clock.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458
  1. /*
  2. * sched_clock() for unstable CPU clocks
  3. *
  4. * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
  5. *
  6. * Updates and enhancements:
  7. * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
  8. *
  9. * Based on code by:
  10. * Ingo Molnar <mingo@redhat.com>
  11. * Guillaume Chazarain <guichaz@gmail.com>
  12. *
  13. *
  14. * What this file implements:
  15. *
  16. * cpu_clock(i) provides a fast (execution time) high resolution
  17. * clock with bounded drift between CPUs. The value of cpu_clock(i)
  18. * is monotonic for constant i. The timestamp returned is in nanoseconds.
  19. *
  20. * ######################### BIG FAT WARNING ##########################
  21. * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
  22. * # go backwards !! #
  23. * ####################################################################
  24. *
  25. * There is no strict promise about the base, although it tends to start
  26. * at 0 on boot (but people really shouldn't rely on that).
  27. *
  28. * cpu_clock(i) -- can be used from any context, including NMI.
  29. * local_clock() -- is cpu_clock() on the current CPU.
  30. *
  31. * sched_clock_cpu(i)
  32. *
  33. * How it is implemented:
  34. *
  35. * The implementation either uses sched_clock() when
  36. * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
  37. * sched_clock() is assumed to provide these properties (mostly it means
  38. * the architecture provides a globally synchronized highres time source).
  39. *
  40. * Otherwise it tries to create a semi stable clock from a mixture of other
  41. * clocks, including:
  42. *
  43. * - GTOD (clock monotomic)
  44. * - sched_clock()
  45. * - explicit idle events
  46. *
  47. * We use GTOD as base and use sched_clock() deltas to improve resolution. The
  48. * deltas are filtered to provide monotonicity and keeping it within an
  49. * expected window.
  50. *
  51. * Furthermore, explicit sleep and wakeup hooks allow us to account for time
  52. * that is otherwise invisible (TSC gets stopped).
  53. *
  54. */
  55. #include "sched.h"
  56. /*
  57. * Scheduler clock - returns current time in nanosec units.
  58. * This is default implementation.
  59. * Architectures and sub-architectures can override this.
  60. */
  61. unsigned long long __weak sched_clock(void)
  62. {
  63. return (unsigned long long)(jiffies - INITIAL_JIFFIES)
  64. * (NSEC_PER_SEC / HZ);
  65. }
  66. EXPORT_SYMBOL_GPL(sched_clock);
  67. __read_mostly int sched_clock_running;
  68. void sched_clock_init(void)
  69. {
  70. sched_clock_running = 1;
  71. }
  72. #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  73. /*
  74. * We must start with !__sched_clock_stable because the unstable -> stable
  75. * transition is accurate, while the stable -> unstable transition is not.
  76. *
  77. * Similarly we start with __sched_clock_stable_early, thereby assuming we
  78. * will become stable, such that there's only a single 1 -> 0 transition.
  79. */
  80. static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
  81. static int __sched_clock_stable_early = 1;
  82. /*
  83. * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
  84. */
  85. __read_mostly u64 __sched_clock_offset;
  86. static __read_mostly u64 __gtod_offset;
  87. struct sched_clock_data {
  88. u64 tick_raw;
  89. u64 tick_gtod;
  90. u64 clock;
  91. };
  92. static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
  93. static inline struct sched_clock_data *this_scd(void)
  94. {
  95. return this_cpu_ptr(&sched_clock_data);
  96. }
  97. static inline struct sched_clock_data *cpu_sdc(int cpu)
  98. {
  99. return &per_cpu(sched_clock_data, cpu);
  100. }
  101. int sched_clock_stable(void)
  102. {
  103. return static_branch_likely(&__sched_clock_stable);
  104. }
  105. static void __scd_stamp(struct sched_clock_data *scd)
  106. {
  107. scd->tick_gtod = ktime_get_ns();
  108. scd->tick_raw = sched_clock();
  109. }
  110. static void __set_sched_clock_stable(void)
  111. {
  112. struct sched_clock_data *scd;
  113. /*
  114. * Since we're still unstable and the tick is already running, we have
  115. * to disable IRQs in order to get a consistent scd->tick* reading.
  116. */
  117. local_irq_disable();
  118. scd = this_scd();
  119. /*
  120. * Attempt to make the (initial) unstable->stable transition continuous.
  121. */
  122. __sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
  123. local_irq_enable();
  124. printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
  125. scd->tick_gtod, __gtod_offset,
  126. scd->tick_raw, __sched_clock_offset);
  127. static_branch_enable(&__sched_clock_stable);
  128. tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
  129. }
  130. /*
  131. * If we ever get here, we're screwed, because we found out -- typically after
  132. * the fact -- that TSC wasn't good. This means all our clocksources (including
  133. * ktime) could have reported wrong values.
  134. *
  135. * What we do here is an attempt to fix up and continue sort of where we left
  136. * off in a coherent manner.
  137. *
  138. * The only way to fully avoid random clock jumps is to boot with:
  139. * "tsc=unstable".
  140. */
  141. static void __sched_clock_work(struct work_struct *work)
  142. {
  143. struct sched_clock_data *scd;
  144. int cpu;
  145. /* take a current timestamp and set 'now' */
  146. preempt_disable();
  147. scd = this_scd();
  148. __scd_stamp(scd);
  149. scd->clock = scd->tick_gtod + __gtod_offset;
  150. preempt_enable();
  151. /* clone to all CPUs */
  152. for_each_possible_cpu(cpu)
  153. per_cpu(sched_clock_data, cpu) = *scd;
  154. printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n");
  155. printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
  156. scd->tick_gtod, __gtod_offset,
  157. scd->tick_raw, __sched_clock_offset);
  158. static_branch_disable(&__sched_clock_stable);
  159. }
  160. static DECLARE_WORK(sched_clock_work, __sched_clock_work);
  161. static void __clear_sched_clock_stable(void)
  162. {
  163. if (!sched_clock_stable())
  164. return;
  165. tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
  166. schedule_work(&sched_clock_work);
  167. }
  168. void clear_sched_clock_stable(void)
  169. {
  170. __sched_clock_stable_early = 0;
  171. smp_mb(); /* matches sched_clock_init_late() */
  172. if (sched_clock_running == 2)
  173. __clear_sched_clock_stable();
  174. }
  175. /*
  176. * We run this as late_initcall() such that it runs after all built-in drivers,
  177. * notably: acpi_processor and intel_idle, which can mark the TSC as unstable.
  178. */
  179. static int __init sched_clock_init_late(void)
  180. {
  181. sched_clock_running = 2;
  182. /*
  183. * Ensure that it is impossible to not do a static_key update.
  184. *
  185. * Either {set,clear}_sched_clock_stable() must see sched_clock_running
  186. * and do the update, or we must see their __sched_clock_stable_early
  187. * and do the update, or both.
  188. */
  189. smp_mb(); /* matches {set,clear}_sched_clock_stable() */
  190. if (__sched_clock_stable_early)
  191. __set_sched_clock_stable();
  192. return 0;
  193. }
  194. late_initcall(sched_clock_init_late);
  195. /*
  196. * min, max except they take wrapping into account
  197. */
  198. static inline u64 wrap_min(u64 x, u64 y)
  199. {
  200. return (s64)(x - y) < 0 ? x : y;
  201. }
  202. static inline u64 wrap_max(u64 x, u64 y)
  203. {
  204. return (s64)(x - y) > 0 ? x : y;
  205. }
  206. /*
  207. * update the percpu scd from the raw @now value
  208. *
  209. * - filter out backward motion
  210. * - use the GTOD tick value to create a window to filter crazy TSC values
  211. */
  212. static u64 sched_clock_local(struct sched_clock_data *scd)
  213. {
  214. u64 now, clock, old_clock, min_clock, max_clock, gtod;
  215. s64 delta;
  216. again:
  217. now = sched_clock();
  218. delta = now - scd->tick_raw;
  219. if (unlikely(delta < 0))
  220. delta = 0;
  221. old_clock = scd->clock;
  222. /*
  223. * scd->clock = clamp(scd->tick_gtod + delta,
  224. * max(scd->tick_gtod, scd->clock),
  225. * scd->tick_gtod + TICK_NSEC);
  226. */
  227. gtod = scd->tick_gtod + __gtod_offset;
  228. clock = gtod + delta;
  229. min_clock = wrap_max(gtod, old_clock);
  230. max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
  231. clock = wrap_max(clock, min_clock);
  232. clock = wrap_min(clock, max_clock);
  233. if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
  234. goto again;
  235. return clock;
  236. }
  237. static u64 sched_clock_remote(struct sched_clock_data *scd)
  238. {
  239. struct sched_clock_data *my_scd = this_scd();
  240. u64 this_clock, remote_clock;
  241. u64 *ptr, old_val, val;
  242. #if BITS_PER_LONG != 64
  243. again:
  244. /*
  245. * Careful here: The local and the remote clock values need to
  246. * be read out atomic as we need to compare the values and
  247. * then update either the local or the remote side. So the
  248. * cmpxchg64 below only protects one readout.
  249. *
  250. * We must reread via sched_clock_local() in the retry case on
  251. * 32-bit kernels as an NMI could use sched_clock_local() via the
  252. * tracer and hit between the readout of
  253. * the low 32-bit and the high 32-bit portion.
  254. */
  255. this_clock = sched_clock_local(my_scd);
  256. /*
  257. * We must enforce atomic readout on 32-bit, otherwise the
  258. * update on the remote CPU can hit inbetween the readout of
  259. * the low 32-bit and the high 32-bit portion.
  260. */
  261. remote_clock = cmpxchg64(&scd->clock, 0, 0);
  262. #else
  263. /*
  264. * On 64-bit kernels the read of [my]scd->clock is atomic versus the
  265. * update, so we can avoid the above 32-bit dance.
  266. */
  267. sched_clock_local(my_scd);
  268. again:
  269. this_clock = my_scd->clock;
  270. remote_clock = scd->clock;
  271. #endif
  272. /*
  273. * Use the opportunity that we have both locks
  274. * taken to couple the two clocks: we take the
  275. * larger time as the latest time for both
  276. * runqueues. (this creates monotonic movement)
  277. */
  278. if (likely((s64)(remote_clock - this_clock) < 0)) {
  279. ptr = &scd->clock;
  280. old_val = remote_clock;
  281. val = this_clock;
  282. } else {
  283. /*
  284. * Should be rare, but possible:
  285. */
  286. ptr = &my_scd->clock;
  287. old_val = this_clock;
  288. val = remote_clock;
  289. }
  290. if (cmpxchg64(ptr, old_val, val) != old_val)
  291. goto again;
  292. return val;
  293. }
  294. /*
  295. * Similar to cpu_clock(), but requires local IRQs to be disabled.
  296. *
  297. * See cpu_clock().
  298. */
  299. u64 sched_clock_cpu(int cpu)
  300. {
  301. struct sched_clock_data *scd;
  302. u64 clock;
  303. if (sched_clock_stable())
  304. return sched_clock() + __sched_clock_offset;
  305. if (unlikely(!sched_clock_running))
  306. return 0ull;
  307. preempt_disable_notrace();
  308. scd = cpu_sdc(cpu);
  309. if (cpu != smp_processor_id())
  310. clock = sched_clock_remote(scd);
  311. else
  312. clock = sched_clock_local(scd);
  313. preempt_enable_notrace();
  314. return clock;
  315. }
  316. EXPORT_SYMBOL_GPL(sched_clock_cpu);
  317. void sched_clock_tick(void)
  318. {
  319. struct sched_clock_data *scd;
  320. if (sched_clock_stable())
  321. return;
  322. if (unlikely(!sched_clock_running))
  323. return;
  324. lockdep_assert_irqs_disabled();
  325. scd = this_scd();
  326. __scd_stamp(scd);
  327. sched_clock_local(scd);
  328. }
  329. void sched_clock_tick_stable(void)
  330. {
  331. u64 gtod, clock;
  332. if (!sched_clock_stable())
  333. return;
  334. /*
  335. * Called under watchdog_lock.
  336. *
  337. * The watchdog just found this TSC to (still) be stable, so now is a
  338. * good moment to update our __gtod_offset. Because once we find the
  339. * TSC to be unstable, any computation will be computing crap.
  340. */
  341. local_irq_disable();
  342. gtod = ktime_get_ns();
  343. clock = sched_clock();
  344. __gtod_offset = (clock + __sched_clock_offset) - gtod;
  345. local_irq_enable();
  346. }
  347. /*
  348. * We are going deep-idle (irqs are disabled):
  349. */
  350. void sched_clock_idle_sleep_event(void)
  351. {
  352. sched_clock_cpu(smp_processor_id());
  353. }
  354. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  355. /*
  356. * We just idled; resync with ktime.
  357. */
  358. void sched_clock_idle_wakeup_event(void)
  359. {
  360. unsigned long flags;
  361. if (sched_clock_stable())
  362. return;
  363. if (unlikely(timekeeping_suspended))
  364. return;
  365. local_irq_save(flags);
  366. sched_clock_tick();
  367. local_irq_restore(flags);
  368. }
  369. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  370. #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
  371. u64 sched_clock_cpu(int cpu)
  372. {
  373. if (unlikely(!sched_clock_running))
  374. return 0;
  375. return sched_clock();
  376. }
  377. #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
  378. /*
  379. * Running clock - returns the time that has elapsed while a guest has been
  380. * running.
  381. * On a guest this value should be local_clock minus the time the guest was
  382. * suspended by the hypervisor (for any reason).
  383. * On bare metal this function should return the same as local_clock.
  384. * Architectures and sub-architectures can override this.
  385. */
  386. u64 __weak running_clock(void)
  387. {
  388. return local_clock();
  389. }