u_audio.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * u_audio.c -- interface to USB gadget "ALSA sound card" utilities
  4. *
  5. * Copyright (C) 2016
  6. * Author: Ruslan Bilovol <ruslan.bilovol@gmail.com>
  7. *
  8. * Sound card implementation was cut-and-pasted with changes
  9. * from f_uac2.c and has:
  10. * Copyright (C) 2011
  11. * Yadwinder Singh (yadi.brar01@gmail.com)
  12. * Jaswinder Singh (jaswinder.singh@linaro.org)
  13. */
  14. #include <linux/module.h>
  15. #include <sound/core.h>
  16. #include <sound/pcm.h>
  17. #include <sound/pcm_params.h>
  18. #include "u_audio.h"
  19. #define BUFF_SIZE_MAX (PAGE_SIZE * 16)
  20. #define PRD_SIZE_MAX PAGE_SIZE
  21. #define MIN_PERIODS 4
  22. struct uac_req {
  23. struct uac_rtd_params *pp; /* parent param */
  24. struct usb_request *req;
  25. };
  26. /* Runtime data params for one stream */
  27. struct uac_rtd_params {
  28. struct snd_uac_chip *uac; /* parent chip */
  29. bool ep_enabled; /* if the ep is enabled */
  30. /* Size of the ring buffer */
  31. size_t dma_bytes;
  32. unsigned char *dma_area;
  33. struct snd_pcm_substream *ss;
  34. /* Ring buffer */
  35. ssize_t hw_ptr;
  36. void *rbuf;
  37. size_t period_size;
  38. unsigned max_psize; /* MaxPacketSize of endpoint */
  39. struct uac_req *ureq;
  40. spinlock_t lock;
  41. };
  42. struct snd_uac_chip {
  43. struct g_audio *audio_dev;
  44. struct uac_rtd_params p_prm;
  45. struct uac_rtd_params c_prm;
  46. struct snd_card *card;
  47. struct snd_pcm *pcm;
  48. /* timekeeping for the playback endpoint */
  49. unsigned int p_interval;
  50. unsigned int p_residue;
  51. /* pre-calculated values for playback iso completion */
  52. unsigned int p_pktsize;
  53. unsigned int p_pktsize_residue;
  54. unsigned int p_framesize;
  55. };
  56. static const struct snd_pcm_hardware uac_pcm_hardware = {
  57. .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER
  58. | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID
  59. | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME,
  60. .rates = SNDRV_PCM_RATE_CONTINUOUS,
  61. .periods_max = BUFF_SIZE_MAX / PRD_SIZE_MAX,
  62. .buffer_bytes_max = BUFF_SIZE_MAX,
  63. .period_bytes_max = PRD_SIZE_MAX,
  64. .periods_min = MIN_PERIODS,
  65. };
  66. static void u_audio_iso_complete(struct usb_ep *ep, struct usb_request *req)
  67. {
  68. unsigned pending;
  69. unsigned long flags;
  70. unsigned int hw_ptr;
  71. bool update_alsa = false;
  72. int status = req->status;
  73. struct uac_req *ur = req->context;
  74. struct snd_pcm_substream *substream;
  75. struct uac_rtd_params *prm = ur->pp;
  76. struct snd_uac_chip *uac = prm->uac;
  77. /* i/f shutting down */
  78. if (!prm->ep_enabled || req->status == -ESHUTDOWN)
  79. return;
  80. /*
  81. * We can't really do much about bad xfers.
  82. * Afterall, the ISOCH xfers could fail legitimately.
  83. */
  84. if (status)
  85. pr_debug("%s: iso_complete status(%d) %d/%d\n",
  86. __func__, status, req->actual, req->length);
  87. substream = prm->ss;
  88. /* Do nothing if ALSA isn't active */
  89. if (!substream)
  90. goto exit;
  91. spin_lock_irqsave(&prm->lock, flags);
  92. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  93. /*
  94. * For each IN packet, take the quotient of the current data
  95. * rate and the endpoint's interval as the base packet size.
  96. * If there is a residue from this division, add it to the
  97. * residue accumulator.
  98. */
  99. req->length = uac->p_pktsize;
  100. uac->p_residue += uac->p_pktsize_residue;
  101. /*
  102. * Whenever there are more bytes in the accumulator than we
  103. * need to add one more sample frame, increase this packet's
  104. * size and decrease the accumulator.
  105. */
  106. if (uac->p_residue / uac->p_interval >= uac->p_framesize) {
  107. req->length += uac->p_framesize;
  108. uac->p_residue -= uac->p_framesize *
  109. uac->p_interval;
  110. }
  111. req->actual = req->length;
  112. }
  113. pending = prm->hw_ptr % prm->period_size;
  114. pending += req->actual;
  115. if (pending >= prm->period_size)
  116. update_alsa = true;
  117. hw_ptr = prm->hw_ptr;
  118. prm->hw_ptr = (prm->hw_ptr + req->actual) % prm->dma_bytes;
  119. spin_unlock_irqrestore(&prm->lock, flags);
  120. /* Pack USB load in ALSA ring buffer */
  121. pending = prm->dma_bytes - hw_ptr;
  122. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  123. if (unlikely(pending < req->actual)) {
  124. memcpy(req->buf, prm->dma_area + hw_ptr, pending);
  125. memcpy(req->buf + pending, prm->dma_area,
  126. req->actual - pending);
  127. } else {
  128. memcpy(req->buf, prm->dma_area + hw_ptr, req->actual);
  129. }
  130. } else {
  131. if (unlikely(pending < req->actual)) {
  132. memcpy(prm->dma_area + hw_ptr, req->buf, pending);
  133. memcpy(prm->dma_area, req->buf + pending,
  134. req->actual - pending);
  135. } else {
  136. memcpy(prm->dma_area + hw_ptr, req->buf, req->actual);
  137. }
  138. }
  139. exit:
  140. if (usb_ep_queue(ep, req, GFP_ATOMIC))
  141. dev_err(uac->card->dev, "%d Error!\n", __LINE__);
  142. if (update_alsa)
  143. snd_pcm_period_elapsed(substream);
  144. }
  145. static int uac_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
  146. {
  147. struct snd_uac_chip *uac = snd_pcm_substream_chip(substream);
  148. struct uac_rtd_params *prm;
  149. struct g_audio *audio_dev;
  150. struct uac_params *params;
  151. unsigned long flags;
  152. int err = 0;
  153. audio_dev = uac->audio_dev;
  154. params = &audio_dev->params;
  155. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  156. prm = &uac->p_prm;
  157. else
  158. prm = &uac->c_prm;
  159. spin_lock_irqsave(&prm->lock, flags);
  160. /* Reset */
  161. prm->hw_ptr = 0;
  162. switch (cmd) {
  163. case SNDRV_PCM_TRIGGER_START:
  164. case SNDRV_PCM_TRIGGER_RESUME:
  165. prm->ss = substream;
  166. break;
  167. case SNDRV_PCM_TRIGGER_STOP:
  168. case SNDRV_PCM_TRIGGER_SUSPEND:
  169. prm->ss = NULL;
  170. break;
  171. default:
  172. err = -EINVAL;
  173. }
  174. spin_unlock_irqrestore(&prm->lock, flags);
  175. /* Clear buffer after Play stops */
  176. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && !prm->ss)
  177. memset(prm->rbuf, 0, prm->max_psize * params->req_number);
  178. return err;
  179. }
  180. static snd_pcm_uframes_t uac_pcm_pointer(struct snd_pcm_substream *substream)
  181. {
  182. struct snd_uac_chip *uac = snd_pcm_substream_chip(substream);
  183. struct uac_rtd_params *prm;
  184. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  185. prm = &uac->p_prm;
  186. else
  187. prm = &uac->c_prm;
  188. return bytes_to_frames(substream->runtime, prm->hw_ptr);
  189. }
  190. static int uac_pcm_hw_params(struct snd_pcm_substream *substream,
  191. struct snd_pcm_hw_params *hw_params)
  192. {
  193. struct snd_uac_chip *uac = snd_pcm_substream_chip(substream);
  194. struct uac_rtd_params *prm;
  195. int err;
  196. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  197. prm = &uac->p_prm;
  198. else
  199. prm = &uac->c_prm;
  200. err = snd_pcm_lib_malloc_pages(substream,
  201. params_buffer_bytes(hw_params));
  202. if (err >= 0) {
  203. prm->dma_bytes = substream->runtime->dma_bytes;
  204. prm->dma_area = substream->runtime->dma_area;
  205. prm->period_size = params_period_bytes(hw_params);
  206. }
  207. return err;
  208. }
  209. static int uac_pcm_hw_free(struct snd_pcm_substream *substream)
  210. {
  211. struct snd_uac_chip *uac = snd_pcm_substream_chip(substream);
  212. struct uac_rtd_params *prm;
  213. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  214. prm = &uac->p_prm;
  215. else
  216. prm = &uac->c_prm;
  217. prm->dma_area = NULL;
  218. prm->dma_bytes = 0;
  219. prm->period_size = 0;
  220. return snd_pcm_lib_free_pages(substream);
  221. }
  222. static int uac_pcm_open(struct snd_pcm_substream *substream)
  223. {
  224. struct snd_uac_chip *uac = snd_pcm_substream_chip(substream);
  225. struct snd_pcm_runtime *runtime = substream->runtime;
  226. struct g_audio *audio_dev;
  227. struct uac_params *params;
  228. int p_ssize, c_ssize;
  229. int p_srate, c_srate;
  230. int p_chmask, c_chmask;
  231. audio_dev = uac->audio_dev;
  232. params = &audio_dev->params;
  233. p_ssize = params->p_ssize;
  234. c_ssize = params->c_ssize;
  235. p_srate = params->p_srate;
  236. c_srate = params->c_srate;
  237. p_chmask = params->p_chmask;
  238. c_chmask = params->c_chmask;
  239. uac->p_residue = 0;
  240. runtime->hw = uac_pcm_hardware;
  241. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  242. spin_lock_init(&uac->p_prm.lock);
  243. runtime->hw.rate_min = p_srate;
  244. switch (p_ssize) {
  245. case 3:
  246. runtime->hw.formats = SNDRV_PCM_FMTBIT_S24_3LE;
  247. break;
  248. case 4:
  249. runtime->hw.formats = SNDRV_PCM_FMTBIT_S32_LE;
  250. break;
  251. default:
  252. runtime->hw.formats = SNDRV_PCM_FMTBIT_S16_LE;
  253. break;
  254. }
  255. runtime->hw.channels_min = num_channels(p_chmask);
  256. runtime->hw.period_bytes_min = 2 * uac->p_prm.max_psize
  257. / runtime->hw.periods_min;
  258. } else {
  259. spin_lock_init(&uac->c_prm.lock);
  260. runtime->hw.rate_min = c_srate;
  261. switch (c_ssize) {
  262. case 3:
  263. runtime->hw.formats = SNDRV_PCM_FMTBIT_S24_3LE;
  264. break;
  265. case 4:
  266. runtime->hw.formats = SNDRV_PCM_FMTBIT_S32_LE;
  267. break;
  268. default:
  269. runtime->hw.formats = SNDRV_PCM_FMTBIT_S16_LE;
  270. break;
  271. }
  272. runtime->hw.channels_min = num_channels(c_chmask);
  273. runtime->hw.period_bytes_min = 2 * uac->c_prm.max_psize
  274. / runtime->hw.periods_min;
  275. }
  276. runtime->hw.rate_max = runtime->hw.rate_min;
  277. runtime->hw.channels_max = runtime->hw.channels_min;
  278. snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
  279. return 0;
  280. }
  281. /* ALSA cries without these function pointers */
  282. static int uac_pcm_null(struct snd_pcm_substream *substream)
  283. {
  284. return 0;
  285. }
  286. static const struct snd_pcm_ops uac_pcm_ops = {
  287. .open = uac_pcm_open,
  288. .close = uac_pcm_null,
  289. .ioctl = snd_pcm_lib_ioctl,
  290. .hw_params = uac_pcm_hw_params,
  291. .hw_free = uac_pcm_hw_free,
  292. .trigger = uac_pcm_trigger,
  293. .pointer = uac_pcm_pointer,
  294. .prepare = uac_pcm_null,
  295. };
  296. static inline void free_ep(struct uac_rtd_params *prm, struct usb_ep *ep)
  297. {
  298. struct snd_uac_chip *uac = prm->uac;
  299. struct g_audio *audio_dev;
  300. struct uac_params *params;
  301. int i;
  302. if (!prm->ep_enabled)
  303. return;
  304. prm->ep_enabled = false;
  305. audio_dev = uac->audio_dev;
  306. params = &audio_dev->params;
  307. for (i = 0; i < params->req_number; i++) {
  308. if (prm->ureq[i].req) {
  309. usb_ep_dequeue(ep, prm->ureq[i].req);
  310. usb_ep_free_request(ep, prm->ureq[i].req);
  311. prm->ureq[i].req = NULL;
  312. }
  313. }
  314. if (usb_ep_disable(ep))
  315. dev_err(uac->card->dev, "%s:%d Error!\n", __func__, __LINE__);
  316. }
  317. int u_audio_start_capture(struct g_audio *audio_dev)
  318. {
  319. struct snd_uac_chip *uac = audio_dev->uac;
  320. struct usb_gadget *gadget = audio_dev->gadget;
  321. struct device *dev = &gadget->dev;
  322. struct usb_request *req;
  323. struct usb_ep *ep;
  324. struct uac_rtd_params *prm;
  325. struct uac_params *params = &audio_dev->params;
  326. int req_len, i;
  327. ep = audio_dev->out_ep;
  328. prm = &uac->c_prm;
  329. config_ep_by_speed(gadget, &audio_dev->func, ep);
  330. req_len = prm->max_psize;
  331. prm->ep_enabled = true;
  332. usb_ep_enable(ep);
  333. for (i = 0; i < params->req_number; i++) {
  334. if (!prm->ureq[i].req) {
  335. req = usb_ep_alloc_request(ep, GFP_ATOMIC);
  336. if (req == NULL)
  337. return -ENOMEM;
  338. prm->ureq[i].req = req;
  339. prm->ureq[i].pp = prm;
  340. req->zero = 0;
  341. req->context = &prm->ureq[i];
  342. req->length = req_len;
  343. req->complete = u_audio_iso_complete;
  344. req->buf = prm->rbuf + i * prm->max_psize;
  345. }
  346. if (usb_ep_queue(ep, prm->ureq[i].req, GFP_ATOMIC))
  347. dev_err(dev, "%s:%d Error!\n", __func__, __LINE__);
  348. }
  349. return 0;
  350. }
  351. EXPORT_SYMBOL_GPL(u_audio_start_capture);
  352. void u_audio_stop_capture(struct g_audio *audio_dev)
  353. {
  354. struct snd_uac_chip *uac = audio_dev->uac;
  355. free_ep(&uac->c_prm, audio_dev->out_ep);
  356. }
  357. EXPORT_SYMBOL_GPL(u_audio_stop_capture);
  358. int u_audio_start_playback(struct g_audio *audio_dev)
  359. {
  360. struct snd_uac_chip *uac = audio_dev->uac;
  361. struct usb_gadget *gadget = audio_dev->gadget;
  362. struct device *dev = &gadget->dev;
  363. struct usb_request *req;
  364. struct usb_ep *ep;
  365. struct uac_rtd_params *prm;
  366. struct uac_params *params = &audio_dev->params;
  367. unsigned int factor, rate;
  368. const struct usb_endpoint_descriptor *ep_desc;
  369. int req_len, i;
  370. ep = audio_dev->in_ep;
  371. prm = &uac->p_prm;
  372. config_ep_by_speed(gadget, &audio_dev->func, ep);
  373. ep_desc = ep->desc;
  374. /* pre-calculate the playback endpoint's interval */
  375. if (gadget->speed == USB_SPEED_FULL)
  376. factor = 1000;
  377. else
  378. factor = 8000;
  379. /* pre-compute some values for iso_complete() */
  380. uac->p_framesize = params->p_ssize *
  381. num_channels(params->p_chmask);
  382. rate = params->p_srate * uac->p_framesize;
  383. uac->p_interval = factor / (1 << (ep_desc->bInterval - 1));
  384. uac->p_pktsize = min_t(unsigned int, rate / uac->p_interval,
  385. prm->max_psize);
  386. if (uac->p_pktsize < prm->max_psize)
  387. uac->p_pktsize_residue = rate % uac->p_interval;
  388. else
  389. uac->p_pktsize_residue = 0;
  390. req_len = uac->p_pktsize;
  391. uac->p_residue = 0;
  392. prm->ep_enabled = true;
  393. usb_ep_enable(ep);
  394. for (i = 0; i < params->req_number; i++) {
  395. if (!prm->ureq[i].req) {
  396. req = usb_ep_alloc_request(ep, GFP_ATOMIC);
  397. if (req == NULL)
  398. return -ENOMEM;
  399. prm->ureq[i].req = req;
  400. prm->ureq[i].pp = prm;
  401. req->zero = 0;
  402. req->context = &prm->ureq[i];
  403. req->length = req_len;
  404. req->complete = u_audio_iso_complete;
  405. req->buf = prm->rbuf + i * prm->max_psize;
  406. }
  407. if (usb_ep_queue(ep, prm->ureq[i].req, GFP_ATOMIC))
  408. dev_err(dev, "%s:%d Error!\n", __func__, __LINE__);
  409. }
  410. return 0;
  411. }
  412. EXPORT_SYMBOL_GPL(u_audio_start_playback);
  413. void u_audio_stop_playback(struct g_audio *audio_dev)
  414. {
  415. struct snd_uac_chip *uac = audio_dev->uac;
  416. free_ep(&uac->p_prm, audio_dev->in_ep);
  417. }
  418. EXPORT_SYMBOL_GPL(u_audio_stop_playback);
  419. int g_audio_setup(struct g_audio *g_audio, const char *pcm_name,
  420. const char *card_name)
  421. {
  422. struct snd_uac_chip *uac;
  423. struct snd_card *card;
  424. struct snd_pcm *pcm;
  425. struct uac_params *params;
  426. int p_chmask, c_chmask;
  427. int err;
  428. if (!g_audio)
  429. return -EINVAL;
  430. uac = kzalloc(sizeof(*uac), GFP_KERNEL);
  431. if (!uac)
  432. return -ENOMEM;
  433. g_audio->uac = uac;
  434. uac->audio_dev = g_audio;
  435. params = &g_audio->params;
  436. p_chmask = params->p_chmask;
  437. c_chmask = params->c_chmask;
  438. if (c_chmask) {
  439. struct uac_rtd_params *prm = &uac->c_prm;
  440. uac->c_prm.uac = uac;
  441. prm->max_psize = g_audio->out_ep_maxpsize;
  442. prm->ureq = kcalloc(params->req_number, sizeof(struct uac_req),
  443. GFP_KERNEL);
  444. if (!prm->ureq) {
  445. err = -ENOMEM;
  446. goto fail;
  447. }
  448. prm->rbuf = kcalloc(params->req_number, prm->max_psize,
  449. GFP_KERNEL);
  450. if (!prm->rbuf) {
  451. prm->max_psize = 0;
  452. err = -ENOMEM;
  453. goto fail;
  454. }
  455. }
  456. if (p_chmask) {
  457. struct uac_rtd_params *prm = &uac->p_prm;
  458. uac->p_prm.uac = uac;
  459. prm->max_psize = g_audio->in_ep_maxpsize;
  460. prm->ureq = kcalloc(params->req_number, sizeof(struct uac_req),
  461. GFP_KERNEL);
  462. if (!prm->ureq) {
  463. err = -ENOMEM;
  464. goto fail;
  465. }
  466. prm->rbuf = kcalloc(params->req_number, prm->max_psize,
  467. GFP_KERNEL);
  468. if (!prm->rbuf) {
  469. prm->max_psize = 0;
  470. err = -ENOMEM;
  471. goto fail;
  472. }
  473. }
  474. /* Choose any slot, with no id */
  475. err = snd_card_new(&g_audio->gadget->dev,
  476. -1, NULL, THIS_MODULE, 0, &card);
  477. if (err < 0)
  478. goto fail;
  479. uac->card = card;
  480. /*
  481. * Create first PCM device
  482. * Create a substream only for non-zero channel streams
  483. */
  484. err = snd_pcm_new(uac->card, pcm_name, 0,
  485. p_chmask ? 1 : 0, c_chmask ? 1 : 0, &pcm);
  486. if (err < 0)
  487. goto snd_fail;
  488. strcpy(pcm->name, pcm_name);
  489. pcm->private_data = uac;
  490. uac->pcm = pcm;
  491. snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &uac_pcm_ops);
  492. snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &uac_pcm_ops);
  493. strcpy(card->driver, card_name);
  494. strcpy(card->shortname, card_name);
  495. sprintf(card->longname, "%s %i", card_name, card->dev->id);
  496. snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
  497. snd_dma_continuous_data(GFP_KERNEL), 0, BUFF_SIZE_MAX);
  498. err = snd_card_register(card);
  499. if (!err)
  500. return 0;
  501. snd_fail:
  502. snd_card_free(card);
  503. fail:
  504. kfree(uac->p_prm.ureq);
  505. kfree(uac->c_prm.ureq);
  506. kfree(uac->p_prm.rbuf);
  507. kfree(uac->c_prm.rbuf);
  508. kfree(uac);
  509. return err;
  510. }
  511. EXPORT_SYMBOL_GPL(g_audio_setup);
  512. void g_audio_cleanup(struct g_audio *g_audio)
  513. {
  514. struct snd_uac_chip *uac;
  515. struct snd_card *card;
  516. if (!g_audio || !g_audio->uac)
  517. return;
  518. uac = g_audio->uac;
  519. card = uac->card;
  520. if (card)
  521. snd_card_free(card);
  522. kfree(uac->p_prm.ureq);
  523. kfree(uac->c_prm.ureq);
  524. kfree(uac->p_prm.rbuf);
  525. kfree(uac->c_prm.rbuf);
  526. kfree(uac);
  527. }
  528. EXPORT_SYMBOL_GPL(g_audio_cleanup);
  529. MODULE_LICENSE("GPL");
  530. MODULE_DESCRIPTION("USB gadget \"ALSA sound card\" utilities");
  531. MODULE_AUTHOR("Ruslan Bilovol");