dir.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * linux/fs/ext4/dir.c
  4. *
  5. * Copyright (C) 1992, 1993, 1994, 1995
  6. * Remy Card (card@masi.ibp.fr)
  7. * Laboratoire MASI - Institut Blaise Pascal
  8. * Universite Pierre et Marie Curie (Paris VI)
  9. *
  10. * from
  11. *
  12. * linux/fs/minix/dir.c
  13. *
  14. * Copyright (C) 1991, 1992 Linus Torvalds
  15. *
  16. * ext4 directory handling functions
  17. *
  18. * Big-endian to little-endian byte-swapping/bitmaps by
  19. * David S. Miller (davem@caip.rutgers.edu), 1995
  20. *
  21. * Hash Tree Directory indexing (c) 2001 Daniel Phillips
  22. *
  23. */
  24. #include <linux/fs.h>
  25. #include <linux/buffer_head.h>
  26. #include <linux/slab.h>
  27. #include <linux/iversion.h>
  28. #include "ext4.h"
  29. #include "xattr.h"
  30. static int ext4_dx_readdir(struct file *, struct dir_context *);
  31. /**
  32. * Check if the given dir-inode refers to an htree-indexed directory
  33. * (or a directory which could potentially get converted to use htree
  34. * indexing).
  35. *
  36. * Return 1 if it is a dx dir, 0 if not
  37. */
  38. static int is_dx_dir(struct inode *inode)
  39. {
  40. struct super_block *sb = inode->i_sb;
  41. if (ext4_has_feature_dir_index(inode->i_sb) &&
  42. ((ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) ||
  43. ((inode->i_size >> sb->s_blocksize_bits) == 1) ||
  44. ext4_has_inline_data(inode)))
  45. return 1;
  46. return 0;
  47. }
  48. /*
  49. * Return 0 if the directory entry is OK, and 1 if there is a problem
  50. *
  51. * Note: this is the opposite of what ext2 and ext3 historically returned...
  52. *
  53. * bh passed here can be an inode block or a dir data block, depending
  54. * on the inode inline data flag.
  55. */
  56. int __ext4_check_dir_entry(const char *function, unsigned int line,
  57. struct inode *dir, struct file *filp,
  58. struct ext4_dir_entry_2 *de,
  59. struct buffer_head *bh, char *buf, int size,
  60. unsigned int offset)
  61. {
  62. const char *error_msg = NULL;
  63. const int rlen = ext4_rec_len_from_disk(de->rec_len,
  64. dir->i_sb->s_blocksize);
  65. if (unlikely(rlen < EXT4_DIR_REC_LEN(1)))
  66. error_msg = "rec_len is smaller than minimal";
  67. else if (unlikely(rlen % 4 != 0))
  68. error_msg = "rec_len % 4 != 0";
  69. else if (unlikely(rlen < EXT4_DIR_REC_LEN(de->name_len)))
  70. error_msg = "rec_len is too small for name_len";
  71. else if (unlikely(((char *) de - buf) + rlen > size))
  72. error_msg = "directory entry across range";
  73. else if (unlikely(le32_to_cpu(de->inode) >
  74. le32_to_cpu(EXT4_SB(dir->i_sb)->s_es->s_inodes_count)))
  75. error_msg = "inode out of bounds";
  76. else
  77. return 0;
  78. if (filp)
  79. ext4_error_file(filp, function, line, bh->b_blocknr,
  80. "bad entry in directory: %s - offset=%u(%u), "
  81. "inode=%u, rec_len=%d, name_len=%d",
  82. error_msg, (unsigned) (offset % size),
  83. offset, le32_to_cpu(de->inode),
  84. rlen, de->name_len);
  85. else
  86. ext4_error_inode(dir, function, line, bh->b_blocknr,
  87. "bad entry in directory: %s - offset=%u(%u), "
  88. "inode=%u, rec_len=%d, name_len=%d",
  89. error_msg, (unsigned) (offset % size),
  90. offset, le32_to_cpu(de->inode),
  91. rlen, de->name_len);
  92. return 1;
  93. }
  94. static int ext4_readdir(struct file *file, struct dir_context *ctx)
  95. {
  96. unsigned int offset;
  97. int i;
  98. struct ext4_dir_entry_2 *de;
  99. int err;
  100. struct inode *inode = file_inode(file);
  101. struct super_block *sb = inode->i_sb;
  102. struct buffer_head *bh = NULL;
  103. int dir_has_error = 0;
  104. struct fscrypt_str fstr = FSTR_INIT(NULL, 0);
  105. if (ext4_encrypted_inode(inode)) {
  106. err = fscrypt_get_encryption_info(inode);
  107. if (err && err != -ENOKEY)
  108. return err;
  109. }
  110. if (is_dx_dir(inode)) {
  111. err = ext4_dx_readdir(file, ctx);
  112. if (err != ERR_BAD_DX_DIR) {
  113. return err;
  114. }
  115. /*
  116. * We don't set the inode dirty flag since it's not
  117. * critical that it get flushed back to the disk.
  118. */
  119. ext4_clear_inode_flag(file_inode(file),
  120. EXT4_INODE_INDEX);
  121. }
  122. if (ext4_has_inline_data(inode)) {
  123. int has_inline_data = 1;
  124. err = ext4_read_inline_dir(file, ctx,
  125. &has_inline_data);
  126. if (has_inline_data)
  127. return err;
  128. }
  129. if (ext4_encrypted_inode(inode)) {
  130. err = fscrypt_fname_alloc_buffer(inode, EXT4_NAME_LEN, &fstr);
  131. if (err < 0)
  132. return err;
  133. }
  134. offset = ctx->pos & (sb->s_blocksize - 1);
  135. while (ctx->pos < inode->i_size) {
  136. struct ext4_map_blocks map;
  137. if (fatal_signal_pending(current)) {
  138. err = -ERESTARTSYS;
  139. goto errout;
  140. }
  141. cond_resched();
  142. map.m_lblk = ctx->pos >> EXT4_BLOCK_SIZE_BITS(sb);
  143. map.m_len = 1;
  144. err = ext4_map_blocks(NULL, inode, &map, 0);
  145. if (err > 0) {
  146. pgoff_t index = map.m_pblk >>
  147. (PAGE_SHIFT - inode->i_blkbits);
  148. if (!ra_has_index(&file->f_ra, index))
  149. page_cache_sync_readahead(
  150. sb->s_bdev->bd_inode->i_mapping,
  151. &file->f_ra, file,
  152. index, 1);
  153. file->f_ra.prev_pos = (loff_t)index << PAGE_SHIFT;
  154. bh = ext4_bread(NULL, inode, map.m_lblk, 0);
  155. if (IS_ERR(bh)) {
  156. err = PTR_ERR(bh);
  157. bh = NULL;
  158. goto errout;
  159. }
  160. }
  161. if (!bh) {
  162. if (!dir_has_error) {
  163. EXT4_ERROR_FILE(file, 0,
  164. "directory contains a "
  165. "hole at offset %llu",
  166. (unsigned long long) ctx->pos);
  167. dir_has_error = 1;
  168. }
  169. /* corrupt size? Maybe no more blocks to read */
  170. if (ctx->pos > inode->i_blocks << 9)
  171. break;
  172. ctx->pos += sb->s_blocksize - offset;
  173. continue;
  174. }
  175. /* Check the checksum */
  176. if (!buffer_verified(bh) &&
  177. !ext4_dirent_csum_verify(inode,
  178. (struct ext4_dir_entry *)bh->b_data)) {
  179. EXT4_ERROR_FILE(file, 0, "directory fails checksum "
  180. "at offset %llu",
  181. (unsigned long long)ctx->pos);
  182. ctx->pos += sb->s_blocksize - offset;
  183. brelse(bh);
  184. bh = NULL;
  185. continue;
  186. }
  187. set_buffer_verified(bh);
  188. /* If the dir block has changed since the last call to
  189. * readdir(2), then we might be pointing to an invalid
  190. * dirent right now. Scan from the start of the block
  191. * to make sure. */
  192. if (!inode_eq_iversion(inode, file->f_version)) {
  193. for (i = 0; i < sb->s_blocksize && i < offset; ) {
  194. de = (struct ext4_dir_entry_2 *)
  195. (bh->b_data + i);
  196. /* It's too expensive to do a full
  197. * dirent test each time round this
  198. * loop, but we do have to test at
  199. * least that it is non-zero. A
  200. * failure will be detected in the
  201. * dirent test below. */
  202. if (ext4_rec_len_from_disk(de->rec_len,
  203. sb->s_blocksize) < EXT4_DIR_REC_LEN(1))
  204. break;
  205. i += ext4_rec_len_from_disk(de->rec_len,
  206. sb->s_blocksize);
  207. }
  208. offset = i;
  209. ctx->pos = (ctx->pos & ~(sb->s_blocksize - 1))
  210. | offset;
  211. file->f_version = inode_query_iversion(inode);
  212. }
  213. while (ctx->pos < inode->i_size
  214. && offset < sb->s_blocksize) {
  215. de = (struct ext4_dir_entry_2 *) (bh->b_data + offset);
  216. if (ext4_check_dir_entry(inode, file, de, bh,
  217. bh->b_data, bh->b_size,
  218. offset)) {
  219. /*
  220. * On error, skip to the next block
  221. */
  222. ctx->pos = (ctx->pos |
  223. (sb->s_blocksize - 1)) + 1;
  224. break;
  225. }
  226. offset += ext4_rec_len_from_disk(de->rec_len,
  227. sb->s_blocksize);
  228. if (le32_to_cpu(de->inode)) {
  229. if (!ext4_encrypted_inode(inode)) {
  230. if (!dir_emit(ctx, de->name,
  231. de->name_len,
  232. le32_to_cpu(de->inode),
  233. get_dtype(sb, de->file_type)))
  234. goto done;
  235. } else {
  236. int save_len = fstr.len;
  237. struct fscrypt_str de_name =
  238. FSTR_INIT(de->name,
  239. de->name_len);
  240. /* Directory is encrypted */
  241. err = fscrypt_fname_disk_to_usr(inode,
  242. 0, 0, &de_name, &fstr);
  243. de_name = fstr;
  244. fstr.len = save_len;
  245. if (err)
  246. goto errout;
  247. if (!dir_emit(ctx,
  248. de_name.name, de_name.len,
  249. le32_to_cpu(de->inode),
  250. get_dtype(sb, de->file_type)))
  251. goto done;
  252. }
  253. }
  254. ctx->pos += ext4_rec_len_from_disk(de->rec_len,
  255. sb->s_blocksize);
  256. }
  257. if ((ctx->pos < inode->i_size) && !dir_relax_shared(inode))
  258. goto done;
  259. brelse(bh);
  260. bh = NULL;
  261. offset = 0;
  262. }
  263. done:
  264. err = 0;
  265. errout:
  266. #ifdef CONFIG_EXT4_FS_ENCRYPTION
  267. fscrypt_fname_free_buffer(&fstr);
  268. #endif
  269. brelse(bh);
  270. return err;
  271. }
  272. static inline int is_32bit_api(void)
  273. {
  274. #ifdef CONFIG_COMPAT
  275. return in_compat_syscall();
  276. #else
  277. return (BITS_PER_LONG == 32);
  278. #endif
  279. }
  280. /*
  281. * These functions convert from the major/minor hash to an f_pos
  282. * value for dx directories
  283. *
  284. * Upper layer (for example NFS) should specify FMODE_32BITHASH or
  285. * FMODE_64BITHASH explicitly. On the other hand, we allow ext4 to be mounted
  286. * directly on both 32-bit and 64-bit nodes, under such case, neither
  287. * FMODE_32BITHASH nor FMODE_64BITHASH is specified.
  288. */
  289. static inline loff_t hash2pos(struct file *filp, __u32 major, __u32 minor)
  290. {
  291. if ((filp->f_mode & FMODE_32BITHASH) ||
  292. (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
  293. return major >> 1;
  294. else
  295. return ((__u64)(major >> 1) << 32) | (__u64)minor;
  296. }
  297. static inline __u32 pos2maj_hash(struct file *filp, loff_t pos)
  298. {
  299. if ((filp->f_mode & FMODE_32BITHASH) ||
  300. (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
  301. return (pos << 1) & 0xffffffff;
  302. else
  303. return ((pos >> 32) << 1) & 0xffffffff;
  304. }
  305. static inline __u32 pos2min_hash(struct file *filp, loff_t pos)
  306. {
  307. if ((filp->f_mode & FMODE_32BITHASH) ||
  308. (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
  309. return 0;
  310. else
  311. return pos & 0xffffffff;
  312. }
  313. /*
  314. * Return 32- or 64-bit end-of-file for dx directories
  315. */
  316. static inline loff_t ext4_get_htree_eof(struct file *filp)
  317. {
  318. if ((filp->f_mode & FMODE_32BITHASH) ||
  319. (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
  320. return EXT4_HTREE_EOF_32BIT;
  321. else
  322. return EXT4_HTREE_EOF_64BIT;
  323. }
  324. /*
  325. * ext4_dir_llseek() calls generic_file_llseek_size to handle htree
  326. * directories, where the "offset" is in terms of the filename hash
  327. * value instead of the byte offset.
  328. *
  329. * Because we may return a 64-bit hash that is well beyond offset limits,
  330. * we need to pass the max hash as the maximum allowable offset in
  331. * the htree directory case.
  332. *
  333. * For non-htree, ext4_llseek already chooses the proper max offset.
  334. */
  335. static loff_t ext4_dir_llseek(struct file *file, loff_t offset, int whence)
  336. {
  337. struct inode *inode = file->f_mapping->host;
  338. int dx_dir = is_dx_dir(inode);
  339. loff_t ret, htree_max = ext4_get_htree_eof(file);
  340. if (likely(dx_dir))
  341. ret = generic_file_llseek_size(file, offset, whence,
  342. htree_max, htree_max);
  343. else
  344. ret = ext4_llseek(file, offset, whence);
  345. file->f_version = inode_peek_iversion(inode) - 1;
  346. return ret;
  347. }
  348. /*
  349. * This structure holds the nodes of the red-black tree used to store
  350. * the directory entry in hash order.
  351. */
  352. struct fname {
  353. __u32 hash;
  354. __u32 minor_hash;
  355. struct rb_node rb_hash;
  356. struct fname *next;
  357. __u32 inode;
  358. __u8 name_len;
  359. __u8 file_type;
  360. char name[0];
  361. };
  362. /*
  363. * This functoin implements a non-recursive way of freeing all of the
  364. * nodes in the red-black tree.
  365. */
  366. static void free_rb_tree_fname(struct rb_root *root)
  367. {
  368. struct fname *fname, *next;
  369. rbtree_postorder_for_each_entry_safe(fname, next, root, rb_hash)
  370. while (fname) {
  371. struct fname *old = fname;
  372. fname = fname->next;
  373. kfree(old);
  374. }
  375. *root = RB_ROOT;
  376. }
  377. static struct dir_private_info *ext4_htree_create_dir_info(struct file *filp,
  378. loff_t pos)
  379. {
  380. struct dir_private_info *p;
  381. p = kzalloc(sizeof(*p), GFP_KERNEL);
  382. if (!p)
  383. return NULL;
  384. p->curr_hash = pos2maj_hash(filp, pos);
  385. p->curr_minor_hash = pos2min_hash(filp, pos);
  386. return p;
  387. }
  388. void ext4_htree_free_dir_info(struct dir_private_info *p)
  389. {
  390. free_rb_tree_fname(&p->root);
  391. kfree(p);
  392. }
  393. /*
  394. * Given a directory entry, enter it into the fname rb tree.
  395. *
  396. * When filename encryption is enabled, the dirent will hold the
  397. * encrypted filename, while the htree will hold decrypted filename.
  398. * The decrypted filename is passed in via ent_name. parameter.
  399. */
  400. int ext4_htree_store_dirent(struct file *dir_file, __u32 hash,
  401. __u32 minor_hash,
  402. struct ext4_dir_entry_2 *dirent,
  403. struct fscrypt_str *ent_name)
  404. {
  405. struct rb_node **p, *parent = NULL;
  406. struct fname *fname, *new_fn;
  407. struct dir_private_info *info;
  408. int len;
  409. info = dir_file->private_data;
  410. p = &info->root.rb_node;
  411. /* Create and allocate the fname structure */
  412. len = sizeof(struct fname) + ent_name->len + 1;
  413. new_fn = kzalloc(len, GFP_KERNEL);
  414. if (!new_fn)
  415. return -ENOMEM;
  416. new_fn->hash = hash;
  417. new_fn->minor_hash = minor_hash;
  418. new_fn->inode = le32_to_cpu(dirent->inode);
  419. new_fn->name_len = ent_name->len;
  420. new_fn->file_type = dirent->file_type;
  421. memcpy(new_fn->name, ent_name->name, ent_name->len);
  422. new_fn->name[ent_name->len] = 0;
  423. while (*p) {
  424. parent = *p;
  425. fname = rb_entry(parent, struct fname, rb_hash);
  426. /*
  427. * If the hash and minor hash match up, then we put
  428. * them on a linked list. This rarely happens...
  429. */
  430. if ((new_fn->hash == fname->hash) &&
  431. (new_fn->minor_hash == fname->minor_hash)) {
  432. new_fn->next = fname->next;
  433. fname->next = new_fn;
  434. return 0;
  435. }
  436. if (new_fn->hash < fname->hash)
  437. p = &(*p)->rb_left;
  438. else if (new_fn->hash > fname->hash)
  439. p = &(*p)->rb_right;
  440. else if (new_fn->minor_hash < fname->minor_hash)
  441. p = &(*p)->rb_left;
  442. else /* if (new_fn->minor_hash > fname->minor_hash) */
  443. p = &(*p)->rb_right;
  444. }
  445. rb_link_node(&new_fn->rb_hash, parent, p);
  446. rb_insert_color(&new_fn->rb_hash, &info->root);
  447. return 0;
  448. }
  449. /*
  450. * This is a helper function for ext4_dx_readdir. It calls filldir
  451. * for all entres on the fname linked list. (Normally there is only
  452. * one entry on the linked list, unless there are 62 bit hash collisions.)
  453. */
  454. static int call_filldir(struct file *file, struct dir_context *ctx,
  455. struct fname *fname)
  456. {
  457. struct dir_private_info *info = file->private_data;
  458. struct inode *inode = file_inode(file);
  459. struct super_block *sb = inode->i_sb;
  460. if (!fname) {
  461. ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: comm %s: "
  462. "called with null fname?!?", __func__, __LINE__,
  463. inode->i_ino, current->comm);
  464. return 0;
  465. }
  466. ctx->pos = hash2pos(file, fname->hash, fname->minor_hash);
  467. while (fname) {
  468. if (!dir_emit(ctx, fname->name,
  469. fname->name_len,
  470. fname->inode,
  471. get_dtype(sb, fname->file_type))) {
  472. info->extra_fname = fname;
  473. return 1;
  474. }
  475. fname = fname->next;
  476. }
  477. return 0;
  478. }
  479. static int ext4_dx_readdir(struct file *file, struct dir_context *ctx)
  480. {
  481. struct dir_private_info *info = file->private_data;
  482. struct inode *inode = file_inode(file);
  483. struct fname *fname;
  484. int ret;
  485. if (!info) {
  486. info = ext4_htree_create_dir_info(file, ctx->pos);
  487. if (!info)
  488. return -ENOMEM;
  489. file->private_data = info;
  490. }
  491. if (ctx->pos == ext4_get_htree_eof(file))
  492. return 0; /* EOF */
  493. /* Some one has messed with f_pos; reset the world */
  494. if (info->last_pos != ctx->pos) {
  495. free_rb_tree_fname(&info->root);
  496. info->curr_node = NULL;
  497. info->extra_fname = NULL;
  498. info->curr_hash = pos2maj_hash(file, ctx->pos);
  499. info->curr_minor_hash = pos2min_hash(file, ctx->pos);
  500. }
  501. /*
  502. * If there are any leftover names on the hash collision
  503. * chain, return them first.
  504. */
  505. if (info->extra_fname) {
  506. if (call_filldir(file, ctx, info->extra_fname))
  507. goto finished;
  508. info->extra_fname = NULL;
  509. goto next_node;
  510. } else if (!info->curr_node)
  511. info->curr_node = rb_first(&info->root);
  512. while (1) {
  513. /*
  514. * Fill the rbtree if we have no more entries,
  515. * or the inode has changed since we last read in the
  516. * cached entries.
  517. */
  518. if ((!info->curr_node) ||
  519. !inode_eq_iversion(inode, file->f_version)) {
  520. info->curr_node = NULL;
  521. free_rb_tree_fname(&info->root);
  522. file->f_version = inode_query_iversion(inode);
  523. ret = ext4_htree_fill_tree(file, info->curr_hash,
  524. info->curr_minor_hash,
  525. &info->next_hash);
  526. if (ret < 0)
  527. return ret;
  528. if (ret == 0) {
  529. ctx->pos = ext4_get_htree_eof(file);
  530. break;
  531. }
  532. info->curr_node = rb_first(&info->root);
  533. }
  534. fname = rb_entry(info->curr_node, struct fname, rb_hash);
  535. info->curr_hash = fname->hash;
  536. info->curr_minor_hash = fname->minor_hash;
  537. if (call_filldir(file, ctx, fname))
  538. break;
  539. next_node:
  540. info->curr_node = rb_next(info->curr_node);
  541. if (info->curr_node) {
  542. fname = rb_entry(info->curr_node, struct fname,
  543. rb_hash);
  544. info->curr_hash = fname->hash;
  545. info->curr_minor_hash = fname->minor_hash;
  546. } else {
  547. if (info->next_hash == ~0) {
  548. ctx->pos = ext4_get_htree_eof(file);
  549. break;
  550. }
  551. info->curr_hash = info->next_hash;
  552. info->curr_minor_hash = 0;
  553. }
  554. }
  555. finished:
  556. info->last_pos = ctx->pos;
  557. return 0;
  558. }
  559. static int ext4_dir_open(struct inode * inode, struct file * filp)
  560. {
  561. if (ext4_encrypted_inode(inode))
  562. return fscrypt_get_encryption_info(inode) ? -EACCES : 0;
  563. return 0;
  564. }
  565. static int ext4_release_dir(struct inode *inode, struct file *filp)
  566. {
  567. if (filp->private_data)
  568. ext4_htree_free_dir_info(filp->private_data);
  569. return 0;
  570. }
  571. int ext4_check_all_de(struct inode *dir, struct buffer_head *bh, void *buf,
  572. int buf_size)
  573. {
  574. struct ext4_dir_entry_2 *de;
  575. int rlen;
  576. unsigned int offset = 0;
  577. char *top;
  578. de = (struct ext4_dir_entry_2 *)buf;
  579. top = buf + buf_size;
  580. while ((char *) de < top) {
  581. if (ext4_check_dir_entry(dir, NULL, de, bh,
  582. buf, buf_size, offset))
  583. return -EFSCORRUPTED;
  584. rlen = ext4_rec_len_from_disk(de->rec_len, buf_size);
  585. de = (struct ext4_dir_entry_2 *)((char *)de + rlen);
  586. offset += rlen;
  587. }
  588. if ((char *) de > top)
  589. return -EFSCORRUPTED;
  590. return 0;
  591. }
  592. const struct file_operations ext4_dir_operations = {
  593. .llseek = ext4_dir_llseek,
  594. .read = generic_read_dir,
  595. .iterate_shared = ext4_readdir,
  596. .unlocked_ioctl = ext4_ioctl,
  597. #ifdef CONFIG_COMPAT
  598. .compat_ioctl = ext4_compat_ioctl,
  599. #endif
  600. .fsync = ext4_sync_file,
  601. .open = ext4_dir_open,
  602. .release = ext4_release_dir,
  603. };