posix-cpu-timers.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Implement CPU time clocks for the POSIX clock interface.
  4. */
  5. #include <linux/sched/signal.h>
  6. #include <linux/sched/cputime.h>
  7. #include <linux/posix-timers.h>
  8. #include <linux/errno.h>
  9. #include <linux/math64.h>
  10. #include <linux/uaccess.h>
  11. #include <linux/kernel_stat.h>
  12. #include <trace/events/timer.h>
  13. #include <linux/tick.h>
  14. #include <linux/workqueue.h>
  15. #include <linux/compat.h>
  16. #include <linux/sched/deadline.h>
  17. #include "posix-timers.h"
  18. static void posix_cpu_timer_rearm(struct k_itimer *timer);
  19. /*
  20. * Called after updating RLIMIT_CPU to run cpu timer and update
  21. * tsk->signal->cputime_expires expiration cache if necessary. Needs
  22. * siglock protection since other code may update expiration cache as
  23. * well.
  24. */
  25. void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
  26. {
  27. u64 nsecs = rlim_new * NSEC_PER_SEC;
  28. spin_lock_irq(&task->sighand->siglock);
  29. set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
  30. spin_unlock_irq(&task->sighand->siglock);
  31. }
  32. static int check_clock(const clockid_t which_clock)
  33. {
  34. int error = 0;
  35. struct task_struct *p;
  36. const pid_t pid = CPUCLOCK_PID(which_clock);
  37. if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
  38. return -EINVAL;
  39. if (pid == 0)
  40. return 0;
  41. rcu_read_lock();
  42. p = find_task_by_vpid(pid);
  43. if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
  44. same_thread_group(p, current) : has_group_leader_pid(p))) {
  45. error = -EINVAL;
  46. }
  47. rcu_read_unlock();
  48. return error;
  49. }
  50. /*
  51. * Update expiry time from increment, and increase overrun count,
  52. * given the current clock sample.
  53. */
  54. static void bump_cpu_timer(struct k_itimer *timer, u64 now)
  55. {
  56. int i;
  57. u64 delta, incr;
  58. if (timer->it.cpu.incr == 0)
  59. return;
  60. if (now < timer->it.cpu.expires)
  61. return;
  62. incr = timer->it.cpu.incr;
  63. delta = now + incr - timer->it.cpu.expires;
  64. /* Don't use (incr*2 < delta), incr*2 might overflow. */
  65. for (i = 0; incr < delta - incr; i++)
  66. incr = incr << 1;
  67. for (; i >= 0; incr >>= 1, i--) {
  68. if (delta < incr)
  69. continue;
  70. timer->it.cpu.expires += incr;
  71. timer->it_overrun += 1 << i;
  72. delta -= incr;
  73. }
  74. }
  75. /**
  76. * task_cputime_zero - Check a task_cputime struct for all zero fields.
  77. *
  78. * @cputime: The struct to compare.
  79. *
  80. * Checks @cputime to see if all fields are zero. Returns true if all fields
  81. * are zero, false if any field is nonzero.
  82. */
  83. static inline int task_cputime_zero(const struct task_cputime *cputime)
  84. {
  85. if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
  86. return 1;
  87. return 0;
  88. }
  89. static inline u64 prof_ticks(struct task_struct *p)
  90. {
  91. u64 utime, stime;
  92. task_cputime(p, &utime, &stime);
  93. return utime + stime;
  94. }
  95. static inline u64 virt_ticks(struct task_struct *p)
  96. {
  97. u64 utime, stime;
  98. task_cputime(p, &utime, &stime);
  99. return utime;
  100. }
  101. static int
  102. posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
  103. {
  104. int error = check_clock(which_clock);
  105. if (!error) {
  106. tp->tv_sec = 0;
  107. tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
  108. if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  109. /*
  110. * If sched_clock is using a cycle counter, we
  111. * don't have any idea of its true resolution
  112. * exported, but it is much more than 1s/HZ.
  113. */
  114. tp->tv_nsec = 1;
  115. }
  116. }
  117. return error;
  118. }
  119. static int
  120. posix_cpu_clock_set(const clockid_t which_clock, const struct timespec64 *tp)
  121. {
  122. /*
  123. * You can never reset a CPU clock, but we check for other errors
  124. * in the call before failing with EPERM.
  125. */
  126. int error = check_clock(which_clock);
  127. if (error == 0) {
  128. error = -EPERM;
  129. }
  130. return error;
  131. }
  132. /*
  133. * Sample a per-thread clock for the given task.
  134. */
  135. static int cpu_clock_sample(const clockid_t which_clock,
  136. struct task_struct *p, u64 *sample)
  137. {
  138. switch (CPUCLOCK_WHICH(which_clock)) {
  139. default:
  140. return -EINVAL;
  141. case CPUCLOCK_PROF:
  142. *sample = prof_ticks(p);
  143. break;
  144. case CPUCLOCK_VIRT:
  145. *sample = virt_ticks(p);
  146. break;
  147. case CPUCLOCK_SCHED:
  148. *sample = task_sched_runtime(p);
  149. break;
  150. }
  151. return 0;
  152. }
  153. /*
  154. * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
  155. * to avoid race conditions with concurrent updates to cputime.
  156. */
  157. static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
  158. {
  159. u64 curr_cputime;
  160. retry:
  161. curr_cputime = atomic64_read(cputime);
  162. if (sum_cputime > curr_cputime) {
  163. if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
  164. goto retry;
  165. }
  166. }
  167. static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
  168. {
  169. __update_gt_cputime(&cputime_atomic->utime, sum->utime);
  170. __update_gt_cputime(&cputime_atomic->stime, sum->stime);
  171. __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
  172. }
  173. /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
  174. static inline void sample_cputime_atomic(struct task_cputime *times,
  175. struct task_cputime_atomic *atomic_times)
  176. {
  177. times->utime = atomic64_read(&atomic_times->utime);
  178. times->stime = atomic64_read(&atomic_times->stime);
  179. times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
  180. }
  181. void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
  182. {
  183. struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
  184. struct task_cputime sum;
  185. /* Check if cputimer isn't running. This is accessed without locking. */
  186. if (!READ_ONCE(cputimer->running)) {
  187. /*
  188. * The POSIX timer interface allows for absolute time expiry
  189. * values through the TIMER_ABSTIME flag, therefore we have
  190. * to synchronize the timer to the clock every time we start it.
  191. */
  192. thread_group_cputime(tsk, &sum);
  193. update_gt_cputime(&cputimer->cputime_atomic, &sum);
  194. /*
  195. * We're setting cputimer->running without a lock. Ensure
  196. * this only gets written to in one operation. We set
  197. * running after update_gt_cputime() as a small optimization,
  198. * but barriers are not required because update_gt_cputime()
  199. * can handle concurrent updates.
  200. */
  201. WRITE_ONCE(cputimer->running, true);
  202. }
  203. sample_cputime_atomic(times, &cputimer->cputime_atomic);
  204. }
  205. /*
  206. * Sample a process (thread group) clock for the given group_leader task.
  207. * Must be called with task sighand lock held for safe while_each_thread()
  208. * traversal.
  209. */
  210. static int cpu_clock_sample_group(const clockid_t which_clock,
  211. struct task_struct *p,
  212. u64 *sample)
  213. {
  214. struct task_cputime cputime;
  215. switch (CPUCLOCK_WHICH(which_clock)) {
  216. default:
  217. return -EINVAL;
  218. case CPUCLOCK_PROF:
  219. thread_group_cputime(p, &cputime);
  220. *sample = cputime.utime + cputime.stime;
  221. break;
  222. case CPUCLOCK_VIRT:
  223. thread_group_cputime(p, &cputime);
  224. *sample = cputime.utime;
  225. break;
  226. case CPUCLOCK_SCHED:
  227. thread_group_cputime(p, &cputime);
  228. *sample = cputime.sum_exec_runtime;
  229. break;
  230. }
  231. return 0;
  232. }
  233. static int posix_cpu_clock_get_task(struct task_struct *tsk,
  234. const clockid_t which_clock,
  235. struct timespec64 *tp)
  236. {
  237. int err = -EINVAL;
  238. u64 rtn;
  239. if (CPUCLOCK_PERTHREAD(which_clock)) {
  240. if (same_thread_group(tsk, current))
  241. err = cpu_clock_sample(which_clock, tsk, &rtn);
  242. } else {
  243. if (tsk == current || thread_group_leader(tsk))
  244. err = cpu_clock_sample_group(which_clock, tsk, &rtn);
  245. }
  246. if (!err)
  247. *tp = ns_to_timespec64(rtn);
  248. return err;
  249. }
  250. static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp)
  251. {
  252. const pid_t pid = CPUCLOCK_PID(which_clock);
  253. int err = -EINVAL;
  254. if (pid == 0) {
  255. /*
  256. * Special case constant value for our own clocks.
  257. * We don't have to do any lookup to find ourselves.
  258. */
  259. err = posix_cpu_clock_get_task(current, which_clock, tp);
  260. } else {
  261. /*
  262. * Find the given PID, and validate that the caller
  263. * should be able to see it.
  264. */
  265. struct task_struct *p;
  266. rcu_read_lock();
  267. p = find_task_by_vpid(pid);
  268. if (p)
  269. err = posix_cpu_clock_get_task(p, which_clock, tp);
  270. rcu_read_unlock();
  271. }
  272. return err;
  273. }
  274. /*
  275. * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
  276. * This is called from sys_timer_create() and do_cpu_nanosleep() with the
  277. * new timer already all-zeros initialized.
  278. */
  279. static int posix_cpu_timer_create(struct k_itimer *new_timer)
  280. {
  281. int ret = 0;
  282. const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
  283. struct task_struct *p;
  284. if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
  285. return -EINVAL;
  286. new_timer->kclock = &clock_posix_cpu;
  287. INIT_LIST_HEAD(&new_timer->it.cpu.entry);
  288. rcu_read_lock();
  289. if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
  290. if (pid == 0) {
  291. p = current;
  292. } else {
  293. p = find_task_by_vpid(pid);
  294. if (p && !same_thread_group(p, current))
  295. p = NULL;
  296. }
  297. } else {
  298. if (pid == 0) {
  299. p = current->group_leader;
  300. } else {
  301. p = find_task_by_vpid(pid);
  302. if (p && !has_group_leader_pid(p))
  303. p = NULL;
  304. }
  305. }
  306. new_timer->it.cpu.task = p;
  307. if (p) {
  308. get_task_struct(p);
  309. } else {
  310. ret = -EINVAL;
  311. }
  312. rcu_read_unlock();
  313. return ret;
  314. }
  315. /*
  316. * Clean up a CPU-clock timer that is about to be destroyed.
  317. * This is called from timer deletion with the timer already locked.
  318. * If we return TIMER_RETRY, it's necessary to release the timer's lock
  319. * and try again. (This happens when the timer is in the middle of firing.)
  320. */
  321. static int posix_cpu_timer_del(struct k_itimer *timer)
  322. {
  323. int ret = 0;
  324. unsigned long flags;
  325. struct sighand_struct *sighand;
  326. struct task_struct *p = timer->it.cpu.task;
  327. WARN_ON_ONCE(p == NULL);
  328. /*
  329. * Protect against sighand release/switch in exit/exec and process/
  330. * thread timer list entry concurrent read/writes.
  331. */
  332. sighand = lock_task_sighand(p, &flags);
  333. if (unlikely(sighand == NULL)) {
  334. /*
  335. * We raced with the reaping of the task.
  336. * The deletion should have cleared us off the list.
  337. */
  338. WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
  339. } else {
  340. if (timer->it.cpu.firing)
  341. ret = TIMER_RETRY;
  342. else
  343. list_del(&timer->it.cpu.entry);
  344. unlock_task_sighand(p, &flags);
  345. }
  346. if (!ret)
  347. put_task_struct(p);
  348. return ret;
  349. }
  350. static void cleanup_timers_list(struct list_head *head)
  351. {
  352. struct cpu_timer_list *timer, *next;
  353. list_for_each_entry_safe(timer, next, head, entry)
  354. list_del_init(&timer->entry);
  355. }
  356. /*
  357. * Clean out CPU timers still ticking when a thread exited. The task
  358. * pointer is cleared, and the expiry time is replaced with the residual
  359. * time for later timer_gettime calls to return.
  360. * This must be called with the siglock held.
  361. */
  362. static void cleanup_timers(struct list_head *head)
  363. {
  364. cleanup_timers_list(head);
  365. cleanup_timers_list(++head);
  366. cleanup_timers_list(++head);
  367. }
  368. /*
  369. * These are both called with the siglock held, when the current thread
  370. * is being reaped. When the final (leader) thread in the group is reaped,
  371. * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
  372. */
  373. void posix_cpu_timers_exit(struct task_struct *tsk)
  374. {
  375. cleanup_timers(tsk->cpu_timers);
  376. }
  377. void posix_cpu_timers_exit_group(struct task_struct *tsk)
  378. {
  379. cleanup_timers(tsk->signal->cpu_timers);
  380. }
  381. static inline int expires_gt(u64 expires, u64 new_exp)
  382. {
  383. return expires == 0 || expires > new_exp;
  384. }
  385. /*
  386. * Insert the timer on the appropriate list before any timers that
  387. * expire later. This must be called with the sighand lock held.
  388. */
  389. static void arm_timer(struct k_itimer *timer)
  390. {
  391. struct task_struct *p = timer->it.cpu.task;
  392. struct list_head *head, *listpos;
  393. struct task_cputime *cputime_expires;
  394. struct cpu_timer_list *const nt = &timer->it.cpu;
  395. struct cpu_timer_list *next;
  396. if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  397. head = p->cpu_timers;
  398. cputime_expires = &p->cputime_expires;
  399. } else {
  400. head = p->signal->cpu_timers;
  401. cputime_expires = &p->signal->cputime_expires;
  402. }
  403. head += CPUCLOCK_WHICH(timer->it_clock);
  404. listpos = head;
  405. list_for_each_entry(next, head, entry) {
  406. if (nt->expires < next->expires)
  407. break;
  408. listpos = &next->entry;
  409. }
  410. list_add(&nt->entry, listpos);
  411. if (listpos == head) {
  412. u64 exp = nt->expires;
  413. /*
  414. * We are the new earliest-expiring POSIX 1.b timer, hence
  415. * need to update expiration cache. Take into account that
  416. * for process timers we share expiration cache with itimers
  417. * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
  418. */
  419. switch (CPUCLOCK_WHICH(timer->it_clock)) {
  420. case CPUCLOCK_PROF:
  421. if (expires_gt(cputime_expires->prof_exp, exp))
  422. cputime_expires->prof_exp = exp;
  423. break;
  424. case CPUCLOCK_VIRT:
  425. if (expires_gt(cputime_expires->virt_exp, exp))
  426. cputime_expires->virt_exp = exp;
  427. break;
  428. case CPUCLOCK_SCHED:
  429. if (expires_gt(cputime_expires->sched_exp, exp))
  430. cputime_expires->sched_exp = exp;
  431. break;
  432. }
  433. if (CPUCLOCK_PERTHREAD(timer->it_clock))
  434. tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
  435. else
  436. tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
  437. }
  438. }
  439. /*
  440. * The timer is locked, fire it and arrange for its reload.
  441. */
  442. static void cpu_timer_fire(struct k_itimer *timer)
  443. {
  444. if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
  445. /*
  446. * User don't want any signal.
  447. */
  448. timer->it.cpu.expires = 0;
  449. } else if (unlikely(timer->sigq == NULL)) {
  450. /*
  451. * This a special case for clock_nanosleep,
  452. * not a normal timer from sys_timer_create.
  453. */
  454. wake_up_process(timer->it_process);
  455. timer->it.cpu.expires = 0;
  456. } else if (timer->it.cpu.incr == 0) {
  457. /*
  458. * One-shot timer. Clear it as soon as it's fired.
  459. */
  460. posix_timer_event(timer, 0);
  461. timer->it.cpu.expires = 0;
  462. } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
  463. /*
  464. * The signal did not get queued because the signal
  465. * was ignored, so we won't get any callback to
  466. * reload the timer. But we need to keep it
  467. * ticking in case the signal is deliverable next time.
  468. */
  469. posix_cpu_timer_rearm(timer);
  470. ++timer->it_requeue_pending;
  471. }
  472. }
  473. /*
  474. * Sample a process (thread group) timer for the given group_leader task.
  475. * Must be called with task sighand lock held for safe while_each_thread()
  476. * traversal.
  477. */
  478. static int cpu_timer_sample_group(const clockid_t which_clock,
  479. struct task_struct *p, u64 *sample)
  480. {
  481. struct task_cputime cputime;
  482. thread_group_cputimer(p, &cputime);
  483. switch (CPUCLOCK_WHICH(which_clock)) {
  484. default:
  485. return -EINVAL;
  486. case CPUCLOCK_PROF:
  487. *sample = cputime.utime + cputime.stime;
  488. break;
  489. case CPUCLOCK_VIRT:
  490. *sample = cputime.utime;
  491. break;
  492. case CPUCLOCK_SCHED:
  493. *sample = cputime.sum_exec_runtime;
  494. break;
  495. }
  496. return 0;
  497. }
  498. /*
  499. * Guts of sys_timer_settime for CPU timers.
  500. * This is called with the timer locked and interrupts disabled.
  501. * If we return TIMER_RETRY, it's necessary to release the timer's lock
  502. * and try again. (This happens when the timer is in the middle of firing.)
  503. */
  504. static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
  505. struct itimerspec64 *new, struct itimerspec64 *old)
  506. {
  507. unsigned long flags;
  508. struct sighand_struct *sighand;
  509. struct task_struct *p = timer->it.cpu.task;
  510. u64 old_expires, new_expires, old_incr, val;
  511. int ret;
  512. WARN_ON_ONCE(p == NULL);
  513. /*
  514. * Use the to_ktime conversion because that clamps the maximum
  515. * value to KTIME_MAX and avoid multiplication overflows.
  516. */
  517. new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
  518. /*
  519. * Protect against sighand release/switch in exit/exec and p->cpu_timers
  520. * and p->signal->cpu_timers read/write in arm_timer()
  521. */
  522. sighand = lock_task_sighand(p, &flags);
  523. /*
  524. * If p has just been reaped, we can no
  525. * longer get any information about it at all.
  526. */
  527. if (unlikely(sighand == NULL)) {
  528. return -ESRCH;
  529. }
  530. /*
  531. * Disarm any old timer after extracting its expiry time.
  532. */
  533. lockdep_assert_irqs_disabled();
  534. ret = 0;
  535. old_incr = timer->it.cpu.incr;
  536. old_expires = timer->it.cpu.expires;
  537. if (unlikely(timer->it.cpu.firing)) {
  538. timer->it.cpu.firing = -1;
  539. ret = TIMER_RETRY;
  540. } else
  541. list_del_init(&timer->it.cpu.entry);
  542. /*
  543. * We need to sample the current value to convert the new
  544. * value from to relative and absolute, and to convert the
  545. * old value from absolute to relative. To set a process
  546. * timer, we need a sample to balance the thread expiry
  547. * times (in arm_timer). With an absolute time, we must
  548. * check if it's already passed. In short, we need a sample.
  549. */
  550. if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  551. cpu_clock_sample(timer->it_clock, p, &val);
  552. } else {
  553. cpu_timer_sample_group(timer->it_clock, p, &val);
  554. }
  555. if (old) {
  556. if (old_expires == 0) {
  557. old->it_value.tv_sec = 0;
  558. old->it_value.tv_nsec = 0;
  559. } else {
  560. /*
  561. * Update the timer in case it has
  562. * overrun already. If it has,
  563. * we'll report it as having overrun
  564. * and with the next reloaded timer
  565. * already ticking, though we are
  566. * swallowing that pending
  567. * notification here to install the
  568. * new setting.
  569. */
  570. bump_cpu_timer(timer, val);
  571. if (val < timer->it.cpu.expires) {
  572. old_expires = timer->it.cpu.expires - val;
  573. old->it_value = ns_to_timespec64(old_expires);
  574. } else {
  575. old->it_value.tv_nsec = 1;
  576. old->it_value.tv_sec = 0;
  577. }
  578. }
  579. }
  580. if (unlikely(ret)) {
  581. /*
  582. * We are colliding with the timer actually firing.
  583. * Punt after filling in the timer's old value, and
  584. * disable this firing since we are already reporting
  585. * it as an overrun (thanks to bump_cpu_timer above).
  586. */
  587. unlock_task_sighand(p, &flags);
  588. goto out;
  589. }
  590. if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
  591. new_expires += val;
  592. }
  593. /*
  594. * Install the new expiry time (or zero).
  595. * For a timer with no notification action, we don't actually
  596. * arm the timer (we'll just fake it for timer_gettime).
  597. */
  598. timer->it.cpu.expires = new_expires;
  599. if (new_expires != 0 && val < new_expires) {
  600. arm_timer(timer);
  601. }
  602. unlock_task_sighand(p, &flags);
  603. /*
  604. * Install the new reload setting, and
  605. * set up the signal and overrun bookkeeping.
  606. */
  607. timer->it.cpu.incr = timespec64_to_ns(&new->it_interval);
  608. /*
  609. * This acts as a modification timestamp for the timer,
  610. * so any automatic reload attempt will punt on seeing
  611. * that we have reset the timer manually.
  612. */
  613. timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
  614. ~REQUEUE_PENDING;
  615. timer->it_overrun_last = 0;
  616. timer->it_overrun = -1;
  617. if (new_expires != 0 && !(val < new_expires)) {
  618. /*
  619. * The designated time already passed, so we notify
  620. * immediately, even if the thread never runs to
  621. * accumulate more time on this clock.
  622. */
  623. cpu_timer_fire(timer);
  624. }
  625. ret = 0;
  626. out:
  627. if (old)
  628. old->it_interval = ns_to_timespec64(old_incr);
  629. return ret;
  630. }
  631. static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
  632. {
  633. u64 now;
  634. struct task_struct *p = timer->it.cpu.task;
  635. WARN_ON_ONCE(p == NULL);
  636. /*
  637. * Easy part: convert the reload time.
  638. */
  639. itp->it_interval = ns_to_timespec64(timer->it.cpu.incr);
  640. if (!timer->it.cpu.expires)
  641. return;
  642. /*
  643. * Sample the clock to take the difference with the expiry time.
  644. */
  645. if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  646. cpu_clock_sample(timer->it_clock, p, &now);
  647. } else {
  648. struct sighand_struct *sighand;
  649. unsigned long flags;
  650. /*
  651. * Protect against sighand release/switch in exit/exec and
  652. * also make timer sampling safe if it ends up calling
  653. * thread_group_cputime().
  654. */
  655. sighand = lock_task_sighand(p, &flags);
  656. if (unlikely(sighand == NULL)) {
  657. /*
  658. * The process has been reaped.
  659. * We can't even collect a sample any more.
  660. * Call the timer disarmed, nothing else to do.
  661. */
  662. timer->it.cpu.expires = 0;
  663. return;
  664. } else {
  665. cpu_timer_sample_group(timer->it_clock, p, &now);
  666. unlock_task_sighand(p, &flags);
  667. }
  668. }
  669. if (now < timer->it.cpu.expires) {
  670. itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now);
  671. } else {
  672. /*
  673. * The timer should have expired already, but the firing
  674. * hasn't taken place yet. Say it's just about to expire.
  675. */
  676. itp->it_value.tv_nsec = 1;
  677. itp->it_value.tv_sec = 0;
  678. }
  679. }
  680. static unsigned long long
  681. check_timers_list(struct list_head *timers,
  682. struct list_head *firing,
  683. unsigned long long curr)
  684. {
  685. int maxfire = 20;
  686. while (!list_empty(timers)) {
  687. struct cpu_timer_list *t;
  688. t = list_first_entry(timers, struct cpu_timer_list, entry);
  689. if (!--maxfire || curr < t->expires)
  690. return t->expires;
  691. t->firing = 1;
  692. list_move_tail(&t->entry, firing);
  693. }
  694. return 0;
  695. }
  696. static inline void check_dl_overrun(struct task_struct *tsk)
  697. {
  698. if (tsk->dl.dl_overrun) {
  699. tsk->dl.dl_overrun = 0;
  700. __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
  701. }
  702. }
  703. /*
  704. * Check for any per-thread CPU timers that have fired and move them off
  705. * the tsk->cpu_timers[N] list onto the firing list. Here we update the
  706. * tsk->it_*_expires values to reflect the remaining thread CPU timers.
  707. */
  708. static void check_thread_timers(struct task_struct *tsk,
  709. struct list_head *firing)
  710. {
  711. struct list_head *timers = tsk->cpu_timers;
  712. struct task_cputime *tsk_expires = &tsk->cputime_expires;
  713. u64 expires;
  714. unsigned long soft;
  715. if (dl_task(tsk))
  716. check_dl_overrun(tsk);
  717. /*
  718. * If cputime_expires is zero, then there are no active
  719. * per thread CPU timers.
  720. */
  721. if (task_cputime_zero(&tsk->cputime_expires))
  722. return;
  723. expires = check_timers_list(timers, firing, prof_ticks(tsk));
  724. tsk_expires->prof_exp = expires;
  725. expires = check_timers_list(++timers, firing, virt_ticks(tsk));
  726. tsk_expires->virt_exp = expires;
  727. tsk_expires->sched_exp = check_timers_list(++timers, firing,
  728. tsk->se.sum_exec_runtime);
  729. /*
  730. * Check for the special case thread timers.
  731. */
  732. soft = task_rlimit(tsk, RLIMIT_RTTIME);
  733. if (soft != RLIM_INFINITY) {
  734. unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
  735. if (hard != RLIM_INFINITY &&
  736. tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
  737. /*
  738. * At the hard limit, we just die.
  739. * No need to calculate anything else now.
  740. */
  741. if (print_fatal_signals) {
  742. pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
  743. tsk->comm, task_pid_nr(tsk));
  744. }
  745. __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
  746. return;
  747. }
  748. if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
  749. /*
  750. * At the soft limit, send a SIGXCPU every second.
  751. */
  752. if (soft < hard) {
  753. soft += USEC_PER_SEC;
  754. tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur =
  755. soft;
  756. }
  757. if (print_fatal_signals) {
  758. pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
  759. tsk->comm, task_pid_nr(tsk));
  760. }
  761. __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
  762. }
  763. }
  764. if (task_cputime_zero(tsk_expires))
  765. tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
  766. }
  767. static inline void stop_process_timers(struct signal_struct *sig)
  768. {
  769. struct thread_group_cputimer *cputimer = &sig->cputimer;
  770. /* Turn off cputimer->running. This is done without locking. */
  771. WRITE_ONCE(cputimer->running, false);
  772. tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
  773. }
  774. static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
  775. u64 *expires, u64 cur_time, int signo)
  776. {
  777. if (!it->expires)
  778. return;
  779. if (cur_time >= it->expires) {
  780. if (it->incr)
  781. it->expires += it->incr;
  782. else
  783. it->expires = 0;
  784. trace_itimer_expire(signo == SIGPROF ?
  785. ITIMER_PROF : ITIMER_VIRTUAL,
  786. tsk->signal->leader_pid, cur_time);
  787. __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
  788. }
  789. if (it->expires && (!*expires || it->expires < *expires))
  790. *expires = it->expires;
  791. }
  792. /*
  793. * Check for any per-thread CPU timers that have fired and move them
  794. * off the tsk->*_timers list onto the firing list. Per-thread timers
  795. * have already been taken off.
  796. */
  797. static void check_process_timers(struct task_struct *tsk,
  798. struct list_head *firing)
  799. {
  800. struct signal_struct *const sig = tsk->signal;
  801. u64 utime, ptime, virt_expires, prof_expires;
  802. u64 sum_sched_runtime, sched_expires;
  803. struct list_head *timers = sig->cpu_timers;
  804. struct task_cputime cputime;
  805. unsigned long soft;
  806. if (dl_task(tsk))
  807. check_dl_overrun(tsk);
  808. /*
  809. * If cputimer is not running, then there are no active
  810. * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
  811. */
  812. if (!READ_ONCE(tsk->signal->cputimer.running))
  813. return;
  814. /*
  815. * Signify that a thread is checking for process timers.
  816. * Write access to this field is protected by the sighand lock.
  817. */
  818. sig->cputimer.checking_timer = true;
  819. /*
  820. * Collect the current process totals.
  821. */
  822. thread_group_cputimer(tsk, &cputime);
  823. utime = cputime.utime;
  824. ptime = utime + cputime.stime;
  825. sum_sched_runtime = cputime.sum_exec_runtime;
  826. prof_expires = check_timers_list(timers, firing, ptime);
  827. virt_expires = check_timers_list(++timers, firing, utime);
  828. sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
  829. /*
  830. * Check for the special case process timers.
  831. */
  832. check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
  833. SIGPROF);
  834. check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
  835. SIGVTALRM);
  836. soft = task_rlimit(tsk, RLIMIT_CPU);
  837. if (soft != RLIM_INFINITY) {
  838. unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
  839. unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
  840. u64 x;
  841. if (psecs >= hard) {
  842. /*
  843. * At the hard limit, we just die.
  844. * No need to calculate anything else now.
  845. */
  846. if (print_fatal_signals) {
  847. pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
  848. tsk->comm, task_pid_nr(tsk));
  849. }
  850. __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
  851. return;
  852. }
  853. if (psecs >= soft) {
  854. /*
  855. * At the soft limit, send a SIGXCPU every second.
  856. */
  857. if (print_fatal_signals) {
  858. pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
  859. tsk->comm, task_pid_nr(tsk));
  860. }
  861. __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
  862. if (soft < hard) {
  863. soft++;
  864. sig->rlim[RLIMIT_CPU].rlim_cur = soft;
  865. }
  866. }
  867. x = soft * NSEC_PER_SEC;
  868. if (!prof_expires || x < prof_expires)
  869. prof_expires = x;
  870. }
  871. sig->cputime_expires.prof_exp = prof_expires;
  872. sig->cputime_expires.virt_exp = virt_expires;
  873. sig->cputime_expires.sched_exp = sched_expires;
  874. if (task_cputime_zero(&sig->cputime_expires))
  875. stop_process_timers(sig);
  876. sig->cputimer.checking_timer = false;
  877. }
  878. /*
  879. * This is called from the signal code (via posixtimer_rearm)
  880. * when the last timer signal was delivered and we have to reload the timer.
  881. */
  882. static void posix_cpu_timer_rearm(struct k_itimer *timer)
  883. {
  884. struct sighand_struct *sighand;
  885. unsigned long flags;
  886. struct task_struct *p = timer->it.cpu.task;
  887. u64 now;
  888. WARN_ON_ONCE(p == NULL);
  889. /*
  890. * Fetch the current sample and update the timer's expiry time.
  891. */
  892. if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  893. cpu_clock_sample(timer->it_clock, p, &now);
  894. bump_cpu_timer(timer, now);
  895. if (unlikely(p->exit_state))
  896. return;
  897. /* Protect timer list r/w in arm_timer() */
  898. sighand = lock_task_sighand(p, &flags);
  899. if (!sighand)
  900. return;
  901. } else {
  902. /*
  903. * Protect arm_timer() and timer sampling in case of call to
  904. * thread_group_cputime().
  905. */
  906. sighand = lock_task_sighand(p, &flags);
  907. if (unlikely(sighand == NULL)) {
  908. /*
  909. * The process has been reaped.
  910. * We can't even collect a sample any more.
  911. */
  912. timer->it.cpu.expires = 0;
  913. return;
  914. } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
  915. /* If the process is dying, no need to rearm */
  916. goto unlock;
  917. }
  918. cpu_timer_sample_group(timer->it_clock, p, &now);
  919. bump_cpu_timer(timer, now);
  920. /* Leave the sighand locked for the call below. */
  921. }
  922. /*
  923. * Now re-arm for the new expiry time.
  924. */
  925. lockdep_assert_irqs_disabled();
  926. arm_timer(timer);
  927. unlock:
  928. unlock_task_sighand(p, &flags);
  929. }
  930. /**
  931. * task_cputime_expired - Compare two task_cputime entities.
  932. *
  933. * @sample: The task_cputime structure to be checked for expiration.
  934. * @expires: Expiration times, against which @sample will be checked.
  935. *
  936. * Checks @sample against @expires to see if any field of @sample has expired.
  937. * Returns true if any field of the former is greater than the corresponding
  938. * field of the latter if the latter field is set. Otherwise returns false.
  939. */
  940. static inline int task_cputime_expired(const struct task_cputime *sample,
  941. const struct task_cputime *expires)
  942. {
  943. if (expires->utime && sample->utime >= expires->utime)
  944. return 1;
  945. if (expires->stime && sample->utime + sample->stime >= expires->stime)
  946. return 1;
  947. if (expires->sum_exec_runtime != 0 &&
  948. sample->sum_exec_runtime >= expires->sum_exec_runtime)
  949. return 1;
  950. return 0;
  951. }
  952. /**
  953. * fastpath_timer_check - POSIX CPU timers fast path.
  954. *
  955. * @tsk: The task (thread) being checked.
  956. *
  957. * Check the task and thread group timers. If both are zero (there are no
  958. * timers set) return false. Otherwise snapshot the task and thread group
  959. * timers and compare them with the corresponding expiration times. Return
  960. * true if a timer has expired, else return false.
  961. */
  962. static inline int fastpath_timer_check(struct task_struct *tsk)
  963. {
  964. struct signal_struct *sig;
  965. if (!task_cputime_zero(&tsk->cputime_expires)) {
  966. struct task_cputime task_sample;
  967. task_cputime(tsk, &task_sample.utime, &task_sample.stime);
  968. task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
  969. if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
  970. return 1;
  971. }
  972. sig = tsk->signal;
  973. /*
  974. * Check if thread group timers expired when the cputimer is
  975. * running and no other thread in the group is already checking
  976. * for thread group cputimers. These fields are read without the
  977. * sighand lock. However, this is fine because this is meant to
  978. * be a fastpath heuristic to determine whether we should try to
  979. * acquire the sighand lock to check/handle timers.
  980. *
  981. * In the worst case scenario, if 'running' or 'checking_timer' gets
  982. * set but the current thread doesn't see the change yet, we'll wait
  983. * until the next thread in the group gets a scheduler interrupt to
  984. * handle the timer. This isn't an issue in practice because these
  985. * types of delays with signals actually getting sent are expected.
  986. */
  987. if (READ_ONCE(sig->cputimer.running) &&
  988. !READ_ONCE(sig->cputimer.checking_timer)) {
  989. struct task_cputime group_sample;
  990. sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
  991. if (task_cputime_expired(&group_sample, &sig->cputime_expires))
  992. return 1;
  993. }
  994. if (dl_task(tsk) && tsk->dl.dl_overrun)
  995. return 1;
  996. return 0;
  997. }
  998. /*
  999. * This is called from the timer interrupt handler. The irq handler has
  1000. * already updated our counts. We need to check if any timers fire now.
  1001. * Interrupts are disabled.
  1002. */
  1003. void run_posix_cpu_timers(struct task_struct *tsk)
  1004. {
  1005. LIST_HEAD(firing);
  1006. struct k_itimer *timer, *next;
  1007. unsigned long flags;
  1008. lockdep_assert_irqs_disabled();
  1009. /*
  1010. * The fast path checks that there are no expired thread or thread
  1011. * group timers. If that's so, just return.
  1012. */
  1013. if (!fastpath_timer_check(tsk))
  1014. return;
  1015. if (!lock_task_sighand(tsk, &flags))
  1016. return;
  1017. /*
  1018. * Here we take off tsk->signal->cpu_timers[N] and
  1019. * tsk->cpu_timers[N] all the timers that are firing, and
  1020. * put them on the firing list.
  1021. */
  1022. check_thread_timers(tsk, &firing);
  1023. check_process_timers(tsk, &firing);
  1024. /*
  1025. * We must release these locks before taking any timer's lock.
  1026. * There is a potential race with timer deletion here, as the
  1027. * siglock now protects our private firing list. We have set
  1028. * the firing flag in each timer, so that a deletion attempt
  1029. * that gets the timer lock before we do will give it up and
  1030. * spin until we've taken care of that timer below.
  1031. */
  1032. unlock_task_sighand(tsk, &flags);
  1033. /*
  1034. * Now that all the timers on our list have the firing flag,
  1035. * no one will touch their list entries but us. We'll take
  1036. * each timer's lock before clearing its firing flag, so no
  1037. * timer call will interfere.
  1038. */
  1039. list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
  1040. int cpu_firing;
  1041. spin_lock(&timer->it_lock);
  1042. list_del_init(&timer->it.cpu.entry);
  1043. cpu_firing = timer->it.cpu.firing;
  1044. timer->it.cpu.firing = 0;
  1045. /*
  1046. * The firing flag is -1 if we collided with a reset
  1047. * of the timer, which already reported this
  1048. * almost-firing as an overrun. So don't generate an event.
  1049. */
  1050. if (likely(cpu_firing >= 0))
  1051. cpu_timer_fire(timer);
  1052. spin_unlock(&timer->it_lock);
  1053. }
  1054. }
  1055. /*
  1056. * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
  1057. * The tsk->sighand->siglock must be held by the caller.
  1058. */
  1059. void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
  1060. u64 *newval, u64 *oldval)
  1061. {
  1062. u64 now;
  1063. int ret;
  1064. WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
  1065. ret = cpu_timer_sample_group(clock_idx, tsk, &now);
  1066. if (oldval && ret != -EINVAL) {
  1067. /*
  1068. * We are setting itimer. The *oldval is absolute and we update
  1069. * it to be relative, *newval argument is relative and we update
  1070. * it to be absolute.
  1071. */
  1072. if (*oldval) {
  1073. if (*oldval <= now) {
  1074. /* Just about to fire. */
  1075. *oldval = TICK_NSEC;
  1076. } else {
  1077. *oldval -= now;
  1078. }
  1079. }
  1080. if (!*newval)
  1081. return;
  1082. *newval += now;
  1083. }
  1084. /*
  1085. * Update expiration cache if we are the earliest timer, or eventually
  1086. * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
  1087. */
  1088. switch (clock_idx) {
  1089. case CPUCLOCK_PROF:
  1090. if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
  1091. tsk->signal->cputime_expires.prof_exp = *newval;
  1092. break;
  1093. case CPUCLOCK_VIRT:
  1094. if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
  1095. tsk->signal->cputime_expires.virt_exp = *newval;
  1096. break;
  1097. }
  1098. tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
  1099. }
  1100. static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
  1101. const struct timespec64 *rqtp)
  1102. {
  1103. struct itimerspec64 it;
  1104. struct k_itimer timer;
  1105. u64 expires;
  1106. int error;
  1107. /*
  1108. * Set up a temporary timer and then wait for it to go off.
  1109. */
  1110. memset(&timer, 0, sizeof timer);
  1111. spin_lock_init(&timer.it_lock);
  1112. timer.it_clock = which_clock;
  1113. timer.it_overrun = -1;
  1114. error = posix_cpu_timer_create(&timer);
  1115. timer.it_process = current;
  1116. if (!error) {
  1117. static struct itimerspec64 zero_it;
  1118. struct restart_block *restart;
  1119. memset(&it, 0, sizeof(it));
  1120. it.it_value = *rqtp;
  1121. spin_lock_irq(&timer.it_lock);
  1122. error = posix_cpu_timer_set(&timer, flags, &it, NULL);
  1123. if (error) {
  1124. spin_unlock_irq(&timer.it_lock);
  1125. return error;
  1126. }
  1127. while (!signal_pending(current)) {
  1128. if (timer.it.cpu.expires == 0) {
  1129. /*
  1130. * Our timer fired and was reset, below
  1131. * deletion can not fail.
  1132. */
  1133. posix_cpu_timer_del(&timer);
  1134. spin_unlock_irq(&timer.it_lock);
  1135. return 0;
  1136. }
  1137. /*
  1138. * Block until cpu_timer_fire (or a signal) wakes us.
  1139. */
  1140. __set_current_state(TASK_INTERRUPTIBLE);
  1141. spin_unlock_irq(&timer.it_lock);
  1142. schedule();
  1143. spin_lock_irq(&timer.it_lock);
  1144. }
  1145. /*
  1146. * We were interrupted by a signal.
  1147. */
  1148. expires = timer.it.cpu.expires;
  1149. error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
  1150. if (!error) {
  1151. /*
  1152. * Timer is now unarmed, deletion can not fail.
  1153. */
  1154. posix_cpu_timer_del(&timer);
  1155. }
  1156. spin_unlock_irq(&timer.it_lock);
  1157. while (error == TIMER_RETRY) {
  1158. /*
  1159. * We need to handle case when timer was or is in the
  1160. * middle of firing. In other cases we already freed
  1161. * resources.
  1162. */
  1163. spin_lock_irq(&timer.it_lock);
  1164. error = posix_cpu_timer_del(&timer);
  1165. spin_unlock_irq(&timer.it_lock);
  1166. }
  1167. if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
  1168. /*
  1169. * It actually did fire already.
  1170. */
  1171. return 0;
  1172. }
  1173. error = -ERESTART_RESTARTBLOCK;
  1174. /*
  1175. * Report back to the user the time still remaining.
  1176. */
  1177. restart = &current->restart_block;
  1178. restart->nanosleep.expires = expires;
  1179. if (restart->nanosleep.type != TT_NONE)
  1180. error = nanosleep_copyout(restart, &it.it_value);
  1181. }
  1182. return error;
  1183. }
  1184. static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
  1185. static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
  1186. const struct timespec64 *rqtp)
  1187. {
  1188. struct restart_block *restart_block = &current->restart_block;
  1189. int error;
  1190. /*
  1191. * Diagnose required errors first.
  1192. */
  1193. if (CPUCLOCK_PERTHREAD(which_clock) &&
  1194. (CPUCLOCK_PID(which_clock) == 0 ||
  1195. CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
  1196. return -EINVAL;
  1197. error = do_cpu_nanosleep(which_clock, flags, rqtp);
  1198. if (error == -ERESTART_RESTARTBLOCK) {
  1199. if (flags & TIMER_ABSTIME)
  1200. return -ERESTARTNOHAND;
  1201. restart_block->fn = posix_cpu_nsleep_restart;
  1202. restart_block->nanosleep.clockid = which_clock;
  1203. }
  1204. return error;
  1205. }
  1206. static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
  1207. {
  1208. clockid_t which_clock = restart_block->nanosleep.clockid;
  1209. struct timespec64 t;
  1210. t = ns_to_timespec64(restart_block->nanosleep.expires);
  1211. return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
  1212. }
  1213. #define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED)
  1214. #define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED)
  1215. static int process_cpu_clock_getres(const clockid_t which_clock,
  1216. struct timespec64 *tp)
  1217. {
  1218. return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
  1219. }
  1220. static int process_cpu_clock_get(const clockid_t which_clock,
  1221. struct timespec64 *tp)
  1222. {
  1223. return posix_cpu_clock_get(PROCESS_CLOCK, tp);
  1224. }
  1225. static int process_cpu_timer_create(struct k_itimer *timer)
  1226. {
  1227. timer->it_clock = PROCESS_CLOCK;
  1228. return posix_cpu_timer_create(timer);
  1229. }
  1230. static int process_cpu_nsleep(const clockid_t which_clock, int flags,
  1231. const struct timespec64 *rqtp)
  1232. {
  1233. return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
  1234. }
  1235. static int thread_cpu_clock_getres(const clockid_t which_clock,
  1236. struct timespec64 *tp)
  1237. {
  1238. return posix_cpu_clock_getres(THREAD_CLOCK, tp);
  1239. }
  1240. static int thread_cpu_clock_get(const clockid_t which_clock,
  1241. struct timespec64 *tp)
  1242. {
  1243. return posix_cpu_clock_get(THREAD_CLOCK, tp);
  1244. }
  1245. static int thread_cpu_timer_create(struct k_itimer *timer)
  1246. {
  1247. timer->it_clock = THREAD_CLOCK;
  1248. return posix_cpu_timer_create(timer);
  1249. }
  1250. const struct k_clock clock_posix_cpu = {
  1251. .clock_getres = posix_cpu_clock_getres,
  1252. .clock_set = posix_cpu_clock_set,
  1253. .clock_get = posix_cpu_clock_get,
  1254. .timer_create = posix_cpu_timer_create,
  1255. .nsleep = posix_cpu_nsleep,
  1256. .timer_set = posix_cpu_timer_set,
  1257. .timer_del = posix_cpu_timer_del,
  1258. .timer_get = posix_cpu_timer_get,
  1259. .timer_rearm = posix_cpu_timer_rearm,
  1260. };
  1261. const struct k_clock clock_process = {
  1262. .clock_getres = process_cpu_clock_getres,
  1263. .clock_get = process_cpu_clock_get,
  1264. .timer_create = process_cpu_timer_create,
  1265. .nsleep = process_cpu_nsleep,
  1266. };
  1267. const struct k_clock clock_thread = {
  1268. .clock_getres = thread_cpu_clock_getres,
  1269. .clock_get = thread_cpu_clock_get,
  1270. .timer_create = thread_cpu_timer_create,
  1271. };