1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075 |
- // SPDX-License-Identifier: GPL-2.0+
- /*
- * Copyright (C) 2018 Oracle. All Rights Reserved.
- * Author: Darrick J. Wong <darrick.wong@oracle.com>
- */
- #include "xfs.h"
- #include "xfs_fs.h"
- #include "xfs_shared.h"
- #include "xfs_format.h"
- #include "xfs_trans_resv.h"
- #include "xfs_mount.h"
- #include "xfs_defer.h"
- #include "xfs_btree.h"
- #include "xfs_bit.h"
- #include "xfs_log_format.h"
- #include "xfs_trans.h"
- #include "xfs_sb.h"
- #include "xfs_inode.h"
- #include "xfs_icache.h"
- #include "xfs_alloc.h"
- #include "xfs_alloc_btree.h"
- #include "xfs_ialloc.h"
- #include "xfs_ialloc_btree.h"
- #include "xfs_rmap.h"
- #include "xfs_rmap_btree.h"
- #include "xfs_refcount.h"
- #include "xfs_refcount_btree.h"
- #include "xfs_extent_busy.h"
- #include "xfs_ag_resv.h"
- #include "xfs_trans_space.h"
- #include "xfs_quota.h"
- #include "scrub/xfs_scrub.h"
- #include "scrub/scrub.h"
- #include "scrub/common.h"
- #include "scrub/trace.h"
- #include "scrub/repair.h"
- /*
- * Attempt to repair some metadata, if the metadata is corrupt and userspace
- * told us to fix it. This function returns -EAGAIN to mean "re-run scrub",
- * and will set *fixed to true if it thinks it repaired anything.
- */
- int
- xfs_repair_attempt(
- struct xfs_inode *ip,
- struct xfs_scrub_context *sc,
- bool *fixed)
- {
- int error = 0;
- trace_xfs_repair_attempt(ip, sc->sm, error);
- xfs_scrub_ag_btcur_free(&sc->sa);
- /* Repair whatever's broken. */
- ASSERT(sc->ops->repair);
- error = sc->ops->repair(sc);
- trace_xfs_repair_done(ip, sc->sm, error);
- switch (error) {
- case 0:
- /*
- * Repair succeeded. Commit the fixes and perform a second
- * scrub so that we can tell userspace if we fixed the problem.
- */
- sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
- *fixed = true;
- return -EAGAIN;
- case -EDEADLOCK:
- case -EAGAIN:
- /* Tell the caller to try again having grabbed all the locks. */
- if (!sc->try_harder) {
- sc->try_harder = true;
- return -EAGAIN;
- }
- /*
- * We tried harder but still couldn't grab all the resources
- * we needed to fix it. The corruption has not been fixed,
- * so report back to userspace.
- */
- return -EFSCORRUPTED;
- default:
- return error;
- }
- }
- /*
- * Complain about unfixable problems in the filesystem. We don't log
- * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
- * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
- * administrator isn't running xfs_scrub in no-repairs mode.
- *
- * Use this helper function because _ratelimited silently declares a static
- * structure to track rate limiting information.
- */
- void
- xfs_repair_failure(
- struct xfs_mount *mp)
- {
- xfs_alert_ratelimited(mp,
- "Corruption not fixed during online repair. Unmount and run xfs_repair.");
- }
- /*
- * Repair probe -- userspace uses this to probe if we're willing to repair a
- * given mountpoint.
- */
- int
- xfs_repair_probe(
- struct xfs_scrub_context *sc)
- {
- int error = 0;
- if (xfs_scrub_should_terminate(sc, &error))
- return error;
- return 0;
- }
- /*
- * Roll a transaction, keeping the AG headers locked and reinitializing
- * the btree cursors.
- */
- int
- xfs_repair_roll_ag_trans(
- struct xfs_scrub_context *sc)
- {
- int error;
- /* Keep the AG header buffers locked so we can keep going. */
- xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
- xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
- xfs_trans_bhold(sc->tp, sc->sa.agfl_bp);
- /* Roll the transaction. */
- error = xfs_trans_roll(&sc->tp);
- if (error)
- goto out_release;
- /* Join AG headers to the new transaction. */
- xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
- xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
- xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp);
- return 0;
- out_release:
- /*
- * Rolling failed, so release the hold on the buffers. The
- * buffers will be released during teardown on our way out
- * of the kernel.
- */
- xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp);
- xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp);
- xfs_trans_bhold_release(sc->tp, sc->sa.agfl_bp);
- return error;
- }
- /*
- * Does the given AG have enough space to rebuild a btree? Neither AG
- * reservation can be critical, and we must have enough space (factoring
- * in AG reservations) to construct a whole btree.
- */
- bool
- xfs_repair_ag_has_space(
- struct xfs_perag *pag,
- xfs_extlen_t nr_blocks,
- enum xfs_ag_resv_type type)
- {
- return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
- !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
- pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
- }
- /*
- * Figure out how many blocks to reserve for an AG repair. We calculate the
- * worst case estimate for the number of blocks we'd need to rebuild one of
- * any type of per-AG btree.
- */
- xfs_extlen_t
- xfs_repair_calc_ag_resblks(
- struct xfs_scrub_context *sc)
- {
- struct xfs_mount *mp = sc->mp;
- struct xfs_scrub_metadata *sm = sc->sm;
- struct xfs_perag *pag;
- struct xfs_buf *bp;
- xfs_agino_t icount = 0;
- xfs_extlen_t aglen = 0;
- xfs_extlen_t usedlen;
- xfs_extlen_t freelen;
- xfs_extlen_t bnobt_sz;
- xfs_extlen_t inobt_sz;
- xfs_extlen_t rmapbt_sz;
- xfs_extlen_t refcbt_sz;
- int error;
- if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
- return 0;
- /* Use in-core counters if possible. */
- pag = xfs_perag_get(mp, sm->sm_agno);
- if (pag->pagi_init)
- icount = pag->pagi_count;
- /*
- * Otherwise try to get the actual counters from disk; if not, make
- * some worst case assumptions.
- */
- if (icount == 0) {
- error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp);
- if (error) {
- icount = mp->m_sb.sb_agblocks / mp->m_sb.sb_inopblock;
- } else {
- icount = pag->pagi_count;
- xfs_buf_relse(bp);
- }
- }
- /* Now grab the block counters from the AGF. */
- error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp);
- if (error) {
- aglen = mp->m_sb.sb_agblocks;
- freelen = aglen;
- usedlen = aglen;
- } else {
- aglen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_length);
- freelen = pag->pagf_freeblks;
- usedlen = aglen - freelen;
- xfs_buf_relse(bp);
- }
- xfs_perag_put(pag);
- trace_xfs_repair_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
- freelen, usedlen);
- /*
- * Figure out how many blocks we'd need worst case to rebuild
- * each type of btree. Note that we can only rebuild the
- * bnobt/cntbt or inobt/finobt as pairs.
- */
- bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
- if (xfs_sb_version_hassparseinodes(&mp->m_sb))
- inobt_sz = xfs_iallocbt_calc_size(mp, icount /
- XFS_INODES_PER_HOLEMASK_BIT);
- else
- inobt_sz = xfs_iallocbt_calc_size(mp, icount /
- XFS_INODES_PER_CHUNK);
- if (xfs_sb_version_hasfinobt(&mp->m_sb))
- inobt_sz *= 2;
- if (xfs_sb_version_hasreflink(&mp->m_sb))
- refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
- else
- refcbt_sz = 0;
- if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
- /*
- * Guess how many blocks we need to rebuild the rmapbt.
- * For non-reflink filesystems we can't have more records than
- * used blocks. However, with reflink it's possible to have
- * more than one rmap record per AG block. We don't know how
- * many rmaps there could be in the AG, so we start off with
- * what we hope is an generous over-estimation.
- */
- if (xfs_sb_version_hasreflink(&mp->m_sb))
- rmapbt_sz = xfs_rmapbt_calc_size(mp,
- (unsigned long long)aglen * 2);
- else
- rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
- } else {
- rmapbt_sz = 0;
- }
- trace_xfs_repair_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
- inobt_sz, rmapbt_sz, refcbt_sz);
- return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
- }
- /* Allocate a block in an AG. */
- int
- xfs_repair_alloc_ag_block(
- struct xfs_scrub_context *sc,
- struct xfs_owner_info *oinfo,
- xfs_fsblock_t *fsbno,
- enum xfs_ag_resv_type resv)
- {
- struct xfs_alloc_arg args = {0};
- xfs_agblock_t bno;
- int error;
- switch (resv) {
- case XFS_AG_RESV_AGFL:
- case XFS_AG_RESV_RMAPBT:
- error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1);
- if (error)
- return error;
- if (bno == NULLAGBLOCK)
- return -ENOSPC;
- xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno,
- 1, false);
- *fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno);
- if (resv == XFS_AG_RESV_RMAPBT)
- xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno);
- return 0;
- default:
- break;
- }
- args.tp = sc->tp;
- args.mp = sc->mp;
- args.oinfo = *oinfo;
- args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0);
- args.minlen = 1;
- args.maxlen = 1;
- args.prod = 1;
- args.type = XFS_ALLOCTYPE_THIS_AG;
- args.resv = resv;
- error = xfs_alloc_vextent(&args);
- if (error)
- return error;
- if (args.fsbno == NULLFSBLOCK)
- return -ENOSPC;
- ASSERT(args.len == 1);
- *fsbno = args.fsbno;
- return 0;
- }
- /* Initialize a new AG btree root block with zero entries. */
- int
- xfs_repair_init_btblock(
- struct xfs_scrub_context *sc,
- xfs_fsblock_t fsb,
- struct xfs_buf **bpp,
- xfs_btnum_t btnum,
- const struct xfs_buf_ops *ops)
- {
- struct xfs_trans *tp = sc->tp;
- struct xfs_mount *mp = sc->mp;
- struct xfs_buf *bp;
- trace_xfs_repair_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb),
- XFS_FSB_TO_AGBNO(mp, fsb), btnum);
- ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno);
- bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, fsb),
- XFS_FSB_TO_BB(mp, 1), 0);
- xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
- xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno, 0);
- xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF);
- xfs_trans_log_buf(tp, bp, 0, bp->b_length);
- bp->b_ops = ops;
- *bpp = bp;
- return 0;
- }
- /*
- * Reconstructing per-AG Btrees
- *
- * When a space btree is corrupt, we don't bother trying to fix it. Instead,
- * we scan secondary space metadata to derive the records that should be in
- * the damaged btree, initialize a fresh btree root, and insert the records.
- * Note that for rebuilding the rmapbt we scan all the primary data to
- * generate the new records.
- *
- * However, that leaves the matter of removing all the metadata describing the
- * old broken structure. For primary metadata we use the rmap data to collect
- * every extent with a matching rmap owner (exlist); we then iterate all other
- * metadata structures with the same rmap owner to collect the extents that
- * cannot be removed (sublist). We then subtract sublist from exlist to
- * derive the blocks that were used by the old btree. These blocks can be
- * reaped.
- *
- * For rmapbt reconstructions we must use different tactics for extent
- * collection. First we iterate all primary metadata (this excludes the old
- * rmapbt, obviously) to generate new rmap records. The gaps in the rmap
- * records are collected as exlist. The bnobt records are collected as
- * sublist. As with the other btrees we subtract sublist from exlist, and the
- * result (since the rmapbt lives in the free space) are the blocks from the
- * old rmapbt.
- */
- /* Collect a dead btree extent for later disposal. */
- int
- xfs_repair_collect_btree_extent(
- struct xfs_scrub_context *sc,
- struct xfs_repair_extent_list *exlist,
- xfs_fsblock_t fsbno,
- xfs_extlen_t len)
- {
- struct xfs_repair_extent *rex;
- trace_xfs_repair_collect_btree_extent(sc->mp,
- XFS_FSB_TO_AGNO(sc->mp, fsbno),
- XFS_FSB_TO_AGBNO(sc->mp, fsbno), len);
- rex = kmem_alloc(sizeof(struct xfs_repair_extent), KM_MAYFAIL);
- if (!rex)
- return -ENOMEM;
- INIT_LIST_HEAD(&rex->list);
- rex->fsbno = fsbno;
- rex->len = len;
- list_add_tail(&rex->list, &exlist->list);
- return 0;
- }
- /*
- * An error happened during the rebuild so the transaction will be cancelled.
- * The fs will shut down, and the administrator has to unmount and run repair.
- * Therefore, free all the memory associated with the list so we can die.
- */
- void
- xfs_repair_cancel_btree_extents(
- struct xfs_scrub_context *sc,
- struct xfs_repair_extent_list *exlist)
- {
- struct xfs_repair_extent *rex;
- struct xfs_repair_extent *n;
- for_each_xfs_repair_extent_safe(rex, n, exlist) {
- list_del(&rex->list);
- kmem_free(rex);
- }
- }
- /* Compare two btree extents. */
- static int
- xfs_repair_btree_extent_cmp(
- void *priv,
- struct list_head *a,
- struct list_head *b)
- {
- struct xfs_repair_extent *ap;
- struct xfs_repair_extent *bp;
- ap = container_of(a, struct xfs_repair_extent, list);
- bp = container_of(b, struct xfs_repair_extent, list);
- if (ap->fsbno > bp->fsbno)
- return 1;
- if (ap->fsbno < bp->fsbno)
- return -1;
- return 0;
- }
- /*
- * Remove all the blocks mentioned in @sublist from the extents in @exlist.
- *
- * The intent is that callers will iterate the rmapbt for all of its records
- * for a given owner to generate @exlist; and iterate all the blocks of the
- * metadata structures that are not being rebuilt and have the same rmapbt
- * owner to generate @sublist. This routine subtracts all the extents
- * mentioned in sublist from all the extents linked in @exlist, which leaves
- * @exlist as the list of blocks that are not accounted for, which we assume
- * are the dead blocks of the old metadata structure. The blocks mentioned in
- * @exlist can be reaped.
- */
- #define LEFT_ALIGNED (1 << 0)
- #define RIGHT_ALIGNED (1 << 1)
- int
- xfs_repair_subtract_extents(
- struct xfs_scrub_context *sc,
- struct xfs_repair_extent_list *exlist,
- struct xfs_repair_extent_list *sublist)
- {
- struct list_head *lp;
- struct xfs_repair_extent *ex;
- struct xfs_repair_extent *newex;
- struct xfs_repair_extent *subex;
- xfs_fsblock_t sub_fsb;
- xfs_extlen_t sub_len;
- int state;
- int error = 0;
- if (list_empty(&exlist->list) || list_empty(&sublist->list))
- return 0;
- ASSERT(!list_empty(&sublist->list));
- list_sort(NULL, &exlist->list, xfs_repair_btree_extent_cmp);
- list_sort(NULL, &sublist->list, xfs_repair_btree_extent_cmp);
- /*
- * Now that we've sorted both lists, we iterate exlist once, rolling
- * forward through sublist and/or exlist as necessary until we find an
- * overlap or reach the end of either list. We do not reset lp to the
- * head of exlist nor do we reset subex to the head of sublist. The
- * list traversal is similar to merge sort, but we're deleting
- * instead. In this manner we avoid O(n^2) operations.
- */
- subex = list_first_entry(&sublist->list, struct xfs_repair_extent,
- list);
- lp = exlist->list.next;
- while (lp != &exlist->list) {
- ex = list_entry(lp, struct xfs_repair_extent, list);
- /*
- * Advance subex and/or ex until we find a pair that
- * intersect or we run out of extents.
- */
- while (subex->fsbno + subex->len <= ex->fsbno) {
- if (list_is_last(&subex->list, &sublist->list))
- goto out;
- subex = list_next_entry(subex, list);
- }
- if (subex->fsbno >= ex->fsbno + ex->len) {
- lp = lp->next;
- continue;
- }
- /* trim subex to fit the extent we have */
- sub_fsb = subex->fsbno;
- sub_len = subex->len;
- if (subex->fsbno < ex->fsbno) {
- sub_len -= ex->fsbno - subex->fsbno;
- sub_fsb = ex->fsbno;
- }
- if (sub_len > ex->len)
- sub_len = ex->len;
- state = 0;
- if (sub_fsb == ex->fsbno)
- state |= LEFT_ALIGNED;
- if (sub_fsb + sub_len == ex->fsbno + ex->len)
- state |= RIGHT_ALIGNED;
- switch (state) {
- case LEFT_ALIGNED:
- /* Coincides with only the left. */
- ex->fsbno += sub_len;
- ex->len -= sub_len;
- break;
- case RIGHT_ALIGNED:
- /* Coincides with only the right. */
- ex->len -= sub_len;
- lp = lp->next;
- break;
- case LEFT_ALIGNED | RIGHT_ALIGNED:
- /* Total overlap, just delete ex. */
- lp = lp->next;
- list_del(&ex->list);
- kmem_free(ex);
- break;
- case 0:
- /*
- * Deleting from the middle: add the new right extent
- * and then shrink the left extent.
- */
- newex = kmem_alloc(sizeof(struct xfs_repair_extent),
- KM_MAYFAIL);
- if (!newex) {
- error = -ENOMEM;
- goto out;
- }
- INIT_LIST_HEAD(&newex->list);
- newex->fsbno = sub_fsb + sub_len;
- newex->len = ex->fsbno + ex->len - newex->fsbno;
- list_add(&newex->list, &ex->list);
- ex->len = sub_fsb - ex->fsbno;
- lp = lp->next;
- break;
- default:
- ASSERT(0);
- break;
- }
- }
- out:
- return error;
- }
- #undef LEFT_ALIGNED
- #undef RIGHT_ALIGNED
- /*
- * Disposal of Blocks from Old per-AG Btrees
- *
- * Now that we've constructed a new btree to replace the damaged one, we want
- * to dispose of the blocks that (we think) the old btree was using.
- * Previously, we used the rmapbt to collect the extents (exlist) with the
- * rmap owner corresponding to the tree we rebuilt, collected extents for any
- * blocks with the same rmap owner that are owned by another data structure
- * (sublist), and subtracted sublist from exlist. In theory the extents
- * remaining in exlist are the old btree's blocks.
- *
- * Unfortunately, it's possible that the btree was crosslinked with other
- * blocks on disk. The rmap data can tell us if there are multiple owners, so
- * if the rmapbt says there is an owner of this block other than @oinfo, then
- * the block is crosslinked. Remove the reverse mapping and continue.
- *
- * If there is one rmap record, we can free the block, which removes the
- * reverse mapping but doesn't add the block to the free space. Our repair
- * strategy is to hope the other metadata objects crosslinked on this block
- * will be rebuilt (atop different blocks), thereby removing all the cross
- * links.
- *
- * If there are no rmap records at all, we also free the block. If the btree
- * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
- * supposed to be a rmap record and everything is ok. For other btrees there
- * had to have been an rmap entry for the block to have ended up on @exlist,
- * so if it's gone now there's something wrong and the fs will shut down.
- *
- * Note: If there are multiple rmap records with only the same rmap owner as
- * the btree we're trying to rebuild and the block is indeed owned by another
- * data structure with the same rmap owner, then the block will be in sublist
- * and therefore doesn't need disposal. If there are multiple rmap records
- * with only the same rmap owner but the block is not owned by something with
- * the same rmap owner, the block will be freed.
- *
- * The caller is responsible for locking the AG headers for the entire rebuild
- * operation so that nothing else can sneak in and change the AG state while
- * we're not looking. We also assume that the caller already invalidated any
- * buffers associated with @exlist.
- */
- /*
- * Invalidate buffers for per-AG btree blocks we're dumping. This function
- * is not intended for use with file data repairs; we have bunmapi for that.
- */
- int
- xfs_repair_invalidate_blocks(
- struct xfs_scrub_context *sc,
- struct xfs_repair_extent_list *exlist)
- {
- struct xfs_repair_extent *rex;
- struct xfs_repair_extent *n;
- struct xfs_buf *bp;
- xfs_fsblock_t fsbno;
- xfs_agblock_t i;
- /*
- * For each block in each extent, see if there's an incore buffer for
- * exactly that block; if so, invalidate it. The buffer cache only
- * lets us look for one buffer at a time, so we have to look one block
- * at a time. Avoid invalidating AG headers and post-EOFS blocks
- * because we never own those; and if we can't TRYLOCK the buffer we
- * assume it's owned by someone else.
- */
- for_each_xfs_repair_extent_safe(rex, n, exlist) {
- for (fsbno = rex->fsbno, i = rex->len; i > 0; fsbno++, i--) {
- /* Skip AG headers and post-EOFS blocks */
- if (!xfs_verify_fsbno(sc->mp, fsbno))
- continue;
- bp = xfs_buf_incore(sc->mp->m_ddev_targp,
- XFS_FSB_TO_DADDR(sc->mp, fsbno),
- XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK);
- if (bp) {
- xfs_trans_bjoin(sc->tp, bp);
- xfs_trans_binval(sc->tp, bp);
- }
- }
- }
- return 0;
- }
- /* Ensure the freelist is the correct size. */
- int
- xfs_repair_fix_freelist(
- struct xfs_scrub_context *sc,
- bool can_shrink)
- {
- struct xfs_alloc_arg args = {0};
- args.mp = sc->mp;
- args.tp = sc->tp;
- args.agno = sc->sa.agno;
- args.alignment = 1;
- args.pag = sc->sa.pag;
- return xfs_alloc_fix_freelist(&args,
- can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK);
- }
- /*
- * Put a block back on the AGFL.
- */
- STATIC int
- xfs_repair_put_freelist(
- struct xfs_scrub_context *sc,
- xfs_agblock_t agbno)
- {
- struct xfs_owner_info oinfo;
- int error;
- /* Make sure there's space on the freelist. */
- error = xfs_repair_fix_freelist(sc, true);
- if (error)
- return error;
- /*
- * Since we're "freeing" a lost block onto the AGFL, we have to
- * create an rmap for the block prior to merging it or else other
- * parts will break.
- */
- xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_AG);
- error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.agno, agbno, 1,
- &oinfo);
- if (error)
- return error;
- /* Put the block on the AGFL. */
- error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp,
- agbno, 0);
- if (error)
- return error;
- xfs_extent_busy_insert(sc->tp, sc->sa.agno, agbno, 1,
- XFS_EXTENT_BUSY_SKIP_DISCARD);
- return 0;
- }
- /* Dispose of a single metadata block. */
- STATIC int
- xfs_repair_dispose_btree_block(
- struct xfs_scrub_context *sc,
- xfs_fsblock_t fsbno,
- struct xfs_owner_info *oinfo,
- enum xfs_ag_resv_type resv)
- {
- struct xfs_btree_cur *cur;
- struct xfs_buf *agf_bp = NULL;
- xfs_agnumber_t agno;
- xfs_agblock_t agbno;
- bool has_other_rmap;
- int error;
- agno = XFS_FSB_TO_AGNO(sc->mp, fsbno);
- agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);
- /*
- * If we are repairing per-inode metadata, we need to read in the AGF
- * buffer. Otherwise, we're repairing a per-AG structure, so reuse
- * the AGF buffer that the setup functions already grabbed.
- */
- if (sc->ip) {
- error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp);
- if (error)
- return error;
- if (!agf_bp)
- return -ENOMEM;
- } else {
- agf_bp = sc->sa.agf_bp;
- }
- cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, agno);
- /* Can we find any other rmappings? */
- error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap);
- if (error)
- goto out_cur;
- xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
- /*
- * If there are other rmappings, this block is cross linked and must
- * not be freed. Remove the reverse mapping and move on. Otherwise,
- * we were the only owner of the block, so free the extent, which will
- * also remove the rmap.
- *
- * XXX: XFS doesn't support detecting the case where a single block
- * metadata structure is crosslinked with a multi-block structure
- * because the buffer cache doesn't detect aliasing problems, so we
- * can't fix 100% of crosslinking problems (yet). The verifiers will
- * blow on writeout, the filesystem will shut down, and the admin gets
- * to run xfs_repair.
- */
- if (has_other_rmap)
- error = xfs_rmap_free(sc->tp, agf_bp, agno, agbno, 1, oinfo);
- else if (resv == XFS_AG_RESV_AGFL)
- error = xfs_repair_put_freelist(sc, agbno);
- else
- error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv);
- if (agf_bp != sc->sa.agf_bp)
- xfs_trans_brelse(sc->tp, agf_bp);
- if (error)
- return error;
- if (sc->ip)
- return xfs_trans_roll_inode(&sc->tp, sc->ip);
- return xfs_repair_roll_ag_trans(sc);
- out_cur:
- xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
- if (agf_bp != sc->sa.agf_bp)
- xfs_trans_brelse(sc->tp, agf_bp);
- return error;
- }
- /* Dispose of btree blocks from an old per-AG btree. */
- int
- xfs_repair_reap_btree_extents(
- struct xfs_scrub_context *sc,
- struct xfs_repair_extent_list *exlist,
- struct xfs_owner_info *oinfo,
- enum xfs_ag_resv_type type)
- {
- struct xfs_repair_extent *rex;
- struct xfs_repair_extent *n;
- int error = 0;
- ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb));
- /* Dispose of every block from the old btree. */
- for_each_xfs_repair_extent_safe(rex, n, exlist) {
- ASSERT(sc->ip != NULL ||
- XFS_FSB_TO_AGNO(sc->mp, rex->fsbno) == sc->sa.agno);
- trace_xfs_repair_dispose_btree_extent(sc->mp,
- XFS_FSB_TO_AGNO(sc->mp, rex->fsbno),
- XFS_FSB_TO_AGBNO(sc->mp, rex->fsbno), rex->len);
- for (; rex->len > 0; rex->len--, rex->fsbno++) {
- error = xfs_repair_dispose_btree_block(sc, rex->fsbno,
- oinfo, type);
- if (error)
- goto out;
- }
- list_del(&rex->list);
- kmem_free(rex);
- }
- out:
- xfs_repair_cancel_btree_extents(sc, exlist);
- return error;
- }
- /*
- * Finding per-AG Btree Roots for AGF/AGI Reconstruction
- *
- * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
- * the AG headers by using the rmap data to rummage through the AG looking for
- * btree roots. This is not guaranteed to work if the AG is heavily damaged
- * or the rmap data are corrupt.
- *
- * Callers of xfs_repair_find_ag_btree_roots must lock the AGF and AGFL
- * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
- * AGI is being rebuilt. It must maintain these locks until it's safe for
- * other threads to change the btrees' shapes. The caller provides
- * information about the btrees to look for by passing in an array of
- * xfs_repair_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
- * The (root, height) fields will be set on return if anything is found. The
- * last element of the array should have a NULL buf_ops to mark the end of the
- * array.
- *
- * For every rmapbt record matching any of the rmap owners in btree_info,
- * read each block referenced by the rmap record. If the block is a btree
- * block from this filesystem matching any of the magic numbers and has a
- * level higher than what we've already seen, remember the block and the
- * height of the tree required to have such a block. When the call completes,
- * we return the highest block we've found for each btree description; those
- * should be the roots.
- */
- struct xfs_repair_findroot {
- struct xfs_scrub_context *sc;
- struct xfs_buf *agfl_bp;
- struct xfs_agf *agf;
- struct xfs_repair_find_ag_btree *btree_info;
- };
- /* See if our block is in the AGFL. */
- STATIC int
- xfs_repair_findroot_agfl_walk(
- struct xfs_mount *mp,
- xfs_agblock_t bno,
- void *priv)
- {
- xfs_agblock_t *agbno = priv;
- return (*agbno == bno) ? XFS_BTREE_QUERY_RANGE_ABORT : 0;
- }
- /* Does this block match the btree information passed in? */
- STATIC int
- xfs_repair_findroot_block(
- struct xfs_repair_findroot *ri,
- struct xfs_repair_find_ag_btree *fab,
- uint64_t owner,
- xfs_agblock_t agbno,
- bool *found_it)
- {
- struct xfs_mount *mp = ri->sc->mp;
- struct xfs_buf *bp;
- struct xfs_btree_block *btblock;
- xfs_daddr_t daddr;
- int error;
- daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno);
- /*
- * Blocks in the AGFL have stale contents that might just happen to
- * have a matching magic and uuid. We don't want to pull these blocks
- * in as part of a tree root, so we have to filter out the AGFL stuff
- * here. If the AGFL looks insane we'll just refuse to repair.
- */
- if (owner == XFS_RMAP_OWN_AG) {
- error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
- xfs_repair_findroot_agfl_walk, &agbno);
- if (error == XFS_BTREE_QUERY_RANGE_ABORT)
- return 0;
- if (error)
- return error;
- }
- error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
- mp->m_bsize, 0, &bp, NULL);
- if (error)
- return error;
- /*
- * Does this look like a block matching our fs and higher than any
- * other block we've found so far? If so, reattach buffer verifiers
- * so the AIL won't complain if the buffer is also dirty.
- */
- btblock = XFS_BUF_TO_BLOCK(bp);
- if (be32_to_cpu(btblock->bb_magic) != fab->magic)
- goto out;
- if (xfs_sb_version_hascrc(&mp->m_sb) &&
- !uuid_equal(&btblock->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
- goto out;
- bp->b_ops = fab->buf_ops;
- /* Ignore this block if it's lower in the tree than we've seen. */
- if (fab->root != NULLAGBLOCK &&
- xfs_btree_get_level(btblock) < fab->height)
- goto out;
- /* Make sure we pass the verifiers. */
- bp->b_ops->verify_read(bp);
- if (bp->b_error)
- goto out;
- fab->root = agbno;
- fab->height = xfs_btree_get_level(btblock) + 1;
- *found_it = true;
- trace_xfs_repair_findroot_block(mp, ri->sc->sa.agno, agbno,
- be32_to_cpu(btblock->bb_magic), fab->height - 1);
- out:
- xfs_trans_brelse(ri->sc->tp, bp);
- return error;
- }
- /*
- * Do any of the blocks in this rmap record match one of the btrees we're
- * looking for?
- */
- STATIC int
- xfs_repair_findroot_rmap(
- struct xfs_btree_cur *cur,
- struct xfs_rmap_irec *rec,
- void *priv)
- {
- struct xfs_repair_findroot *ri = priv;
- struct xfs_repair_find_ag_btree *fab;
- xfs_agblock_t b;
- bool found_it;
- int error = 0;
- /* Ignore anything that isn't AG metadata. */
- if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
- return 0;
- /* Otherwise scan each block + btree type. */
- for (b = 0; b < rec->rm_blockcount; b++) {
- found_it = false;
- for (fab = ri->btree_info; fab->buf_ops; fab++) {
- if (rec->rm_owner != fab->rmap_owner)
- continue;
- error = xfs_repair_findroot_block(ri, fab,
- rec->rm_owner, rec->rm_startblock + b,
- &found_it);
- if (error)
- return error;
- if (found_it)
- break;
- }
- }
- return 0;
- }
- /* Find the roots of the per-AG btrees described in btree_info. */
- int
- xfs_repair_find_ag_btree_roots(
- struct xfs_scrub_context *sc,
- struct xfs_buf *agf_bp,
- struct xfs_repair_find_ag_btree *btree_info,
- struct xfs_buf *agfl_bp)
- {
- struct xfs_mount *mp = sc->mp;
- struct xfs_repair_findroot ri;
- struct xfs_repair_find_ag_btree *fab;
- struct xfs_btree_cur *cur;
- int error;
- ASSERT(xfs_buf_islocked(agf_bp));
- ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
- ri.sc = sc;
- ri.btree_info = btree_info;
- ri.agf = XFS_BUF_TO_AGF(agf_bp);
- ri.agfl_bp = agfl_bp;
- for (fab = btree_info; fab->buf_ops; fab++) {
- ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
- ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
- fab->root = NULLAGBLOCK;
- fab->height = 0;
- }
- cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno);
- error = xfs_rmap_query_all(cur, xfs_repair_findroot_rmap, &ri);
- xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
- return error;
- }
- /* Force a quotacheck the next time we mount. */
- void
- xfs_repair_force_quotacheck(
- struct xfs_scrub_context *sc,
- uint dqtype)
- {
- uint flag;
- flag = xfs_quota_chkd_flag(dqtype);
- if (!(flag & sc->mp->m_qflags))
- return;
- sc->mp->m_qflags &= ~flag;
- spin_lock(&sc->mp->m_sb_lock);
- sc->mp->m_sb.sb_qflags &= ~flag;
- spin_unlock(&sc->mp->m_sb_lock);
- xfs_log_sb(sc->tp);
- }
- /*
- * Attach dquots to this inode, or schedule quotacheck to fix them.
- *
- * This function ensures that the appropriate dquots are attached to an inode.
- * We cannot allow the dquot code to allocate an on-disk dquot block here
- * because we're already in transaction context with the inode locked. The
- * on-disk dquot should already exist anyway. If the quota code signals
- * corruption or missing quota information, schedule quotacheck, which will
- * repair corruptions in the quota metadata.
- */
- int
- xfs_repair_ino_dqattach(
- struct xfs_scrub_context *sc)
- {
- int error;
- error = xfs_qm_dqattach_locked(sc->ip, false);
- switch (error) {
- case -EFSBADCRC:
- case -EFSCORRUPTED:
- case -ENOENT:
- xfs_err_ratelimited(sc->mp,
- "inode %llu repair encountered quota error %d, quotacheck forced.",
- (unsigned long long)sc->ip->i_ino, error);
- if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
- xfs_repair_force_quotacheck(sc, XFS_DQ_USER);
- if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
- xfs_repair_force_quotacheck(sc, XFS_DQ_GROUP);
- if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
- xfs_repair_force_quotacheck(sc, XFS_DQ_PROJ);
- /* fall through */
- case -ESRCH:
- error = 0;
- break;
- default:
- break;
- }
- return error;
- }
|