ipv6.h 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112
  1. /*
  2. * Linux INET6 implementation
  3. *
  4. * Authors:
  5. * Pedro Roque <roque@di.fc.ul.pt>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #ifndef _NET_IPV6_H
  13. #define _NET_IPV6_H
  14. #include <linux/ipv6.h>
  15. #include <linux/hardirq.h>
  16. #include <linux/jhash.h>
  17. #include <linux/refcount.h>
  18. #include <net/if_inet6.h>
  19. #include <net/ndisc.h>
  20. #include <net/flow.h>
  21. #include <net/flow_dissector.h>
  22. #include <net/snmp.h>
  23. #include <net/netns/hash.h>
  24. #define SIN6_LEN_RFC2133 24
  25. #define IPV6_MAXPLEN 65535
  26. /*
  27. * NextHeader field of IPv6 header
  28. */
  29. #define NEXTHDR_HOP 0 /* Hop-by-hop option header. */
  30. #define NEXTHDR_TCP 6 /* TCP segment. */
  31. #define NEXTHDR_UDP 17 /* UDP message. */
  32. #define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */
  33. #define NEXTHDR_ROUTING 43 /* Routing header. */
  34. #define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */
  35. #define NEXTHDR_GRE 47 /* GRE header. */
  36. #define NEXTHDR_ESP 50 /* Encapsulating security payload. */
  37. #define NEXTHDR_AUTH 51 /* Authentication header. */
  38. #define NEXTHDR_ICMP 58 /* ICMP for IPv6. */
  39. #define NEXTHDR_NONE 59 /* No next header */
  40. #define NEXTHDR_DEST 60 /* Destination options header. */
  41. #define NEXTHDR_SCTP 132 /* SCTP message. */
  42. #define NEXTHDR_MOBILITY 135 /* Mobility header. */
  43. #define NEXTHDR_MAX 255
  44. #define IPV6_DEFAULT_HOPLIMIT 64
  45. #define IPV6_DEFAULT_MCASTHOPS 1
  46. /* Limits on Hop-by-Hop and Destination options.
  47. *
  48. * Per RFC8200 there is no limit on the maximum number or lengths of options in
  49. * Hop-by-Hop or Destination options other then the packet must fit in an MTU.
  50. * We allow configurable limits in order to mitigate potential denial of
  51. * service attacks.
  52. *
  53. * There are three limits that may be set:
  54. * - Limit the number of options in a Hop-by-Hop or Destination options
  55. * extension header
  56. * - Limit the byte length of a Hop-by-Hop or Destination options extension
  57. * header
  58. * - Disallow unknown options
  59. *
  60. * The limits are expressed in corresponding sysctls:
  61. *
  62. * ipv6.sysctl.max_dst_opts_cnt
  63. * ipv6.sysctl.max_hbh_opts_cnt
  64. * ipv6.sysctl.max_dst_opts_len
  65. * ipv6.sysctl.max_hbh_opts_len
  66. *
  67. * max_*_opts_cnt is the number of TLVs that are allowed for Destination
  68. * options or Hop-by-Hop options. If the number is less than zero then unknown
  69. * TLVs are disallowed and the number of known options that are allowed is the
  70. * absolute value. Setting the value to INT_MAX indicates no limit.
  71. *
  72. * max_*_opts_len is the length limit in bytes of a Destination or
  73. * Hop-by-Hop options extension header. Setting the value to INT_MAX
  74. * indicates no length limit.
  75. *
  76. * If a limit is exceeded when processing an extension header the packet is
  77. * silently discarded.
  78. */
  79. /* Default limits for Hop-by-Hop and Destination options */
  80. #define IP6_DEFAULT_MAX_DST_OPTS_CNT 8
  81. #define IP6_DEFAULT_MAX_HBH_OPTS_CNT 8
  82. #define IP6_DEFAULT_MAX_DST_OPTS_LEN INT_MAX /* No limit */
  83. #define IP6_DEFAULT_MAX_HBH_OPTS_LEN INT_MAX /* No limit */
  84. /*
  85. * Addr type
  86. *
  87. * type - unicast | multicast
  88. * scope - local | site | global
  89. * v4 - compat
  90. * v4mapped
  91. * any
  92. * loopback
  93. */
  94. #define IPV6_ADDR_ANY 0x0000U
  95. #define IPV6_ADDR_UNICAST 0x0001U
  96. #define IPV6_ADDR_MULTICAST 0x0002U
  97. #define IPV6_ADDR_LOOPBACK 0x0010U
  98. #define IPV6_ADDR_LINKLOCAL 0x0020U
  99. #define IPV6_ADDR_SITELOCAL 0x0040U
  100. #define IPV6_ADDR_COMPATv4 0x0080U
  101. #define IPV6_ADDR_SCOPE_MASK 0x00f0U
  102. #define IPV6_ADDR_MAPPED 0x1000U
  103. /*
  104. * Addr scopes
  105. */
  106. #define IPV6_ADDR_MC_SCOPE(a) \
  107. ((a)->s6_addr[1] & 0x0f) /* nonstandard */
  108. #define __IPV6_ADDR_SCOPE_INVALID -1
  109. #define IPV6_ADDR_SCOPE_NODELOCAL 0x01
  110. #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02
  111. #define IPV6_ADDR_SCOPE_SITELOCAL 0x05
  112. #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08
  113. #define IPV6_ADDR_SCOPE_GLOBAL 0x0e
  114. /*
  115. * Addr flags
  116. */
  117. #define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \
  118. ((a)->s6_addr[1] & 0x10)
  119. #define IPV6_ADDR_MC_FLAG_PREFIX(a) \
  120. ((a)->s6_addr[1] & 0x20)
  121. #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \
  122. ((a)->s6_addr[1] & 0x40)
  123. /*
  124. * fragmentation header
  125. */
  126. struct frag_hdr {
  127. __u8 nexthdr;
  128. __u8 reserved;
  129. __be16 frag_off;
  130. __be32 identification;
  131. };
  132. #define IP6_MF 0x0001
  133. #define IP6_OFFSET 0xFFF8
  134. #define IP6_REPLY_MARK(net, mark) \
  135. ((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0)
  136. #include <net/sock.h>
  137. /* sysctls */
  138. extern int sysctl_mld_max_msf;
  139. extern int sysctl_mld_qrv;
  140. #define _DEVINC(net, statname, mod, idev, field) \
  141. ({ \
  142. struct inet6_dev *_idev = (idev); \
  143. if (likely(_idev != NULL)) \
  144. mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\
  145. mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\
  146. })
  147. /* per device counters are atomic_long_t */
  148. #define _DEVINCATOMIC(net, statname, mod, idev, field) \
  149. ({ \
  150. struct inet6_dev *_idev = (idev); \
  151. if (likely(_idev != NULL)) \
  152. SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
  153. mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\
  154. })
  155. /* per device and per net counters are atomic_long_t */
  156. #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \
  157. ({ \
  158. struct inet6_dev *_idev = (idev); \
  159. if (likely(_idev != NULL)) \
  160. SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
  161. SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\
  162. })
  163. #define _DEVADD(net, statname, mod, idev, field, val) \
  164. ({ \
  165. struct inet6_dev *_idev = (idev); \
  166. if (likely(_idev != NULL)) \
  167. mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \
  168. mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\
  169. })
  170. #define _DEVUPD(net, statname, mod, idev, field, val) \
  171. ({ \
  172. struct inet6_dev *_idev = (idev); \
  173. if (likely(_idev != NULL)) \
  174. mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \
  175. mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\
  176. })
  177. /* MIBs */
  178. #define IP6_INC_STATS(net, idev,field) \
  179. _DEVINC(net, ipv6, , idev, field)
  180. #define __IP6_INC_STATS(net, idev,field) \
  181. _DEVINC(net, ipv6, __, idev, field)
  182. #define IP6_ADD_STATS(net, idev,field,val) \
  183. _DEVADD(net, ipv6, , idev, field, val)
  184. #define __IP6_ADD_STATS(net, idev,field,val) \
  185. _DEVADD(net, ipv6, __, idev, field, val)
  186. #define IP6_UPD_PO_STATS(net, idev,field,val) \
  187. _DEVUPD(net, ipv6, , idev, field, val)
  188. #define __IP6_UPD_PO_STATS(net, idev,field,val) \
  189. _DEVUPD(net, ipv6, __, idev, field, val)
  190. #define ICMP6_INC_STATS(net, idev, field) \
  191. _DEVINCATOMIC(net, icmpv6, , idev, field)
  192. #define __ICMP6_INC_STATS(net, idev, field) \
  193. _DEVINCATOMIC(net, icmpv6, __, idev, field)
  194. #define ICMP6MSGOUT_INC_STATS(net, idev, field) \
  195. _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
  196. #define ICMP6MSGIN_INC_STATS(net, idev, field) \
  197. _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field)
  198. struct ip6_ra_chain {
  199. struct ip6_ra_chain *next;
  200. struct sock *sk;
  201. int sel;
  202. void (*destructor)(struct sock *);
  203. };
  204. extern struct ip6_ra_chain *ip6_ra_chain;
  205. extern rwlock_t ip6_ra_lock;
  206. /*
  207. This structure is prepared by protocol, when parsing
  208. ancillary data and passed to IPv6.
  209. */
  210. struct ipv6_txoptions {
  211. refcount_t refcnt;
  212. /* Length of this structure */
  213. int tot_len;
  214. /* length of extension headers */
  215. __u16 opt_flen; /* after fragment hdr */
  216. __u16 opt_nflen; /* before fragment hdr */
  217. struct ipv6_opt_hdr *hopopt;
  218. struct ipv6_opt_hdr *dst0opt;
  219. struct ipv6_rt_hdr *srcrt; /* Routing Header */
  220. struct ipv6_opt_hdr *dst1opt;
  221. struct rcu_head rcu;
  222. /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */
  223. };
  224. struct ip6_flowlabel {
  225. struct ip6_flowlabel __rcu *next;
  226. __be32 label;
  227. atomic_t users;
  228. struct in6_addr dst;
  229. struct ipv6_txoptions *opt;
  230. unsigned long linger;
  231. struct rcu_head rcu;
  232. u8 share;
  233. union {
  234. struct pid *pid;
  235. kuid_t uid;
  236. } owner;
  237. unsigned long lastuse;
  238. unsigned long expires;
  239. struct net *fl_net;
  240. };
  241. #define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF)
  242. #define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF)
  243. #define IPV6_FLOWLABEL_STATELESS_FLAG cpu_to_be32(0x00080000)
  244. #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK)
  245. #define IPV6_TCLASS_SHIFT 20
  246. struct ipv6_fl_socklist {
  247. struct ipv6_fl_socklist __rcu *next;
  248. struct ip6_flowlabel *fl;
  249. struct rcu_head rcu;
  250. };
  251. struct ipcm6_cookie {
  252. __s16 hlimit;
  253. __s16 tclass;
  254. __s8 dontfrag;
  255. struct ipv6_txoptions *opt;
  256. __u16 gso_size;
  257. };
  258. static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np)
  259. {
  260. struct ipv6_txoptions *opt;
  261. rcu_read_lock();
  262. opt = rcu_dereference(np->opt);
  263. if (opt) {
  264. if (!refcount_inc_not_zero(&opt->refcnt))
  265. opt = NULL;
  266. else
  267. opt = rcu_pointer_handoff(opt);
  268. }
  269. rcu_read_unlock();
  270. return opt;
  271. }
  272. static inline void txopt_put(struct ipv6_txoptions *opt)
  273. {
  274. if (opt && refcount_dec_and_test(&opt->refcnt))
  275. kfree_rcu(opt, rcu);
  276. }
  277. struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk, __be32 label);
  278. struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space,
  279. struct ip6_flowlabel *fl,
  280. struct ipv6_txoptions *fopt);
  281. void fl6_free_socklist(struct sock *sk);
  282. int ipv6_flowlabel_opt(struct sock *sk, char __user *optval, int optlen);
  283. int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq,
  284. int flags);
  285. int ip6_flowlabel_init(void);
  286. void ip6_flowlabel_cleanup(void);
  287. bool ip6_autoflowlabel(struct net *net, const struct ipv6_pinfo *np);
  288. static inline void fl6_sock_release(struct ip6_flowlabel *fl)
  289. {
  290. if (fl)
  291. atomic_dec(&fl->users);
  292. }
  293. void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info);
  294. void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6,
  295. struct icmp6hdr *thdr, int len);
  296. int ip6_ra_control(struct sock *sk, int sel);
  297. int ipv6_parse_hopopts(struct sk_buff *skb);
  298. struct ipv6_txoptions *ipv6_dup_options(struct sock *sk,
  299. struct ipv6_txoptions *opt);
  300. struct ipv6_txoptions *ipv6_renew_options(struct sock *sk,
  301. struct ipv6_txoptions *opt,
  302. int newtype,
  303. struct ipv6_opt_hdr __user *newopt,
  304. int newoptlen);
  305. struct ipv6_txoptions *
  306. ipv6_renew_options_kern(struct sock *sk,
  307. struct ipv6_txoptions *opt,
  308. int newtype,
  309. struct ipv6_opt_hdr *newopt,
  310. int newoptlen);
  311. struct ipv6_txoptions *ipv6_fixup_options(struct ipv6_txoptions *opt_space,
  312. struct ipv6_txoptions *opt);
  313. bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb,
  314. const struct inet6_skb_parm *opt);
  315. struct ipv6_txoptions *ipv6_update_options(struct sock *sk,
  316. struct ipv6_txoptions *opt);
  317. static inline bool ipv6_accept_ra(struct inet6_dev *idev)
  318. {
  319. /* If forwarding is enabled, RA are not accepted unless the special
  320. * hybrid mode (accept_ra=2) is enabled.
  321. */
  322. return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 :
  323. idev->cnf.accept_ra;
  324. }
  325. #define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */
  326. #define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */
  327. #define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */
  328. int __ipv6_addr_type(const struct in6_addr *addr);
  329. static inline int ipv6_addr_type(const struct in6_addr *addr)
  330. {
  331. return __ipv6_addr_type(addr) & 0xffff;
  332. }
  333. static inline int ipv6_addr_scope(const struct in6_addr *addr)
  334. {
  335. return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK;
  336. }
  337. static inline int __ipv6_addr_src_scope(int type)
  338. {
  339. return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16);
  340. }
  341. static inline int ipv6_addr_src_scope(const struct in6_addr *addr)
  342. {
  343. return __ipv6_addr_src_scope(__ipv6_addr_type(addr));
  344. }
  345. static inline bool __ipv6_addr_needs_scope_id(int type)
  346. {
  347. return type & IPV6_ADDR_LINKLOCAL ||
  348. (type & IPV6_ADDR_MULTICAST &&
  349. (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)));
  350. }
  351. static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface)
  352. {
  353. return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0;
  354. }
  355. static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2)
  356. {
  357. return memcmp(a1, a2, sizeof(struct in6_addr));
  358. }
  359. static inline bool
  360. ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m,
  361. const struct in6_addr *a2)
  362. {
  363. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  364. const unsigned long *ul1 = (const unsigned long *)a1;
  365. const unsigned long *ulm = (const unsigned long *)m;
  366. const unsigned long *ul2 = (const unsigned long *)a2;
  367. return !!(((ul1[0] ^ ul2[0]) & ulm[0]) |
  368. ((ul1[1] ^ ul2[1]) & ulm[1]));
  369. #else
  370. return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) |
  371. ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) |
  372. ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) |
  373. ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3]));
  374. #endif
  375. }
  376. static inline void ipv6_addr_prefix(struct in6_addr *pfx,
  377. const struct in6_addr *addr,
  378. int plen)
  379. {
  380. /* caller must guarantee 0 <= plen <= 128 */
  381. int o = plen >> 3,
  382. b = plen & 0x7;
  383. memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr));
  384. memcpy(pfx->s6_addr, addr, o);
  385. if (b != 0)
  386. pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b);
  387. }
  388. static inline void ipv6_addr_prefix_copy(struct in6_addr *addr,
  389. const struct in6_addr *pfx,
  390. int plen)
  391. {
  392. /* caller must guarantee 0 <= plen <= 128 */
  393. int o = plen >> 3,
  394. b = plen & 0x7;
  395. memcpy(addr->s6_addr, pfx, o);
  396. if (b != 0) {
  397. addr->s6_addr[o] &= ~(0xff00 >> b);
  398. addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b));
  399. }
  400. }
  401. static inline void __ipv6_addr_set_half(__be32 *addr,
  402. __be32 wh, __be32 wl)
  403. {
  404. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  405. #if defined(__BIG_ENDIAN)
  406. if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) {
  407. *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl));
  408. return;
  409. }
  410. #elif defined(__LITTLE_ENDIAN)
  411. if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) {
  412. *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh));
  413. return;
  414. }
  415. #endif
  416. #endif
  417. addr[0] = wh;
  418. addr[1] = wl;
  419. }
  420. static inline void ipv6_addr_set(struct in6_addr *addr,
  421. __be32 w1, __be32 w2,
  422. __be32 w3, __be32 w4)
  423. {
  424. __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2);
  425. __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4);
  426. }
  427. static inline bool ipv6_addr_equal(const struct in6_addr *a1,
  428. const struct in6_addr *a2)
  429. {
  430. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  431. const unsigned long *ul1 = (const unsigned long *)a1;
  432. const unsigned long *ul2 = (const unsigned long *)a2;
  433. return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL;
  434. #else
  435. return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
  436. (a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
  437. (a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
  438. (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0;
  439. #endif
  440. }
  441. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  442. static inline bool __ipv6_prefix_equal64_half(const __be64 *a1,
  443. const __be64 *a2,
  444. unsigned int len)
  445. {
  446. if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len))))
  447. return false;
  448. return true;
  449. }
  450. static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
  451. const struct in6_addr *addr2,
  452. unsigned int prefixlen)
  453. {
  454. const __be64 *a1 = (const __be64 *)addr1;
  455. const __be64 *a2 = (const __be64 *)addr2;
  456. if (prefixlen >= 64) {
  457. if (a1[0] ^ a2[0])
  458. return false;
  459. return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64);
  460. }
  461. return __ipv6_prefix_equal64_half(a1, a2, prefixlen);
  462. }
  463. #else
  464. static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
  465. const struct in6_addr *addr2,
  466. unsigned int prefixlen)
  467. {
  468. const __be32 *a1 = addr1->s6_addr32;
  469. const __be32 *a2 = addr2->s6_addr32;
  470. unsigned int pdw, pbi;
  471. /* check complete u32 in prefix */
  472. pdw = prefixlen >> 5;
  473. if (pdw && memcmp(a1, a2, pdw << 2))
  474. return false;
  475. /* check incomplete u32 in prefix */
  476. pbi = prefixlen & 0x1f;
  477. if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi))))
  478. return false;
  479. return true;
  480. }
  481. #endif
  482. struct inet_frag_queue;
  483. enum ip6_defrag_users {
  484. IP6_DEFRAG_LOCAL_DELIVER,
  485. IP6_DEFRAG_CONNTRACK_IN,
  486. __IP6_DEFRAG_CONNTRACK_IN = IP6_DEFRAG_CONNTRACK_IN + USHRT_MAX,
  487. IP6_DEFRAG_CONNTRACK_OUT,
  488. __IP6_DEFRAG_CONNTRACK_OUT = IP6_DEFRAG_CONNTRACK_OUT + USHRT_MAX,
  489. IP6_DEFRAG_CONNTRACK_BRIDGE_IN,
  490. __IP6_DEFRAG_CONNTRACK_BRIDGE_IN = IP6_DEFRAG_CONNTRACK_BRIDGE_IN + USHRT_MAX,
  491. };
  492. void ip6_frag_init(struct inet_frag_queue *q, const void *a);
  493. extern const struct rhashtable_params ip6_rhash_params;
  494. /*
  495. * Equivalent of ipv4 struct ip
  496. */
  497. struct frag_queue {
  498. struct inet_frag_queue q;
  499. int iif;
  500. __u16 nhoffset;
  501. u8 ecn;
  502. };
  503. void ip6_expire_frag_queue(struct net *net, struct frag_queue *fq);
  504. static inline bool ipv6_addr_any(const struct in6_addr *a)
  505. {
  506. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  507. const unsigned long *ul = (const unsigned long *)a;
  508. return (ul[0] | ul[1]) == 0UL;
  509. #else
  510. return (a->s6_addr32[0] | a->s6_addr32[1] |
  511. a->s6_addr32[2] | a->s6_addr32[3]) == 0;
  512. #endif
  513. }
  514. static inline u32 ipv6_addr_hash(const struct in6_addr *a)
  515. {
  516. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  517. const unsigned long *ul = (const unsigned long *)a;
  518. unsigned long x = ul[0] ^ ul[1];
  519. return (u32)(x ^ (x >> 32));
  520. #else
  521. return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^
  522. a->s6_addr32[2] ^ a->s6_addr32[3]);
  523. #endif
  524. }
  525. /* more secured version of ipv6_addr_hash() */
  526. static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval)
  527. {
  528. u32 v = (__force u32)a->s6_addr32[0] ^ (__force u32)a->s6_addr32[1];
  529. return jhash_3words(v,
  530. (__force u32)a->s6_addr32[2],
  531. (__force u32)a->s6_addr32[3],
  532. initval);
  533. }
  534. static inline bool ipv6_addr_loopback(const struct in6_addr *a)
  535. {
  536. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  537. const __be64 *be = (const __be64 *)a;
  538. return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL;
  539. #else
  540. return (a->s6_addr32[0] | a->s6_addr32[1] |
  541. a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0;
  542. #endif
  543. }
  544. /*
  545. * Note that we must __force cast these to unsigned long to make sparse happy,
  546. * since all of the endian-annotated types are fixed size regardless of arch.
  547. */
  548. static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
  549. {
  550. return (
  551. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  552. *(unsigned long *)a |
  553. #else
  554. (__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
  555. #endif
  556. (__force unsigned long)(a->s6_addr32[2] ^
  557. cpu_to_be32(0x0000ffff))) == 0UL;
  558. }
  559. static inline u32 ipv6_portaddr_hash(const struct net *net,
  560. const struct in6_addr *addr6,
  561. unsigned int port)
  562. {
  563. unsigned int hash, mix = net_hash_mix(net);
  564. if (ipv6_addr_any(addr6))
  565. hash = jhash_1word(0, mix);
  566. else if (ipv6_addr_v4mapped(addr6))
  567. hash = jhash_1word((__force u32)addr6->s6_addr32[3], mix);
  568. else
  569. hash = jhash2((__force u32 *)addr6->s6_addr32, 4, mix);
  570. return hash ^ port;
  571. }
  572. /*
  573. * Check for a RFC 4843 ORCHID address
  574. * (Overlay Routable Cryptographic Hash Identifiers)
  575. */
  576. static inline bool ipv6_addr_orchid(const struct in6_addr *a)
  577. {
  578. return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010);
  579. }
  580. static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr)
  581. {
  582. return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000);
  583. }
  584. static inline void ipv6_addr_set_v4mapped(const __be32 addr,
  585. struct in6_addr *v4mapped)
  586. {
  587. ipv6_addr_set(v4mapped,
  588. 0, 0,
  589. htonl(0x0000FFFF),
  590. addr);
  591. }
  592. /*
  593. * find the first different bit between two addresses
  594. * length of address must be a multiple of 32bits
  595. */
  596. static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen)
  597. {
  598. const __be32 *a1 = token1, *a2 = token2;
  599. int i;
  600. addrlen >>= 2;
  601. for (i = 0; i < addrlen; i++) {
  602. __be32 xb = a1[i] ^ a2[i];
  603. if (xb)
  604. return i * 32 + 31 - __fls(ntohl(xb));
  605. }
  606. /*
  607. * we should *never* get to this point since that
  608. * would mean the addrs are equal
  609. *
  610. * However, we do get to it 8) And exacly, when
  611. * addresses are equal 8)
  612. *
  613. * ip route add 1111::/128 via ...
  614. * ip route add 1111::/64 via ...
  615. * and we are here.
  616. *
  617. * Ideally, this function should stop comparison
  618. * at prefix length. It does not, but it is still OK,
  619. * if returned value is greater than prefix length.
  620. * --ANK (980803)
  621. */
  622. return addrlen << 5;
  623. }
  624. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  625. static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen)
  626. {
  627. const __be64 *a1 = token1, *a2 = token2;
  628. int i;
  629. addrlen >>= 3;
  630. for (i = 0; i < addrlen; i++) {
  631. __be64 xb = a1[i] ^ a2[i];
  632. if (xb)
  633. return i * 64 + 63 - __fls(be64_to_cpu(xb));
  634. }
  635. return addrlen << 6;
  636. }
  637. #endif
  638. static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen)
  639. {
  640. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  641. if (__builtin_constant_p(addrlen) && !(addrlen & 7))
  642. return __ipv6_addr_diff64(token1, token2, addrlen);
  643. #endif
  644. return __ipv6_addr_diff32(token1, token2, addrlen);
  645. }
  646. static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2)
  647. {
  648. return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr));
  649. }
  650. __be32 ipv6_select_ident(struct net *net,
  651. const struct in6_addr *daddr,
  652. const struct in6_addr *saddr);
  653. __be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb);
  654. int ip6_dst_hoplimit(struct dst_entry *dst);
  655. static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6,
  656. struct dst_entry *dst)
  657. {
  658. int hlimit;
  659. if (ipv6_addr_is_multicast(&fl6->daddr))
  660. hlimit = np->mcast_hops;
  661. else
  662. hlimit = np->hop_limit;
  663. if (hlimit < 0)
  664. hlimit = ip6_dst_hoplimit(dst);
  665. return hlimit;
  666. }
  667. /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store
  668. * Equivalent to : flow->v6addrs.src = iph->saddr;
  669. * flow->v6addrs.dst = iph->daddr;
  670. */
  671. static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow,
  672. const struct ipv6hdr *iph)
  673. {
  674. BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) !=
  675. offsetof(typeof(flow->addrs), v6addrs.src) +
  676. sizeof(flow->addrs.v6addrs.src));
  677. memcpy(&flow->addrs.v6addrs, &iph->saddr, sizeof(flow->addrs.v6addrs));
  678. flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  679. }
  680. #if IS_ENABLED(CONFIG_IPV6)
  681. /* Sysctl settings for net ipv6.auto_flowlabels */
  682. #define IP6_AUTO_FLOW_LABEL_OFF 0
  683. #define IP6_AUTO_FLOW_LABEL_OPTOUT 1
  684. #define IP6_AUTO_FLOW_LABEL_OPTIN 2
  685. #define IP6_AUTO_FLOW_LABEL_FORCED 3
  686. #define IP6_AUTO_FLOW_LABEL_MAX IP6_AUTO_FLOW_LABEL_FORCED
  687. #define IP6_DEFAULT_AUTO_FLOW_LABELS IP6_AUTO_FLOW_LABEL_OPTOUT
  688. static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
  689. __be32 flowlabel, bool autolabel,
  690. struct flowi6 *fl6)
  691. {
  692. u32 hash;
  693. /* @flowlabel may include more than a flow label, eg, the traffic class.
  694. * Here we want only the flow label value.
  695. */
  696. flowlabel &= IPV6_FLOWLABEL_MASK;
  697. if (flowlabel ||
  698. net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF ||
  699. (!autolabel &&
  700. net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED))
  701. return flowlabel;
  702. hash = skb_get_hash_flowi6(skb, fl6);
  703. /* Since this is being sent on the wire obfuscate hash a bit
  704. * to minimize possbility that any useful information to an
  705. * attacker is leaked. Only lower 20 bits are relevant.
  706. */
  707. rol32(hash, 16);
  708. flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK;
  709. if (net->ipv6.sysctl.flowlabel_state_ranges)
  710. flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG;
  711. return flowlabel;
  712. }
  713. static inline int ip6_default_np_autolabel(struct net *net)
  714. {
  715. switch (net->ipv6.sysctl.auto_flowlabels) {
  716. case IP6_AUTO_FLOW_LABEL_OFF:
  717. case IP6_AUTO_FLOW_LABEL_OPTIN:
  718. default:
  719. return 0;
  720. case IP6_AUTO_FLOW_LABEL_OPTOUT:
  721. case IP6_AUTO_FLOW_LABEL_FORCED:
  722. return 1;
  723. }
  724. }
  725. #else
  726. static inline void ip6_set_txhash(struct sock *sk) { }
  727. static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
  728. __be32 flowlabel, bool autolabel,
  729. struct flowi6 *fl6)
  730. {
  731. return flowlabel;
  732. }
  733. static inline int ip6_default_np_autolabel(struct net *net)
  734. {
  735. return 0;
  736. }
  737. #endif
  738. #if IS_ENABLED(CONFIG_IPV6)
  739. static inline int ip6_multipath_hash_policy(const struct net *net)
  740. {
  741. return net->ipv6.sysctl.multipath_hash_policy;
  742. }
  743. #else
  744. static inline int ip6_multipath_hash_policy(const struct net *net)
  745. {
  746. return 0;
  747. }
  748. #endif
  749. /*
  750. * Header manipulation
  751. */
  752. static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass,
  753. __be32 flowlabel)
  754. {
  755. *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel;
  756. }
  757. static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr)
  758. {
  759. return *(__be32 *)hdr & IPV6_FLOWINFO_MASK;
  760. }
  761. static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr)
  762. {
  763. return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK;
  764. }
  765. static inline u8 ip6_tclass(__be32 flowinfo)
  766. {
  767. return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT;
  768. }
  769. static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel)
  770. {
  771. return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel;
  772. }
  773. static inline __be32 flowi6_get_flowlabel(const struct flowi6 *fl6)
  774. {
  775. return fl6->flowlabel & IPV6_FLOWLABEL_MASK;
  776. }
  777. /*
  778. * Prototypes exported by ipv6
  779. */
  780. /*
  781. * rcv function (called from netdevice level)
  782. */
  783. int ipv6_rcv(struct sk_buff *skb, struct net_device *dev,
  784. struct packet_type *pt, struct net_device *orig_dev);
  785. int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb);
  786. /*
  787. * upper-layer output functions
  788. */
  789. int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6,
  790. __u32 mark, struct ipv6_txoptions *opt, int tclass);
  791. int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr);
  792. int ip6_append_data(struct sock *sk,
  793. int getfrag(void *from, char *to, int offset, int len,
  794. int odd, struct sk_buff *skb),
  795. void *from, int length, int transhdrlen,
  796. struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
  797. struct rt6_info *rt, unsigned int flags,
  798. const struct sockcm_cookie *sockc);
  799. int ip6_push_pending_frames(struct sock *sk);
  800. void ip6_flush_pending_frames(struct sock *sk);
  801. int ip6_send_skb(struct sk_buff *skb);
  802. struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue,
  803. struct inet_cork_full *cork,
  804. struct inet6_cork *v6_cork);
  805. struct sk_buff *ip6_make_skb(struct sock *sk,
  806. int getfrag(void *from, char *to, int offset,
  807. int len, int odd, struct sk_buff *skb),
  808. void *from, int length, int transhdrlen,
  809. struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
  810. struct rt6_info *rt, unsigned int flags,
  811. struct inet_cork_full *cork,
  812. const struct sockcm_cookie *sockc);
  813. static inline struct sk_buff *ip6_finish_skb(struct sock *sk)
  814. {
  815. return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork,
  816. &inet6_sk(sk)->cork);
  817. }
  818. int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst,
  819. struct flowi6 *fl6);
  820. struct dst_entry *ip6_dst_lookup_flow(const struct sock *sk, struct flowi6 *fl6,
  821. const struct in6_addr *final_dst);
  822. struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
  823. const struct in6_addr *final_dst,
  824. bool connected);
  825. struct dst_entry *ip6_blackhole_route(struct net *net,
  826. struct dst_entry *orig_dst);
  827. /*
  828. * skb processing functions
  829. */
  830. int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb);
  831. int ip6_forward(struct sk_buff *skb);
  832. int ip6_input(struct sk_buff *skb);
  833. int ip6_mc_input(struct sk_buff *skb);
  834. int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
  835. int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
  836. /*
  837. * Extension header (options) processing
  838. */
  839. void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
  840. u8 *proto, struct in6_addr **daddr_p,
  841. struct in6_addr *saddr);
  842. void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
  843. u8 *proto);
  844. int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp,
  845. __be16 *frag_offp);
  846. bool ipv6_ext_hdr(u8 nexthdr);
  847. enum {
  848. IP6_FH_F_FRAG = (1 << 0),
  849. IP6_FH_F_AUTH = (1 << 1),
  850. IP6_FH_F_SKIP_RH = (1 << 2),
  851. };
  852. /* find specified header and get offset to it */
  853. int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target,
  854. unsigned short *fragoff, int *fragflg);
  855. int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type);
  856. struct in6_addr *fl6_update_dst(struct flowi6 *fl6,
  857. const struct ipv6_txoptions *opt,
  858. struct in6_addr *orig);
  859. /*
  860. * socket options (ipv6_sockglue.c)
  861. */
  862. int ipv6_setsockopt(struct sock *sk, int level, int optname,
  863. char __user *optval, unsigned int optlen);
  864. int ipv6_getsockopt(struct sock *sk, int level, int optname,
  865. char __user *optval, int __user *optlen);
  866. int compat_ipv6_setsockopt(struct sock *sk, int level, int optname,
  867. char __user *optval, unsigned int optlen);
  868. int compat_ipv6_getsockopt(struct sock *sk, int level, int optname,
  869. char __user *optval, int __user *optlen);
  870. int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr,
  871. int addr_len);
  872. int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len);
  873. int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr,
  874. int addr_len);
  875. int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr);
  876. void ip6_datagram_release_cb(struct sock *sk);
  877. int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len,
  878. int *addr_len);
  879. int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len,
  880. int *addr_len);
  881. void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port,
  882. u32 info, u8 *payload);
  883. void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info);
  884. void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu);
  885. int inet6_release(struct socket *sock);
  886. int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len);
  887. int inet6_getname(struct socket *sock, struct sockaddr *uaddr,
  888. int peer);
  889. int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
  890. int inet6_hash_connect(struct inet_timewait_death_row *death_row,
  891. struct sock *sk);
  892. /*
  893. * reassembly.c
  894. */
  895. extern const struct proto_ops inet6_stream_ops;
  896. extern const struct proto_ops inet6_dgram_ops;
  897. extern const struct proto_ops inet6_sockraw_ops;
  898. struct group_source_req;
  899. struct group_filter;
  900. int ip6_mc_source(int add, int omode, struct sock *sk,
  901. struct group_source_req *pgsr);
  902. int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf);
  903. int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf,
  904. struct group_filter __user *optval, int __user *optlen);
  905. #ifdef CONFIG_PROC_FS
  906. int ac6_proc_init(struct net *net);
  907. void ac6_proc_exit(struct net *net);
  908. int raw6_proc_init(void);
  909. void raw6_proc_exit(void);
  910. int tcp6_proc_init(struct net *net);
  911. void tcp6_proc_exit(struct net *net);
  912. int udp6_proc_init(struct net *net);
  913. void udp6_proc_exit(struct net *net);
  914. int udplite6_proc_init(void);
  915. void udplite6_proc_exit(void);
  916. int ipv6_misc_proc_init(void);
  917. void ipv6_misc_proc_exit(void);
  918. int snmp6_register_dev(struct inet6_dev *idev);
  919. int snmp6_unregister_dev(struct inet6_dev *idev);
  920. #else
  921. static inline int ac6_proc_init(struct net *net) { return 0; }
  922. static inline void ac6_proc_exit(struct net *net) { }
  923. static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; }
  924. static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; }
  925. #endif
  926. #ifdef CONFIG_SYSCTL
  927. extern struct ctl_table ipv6_route_table_template[];
  928. struct ctl_table *ipv6_icmp_sysctl_init(struct net *net);
  929. struct ctl_table *ipv6_route_sysctl_init(struct net *net);
  930. int ipv6_sysctl_register(void);
  931. void ipv6_sysctl_unregister(void);
  932. #endif
  933. int ipv6_sock_mc_join(struct sock *sk, int ifindex,
  934. const struct in6_addr *addr);
  935. int ipv6_sock_mc_drop(struct sock *sk, int ifindex,
  936. const struct in6_addr *addr);
  937. #endif /* _NET_IPV6_H */