t);
  666. u64 nsec_to_clock_t(u64 x)
  667. {
  668. #if (NSEC_PER_SEC % USER_HZ) == 0
  669. return div_u64(x, NSEC_PER_SEC / USER_HZ);
  670. #elif (USER_HZ % 512) == 0
  671. return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
  672. #else
  673. /*
  674. * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
  675. * overflow after 64.99 years.
  676. * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
  677. */
  678. return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
  679. #endif
  680. }
  681. u64 jiffies64_to_nsecs(u64 j)
  682. {
  683. #if !(NSEC_PER_SEC % HZ)
  684. return (NSEC_PER_SEC / HZ) * j;
  685. # else
  686. return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
  687. #endif
  688. }
  689. EXPORT_SYMBOL(jiffies64_to_nsecs);
  690. /**
  691. * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
  692. *
  693. * @n: nsecs in u64
  694. *
  695. * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
  696. * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
  697. * for scheduler, not for use in device drivers to calculate timeout value.
  698. *
  699. * note:
  700. * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
  701. * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
  702. */
  703. u64 nsecs_to_jiffies64(u64 n)
  704. {
  705. #if (NSEC_PER_SEC % HZ) == 0
  706. /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
  707. return div_u64(n, NSEC_PER_SEC / HZ);
  708. #elif (HZ % 512) == 0
  709. /* overflow after 292 years if HZ = 1024 */
  710. return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
  711. #else
  712. /*
  713. * Generic case - optimized for cases where HZ is a multiple of 3.
  714. * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
  715. */
  716. return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
  717. #endif
  718. }
  719. EXPORT_SYMBOL(nsecs_to_jiffies64);
  720. /**
  721. * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
  722. *
  723. * @n: nsecs in u64
  724. *
  725. * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
  726. * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
  727. * for scheduler, not for use in device drivers to calculate timeout value.
  728. *
  729. * note:
  730. * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
  731. * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
  732. */
  733. unsigned long nsecs_to_jiffies(u64 n)
  734. {
  735. return (unsigned long)nsecs_to_jiffies64(n);
  736. }
  737. EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
  738. /*
  739. * Add two timespec64 values and do a safety check for overflow.
  740. * It's assumed that both values are valid (>= 0).
  741. * And, each timespec64 is in normalized form.
  742. */
  743. struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
  744. const struct timespec64 rhs)
  745. {
  746. struct timespec64 res;
  747. set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
  748. lhs.tv_nsec + rhs.tv_nsec);
  749. if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
  750. res.tv_sec = TIME64_MAX;
  751. res.tv_nsec = 0;
  752. }
  753. return res;
  754. }
  755. int get_timespec64(struct timespec64 *ts,
  756. const struct __kernel_timespec __user *uts)
  757. {
  758. struct __kernel_timespec kts;
  759. int ret;
  760. ret = copy_from_user(&kts, uts, sizeof(kts));
  761. if (ret)
  762. return -EFAULT;
  763. ts->tv_sec = kts.tv_sec;
  764. /* Zero out the padding for 32 bit systems or in compat mode */
  765. if (IS_ENABLED(CONFIG_64BIT_TIME) && (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall()))
  766. kts.tv_nsec &= 0xFFFFFFFFUL;
  767. ts->tv_nsec = kts.tv_nsec;
  768. return 0;
  769. }
  770. EXPORT_SYMBOL_GPL(get_timespec64);
  771. int put_timespec64(const struct timespec64 *ts,
  772. struct __kernel_timespec __user *uts)
  773. {
  774. struct __kernel_timespec kts = {
  775. .tv_sec = ts->tv_sec,
  776. .tv_nsec = ts->tv_nsec
  777. };
  778. return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
  779. }
  780. EXPORT_SYMBOL_GPL(put_timespec64);
  781. int __compat_get_timespec64(struct timespec64 *ts64,
  782. const struct compat_timespec __user *cts)
  783. {
  784. struct compat_timespec ts;
  785. int ret;
  786. ret = copy_from_user(&ts, cts, sizeof(ts));
  787. if (ret)
  788. return -EFAULT;
  789. ts64->tv_sec = ts.tv_sec;
  790. ts64->tv_nsec = ts.tv_nsec;
  791. return 0;
  792. }
  793. int __compat_put_timespec64(const struct timespec64 *ts64,
  794. struct compat_timespec __user *cts)
  795. {
  796. struct compat_timespec ts = {
  797. .tv_sec = ts64->tv_sec,
  798. .tv_nsec = ts64->tv_nsec
  799. };
  800. return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
  801. }
  802. int compat_get_timespec64(struct timespec64 *ts, const void __user *uts)
  803. {
  804. if (COMPAT_USE_64BIT_TIME)
  805. return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
  806. else
  807. return __compat_get_timespec64(ts, uts);
  808. }
  809. EXPORT_SYMBOL_GPL(compat_get_timespec64);
  810. int compat_put_timespec64(const struct timespec64 *ts, void __user *uts)
  811. {
  812. if (COMPAT_USE_64BIT_TIME)
  813. return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
  814. else
  815. return __compat_put_timespec64(ts, uts);
  816. }
  817. EXPORT_SYMBOL_GPL(compat_put_timespec64);
  818. int get_itimerspec64(struct itimerspec64 *it,
  819. const struct itimerspec __user *uit)
  820. {
  821. int ret;
  822. ret = get_timespec64(&it->it_interval, &uit->it_interval);
  823. if (ret)
  824. return ret;
  825. ret = get_timespec64(&it->it_value, &uit->it_value);
  826. return ret;
  827. }
  828. EXPORT_SYMBOL_GPL(get_itimerspec64);
  829. int put_itimerspec64(const struct itimerspec64 *it,
  830. struct itimerspec __user *uit)
  831. {
  832. int ret;
  833. ret = put_timespec64(&it->it_interval, &uit->it_interval);
  834. if (ret)
  835. return ret;
  836. ret = put_timespec64(&it->it_value, &uit->it_value);
  837. return ret;
  838. }
  839. EXPORT_SYMBOL_GPL(put_itimerspec64);